WO2022023629A1 - Machine et procede de traitement de pieces de differentes formes - Google Patents

Machine et procede de traitement de pieces de differentes formes Download PDF

Info

Publication number
WO2022023629A1
WO2022023629A1 PCT/FR2021/051010 FR2021051010W WO2022023629A1 WO 2022023629 A1 WO2022023629 A1 WO 2022023629A1 FR 2021051010 W FR2021051010 W FR 2021051010W WO 2022023629 A1 WO2022023629 A1 WO 2022023629A1
Authority
WO
WIPO (PCT)
Prior art keywords
machine
parts
laser
enclosure
laser system
Prior art date
Application number
PCT/FR2021/051010
Other languages
English (en)
Inventor
Christophe HÉAU
Philippe Maurin-Perrier
Florence Garrelie
Jean-Philippe COLOMBIER
Florent Pigeon
Original Assignee
Hydromecanique Et Frottement
Universite Jean Monnet Saint Etienne
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydromecanique Et Frottement, Universite Jean Monnet Saint Etienne, Centre National De La Recherche Scientifique filed Critical Hydromecanique Et Frottement
Priority to BR112022026390A priority Critical patent/BR112022026390A2/pt
Priority to US18/014,030 priority patent/US20230294200A1/en
Priority to JP2023506298A priority patent/JP2023536721A/ja
Priority to CA3186410A priority patent/CA3186410A1/fr
Priority to KR1020237003195A priority patent/KR20230042465A/ko
Priority to CN202180058980.9A priority patent/CN116157198A/zh
Priority to EP21739161.4A priority patent/EP4175745A1/fr
Publication of WO2022023629A1 publication Critical patent/WO2022023629A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0093Working by laser beam, e.g. welding, cutting or boring combined with mechanical machining or metal-working covered by other subclasses than B23K
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/121Coherent waves, e.g. laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0879Solid

