WO2023285671A1 - Procédé de découpage d'un panneau de verre feuilleté - Google Patents

Procédé de découpage d'un panneau de verre feuilleté Download PDF

Info

Publication number
WO2023285671A1
WO2023285671A1 PCT/EP2022/069896 EP2022069896W WO2023285671A1 WO 2023285671 A1 WO2023285671 A1 WO 2023285671A1 EP 2022069896 W EP2022069896 W EP 2022069896W WO 2023285671 A1 WO2023285671 A1 WO 2023285671A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass panel
laminated glass
laser beam
panel
sheets
Prior art date
Application number
PCT/EP2022/069896
Other languages
English (en)
Inventor
Cécile OZANAM
Florian BIGOURDAN
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Publication of WO2023285671A1 publication Critical patent/WO2023285671A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/0222Scoring using a focussed radiation beam, e.g. laser
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/033Apparatus for opening score lines in glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/07Cutting armoured, multi-layered, coated or laminated, glass products
    • C03B33/076Laminated glass comprising interlayers
    • C03B33/078Polymeric interlayers

Definitions

  • the present invention relates to a method and a device for cutting glass and in particular laminated glass panels.
  • Methods and devices for cutting sheets of glass, in particular single sheets, are known. To do this, the sheet of glass is placed on a cutting table and then a cutting tool draws a cutting line. This cutting line is used to weaken the structure of the glass sheet. Then a parting tool is used to separate the glass sheet into pieces.
  • Such a laminated glass panel comprises a first sheet of glass, a second sheet of glass and an interlayer film arranged between the two sheets of glass.
  • Another solution consists in making the laminated glass panel before cutting it. For this, it is necessary to be able to directly cut the entire panel.
  • a known solution consists in using a laser beam to break each sheet of glass alternately. This therefore requires the production of two cutting lines and manipulations of the laminated glass panel in order to achieve the cutting of said panel.
  • the present invention seeks to solve the problems of the prior art by providing a method of cutting a laminated glass panel simplified compared to the method of the prior art.
  • the present invention relates to a process for separating a laminated glass panel, the laminated glass panel comprising at least one film and at least two sheets of glass, the film being interposed between the two sheets of glass, comprising step:
  • a laser device is used to provide the laser beam, said laser device being arranged to provide a Bessel-type laser beam with a wavelength for which the glass sheets and the spacer are transparent and whose ratio between the scanning speed and the working frequency has a value between two and seven times the diameter of the central lobe of the Bessel beam, and in that the weakening of the mechanical properties of the laminated glass panel is produced by a plurality of passes of the laser beam along said at least one line of separation, the number of passes being at least the result of the ratio between 0.8 times the thickness of the glass panel to be cut and the length of the beam LB, said passages being made with different distances between the laser device and the laminated glass panel making it possible to process the laminated glass panel on at less than 80% of its thickness.
  • the weakening of the mechanical properties of the laminated glass panel consists in creating a series of impact points, each point making it possible to induce a localized stress field in the glass sheets and micro channels in the interlayer , two successive points of impact being separated by a distance equal to the ratio between the scanning speed and the working frequency.
  • the thickness of the laminated glass panel is between 2 and 30 mm.
  • the thickness of the laminated glass panel is greater than 4mm.
  • each impact point is created by a single pulse.
  • each impact point is created by a group of at least two pulses.
  • each pulse lasts between 0.1 and 100ps, or even between 0.1 and
  • the rate between two single pulses or two groups of pulses is between 1 and 1000 kHz.
  • the method further comprises a separation step consisting of the application of a mechanical force.
  • the present invention further relates to a device for separating a laminated glass panel along at least one predetermined separation line, said laminated glass panel comprising at least one film and at least two sheets of glass, the film being interposed between the glass panels, the laminated glass panel being mechanically weakened with the energy of a laser beam at least along the separation line using the method according to the invention, said device comprising means for break making it possible to exert a mechanical support on the separation line to separate at least two pieces of the laminated glass panel.
  • the laser beam is generated by a laser device capable of moving along two orthogonal axes.
  • the breaking means comprise at least one support element for exerting said mechanical support on the separation line.
  • the breaking means further comprise at least one counterweight element to exert a support on the laminated glass panel contrary to said mechanical support on the separation line.