Definitions

  • the present invention relates to a machine for processing parts of different shapes.
  • the invention also relates to a treatment method.
  • the field of the invention is that of surface treatment.
  • WO2009053614A2 describes an example of a processing machine, comprising an enclosure, a vacuum system, a plasma generator system, a vacuum deposition system, and a parts transport system.
  • the object of the present invention is to improve the versatility of the machine, in terms of the treatments offered.
  • the subject of the invention is a machine for processing parts of different shapes, comprising an enclosure; a vacuum system; processing systems, including a plasma generator system and/or a vacuum deposition system; and a transport system able to move the part(s) in the enclosure, whatever the shape of these parts.
  • the machine is characterized in that the processing systems include a laser system designed to process the part or parts arranged in the enclosure.
  • the invention makes it possible to improve the versatility of the machine and to vary the treatments offered.
  • the parts are processed by one or the other of the processing systems successively, possibly in combination, so that the operator can create and choose his own processing sequences.
  • the operator can choose to use the systems in one order or another, make repetitions of certain treatments, and so on.
  • the machine can be configured in different ways, in order to process small parts (around 1 to 10 cm) or large parts (around 0.1 to 1 m, or even more).
  • treated parts can be made of different materials: metallic, ceramic, composite, plastic, etc.
  • the processing systems can be used selectively to process the part(s), either separately from the other systems, or simultaneously with one or more of the other systems.
  • the sequence of use of the treatment systems can be configured, with a variable order of use and/or number of uses.
  • the processing systems can be used to directly process the part(s).
  • the laser system is separate from the plasma generator system.
  • the machine includes a protection system for the laser system, more precisely for the window allowing the entry of the laser beam into the enclosure.
  • the protection system includes a movable cover in front of the laser system.
  • the protection system includes a transparent film scrolling in front of the laser system.
  • the protection system includes internal walls which optically isolate the path of the laser beam coming from the laser system from the rest of the enclosure, and which protects from the flows coming from the processing systems.
  • the protection system comprises a chamber fixed to a wall of the enclosure and formed between the window of the laser system and the parts to be treated, this chamber being provided with an opening towards the parts in order to define a lower opening angle at 45 degrees between the window and the enclosure.
  • the laser system includes a single laser source.
  • the laser system includes several laser sources.
  • the laser system comprises one or more pulsed laser sources, for example pulse durations of the order of femtoseconds, picoseconds or nanoseconds.
  • the laser source is mono-spectral.
  • the laser source is multi-spectral (choice of wavelength depending on the material).
  • the laser sources are identical (same wavelength, same pulse duration, same polarization, same beam shape).
  • the laser sources are different (wavelengths and/or pulse durations and/or polarization and/or different beam shapes).
  • the laser beam can have multiple vector polarization states (eg azimuthal, radial, vortex, etc. type polarization).
  • the laser beam can be directed with an oblique or orthogonal incidence on the part(s).
  • the transport system is capable of moving the part or parts so that two successive treatment zones are contiguous.
  • the laser system comprises a device for correcting the path and/or the shape and/or the focusing of the laser beam.
  • the transport system includes a rotating plate intended to support one or more parts.
  • the transport system includes turrets mounted on the rotating plate and intended to receive one or more parts.
  • the turrets are mobile in rotation relative to the turntable.
  • the transport system includes plates rotatably mounted on the turrets and intended to support the parts.
  • the laser system is arranged laterally.
  • the transport system comprises a longitudinal transport device intended to support one or more parts.
  • the device can be a trolley, a roller conveyor, a conveyor belt, or any other suitable means.
  • the transport system includes a position encoding device.
  • the transport system includes visual cues and an optical sensor capable of cooperating with the cues.
  • the invention also relates to a method for treating parts of different shapes, the method comprising: a) a step of placing a vacuum in an enclosure in which the part(s) are located, then a combination of the following steps: b ) a step of laser treatment of the part(s), and c) a step of low pressure plasma treatment of the part(s), and/or d) a step of performing a vacuum deposition on one or more parts.
  • the method is characterized in that the different steps a), b), c) and/or d) are carried out in the same machine, adapted to process parts of different shapes.
  • Steps b), c) and d) can be carried out selectively, either separately from the other steps, or simultaneously with one or more of the other steps, to treat the part or parts.
  • steps b), c), d) or their combinations can be carried out according to a configurable sequence of use, with an order of uses and/or a variable number of uses.
  • FIG.1 is a top view of a machine according to the invention, equipped with a rotary transport system.
  • FIG.2 is a side view of the machine of Figure 1, showing the transport system equipped with turrets and the laser system arranged laterally.
  • FIG.3 is a view similar to Figure 1, showing a transport system variant.
  • FIG.4 is a view similar to Figure 2, showing another variant of the transport system and a variant of the laser system.
  • FIG.5 is a side view, showing another machine according to the invention, equipped with a longitudinal transport system.
  • FIG.6 is an elevation view (side view or top view depending on the machine), showing a first laser system protection system solution.
  • FIG.7 is a view similar to Figure 6, showing this first protection system solution in another position.
  • FIG.8 is a view similar to Figure 6, showing a second laser system protection system solution.
  • FIG.9 is a view similar to Figure 8, showing this second protection system solution in motion.
  • FIG.10 is a view similar to FIG. 6, on a smaller scale, showing a third laser system protection system solution according to a first configuration.
  • FIG.11 is a view similar to Figure 10, showing this third protection system solution according to a second configuration.
  • FIG.12 is a view similar to Figure 10, showing this third protection system solution according to a third configuration.
  • FIG.13 is a view similar to Figure 10, showing the protection system according to the first configuration, in use.
  • FIG.14 shows is a view similar to Figure 11, showing the protection system according to the second configuration, in use.
  • FIG.15 is a view similar to Figure 12, showing the protection system according to the third configuration, in use.
  • FIG.16 is an elevation view (side view or top view) of a laser system, showing a fourth laser system protection system solution.
  • FIG.17 is a view of a cylindrical part and the incident laser beam, showing the defocusing and distortion of the laser beam spot on the part.
  • FIG.18 is a perspective view of a cylindrical part and the incident laser beam, showing a case of oblique incidence and the deformation of the spot of the laser beam on the part.
  • FIG.19 is a view similar to Figure 18, showing an area to be treated contiguous to a previously treated area.
  • Figures 1 and 2 show a machine (1) according to the invention, designed for the treatment of parts (2) of different shapes.
  • the expression “of different shapes” includes parts of different geometries and/or dimensions. This expression is not limited to parts having the same geometry but different dimensions, for example flat films of different widths.
  • the machine (1) is suitable for processing both flat-shaped parts, that is to say with a very small thickness (less than 5%) compared to the other dimensions, and volume parts, that is that is to say with three dimensions of the same order of magnitude or having a close order of magnitude.
  • the parts can be of revolution (for example cylinders), or even parallelepipeds.
  • the parts can be of irregular shape, that is to say solids composed of surfaces that are not necessarily orthogonal to each other, or have sides of unequal dimensions.
  • the machine (1) according to the invention is designed to carry out surface treatments on the parts (2).
  • Surface treatments are part of the applicant's area of expertise, and may include, but are not limited to, the following treatments: chemical deposition of a thin film, activation, pickling or cleaning, texturing (i.e. making patterns in relief on the surface of the part, these patterns having dimensions of the order of a nanometer up to a tenth of a meter), heat treatment (i.e. the modification of the crystalline structure of a metal via a predetermined temperature cycle).
  • These treatments are called surface treatments, or superficial treatments, insofar as the area of effect of these treatments is limited at most to a few tenths of a millimeter below the surface of the part, and they are not intended to treat a part to the heart, that is to say in the depth of the part so that the entirety of the material has undergone the treatment.
  • the machine (1) comprises an enclosure (10), a vacuum system (20), a plasma generator system (30), a vacuum deposition system (40), a transport system (50), a laser system (60) and a protection system (70).
  • the machine (1) may comprise a plasma generator system (30) but no vacuum deposition system (40), or else comprise a vacuum deposition system (40) but no plasma generator system ( 30).
  • such a machine (1) also comprises a heating system for degassing the parts (2) and the inside of the enclosure (10) before any other treatment.
  • the machine (1) also comprises a system for injecting pure gases or mixtures of gases in order to introduce into the enclosure (10) in a controlled manner the gases necessary for the treatments.
  • the heating system nor the gas injection system are shown in the figures.
  • the systems (10-70) can be used separately or simultaneously with one or more of the other systems (10-70).
  • the operator can choose to use the laser system (60) while the enclosure (10) is under vacuum, using the vacuum system (20).
  • the operator can choose to carry out a treatment with the plasma system (30) on a first part (2) simultaneously with a treatment with the laser system (60) on a second part (2).
  • the operator can choose to do a treatment with the laser system (60), then move the parts to the plasma treatment system (30).
  • the operator can choose to make a first deposit using the vacuum deposition system (40), then a laser treatment with the laser system (60), then a second deposit with the vacuum deposition system empty (40).
  • the enclosure (10) has a parallelepipedal shape, with two parallel horizontal walls constituting the top and the bottom of the enclosure (10), as well as four vertical walls two by two parallel constituting the sides of the enclosure (10).
  • the walls can be of different shapes without departing from the scope of the invention.
  • a cylindrical enclosure (10) comprising a single cylindrical vertical wall.
  • This enclosure (10) may comprise a single compartment (11), as shown in Figures 1 and 2, or several compartments (11) as shown in Figure 5.
  • the vacuum system (20) is intended to evacuate the atmosphere present in the enclosure (10).
  • the system (20) can produce an air vacuum, that is to say an extraction of the air present in the enclosure (10) so that there prevails a pressure which can range, for example, from 10 2 Pa up to 10 9 Pa.
  • the plasma treatment system (30) can be used to pickle the parts (2) in order to clean them for another subsequent treatment. Also, the system (30) can be used to activate a surface so that it can react to another subsequent treatment, such as a corona treatment for plastics or ceramics. In combination with the gas injection system, the plasma treatment system (30) can be used to perform PACVD type deposits (“plasma assisted Chemical vapor deposition”, “Plasma-assisted chemical vapor deposition” in French) .
  • PACVD type deposits (“plasma assisted Chemical vapor deposition”, “Plasma-assisted chemical vapor deposition” in French) .
  • the vacuum deposition system (40) is intended to carry out a deposition on the surface of the parts (2).
  • the system (40) can be designed for PACVD or PVD (“physical vapor deposition” in English, “Physical vapor deposition” in French).
  • the vacuum deposition system (40) can optionally be used to pickle the parts (2) if it supplies enough ionized species, as is the case for example for an arc deposition source.
  • the transport system (50) is designed to receive the parts (2) and move them in the enclosure (10).
  • This transport system (50) can be constructed in different ways.
  • the system (50) comprises a plate (51) rotating around a central vertical axis, and turrets (52) rotatably mounted on the plate (51) around parallel vertical axes to the central axis, forming a carousel supporting one or more coins (2).
  • the turrets (52) make it possible to exploit the greatest possible height of the enclosure (10), in particular for processing small parts (2).
  • the plate (51) and the turrets (52) can rotate in the same direction or in the opposite direction.
  • the turrets (52) can be motorized independently, thus making it possible to rotate the plate (51) and the turrets (52) separately or simultaneously.
  • the turrets (52) can be fixedly mounted on the platter (51).
  • the plate (51) can be devoid of turrets (52).
  • the machine (1) is also equipped with the laser system (60), comprising a laser source (61) emitting a laser beam (62).
  • the laser source (61) can be pulsed and emit pulses whose durations are of the order of a femtosecond, the picosecond or nanosecond.
  • the laser source (61) can be multi-spectral (choice of the wavelength depending on the material).
  • the laser system (60) can include several laser sources (61) in order to be able to treat several parts (2) at the same time, or several areas of a large part (2).
  • the laser sources (61) can be identical (same wavelength, same pulse duration, same polarization, same beam shape) or different (wavelengths and/or pulse durations and/or polarization and/ or different beam shapes). Thereafter, reference will only be made to "the" laser source (61), even if there may be several.
  • the laser system (60) includes a window (63), which is optically transparent to the beam (62), and which marks the transition between the laser system (60) and the enclosure (10).
  • the system (60) comprises various optical devices, in particular a focusing and correcting device (65) for the beam (62), making it possible to concentrate the energy of the beam (62) at a chosen distance from said device (65). It is necessary to modify the focusing when the parts (2) to be treated are of different dimensions, and when the distance between the surface of a part (2) and the laser system (60) is not the same from one part (2) to another.
  • the system (60) also comprises a deflection device (66) intended to orient the laser beam (62) and to scan the surface of the part (2) to be treated.
  • the laser system (60) can be used in different ways and for different purposes:
  • the cavities can be arranged in a discrete pattern, i.e. the cavities are disjoint from each other.
  • the cavities can be arranged in a continuous pattern, i.e. the cavities are connected to each other.
  • the cavities can comprise a mixture of discrete and continuous patterns.
  • the pulses of the laser beam (62) generate a redistribution of the material and nanometric patterns are formed on the surface of the part.
  • the nanopatterns can be hollow, bumpy or even both. This can be used to increase the specific surface of the part (2) for example.
  • the machine (1) may also include a guard system (70) to protect the window (63) from the laser system.
  • a guard system (70) to protect the window (63) from the laser system.
  • the window (63) of the laser system (60) must remain as transparent as possible in order to guarantee the effectiveness of the laser treatment. This loss of transparency may come from deposits on the window (63), from the material ablated during the laser texturing of the parts (2), or else from the vacuum deposition system (40), or even from the plasma generator system ( 30).
  • the protection of the window (63) can therefore be a major advantage for the machine (1), not only for the performance of the laser treatments to be carried out, but also in terms of the availability rate of the machine (1), if the operations maintenance to clean or replace the window (63) are less frequent.
  • the machine (1) allows the implementation of different processes, comprising: a) a step of placing the enclosure (10) under vacuum, then a combination of the following steps: b) a step of laser treatment of the parts (2), and c) a step of plasma treatment of the parts (2), and/or d) a step of performing a vacuum deposition on the parts (2).
  • the different steps a) to d) can be carried out in the same machine (1), suitable for processing parts (2) of different shapes, with great versatility.
  • Steps a) and b) are always present in the process, with the addition of either step c), or step d), or the two steps c) and d).
  • the order of steps b), c) or d) is not chronological.
  • Step a) is prior to the other steps b), c) or d).
  • Steps b), c) and d) can be carried out selectively to process the part(s), either separately from the other steps, or simultaneously with one or more of the other steps.
  • Steps b), c), d) or their combinations can be carried out according to a configurable sequence of use, with an order of uses and/or a number of uses variables. For example, step b) can be carried out several times before carrying out step c) and/or d).
  • FIG. 3 to 17 Other embodiments of a machine (1) according to the invention are shown in Figures 3 to 17. Certain constituent elements of the machine (1) are comparable to those of the first embodiment described above and, in for the purpose of simplification, bear the same reference numerals.
  • Figure 3 shows a transport system (50) comprising only a turntable (51), without turrets (52).
  • the plate (51) forms a carousel on which are arranged one or more coins (2). This configuration is advantageous for treating parts (2) of large dimensions.
  • FIG. 4 shows a laser system (60) equipped with a single source (61) and a device for distributing and/or directing (67) the laser beam (62), so as to simultaneously treat several small parts (2), or several areas of the same large room (2).
  • This distribution and/or orientation device (67) can be based on a division of the beam (62), for example by using semi-reflecting mirrors as illustrated in FIG. 4, or even on a deflection of the beam (62 ), for example by using prisms rotated so that the facets of the prisms direct the beam (62) successively towards one zone (or part) then towards another.
  • the distribution device (67) without specifying whether it is a device for splitting or deflecting the beam (62).
  • the laser system (60) can advantageously be arranged laterally. Unlike the machines (1) whose laser system (60) is arranged above, this configuration makes it possible to process so-called “volume” parts (2), as opposed to parts which are simply flat, such as discs or movies for example.
  • FIG. 4 also shows turrets (52) equipped with plates (53) themselves mobile in rotation, so that three rotations could be controlled simultaneously or separately according to requirements: plate (51), turrets (52) and/or or turntables (53).
  • FIG. 5 shows another machine construction (1), comprising a longitudinal transport system (50) and several compartments (11).
  • the longitudinal transport system (50) comprises a carriage (54) supporting the parts (2) and rollers (55) supporting the carriage (54).