  • FIG. 1 to 2 show a laminated glass panel used for the present invention
  • FIG. 3 shows a laminated glass panel having a cut line
  • - Figures 4 and 5 show a Bessel beam used in the present invention
  • FIG. 6 shows a laminated glass panel and a laser device using said Bessel beam according to the invention
  • FIG. 7 shows a laminated glass panel in section with the cut line and the ball of the breaking means
  • FIG. 8 shows a laminated glass panel provided with a cut line composed of a plurality of impact points
  • FIG. 9 shows a sectional view of a laminated glass panel undergoing at least two passages of the laser beam for its cutting
  • a laminated glass panel P is shown.
  • This laminated glass panel comprises a first sheet 1 of glass and a second sheet 2 of glass.
  • This panel further comprises an intermediate film 3 arranged between the first sheet of glass and the second sheet of glass.
  • Such a glass panel has a total thickness of between 2 and 30mm.
  • the thickness is at least equal to 4mm, even more preferably strictly greater than 4mm.
  • This laminated glass panel is subjected to a separation process.
  • This separation process comprises, in the first step, a step consisting in providing a laminated glass panel.
  • the latter is in the form of a panel with large dimensions to be cut into at least two pieces.
  • the laminated glass panel P is treated so that a cutting line T is produced as shown in Figure 3.
  • the laminated glass panel is placed on a support such as a cutting table .
  • the glass panel P is thus laid flat.
  • the cutting line T is a line of weakening of the glass panel P so that said panel can be separated into several pieces.
  • the cutting line is produced using a laser device 10 generating a laser beam F as shown in FIG. 6.
  • the generated laser beam F is such that it makes it possible to produce this cutting line T .
  • the laser device is designed, arranged to shape the laser beam to obtain a Bessel beam.
  • Such a beam F of Bessel is characterized by a sectional profile comprising a central point Pc and at least one ring A or crown whose center is said central point.
  • This central point Pc is the zone where the intensity of the beam is the highest.
  • the laser beam used is also characterized by a wavelength. More particularly, the laser device is such that it emits in a wavelength range for which both the glass and the interlayer are transparent - typically in the visible or near infrared range. As such, the wavelength is within an interval of 400 to 1100nm.
  • the laser beam is shaped so that its length is at least equal to the thickness of the panel.
  • the length LB of a Bessel beam is shown in Figure 4
  • Said beam also has power and working frequency characteristics, the latter being characteristic of the duration between each pulse.
  • the laser beam includes a natural frequency related to its wavelength but also a working frequency.
  • the working frequency is related to the fact that the laser beam is pulsed and the pulses are generated with a certain, so-called working frequency.
  • the treatment of the laser beam consists in weakening said laminated glass panel.
  • This embrittlement of the two glass sheets and of the interlayer film simultaneously consists in creating a zone in which the material of the glass sheets is locally modified so as to induce a localized stress field and in which the spacer has micro-channels created without ablation of material, these micro-channels extending in the direction of the thickness of the film and the material around the center of the micro-channels is presumably denser.
  • the cutting line T is thus produced having a relative displacement between the laminated glass panel and the laser beam so that said line can be produced.
  • the laser device 10 is mounted to move relative to the glass panel as shown in Figure 6.
  • the cutting line T consists of a plurality of points PI, each point corresponding to an impact of the laser beam.
  • the distance d between each point called the impact point PI is such that it allows each point PI to process an area of the panel P without impacting a contiguous point as shown in figure 8.
  • the laser beam is such that it creates a stress in each of the glass sheets and micro channels in the intermediate film.
  • the invention therefore proposes to define a distance between two points of impact making it possible to avoid this problem.
  • the distance d between two contact points is chosen to depend on the dimensions of the laser beam. More particularly, the diameter of the Bessel beam and in particular the width of the central lobe in the focusing zone is used. Indeed, the central lobe is the most energetic zone of the beam, i.e. the zone which impacts the laminated glass panel the most, so it is the zone to be used as a reference.
  • a distance between two points of impact is chosen to be equal to a value between two and seven times said diameter of the central lobe Pc.
  • two parameters of the laser device are taken into account. These parameters are the relative speed of movement between the glass panel P and the laser device 10 and the working frequency.