  • the longitudinal transport system (50) can comprise a conveyor belt, a roller conveyor (55) without a carriage, a carriage (54) associated with an endless screw, or any other suitable device.
  • the compartments (11) of the enclosure (10) are separated by vertical interior walls provided with valves (12), making it possible to partition or communicate the neighboring compartments (11). This construction is advantageous for protecting one of the systems (20-60) from pollution generated by the use of one of the other systems.
  • the plasma system (30) is mounted on the upper wall of a first compartment (11), the vacuum deposition system (40) is mounted on the upper wall of a second compartment (22), and the laser system ( 60) is mounted on the upper wall of a third compartment (11).
  • Other configurations can be envisaged without departing from the scope of the invention.
  • Such a machine (1) generally comprises several vacuum systems (20), because during a treatment, a compartment (11) can be isolated from the other compartments (11). It is then necessary that this compartment (11) has its system (20) of pumping. The same is true for heating and gas injection systems.
  • Figures 6 to 16 show different variants of protection systems (70) of the laser system (60).
  • the solutions designed to be integrated into the protection system (70) are numerous, and can be used in combination in order to take advantage of the advantages of each and increase the effectiveness of the resulting overall protection.
  • the system (70) comprises a cover (71) movable in front of the window (63), between an "open” position where the cover (71) is spaced from the window (63), when the system laser (60) is in use, and a "closed” position where the cover (71) is positioned in front of the window (63), when the laser system (60) is not in use while another system is used.
  • This cover (71) can be a plate in the shape of the window (63), moved in translation by a jack (72). Any other relevant technical solution can also be considered, such as a diaphragm, for example.
  • the system (70) comprises a film (73) movable in front of the window (63) between two rollers (74).
  • This film (73) must be optically transparent with respect to the beam (62) and bring the least amount of optical disturbance to said beam (62).
  • This film (73) aims to collect the projections which may arrive from the other systems (20-50), or from the parts (2) to be treated if a texturing by ablation is in progress.
  • the operator can choose to leave the film (73) in a fixed position and to scroll it only when he considers that the film (73) has received too many projections, or else to scroll it continuously in order to guarantee maximum transparency of the film (73) at all times.
  • An automatic advance after a certain duration can also be envisaged.
  • the protection system (70) comprises a chamber (75) provided with an opening (76) and arranged in front of the window (63). This is a geometric solution aimed at increasing the distance between the window (63) and the opening (76) for the entry of the beam (62) into the enclosure (10).
  • the chamber (75) defines a solid angle characterized by the ratio between the length of the chamber (75) and the width of the opening (76). If this angle is too open, as shown in Figures 10 and 13, the projections from the treatments have no difficulty penetrating this chamber (75) and coming to deposit on the window (63). But if the angle is closed, as shown in Figures 12 and 15, the chamber (75) forms a tunnel that the projections are unable to ascend, thus avoiding their deposit on the window (63).
  • the chamber (75) defines an opening angle of less than 45 degrees between the window (63) and the opening (76). More preferably, this opening angle is the lateral opening angle, as distinct from the vertical opening angle.
  • the protection system (70) is made by providing an oblique angle between the beam (62) and the window (63), and an oblique angle of incidence between the laser beam (62) and the surface of the parts to be treated (2).
  • the projections resulting from the texturing are emitted in a direction which is not that of the passage slot of the laser beam (62) through the window (63).
  • the projections directed towards the window (63) are thus reduced, or even eliminated.
  • an orthogonal angle of crossing of the window (63) by the laser beam (62) is maintained and combined with an oblique incidence on the surface of the part (2).
  • This can for example be obtained by offsetting the laser beam (62) with respect to the center of the rotary plate (51) or by tilting the window (63) with respect to the wall of the enclosure (10).
  • the protection system (70) may comprise walls arranged between the window (63) and the enclosure (10), so as to optically isolate the path of the laser beam (62) and thus protect the window ( 63) projections.
  • FIGS. 17 and 18 illustrate the advantage of providing the laser system (60) with a trajectory, focusing or shape correction device.
  • this device can be used during the treatment of parts (2) not having a surface orthogonal with respect to the beam (62).
  • Figure 17 shows a beam (62), projected onto a surface of the part (2) which is not orthogonal with the direction of the beam (2).
  • the beam (62) is shown parallel and of circular section.
  • the spot (68) resulting from the projection of the beam (62) on the part (2) is not a circle but an ellipse. This is problematic, particularly if the purpose of the laser treatment is to achieve texturing comprising circular cavities.
  • the correction device makes it possible to modify the shape of the laser beam (62) so as to, in this example, correct the deformation induced by the surface.
  • the laser system (60) can include a shaping module before the correction device, in order to obtain, for example, determined non-circular structures.
  • Figure 17 also shows that the location of the point of impact of the beam (62) on the part (2) has an impact on the distance to be traveled between the spot (68) and the laser source (61). If the beam (62) is shifted to the right of the part (2), then the distance to be covered is greater. In reality, the beam (62) is not strictly parallel but is convergent, so as to be focused on the surface of the part (2). If the path to be traveled by the beam (62) has a variable length, then focus is lost. It is therefore judicious to provide the system (60) with a focusing correction device.
  • FIG. 19 shows a cylindrical part (2) of which a part has already been treated and of which a new zone (64) is ready to be treated. Since the machine (1) may be intended to treat a large surface of one or more parts (2), this surface should be scrolled past the system or systems (20-60) in use.
  • the transport system (50) is therefore designed so as to move the part (2) so that two successive treatment zones (64) are contiguous. This point will be more particularly illustrated by taking laser processing as an example, although this characteristic of the transport system (50) can be implemented with the other systems (30, 40).
  • Carrying out a laser treatment implies that the surface of the part (2) must be positioned facing the window (63) of the laser system (60).
  • the laser system (60) includes complex optical devices, requiring significant mechanical adjustment and stability.
  • the laser system housing (60) is fixedly positioned.
  • the relative movement of the beam (62) with respect to the part (2) is achieved by moving the optical devices of the laser system (60) and/or by moving the part (2) to be treated. It follows that the treatment of the parts (2) is generally done by successive zones (64), possibly with several zones (64) treated in parallel by several laser beams (62).
  • the laser system (60) processes the part of the part (2) which is apparent to it.
  • the part (2) is moved so as to place a next zone to be treated facing the laser system (60).
  • this displacement is carried out simultaneously with the processing in progress.
  • this displacement can be carried out alternately with the treatment.
  • This is illustrated in Figure 19, where it can be seen that part of a cylindrical part (2) has already been treated and that a new zone (64) is ready to be treated.
  • the positioning accuracy of the part (2) can for example be increased by means of a position encoding device, comprising for example an encoder placed within the kinematic chain setting in motion the plate (51) or the or trolleys (54).
  • visual markers capable of cooperating with one or more optical sensors can be provided. These visual cues can for example be marks made on the part (2) so as to be detected by a camera. It is also possible to envisage that the visual cues are the already treated areas themselves, if these areas have a different color or texture which can be detected by a sensor or by a camera, with for example the use of polarized light or having a chosen wavelength.
  • the part (2) can be continuously movable with respect to the laser system (60), without this changing the interpretation of the provisions explained above.
  • the zone (64) being processed then becomes a zone of smaller surface area, and updated much more frequently.
  • machine (1) can be shaped differently from Figures 1 to 19 without departing from the scope of the invention, which is defined by the claims.
  • technical characteristics of the various embodiments and variants mentioned above can be, in whole or for some of them, combined with each other.
  • the machine (1) can be adapted in terms of cost, functionality and performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Machine (1) de traitement de pièces (2) de différentes formes, comprenant une enceinte (10); un système de mise sous vide (20); des systèmes de traitement (30, 60; 40, 60; 30, 40, 60), incluant un système générateur de plasma (30) et/ou un système de dépôt sous vide (40); et un système de transport (50) apte à déplacer la ou les pièces (2) dans l'enceinte (10), quelle que soit la forme de ces pièces (2); caractérisée en ce que les systèmes de traitement (30, 60; 40, 60; 30, 40, 60) incluent un système laser (60) conçu pour traiter la ou les pièces (2) disposées dans l'enceinte (10).

Description

Machine et procédé de traitement de pièces de différentes formes
Domaine technique
La présente invention concerne une machine de traitement de pièces de différentes formes. L’invention concerne également un procédé de traitement. Le domaine de l’invention est celui du traitement de surface.
Art antérieur
De manière connue, il existe différentes machines de traitement de surface de pièces. Cependant, les machines existantes sont souvent conçues pour un seul type de traitement (par exemple dépôt sous vide). D’autres machines combinent plusieurs traitements, mais sont conçues pour une seule forme de pièce (par exemple film ou disque). W02009053614A2 décrit un exemple de machine de traitement, comprenant une enceinte, un système de mise sous vide, un système générateur de plasma, un système de dépôt sous vide, et un système de transport de pièces.
Exposé de l’invention
Le but de la présente invention est d’améliorer la polyvalence de la machine, en matière de traitements proposés.
A cet effet, l’invention a pour objet une machine de traitement de pièces de différentes formes, comprenant une enceinte ; un système de mise sous vide ; des systèmes de traitement, incluant un système générateur de plasma et/ou un système de dépôt sous vide ; et un système de transport apte à déplacer la ou les pièces dans l’enceinte, quelle que soit la forme de ces pièces. La machine est caractérisée en ce que les systèmes de traitement incluent un système laser conçu pour traiter la ou les pièces disposées dans l’enceinte.
Ainsi, l’invention permet d’améliorer la polyvalence de la machine et varier les traitements proposés. Les pièces sont traitées par l’un ou l’autre des systèmes de traitement successivement, éventuellement en combinaison, de sorte que l’opérateur peut créer et choisir ses propres séquences de traitements. L’opérateur peut choisir d’utiliser les systèmes dans un ordre ou un autre, faire des répétitions de certains traitements, et ainsi de suite. La machine peut être configurée de différentes manières, afin de traiter des petites pièces (de l’ordre de 1 à 10 cm) ou des grandes pièces (de l’ordre de 0,1 à 1 m, voir plus).
En outre, les pièces traitées peuvent être réalisées en différents matériaux : métalliques, céramiques, composites, plastiques, etc.
Selon d’autres caractéristiques avantageuses de l’invention, prises isolément ou en combinaison :
- Les systèmes de traitement sont utilisables sélectivement pour traiter la ou les pièces, soit séparément des autres systèmes, soit simultanément à l’un ou plusieurs des autres systèmes.
- La séquence d’utilisation des systèmes de traitement est paramétrable, avec un ordre d’utilisations et/ou un nombre d’utilisations variables.
- Les systèmes de traitement sont utilisables pour traiter directement la ou les pièces.
- Le système laser est distinct du système générateur de plasma.
- La machine comprend un système de protection du système laser, plus précisément de la fenêtre permettant l’entrée du faisceau laser dans l’enceinte.
- Le système de protection comprend un cache mobile devant le système laser.
- Le système de protection comprend un film transparent défilant devant le système laser.
- Le système de protection comprend des parois internes qui isolent optiquement le chemin du faisceau laser issu du système laser du reste de l’enceinte, et qui protège des flux venant des systèmes de traitement.
- Le système de protection comprend une chambre fixée sur une paroi de l’enceinte et formée entre la fenêtre du système laser et les pièces à traiter, cette chambre étant dotée d’une ouverture vers les pièces afin de définir un angle d’ouverture inférieur à 45 degrés entre la fenêtre et l’enceinte.
- Le système laser comprend une unique source laser.
- Le système laser comprend plusieurs sources laser.
- Le système laser comprend une ou plusieurs sources laser à impulsions, par exemple des durées d’impulsion de l’ordre de la femtoseconde, la picoseconde ou la nanoseconde.
- La source laser est mono-spectrale.
- La source laser est multi-spectrale (choix de la longueur d'onde en fonction du matériau).
- Les sources lasers sont identiques (même longueur d’onde, même durée d’impulsion, même polarisation, même forme de faisceau).
- Les sources lasers sont différentes (longueurs d’onde et/ou durées d’impulsion et/ou polarisation et/ou formes de faisceau différentes). - Le faisceau laser peut présenter des états de polarisation vectoriels multiples (par exemple polarisation de type azimuthale, radiale, vortex, etc).
- Le faisceau laser est orientable avec une incidence oblique ou orthogonale sur la ou les pièces.
- Le système de transport est apte à déplacer la ou les pièces de telle sorte que deux zones de traitement successives soient jointives.
- Le système laser comporte un dispositif de correction du trajet et/ou de la forme et/ou de la focalisation du faisceau laser.
- Le système de transport comprend un plateau rotatif destiné à supporter une ou plusieurs pièces.
- Le système de transport comprend des tourelles montées sur le plateau rotatif et destinés à recevoir une ou plusieurs pièces.
- Les tourelles sont mobiles en rotation par rapport au plateau rotatif.
- Le système de transport comprend des platines montés rotatives sur les tourelles et destinées à supporter les pièces.
- Le système laser est disposé latéralement.
- Le système de transport comprend un dispositif de transport longitudinal destiné à supporter une ou plusieurs pièces. Le dispositif peut être un chariot, un convoyeur à rouleaux, un tapis roulant, ou tout autre moyen adapté.
- Le système de transport comporte un dispositif d’encodage en position.
- Le système de transport comporte des repères visuels et un capteur optique apte à coopérer avec les repères.
L’invention a également pour objet un procédé de traitement de pièces de différentes formes, le procédé comprenant : a) une étape de mise sous vide d’une enceinte dans laquelle se trouvent la ou les pièces, puis une combinaison des étapes suivantes : b) une étape de traitement laser de la ou des pièces, et c) une étape de traitement plasma basse pression de la ou des pièces, et/ou d) une étape de réalisation d’un dépôt sous vide sur une ou des pièces.
Le procédé est caractérisé en ce que les différentes étapes a), b), c) et/ou d) sont réalisées dans une même machine, adaptée pour traiter des pièces de différentes formes.
Les étapes b), c) et d) peuvent être réalisées sélectivement, soit séparément des autres étapes, soit simultanément à l’une ou plusieurs des autres étapes, pour traiter la ou les pièces. Avantageusement, les étapes b), c), d) ou leurs combinaisons peuvent être réalisées selon une séquence d’utilisation paramétrable, avec un ordre d’utilisations et/ou un nombre d’utilisations variables.
Description des figures
L’invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d’exemple non limitatif et faite en référence aux dessins annexés, montrant les représentations schématiques suivantes :
[Fig.1 ] est une vue de dessus d’une machine conforme à l’invention, équipée d’un système de transport rotatif.
[Fig.2] est une vue de côté de la machine de la figure 1 , montrant le système de transport équipé de tourelles et le système laser disposé latéralement.
[Fig.3] est une vue analogue à la figure 1 , montrant une variante de système de transport. [Fig.4] est une vue analogue à la figure 2, montrant une autre variante de système de transport et une variante du système laser.
[Fig.5] est une vue de côté, montrant une autre machine conforme à l’invention, équipée d’un système de transport longitudinal.
[Fig.6] est une vue en élévation (vue de côté ou vue de dessus selon la machine), montrant une première solution de système de protection du système laser.
[Fig.7] est une vue analogue à la figure 6, montrant cette première solution de système de protection dans une autre position.
[Fig.8] est une vue analogue à la figure 6, montrant une deuxième solution de système de protection du système laser.
[Fig.9] est une vue analogue à la figure 8, montrant cette deuxième solution de système de protection en mouvement.
[Fig.10] est une vue analogue à la figure 6, à plus petite échelle, montrant une troisième solution de système de protection du système laser selon une première configuration.
[Fig.11] est une vue analogue à la figure 10, montrant cette troisième solution de système de protection selon une deuxième configuration.
[Fig.12] est une vue analogue à la figure 10, montrant cette troisième solution de système de protection selon une troisième configuration.
[Fig.13] est une vue analogue à la figure 10, montrant le système de protection selon la première configuration, en utilisation. [Fig.14] montre est une vue analogue à la figure 11 , montrant le système de protection selon la deuxième configuration, en utilisation.
[Fig.15] est une vue analogue à la figure 12, montrant le système de protection selon la troisième configuration, en utilisation.
[Fig.16] est une vue en élévation (vue de côté ou vue de dessus) d'un système laser, montrant une quatrième solution de système de protection du système laser.
[Fig.17] est une vue d’une pièce cylindrique et du faisceau laser incident, montrant la défocalisation et la déformation du spot du faisceau laser sur la pièce.
[Fig.18] est une vue en perspective d’une pièce cylindrique et du faisceau laser incident, montrant un cas d’incidence oblique et la déformation du spot du faisceau laser sur la pièce. [Fig.19] est une vue analogue à la figure 18, montrant une zone à traiter contigüe à une zone précédemment traitée.
Description détaillée de l’invention
Les figures 1 et 2 montrent une machine (1 ) conforme à l’invention, conçue pour le traitement de pièces (2) de formes différentes.
Dans le cadre de l’invention, l’expression « de formes différentes » comprend des pièces de géométries et/ou dimensions différentes. Cette expression ne se limite pas aux pièces ayant une même géométrie mais des dimensions différentes, par exemple des films plats de différentes largeurs. La machine (1) est adaptée pour traiter aussi bien des pièces de forme plate, c’est-à-dire avec une épaisseur très faible (moins de 5%) par rapport aux autres dimensions, que des pièces en volume, c’est-à-dire avec trois dimensions du même ordre de grandeur ou ayant un ordre de grandeur proche. Les pièces peuvent être de révolution (par exemple des cylindres), ou encore des parallélépipèdes. Enfin, les pièces peuvent être de forme irrégulière, c’est-à-dire des solides composés de surfaces n’étant pas forcément orthogonales entre elles, ou ayant des côtés de dimensions inégales.
La machine (1 ) selon l’invention est conçue pour réaliser des traitements de surface sur les pièces (2). Les traitements de surface font partie du domaine d’expertise du demandeur, et peuvent inclure sans toutefois s’y limiter les traitements suivants : dépôt chimique d’un film mince, activation, décapage ou nettoyage, texturation (c’est à dire la réalisation de motifs en relief à la surface de la pièce, ces motifs ayant des dimensions de l’ordre du nanomètre jusqu’au dixième de mètre), traitement thermique (c’est-à-dire la modification de la structure cristalline d’un métal via un cycle de température prédéterminé). Ces traitements sont dits de surface, ou traitements superficiels, dans la mesure où la zone d’effet de ces traitements se limite au plus à quelques dixièmes de millimètres sous la surface de la pièce, et qu’ils n'ont pas pour objectif de traiter une pièce à cœur, c’est-à-dire dans la profondeur de la pièce de manière à ce que l’intégralité de la matière ait subit le traitement.