  • the relative speed of movement is representative of the difference in speed of movement that there may be between the glass panel placed on a support and the laser device, namely that the glass panel and/or the laser device can move.
  • This movement speed can also be called sweep speed.
  • the working frequency is the frequency with which the pulses are generated.
  • the working frequency is expressed in Hertz or in s -1 while the scanning speed is expressed in m. s 1 or mm. s -1 , the ratio between the two gives a value in m or mm.
  • this ratio value between the scanning speed and the working frequency be equal to a value between two and seven times said diameter of the central lobe. This determines the frequency and slew rate values used.
  • the working frequency is between 1 and 1000kHz.
  • the laser beam is also characterized by its energy per pulse / group of pulses. This varies from 10 to 2500pJ, preferably from 10 to 2000pJ, and even more preferably from 10 to 1000pJ.
  • the laser beam pulses also have characteristics such as a duration characteristic. Indeed, the amount of energy depends on the intensity of the pulse but also on its duration.
  • the pulses have a duration of between 0.1 and 100 ps, or even between 0.1 and 10 ps.
  • each pulse of the laser beam is such that it is composed of at least two sub-pulses.
  • the laser device is such that each pulse is actually a train of pulses.
  • These pulses also have a duration of between 0.1 and 100 ps, or even between 0.1 and 10 ps.
  • the pulse frequency related to the duration between two pulses of the same pulse train, is greater than that of the working frequency. Frequencies between two pulses of the same pulse train are at least one order of magnitude higher than the working frequency.
  • the laser beam must therefore process at least 80% of the thickness of the glass panel.
  • a beam whose length is less than 80% for cost reasons: laser power, complexity of shaping optics.
  • the invention cleverly proposes to carry out a production of the cutting line by operating at least two passes Pi of the laser beam on the trace of the cutting line. The number of passes depends on the beam length.
  • the realization of the cutting line is characterized by a variation of the distance D between the laser device and the glass panel between each passage Pi as visible in Figure 9. This variation of the distance allows the beam to treat different thicknesses of the glass panel.
  • control unit which manages the movement of the laser device is able to vary the height of the laser device or its distance from the glass panel. Specifically, the control unit moves along the x and y axes so that the stitch points follow the path of the scribe line and move along a vertical z axis.
  • the laser device 10 is able to move, in addition along directions X and Y of length and width, horizontal, along a direction Z which corresponds to the height or along a vertical direction.
  • This variation in distance D illustrates the invention according to which the cutting of the panel is carried out by successively treating the glass panel but with different depths.
  • a beam whose length is equal to 80% of the thickness of the panel is sufficient to make the cutting line, i.e. a length of 8mm. If the beam has a shorter length, it is therefore necessary to pass said beam along at least two different heights to treat the glass panel over at least 80% of its thickness.
  • the number of passes Pi depends on the ratio between the value equal to 80% of the thickness of the glass panel and the length of the laser beam.
  • Example 1 for a 10mm glass panel and a 4mm beam, it will be necessary to make (0.8 * 10) / 4: at least 2 passes P1 and P2.
  • Example 2 for a 25mm glass panel and a 7mm laser beam, it will be necessary to do (0.8 * 25) / 7: 2.85 so at least 3 passes will be made. In the case of a rounded value, the higher whole number will be chosen on the basis that the calculation is based on a value of 80% of the thickness.
  • a step, called separation, consisting of the application of a mechanical force is carried out.
  • This mechanical force is applied to the glass at the cutting line (similar to the cutting of a monolithic glass).
  • the two sheets of glass having been placed under stress locally, a crack propagated in the two sheets.
  • the PVB having been weakened by the channels created by the laser, the laminated glass separates into two parts under the only mechanical action applied for the breaking of the glass with a good quality of edges.
  • the support on which the laminated glass panel is placed includes breaking means allowing mechanical support to be exerted on the cutting/separation line.
  • breaking means 20 making it possible to exert a mechanical support on the cutting/separation line are in the form of a ball B or a bar, visible in FIG. 7, mounted on a base.
  • the base is mounted so as to move in two horizontal directions orthogonal to each other.
  • the base is also arranged to allow the ball B to move in height.
  • the ball/bar is capable of being moved vertically. This allows the ball to be brought into contact with the glass panel in order to apply the mechanical support.