La machine (1) comprend une enceinte (10), un système de mise sous vide (20), un système générateur de plasma (30), un système de dépôt sous vide (40), un système de transport (50), un système laser (60) et un système de protection (70).
En alternative, la machine (1) peut comporter un système générateur de plasma (30) mais pas de système de dépôt sous vide (40), ou bien comporter un système de dépôt sous vide (40) mais pas de système générateur de plasma (30).
En général, une telle machine (1) comporte également un système de chauffage pour le dégazage des pièces (2) et de l’intérieur de l’enceinte (10) avant tout autre traitement. La machine (1 ) comporte également un système d’injection de gaz purs ou mélanges de gaz afin d’introduire dans l’enceinte (10) de façon contrôlée les gaz nécessaires aux traitements. Dans un but de simplification, ni le système de chauffage ni le système d’injection de gaz ne sont représentés sur les figures.
Avantageusement, les systèmes (10-70) sont utilisables séparément ou simultanément à l’un ou plusieurs des autres systèmes (10-70).
- Par exemple, l’opérateur peut choisir d’utiliser le système laser (60) alors que l’enceinte (10) est sous vide, en utilisant le système de mise sous vide (20).
- Selon un autre exemple, l’opérateur peut choisir de faire un traitement avec le système plasma (30) sur une première pièce (2) simultanément à un traitement avec le système laser (60) sur une seconde pièce (2).
De plus, l’ordre d’utilisation et le nombre d’utilisations des différents systèmes (10-70) sont paramétrables selon différentes séquences :
- Par exemple, l’opérateur peut choisir de faire un traitement avec le système laser (60), puis déplacer les pièces jusqu’au système de traitement plasma (30).
- Selon un autre exemple, l’opérateur peut choisir de faire un premier dépôt en utilisant le système de dépôt sous vide (40), puis un traitement laser avec le système laser (60), puis un second dépôt avec le système de dépôt sous vide (40).
L’enceinte (10) a une forme parallélépipédique, avec deux parois horizontales parallèles constituant le dessus et le dessous de l’enceinte (10), ainsi que quatre parois verticales deux à deux parallèles constituant les côtés de l’enceinte (10). Bien entendu, les parois peuvent être de formes différentes sans sortir du cadre de l’invention. On peut imaginer par exemple une enceinte (10) cylindrique comportant une seule paroi verticale cylindrique. Cette enceinte (10) peut comporter un seul compartiment (11), comme illustré sur les figures 1 et 2, ou plusieurs compartiments (11) comme illustré sur la figure 5.
Le système de mise sous vide (20) est destiné à évacuer l’atmosphère présente dans l’enceinte (10). Le système (20) peut réaliser un vide d’air, c’est-à-dire d’une extraction de l’air présent dans l’enceinte (10) afin qu’il y règne une pression pouvant aller par exemple de 102 Pa jusqu’à 109 Pa.
Le système de traitement plasma (30) peut servir à réaliser un décapage des pièces (2) afin de les nettoyer en vue d’un autre traitement ultérieur. Egalement, le système (30) peut servir à activer une surface de façon à ce qu’elle puisse réagir à un autre traitement ultérieur, comme peut l’être un effluvage pour des matières plastiques ou céramiques. En combinaison avec le système d’injection de gaz, le système de traitement plasma (30) peut servir pour réaliser des dépôts de type PACVD (« plasma assisted Chemical vapor déposition », « Dépôt chimique en phase vapeur assisté par plasma » en français).
Le système de dépôt sous vide (40) est destiné à réaliser un dépôt à la surface des pièces (2). Par exemple, le système (40) peut être conçu pour un dépôt PACVD ou PVD (« physical vapor déposition » en anglais, « Dépôt physique en phase vapeur » en français). Le système de dépôt sous vide (40) peut éventuellement être utilisé pour décaper les pièces (2) s’il fournit suffisamment d’espèces ionisées, comme c’est par exemple le cas pour une source de dépôt par arc.
Le système de transport (50) est conçu pour recevoir les pièces (2) et les déplacer dans l’enceinte (10). Ce système de transport (50) peut être construit de différentes manières. Sur l’exemple des figures 1 et 2, le système (50) comprend un plateau (51) tournant autour d’un axe central vertical, et des tourelles (52) montées tournantes sur le plateau (51 ) autour d’axes verticaux parallèles à l’axe central, formant un carrousel supportant une ou plusieurs pièces (2). Les tourelles (52) permettent d’exploiter la plus grande hauteur possible de l’enceinte (10), notamment pour traiter des petites pièces (2). Le plateau (51 ) et les tourelles (52) peuvent tourner dans le même sens ou en sens inverse. Les tourelles (52) peuvent être motorisées indépendamment, permettant ainsi de mettre en rotation le plateau (51) et les tourelles (52) séparément ou simultanément. En variante, les tourelles (52) peuvent être montées de manière fixe sur le plateau (51). Selon une autre variante, le plateau (51) peut être dépourvu de tourelles (52).
Selon l'invention, la machine (1 ) est également équipée du système laser (60), comprenant une source laser (61) émettant un faisceau laser (62). La source laser (61) peut être à impulsion et émettre des puises dont les durées sont de l’ordre de la femtoseconde, la picoseconde ou la nanoseconde. La source laser (61) peut être multi-spectrale (choix de la longueur d'onde en fonction du matériau).
Comme illustré sur la figure 2, le système laser (60) peut comprendre plusieurs sources laser (61) afin de pouvoir traiter plusieurs pièces (2) à la fois, ou plusieurs zones d’une grande pièce (2). Les sources lasers (61) peuvent être identiques (même longueur d’onde, même durée d’impulsion, même polarisation, même forme de faisceau ) ou différentes (longueurs d’onde et/ou durées d’impulsion et/ou polarisation et/ou formes de faisceau différentes). Par la suite, il ne sera fait référence qu’à « la » source laser (61), même s’il peut y en avoir plusieurs.
Le système laser (60) comprend une fenêtre (63), qui est optiquement transparente par rapport au faisceau (62), et qui marque la transition entre le système laser (60) et l’enceinte (10).
Le système (60) comprend différents dispositifs optiques, notamment un dispositif de focalisation et de correction (65) du faisceau (62), permettant de concentrer l’énergie du faisceau (62) à une distance choisie dudit dispositif (65). Il est nécessaire de modifier la focalisation lorsque les pièces (2) à traiter sont de dimensions différentes, et que la distance entre la surface d’une pièce (2) et le système laser (60) n’est pas la même d’une pièce (2) à l’autre.
Le système (60) comprend également un dispositif de déflexion (66) destiné à orienter le faisceau laser (62) et à balayer la surface de la pièce (2) à traiter.
Le système laser (60) peut être utilisé de différentes manières et en vue d’objectifs différents :
- Texturation avec ablation de matière de la pièce (2) afin de créer des cavités à la surface de la pièce (2). Les cavités peuvent être disposées selon un motif discret, c’est-à-dire que les cavités sont disjointes les unes des autres. En alternative, les cavités peuvent être disposées selon un motif continu, c’est-à-dire que les cavités sont reliées les unes aux autres. Selon une autre alternative, les cavités peuvent comprendre un mélange de motifs discret et continu.
- Nanotexturation sans ablation de matière. Dans ce mode d’utilisation, les impulsions du faisceau laser (62) engendrent une redistribution de la matière et des motifs nanométriques se forment à la surface de la pièce. Selon les conditions opératoires, les nanomotifs peuvent être en creux, en bosse ou même les deux. Ceci peut être utilisé pour augmenter la surface spécifique de la pièce (2) par exemple.
- Traitement de surface sans ablation de matière, modifiant la structure cristalline de la matière. - Traitement de surface sans ablation de matière, modifiant la topographie de la matière.
- Modification chimique de la matière, par exemple lorsque le traitement laser est réalisé en présence d’un gaz pur réactif.
D’autres traitements pourront être mis en oeuvre sans sortir du cadre de l’invention.
La machine (1) peut également comprendre un système de protection (70) destiné à protéger la fenêtre (63) du système laser. En effet, si la machine (1) combine avantageusement les différents systèmes de traitement (20-60) détaillés ci-dessus, il en résulte que lesdits systèmes peuvent être gênants l’un pour l’autre. En particulier, la fenêtre (63) du système laser (60) doit rester la plus transparente possible afin de garantir l’efficacité du traitement laser. Cette perte de transparence peut provenir de dépôts sur la fenêtre (63), provenant de la matière ablatée lors de la texturation laser des pièces (2), ou bien du système de dépôt sous vide (40), voire du système générateur de plasma (30). La protection de la fenêtre (63) peut donc être un avantage majeur pour la machine (1), non seulement pour la performance des traitements laser à réaliser, mais également en termes de taux de disponibilité de la machine (1 ), si les opérations de maintenance visant à nettoyer ou remplacer la fenêtre (63) sont moins fréquentes.
En pratique, la machine (1) permet la mise en oeuvre de différents procédés, comprenant : a) une étape de mise sous vide de l’enceinte (10), puis une combinaison des étapes suivantes : b) une étape de traitement laser des pièces (2), et c) une étape de traitement plasma des pièces (2), et/ou d) une étape de réalisation d’un dépôt sous vide sur les pièces (2).
Avantageusement, les différentes étapes a) à d) peuvent être réalisées dans la même machine (1), adaptée pour traiter des pièces (2) de différentes formes, avec une grande polyvalence.
Les étapes a) et b) sont toujours présentes dans le procédé, avec complément soit l’étape c), soit l’étape d), soit les deux étapes c) et d). L’ordre des étapes b), c) ou d) n’est pas chronologique.
L’étape a) est préalable aux autres étapes b), c) ou d).
Les étapes b), c) et d) peuvent être réalisées sélectivement pour traiter la ou les pièces, soit séparément des autres étapes, soit simultanément à l’une ou plusieurs des autres étapes.
Les étapes b), c), d) ou leurs combinaisons peuvent être réalisées selon une séquence d’utilisation paramétrable, avec un ordre d’utilisations et/ou un nombre d’utilisations variables. Par exemple, l’étape b) peut être réalisée plusieurs fois avant de réaliser l’étape c) et/ou d).
D’autres modes de réalisation d’une machine (1 ) conforme à l’invention sont montrés aux figures 3 à 17. Certains éléments constitutifs de la machine (1 ) sont comparables à ceux du premier mode de réalisation décrit plus haut et, dans un but de simplification, portent les mêmes références numériques.
La figure 3 montre un système de transport (50) comprenant uniquement un plateau rotatif (51 ), sans tourelles (52). Le plateau (51) forme un carrousel sur lequel sont disposées une ou plusieurs pièces (2). Cette configuration est avantageuse pour traiter des pièces (2) de grandes dimensions.
La figure 4 montre un système laser (60) muni d’une unique source (61) et d’un dispositif de répartition et/ou d’orientation (67) du faisceau laser (62), de façon à traiter simultanément plusieurs petites pièces (2), ou bien plusieurs zones d’une même grande pièce (2). Ce dispositif (67) de répartition et/ou d’orientation peut être basé sur une division du faisceau (62), par exemple en utilisant des miroirs semi-réfléchissant comme illustré sur la figure 4, ou encore sur une déflection du faisceau (62), par exemple en utilisant des prismes mis en rotation de façon à ce que les facettes des prismes orientent le faisceau (62) successivement en direction d’une zone (ou une pièce) puis vers une autre. Dans la suite du document, il sera fait référence au dispositif de répartition (67), sans préciser s’il s’agit d’un dispositif de division ou de déflection du faisceau (62).
Lorsque le système de transport (50) comprend un carrousel, le système laser (60) peut avantageusement être disposé latéralement. A la différence des machines (1) dont le système laser (60) est disposé au-dessus, cette configuration permet de traiter des pièces (2) dites « en volume », par opposition à des pièces qui sont simplement plates, comme des disques ou des films par exemple.
La figure 4 montre aussi des tourelles (52) équipées de platines (53) elles-mêmes mobiles en rotation, de sorte que trois rotations pourraient être pilotées simultanément ou séparément en fonction des besoins: plateau (51), tourelles (52) et/ou platines (53).
La figure 5 montre une autre construction de machine (1), comprenant un système de transport (50) longitudinal et plusieurs compartiments (11 ).
Le système de transport longitudinal (50) comprend un chariot (54) supportant les pièces (2) et des rouleaux (55) supportant le chariot (54). En alternative, le système de transport (50) longitudinal peut comprendre un tapis roulant, un convoyeur à rouleaux (55) sans chariot, un chariot (54) associé à une vis sans fin, ou tout autre dispositif adapté. Les compartiments (11 ) de l’enceinte (10) sont séparés par des parois intérieures verticales munies de vannes (12), permettant de cloisonner ou faire communiquer les compartiments (11 ) voisins. Cette construction est avantageuse pour protéger l’un des systèmes (20-60) d’une pollution générée par l’utilisation d’un des autres systèmes. Le système plasma (30) est monté sur la paroi supérieure d’un premier compartiment (11 ), le système de dépôt sous vide (40) est monté sur la paroi supérieure d’un deuxième compartiment (22), et le système laser (60) est monté sur la paroi supérieure d’un troisième compartiment (11 ). D’autres configurations peuvent être envisagées sans sortir du cadre de l’invention.
Seul un système de mise sous vide (20) est représenté dans un but de simplification. Une telle machine (1) comporte en général plusieurs systèmes de mise sous vide (20), car pendant un traitement, un compartiment (11 ) peut être isolé des autres compartiments (11 ). Il faut alors que ce compartiment (11 ) dispose de son système (20) de pompage. La même chose est vraie pour les systèmes de chauffage et d’injection de gaz.
Les figures 6 à 16 montrent différentes variantes de systèmes de protection (70) du système laser (60). Les solutions imaginées pour être intégrées au système de protection (70) sont nombreuses, et peuvent être utilisées en combinaison afin de tirer parti des avantages de chacune et d’augmenter l’efficacité de la protection globale résultante.
Sur les figures 6 et 7, le système (70) comprend un cache (71) mobile devant la fenêtre (63), entre une position « ouverte » où le cache (71) est écarté de la fenêtre (63), lorsque le système laser (60) est en utilisation, et une position « fermée » où le cache (71) est positionné devant la fenêtre (63), lorsque le système laser (60) n’est pas en cours d’utilisation alors qu’un autre système est utilisé. Ainsi la durée d’exposition de la fenêtre (63) à des projections provenant d’autres systèmes est réduite. Ce cache (71) peut être une plaque de la forme de la fenêtre (63), mue en translation par un vérin (72). Toute autre solution technique pertinente peut également être considérée, comme par exemple un diaphragme.
Sur les figures 8 et 9, le système (70) comprend un film (73) mobile devant la fenêtre (63) entre deux rouleaux (74). Ce film (73) doit être optiquement transparent par rapport au faisceau (62) et apporter le moins de perturbations optiques audit faisceau (62). Ce film (73) vise à collecter les projections qui peuvent parvenir des autres systèmes (20-50), ou des pièces (2) à traiter si une texturation par ablation est en cours. Avantageusement, l’opérateur peut choisir de laisser le film (73) en position fixe et de le faire défiler uniquement lorsqu’il estime que le film (73) a reçu trop de projections, ou alors de le faire défiler en continu afin de garantir une transparence maximale du film (73) en permanence. Une avance automatique après une certaine durée peut également être envisagée. Sur les figures 10 à 15, le système de protection (70) comprend une chambre (75) munie d’une ouverture (76) et disposée devant la fenêtre (63). Il s’agit ici d’une solution géométrique visant à augmenter l’écart entre la fenêtre (63) et l’ouverture (76) d’entrée du faisceau (62) dans l’enceinte (10). La chambre (75) définit un angle solide caractérisé par le ratio entre la longueur de la chambre (75) et la largeur de l’ouverture (76). Si cet angle est trop ouvert, comme montré sur les figures 10 et 13, les projections provenant des traitements n’ont pas de difficultés à pénétrer cette chambre (75) et à venir se déposer sur la fenêtre (63). Mais si l’angle est fermé, comme illustré sur les figures 12 et 15, la chambre (75) constitue un tunnel que les projections n’arrivent pas à remonter, évitant ainsi leur dépôt sur la fenêtre (63). De préférence, la chambre (75) définit un angle d’ouverture inférieur à 45 degrés entre la fenêtre (63) et l’ouverture (76). Encore de préférence, cet angle d’ouverture est l’angle d’ouverture latéral, par distinction avec l’angle d’ouverture vertical.
Sur la figure 16, le système de protection (70) est réalisé en prévoyant un angle oblique entre le faisceau (62) et la fenêtre (63), et un angle d’incidence oblique entre le faisceau laser (62) et la surface des pièces à traiter (2). De cette façon, les projections issues de la texturation sont émises dans une direction qui n’est pas celle de la fente de passage du faisceau laser (62) à travers la fenêtre (63). Les projections dirigées vers la fenêtre (63) sont ainsi réduites, voire éliminées.
Dans une variante de cette version du système de protection, on garde un angle orthogonal de franchissement de la fenêtre (63) par le faisceau laser (62) et le combine à une incidence oblique sur la surface de la pièce (2). Ceci peut par exemple être obtenu en désaxant le faisceau laser (62) par rapport au centre du plateau rotatif (51) ou en inclinant la fenêtre (63) par rapport à la paroi de l’enceinte (10).
En variante non représentée, le système de protection (70) peut comprendre des parois disposées entre la fenêtre (63) et l’enceinte (10), de façon à isoler optiquement le chemin du faisceau laser (62) et ainsi protéger la fenêtre (63) des projections.
Les figures 17 et 18 illustrent l’intérêt de munir le système laser (60) d’un dispositif de correction de trajectoire, de focalisation ou de forme. En particulier, ce dispositif peut être utilisé lors du traitement de pièces (2) ne présentant pas une surface orthogonale par rapport au faisceau (62). La figure 17 montre un faisceau (62), projeté sur une surface de la pièce (2) qui n'est pas orthogonale avec la direction du faisceau (2). Pour faciliter la compréhension, le faisceau (62) est représenté parallèle et de section circulaire. On voit sur la figure 18 que le spot (68) résultant de la projection du faisceau (62) sur la pièce (2) n’est pas un cercle mais une ellipse. Ceci est problématique, en particulier si le but du traitement laser est de réaliser une texturation comprenant des cavités circulaires. Dans ce contexte, le dispositif de correction permet de modifier la forme du faisceau laser (62) de façon à, dans cet exemple, corriger la déformation induite par la surface. Le système laser (60) peut inclure un module de mise en forme avant le dispositif de correction, afin d’obtenir par exemple des structures non circulaires déterminées.
La figure 17 montre aussi que la localisation du point d’impact du faisceau (62) sur la pièce (2) a un impact sur la distance à parcourir entre le spot (68) et la source laser (61). Si le faisceau (62) est décalé vers la droite de la pièce (2), alors la distance à parcourir est plus grande. En réalité, le faisceau (62) n’est pas strictement parallèle mais est convergent, de façon à être focalisé sur la surface de la pièce (2). Si le chemin à parcourir par le faisceau (62) a une longueur variable, alors la focalisation est perdue. Il est donc judicieux de munir le système (60) d’un dispositif de correction de la focalisation.
La figure 19 montre une pièce (2) cylindrique dont une partie a déjà été traitée et dont une nouvelle zone (64) est prête à être traitée. La machine (1) pouvant être destinée à traiter une surface importante d’une ou des pièces (2), il convient de faire défiler cette surface devant le ou les systèmes (20-60) en utilisation. Le système de transport (50) est donc conçu de façon à déplacer la pièce (2) de sorte que deux zones de traitement (64) successives soient contiguës. Ce point sera plus particulièrement illustré en prenant pour exemple le traitement laser, bien que cette caractéristique du système de transport (50) puisse être mise en oeuvre avec les autres systèmes (30, 40).
La réalisation d’un traitement laser implique que la surface de la pièce (2) doit être positionnée en regard de la fenêtre (63) du système laser (60). Le système laser (60) comprend des dispositifs optiques complexes, nécessitant un ajustement mécanique et une stabilité importants. Le boîtier du système laser (60) est positionné de façon fixe. Le déplacement relatif du faisceau (62) par rapport à la pièce (2) est réalisé en déplaçant les dispositifs optiques du système laser (60) et/ou en déplaçant la pièce (2) à traiter. Il en découle que le traitement des pièces (2) se fait généralement par zones (64) successives, avec éventuellement plusieurs zones (64) traitées en parallèle par plusieurs faisceau laser (62). Le système laser (60) traite la partie de la pièce (2) qui lui est apparente. La pièce (2) est déplacée de façon à mettre une zone à traiter suivante en regard du système laser (60). De préférence, ce déplacement est opéré simultanément au traitement en cours. En alternative, ce déplacement peut être opéré en alternance avec le traitement. Ceci est illustré sur la figure 19, où on voit qu’une partie d’une pièce (2) cylindrique a déjà été traitée et qu’une nouvelle zone (64) est prête à être traitée. La précision de positionnement de la pièce (2) peut par exemple être augmentée au moyen d’un dispositif d’encodage de la position, comprenant par exemple un codeur disposé au sein de la chaîne cinématique mettant en mouvement le plateau (51) ou le ou les chariots (54). En alternative ou en complément, on peut prévoir des repères visuels aptes à coopérer avec un ou des capteurs optiques. Ces repères visuels peuvent par exemple être des marques réalisées sur la pièce (2) de façon à être repérées par une caméra. On peut également envisager que les repères visuels soient les zones déjà traitées elles-mêmes, si ces zones présentent une couleur ou une texture différente qui puisse être détectée par un capteur ou par une caméra, avec par exemple l’utilisation d’une lumière polarisée ou ayant une longueur d’onde choisie.
La pièce (2) peut être mobile en continu en regard du système laser (60), sans que cela ne change l’interprétation des dispositions expliquées ci-avant. La zone (64) en cours de traitement devient alors une zone de superficie plus petite, et actualisée beaucoup plus fréquemment.
Par ailleurs, la machine (1) peut être conformée différemment des figures 1 à 19 sans sortir du cadre de l’invention, qui est défini par les revendications. En outre, les caractéristiques techniques des différents modes de réalisation et variantes mentionnés ci-dessus peuvent être, en totalité ou pour certaines d’entre elles, combinées entre elles. Ainsi, la machine (1) peut être adaptée en termes de coût, de fonctionnalités et de performance.