  • One of the advantages of the present invention is to allow the production of the cutting line and the breaking of the glass without excessive handling. Indeed, in a current process, it is often necessary to turn the glass sheet or the glass panel in order to perform the separation, the rupture or to have a machine capable of exerting pressure on both sides of the laminated glass.
  • breaking means 20 can also comprise a tracking module such as a camera making it possible to locate the cut line.
  • This monitoring module makes it possible, on the one hand, to check that the laser beam is facing the cutting line.
  • the tracking module is coupled with a control unit.
  • This coupling of the tracking module with a control unit makes it possible to control the breaking means via the tracking module. It is then understood that the tracking module is able to identify the cutting line to control the movement of the breaking means.
  • the breaking means further comprise a support unit able to exert a support on the face opposite to the face on which the ball is applied.
  • the weight of the glass sheet acts as a counterweight. This counterweight makes it possible to exert a force which limits the movement of the sheet of glass during breaking.
  • this support unit comprises at least one support element which makes it possible to exert a greater force.
  • This support element takes the form of a ball or stud resting on the laminated glass panel. In this case of a single support element, it bears directly opposite the ball, i.e. at the level of the cutting line.
  • the support unit comprises two support elements arranged on either side of the cut line.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laser Beam Processing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

La présente invention concerne un procédé de séparation d'un panneau en verre feuilleté, le panneau en verre feuilleté comprenant au moins un film et au moins deux feuilles de verre, le film étant intercalé entre les panneaux de verre, comprenant l'étape : -affaiblissement des propriétés mécaniques du panneau en verre feuilleté avec l'énergie d'un faisceau laser au moins le long d'au moins une ligne de séparation prédéterminée par le guidage du faisceau laser le long de la ligne de séparation, ladite ligne de séparation séparant le panneau en au moins deux morceaux, caractérisé en ce qu'un dispositif laser est utilisé pour fournir le faisceau laser, ledit dispositif laser étant agencé pour fournir un faisceau laser de type Bessel avec une longueur d'onde pour laquelle les panneaux en verre et l'intercalaire sont transparents, dont la longueur est au moins égale à l'épaisseur du panneau en verre feuilleté et dont le rapport entre la vitesse de balayage et la fréquence de travail présente une valeur comprise entre deux et six fois le diamètre du lobe centrale du faisceau de Bessel.

Description

Description
Titre : Procédé de découpage d’un panneau de verre feuilleté
La présente invention concerne un procédé et un dispositif permettant le découpage du verre et notamment des panneaux de verre feuilleté.
Art antérieur
Il est connu des procédés et dispositifs pour découper des feuilles de verre, notamment des feuilles simples. Pour se faire, la feuille de verre est placée sur une table de découpe puis un outil de découpe vient tracer un trait de découpe. Ce trait de découpe est utilisé pour fragiliser la structure de la feuille de verre. Ensuite, un outil de séparation est utilisé pour séparer la feuille de verre en morceaux.
Si le procédé de rompage des feuilles de verre simple est connu, il existe un besoin pour le rompage de panneaux de verre feuilleté. Un tel panneau de verre feuilleté comprend une première feuille de verre, une seconde feuille de verre et un film intercalaire agencé entre les deux feuilles de verre.
En effet, il est possible de réaliser des panneaux de verre feuilleté en découpant séparément deux feuilles simples puis en les assemblant avec un film intercalaire. Néanmoins, cette pratique nécessite d’avoir une découpe précise des deux feuilles de verre et du film intercalaire afin que le panneau résultat soit de bonne qualité.
Une autre solution consiste à réaliser le panneau de verre feuilleté avant de le découper. Pour cela, il est nécessaire de pouvoir découper directement le panneau en entier.
Une solution connue consiste à utiliser un faisceau laser pour rompre chaque feuille de verre alternativement. Cela nécessite donc la réalisation de deux traits de découpe et des manipulations du panneau de verre feuilleté afin de parvenir à la découpe dudit panneau.
Il existe donc un besoin pour un procédé de rompage d’un panneau de verre feuilleté qui soit rapide et efficace Résumé de l’invention
La présente invention cherche à résoudre les problèmes de l’art antérieur en fournissant un procédé de découpe d’un panneau de verre feuilleté simplifié par rapport au procédé de l’art antérieur.