Claims

Revendications
1. Machine (1) de traitement de pièces (2) de différentes formes, comprenant :
- une enceinte (10) ;
- un système de mise sous vide (20) ;
- des systèmes de traitement (30, 60 ; 40, 60 ; 30, 40, 60), incluant un système générateur de plasma (30) et/ou un système de dépôt sous vide (40) ; et
- un système de transport (50) apte à déplacer la ou les pièces (2) dans l’enceinte (10), quelle que soit la forme de ces pièces (2) ; caractérisée en ce que les systèmes de traitement (30, 60 ; 40, 60 ; 30, 40, 60) incluent un système laser (60) conçu pour traiter la ou les pièces (2) disposées dans l’enceinte (10).
2. Machine selon la revendication 1 , caractérisée en ce que les systèmes de traitement (30, 60 ; 40, 60 ; 30, 40, 60) sont utilisables sélectivement pour traiter la ou les pièces (2), soit séparément des autres systèmes, soit simultanément à l’un ou plusieurs des autres systèmes.
3. Machine (1) selon l’une des revendications 1 à 2, caractérisée en ce que la séquence d’utilisation des systèmes de traitement (30, 60 ; 40, 60 ; 30, 40, 60) est paramétrable, avec un ordre d’utilisations et/ou un nombre d’utilisations variables.
4. Machine (1) selon l’une des revendications 1 à 3, caractérisée en ce qu’elle comprend un système de protection (70) du système laser (60).
5. Machine (1) selon la revendication 4, caractérisée en ce que le système de protection (70) comprend un cache (71 ) mobile devant le système laser (60).
6. Machine (1) selon la revendication 4 ou 5, caractérisée en ce que le système de protection (70) comprend un film transparent (73) défilant devant le système laser (60).
7. Machine (1) selon l’une des revendications 4 à 6, caractérisée en ce que le système de protection (70) comprend des parois internes qui isolent optiquement le chemin du faisceau laser (62) issu du système laser (60) du reste de l’enceinte (10), et qui protège des flux venant des systèmes de traitement (30, 60 ; 40, 60 ; 30, 40, 60).
8. Machine (1) selon l’une des revendications 4 à 7, caractérisée en ce que le système de protection (70) comprend une chambre (75) fixée sur une paroi de l’enceinte (10) et formée entre la fenêtre (63) du système laser (60) et les pièces à traiter, cette chambre étant dotée d’une ouverture (76) vers les pièces afin de définir un angle d’ouverture inférieur à 45 degrés entre la fenêtre (63) et l’enceinte (10).
9. Machine (1) selon l’une des revendications précédentes, caractérisée en ce que le système laser (60) comprend une source laser (61) à impulsions.
10. Machine (1 ) selon l’une des revendications précédentes, caractérisée en ce que le faisceau laser (62) est orientable avec une incidence oblique ou orthogonale sur la ou les pièces (2).
11. Machine (1 ) selon l’une des revendications précédentes, caractérisée en ce que le système de transport (50) est apte à déplacer la ou les pièces de telle sorte que deux zones de traitement (64) successives soient jointives.
12. Machine (1 ) selon l’une des revendications précédentes, caractérisée en ce que le système laser (60) comporte un dispositif de correction du trajet et/ou de la forme et/ou de la focalisation du faisceau laser (62).
13. Machine (1 ) selon l’une des revendications précédentes, caractérisée en ce que le système de transport (50) comporte un dispositif d’encodage en position.
14. Machine (1) selon l’une des revendications précédentes 1 à 13, caractérisée en ce que le système de transport (50) comprend un plateau rotatif (51 ) destiné à supporter une ou plusieurs pièces (2).
15. Machine (1 ) selon la revendication 14, caractérisée en ce que le système de transport (50) comprend des tourelles (52) montées sur le plateau rotatif (51) et destinés à recevoir une ou plusieurs pièces.
16. Machine (1 ) selon la revendication 15, caractérisée en ce que les tourelles (52) sont mobiles en rotation par rapport au plateau rotatif (51 ).
17. Machine (1 ) selon l’une des revendications 14 à 16, caractérisée en ce que le système de transport (50) comprend des platines (53) montés rotatives sur les tourelles (52) et destinées à supporter les pièces (2).
18. Machine (1 ) selon l’une des revendications 14 à 17, caractérisée en ce que le système laser (60) est disposé latéralement.
19. Machine (1) selon l’une des revendications précédentes 1 à 13, caractérisée en ce que le système de transport (50) comprend un dispositif de transport longitudinal (54, 55) destiné à supporter une ou plusieurs pièces (2).
20. Machine (1 ) selon l’une des revendications précédentes, caractérisée en ce que le système de transport (50) comporte des repères visuels et un capteur optique apte à coopérer avec les repères.
21. Procédé de traitement de pièces (2) de différentes formes, le procédé comprenant : a) une étape de mise sous vide d’une enceinte (10) dans laquelle se trouvent la ou les pièces (2), puis une combinaison des étapes suivantes : b) une étape de traitement laser de la ou des pièces (2), et c) une étape de traitement plasma basse pression de la ou des pièces (2), et/ou d) une étape de réalisation d’un dépôt sous vide sur une ou des pièces (2) ; caractérisé en ce que les différentes étapes sont réalisées dans une même machine (1 ), adaptée pour traiter des pièces (2) de différentes formes.
22. Procédé selon la revendication 21 , caractérisé en ce que les étapes b), c) et d) sont réalisées sélectivement pour traiter la ou les pièces, soit séparément des autres étapes, soit simultanément à l’une ou plusieurs des autres étapes.
23. Procédé selon la revendication 21 ou 22, caractérisé en ce que les étapes b), c), d) ou leurs combinaisons sont réalisées selon une séquence d’utilisation paramétrable, avec un ordre d’utilisations et/ou un nombre d’utilisations variables.
PCT/FR2021/051010 2020-07-31 2021-06-03 Machine et procede de traitement de pieces de differentes formes WO2022023629A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112022026390A BR112022026390A2 (pt) 2020-07-31 2021-06-03 Máquina e método para tratamento de peças de formatos diferentes
US18/014,030 US20230294200A1 (en) 2020-07-31 2021-06-03 Machine and method for treating parts of different shapes
JP2023506298A JP2023536721A (ja) 2020-07-31 2021-06-03 異なる形状の部品を処理する機械および方法
CA3186410A CA3186410A1 (fr) 2020-07-31 2021-06-03 Machine et procede de traitement de pieces de differentes formes
KR1020237003195A KR20230042465A (ko) 2020-07-31 2021-06-03 상이한 형상의 부품을 처리하기 위한 장치 및 방법
CN202180058980.9A CN116157198A (zh) 2020-07-31 2021-06-03 用于处理具有不同形状的零件的机器和方法
EP21739161.4A EP4175745A1 (fr) 2020-07-31 2021-06-03 Machine et procede de traitement de pieces de differentes formes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2008151 2020-07-31
FR2008151A FR3112971B1 (fr) 2020-07-31 2020-07-31 Machine et procédé de traitement de pièces de différentes formes

Publications (1)

Publication Number Publication Date
WO2022023629A1 true WO2022023629A1 (fr) 2022-02-03

Family

ID=73643022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/051010 WO2022023629A1 (fr) 2020-07-31 2021-06-03 Machine et procede de traitement de pieces de differentes formes

Country Status (9)

Country Link
US (1) US20230294200A1 (fr)
EP (1) EP4175745A1 (fr)
JP (1) JP2023536721A (fr)
KR (1) KR20230042465A (fr)
CN (1) CN116157198A (fr)
BR (1) BR112022026390A2 (fr)
CA (1) CA3186410A1 (fr)
FR (1) FR3112971B1 (fr)
WO (1) WO2022023629A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009053614A2 (fr) 2007-10-16 2009-04-30 H.E.F. Procede de traitement de surface d'au moins une piece au moyen de sources elementaires de plasma par resonance cyclotronique electronique
EP3498424A1 (fr) * 2017-12-15 2019-06-19 United Technologies Corporation Appareil et procédé de finition de surface assistée par plasma
CN110539080A (zh) * 2019-09-29 2019-12-06 华南理工大学 双机械臂激光-等离子复合铣削增减材制造设备与方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009053614A2 (fr) 2007-10-16 2009-04-30 H.E.F. Procede de traitement de surface d'au moins une piece au moyen de sources elementaires de plasma par resonance cyclotronique electronique
EP3498424A1 (fr) * 2017-12-15 2019-06-19 United Technologies Corporation Appareil et procédé de finition de surface assistée par plasma
CN110539080A (zh) * 2019-09-29 2019-12-06 华南理工大学 双机械臂激光-等离子复合铣削增减材制造设备与方法

Also Published As

Publication number Publication date
FR3112971A1 (fr) 2022-02-04
CN116157198A (zh) 2023-05-23
KR20230042465A (ko) 2023-03-28
FR3112971B1 (fr) 2022-07-01
EP4175745A1 (fr) 2023-05-10
BR112022026390A2 (pt) 2023-02-07
JP2023536721A (ja) 2023-08-29
US20230294200A1 (en) 2023-09-21
CA3186410A1 (fr) 2022-02-03

Similar Documents

Publication Publication Date Title
US10927447B2 (en) Lighthouse scanner with a rotating mirror and a circular ring target
EP1335884B1 (fr) Procede et installation pour la decoupe de pieces en verre
FR2607022A1 (fr) Realisation de membranes microporeuses asymetriques par double irradiation, et membranes ainsi obtenues
FR3009833A1 (fr) Procede d'obtention d'un substrat muni d'un revetement comprenant une couche mince metallique discontinue
EP2923973B1 (fr) Dispositif et procédé de positionnement de produits
FR3005878A1 (fr) Procede d'obtention d'un substrat muni d'un revetement
Wu et al. Femtosecond laser ablation of silicon in air and vacuum
WO2022023629A1 (fr) Machine et procede de traitement de pieces de differentes formes
FR2790689A1 (fr) Procede et dispositif d'assemblage par soudage de deux pieces
WO2019224497A1 (fr) Methode de preparation de la surface superieure d'un plateau de fabrication additive par depot de lit de poudre
EP0320378A1 (fr) Procédé et dispositif de projection d'un produit sur les faces opposées d'un panneau
EP3278350A1 (fr) Installation pour le traitement d'objets par plasma, utilisation de cette installation et procédé de mise en oeuvre de cette installation
EP2365513B1 (fr) Enveloppe de protection pour canon à ions, dispositif de dépôt de matériaux par évaporation sous vide comprenant une telle enveloppe de protection et procédé de dépôt de matériaux
WO2017064420A1 (fr) Procede de recuit rapide d'un empilement de couches minces contenant une surcouche a base d'indium
CA3133730A1 (fr) Procede de realisation d'un effet visuel d'irisation sur la surface d'un materiau, dispositifs pour sa mise en oeuvre et piece ainsi obtenue
FR2716462A1 (fr) Procédé pour revêtir un substrat, et dispositif de revêtement pour la mise en Óoeuvre dudit procédé.
WO2019043334A1 (fr) Dispositif de traitement thermique amélioré
FR2698483A1 (fr) Procédé et dispositif de dépôt de multicouches par ablation laser.
WO2023285671A1 (fr) Procédé de découpage d'un panneau de verre feuilleté
WO2011045260A1 (fr) Procédé de microdéformation de la face avant d'une piece mince, par modification de la face arriere ou de la peripherie de la piece
EP3820644A1 (fr) Procede de nanostructuration de la surface d'un materiau par laser; ensemble permettant de mettre en oeuvre ce procede
EP2373435B1 (fr) Procede d'ablation d'une couche superficielle d'une paroi, et dispositif associe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21739161

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022026390

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 3186410

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20237003195

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2023506298

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021739161

Country of ref document: EP

Effective date: 20230131

ENP Entry into the national phase

Ref document number: 112022026390

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221222

NENP Non-entry into the national phase

Ref country code: DE