A cet effet, la présente invention concerne un procédé de séparation d’un panneau en verre feuilleté, le panneau en verre feuilleté comprenant au moins un film et au moins deux feuilles de verre, le film étant intercalé entre les deux feuilles de verre, comprenant l’étape:
-affaiblissement des propriétés mécaniques du panneau en verre feuilleté avec l'énergie d'un faisceau laser au moins le long d'au moins une ligne de séparation prédéterminée par le guidage du faisceau laser le long de la ligne de séparation, ladite ligne de séparation séparant le panneau en au moins deux morceaux, caractérisé en ce qu’un dispositif laser est utilisé pour fournir le faisceau laser, ledit dispositif laser étant agencé pour fournir un faisceau laser de type Bessel avec une longueur d’onde pour laquelle les feuilles de verre et l’intercalaire sont transparents et dont le rapport entre la vitesse de balayage et la fréquence de travail présente une valeur comprise entre deux et sept fois le diamètre du lobe central du faisceau de Bessel, et en ce que l’affaiblissement des propriétés mécaniques du panneau en verre feuilleté est réalisé par une pluralité de passages du faisceau laser le long de ladite au moins une ligne de séparation, le nombre de passages étant au minimum le résultat du rapport entre 0.8 fois l’épaisseur du panneau de verre à découper et la longueur du faisceau LB, lesdits passages étant réalisés avec des distances entre le dispositif laser et le panneau de verre feuilleté différentes permettant de traiter le panneau de verre feuilleté sur au moins 80% de son épaisseur.
Selon un exemple, l’affaiblissement des propriétés mécaniques du panneau en verre feuilleté consiste à créer une série de points d’impact, chaque point permettant d’induire un champ de contraintes localisées dans les feuilles de verre et des micro canaux dans l’intercalaire, deux points d’impact successifs étant distants d’une distance égale au rapport entre la vitesse de balayage et la fréquence de travail.
Selon un exemple, l’épaisseur du panneau de verre feuilletée est comprise entre 2 et 30mm. De préférence, l’épaisseur du panneau de verre feuilletée est supérieure à 4mm Selon un exemple, chaque point d’impact est créé par une unique impulsion.
Selon un exemple, chaque point d’impact est créé par un groupe d’au moins deux impulsions.
Selon un exemple, chaque impulsion dure entre 0.1 et 100ps, voire entre 0.1 et
10 ps.
Selon un exemple, la cadence entre deux impulsions uniques ou deux groupes d’impulsions est comprise entre 1 et 1000 kHz.
Selon un exemple, le procédé comprend en outre une étape de séparation consistant en l’application d’un effort mécanique.
La présente invention concerne en outre un dispositif de séparation d’un panneau de verre feuilleté le long d'au moins une ligne de séparation prédéterminée, ledit panneau de verre feuilleté comprenant au moins un film et au moins deux feuilles de verre, le film étant intercalé entre les panneaux de verre, le panneau de verre feuilleté étant affaibli mécaniquement avec l'énergie d'un faisceau laser au moins le long de la ligne de séparation à l’aide du procédé selon l’invention, ledit dispositif comprenant des moyens de rupture permettant d’exercer un appui mécanique sur la ligne de séparation pour séparer au moins deux morceaux du panneau de verre feuilleté.
Selon un exemple, le faisceau laser est généré par un dispositif laser apte à se déplacer selon deux axes orthogonaux.
Selon un exemple, les moyens de rupture comprennent au moins un élément d’appui pour exercer ledit appui mécanique sur la ligne de séparation.
Selon un exemple, les moyens de rupture comprennent en outre au moins un élément contrepoids pour exercer un appui sur le panneau de verre feuilleté contraire audit appui mécanique sur la ligne de séparation.
Brève description des figures
D’autres particularités et avantages ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels :
- les figures 1 à 2 représentent un panneau de verre feuilleté utilisé pour la présente invention ;
- la figure 3 représente un panneau de verre feuilleté présentant un trait de découpe; - les figures 4 et 5 représentent un faisceau de Bessel utilisé dans la présente invention;
- la figure 6 représente un panneau de verre feuilleté et un dispositif laser utilisant ledit faisceau de Bessel selon l’invention ;
- la figure 7 représente un panneau de verre feuilleté en coupe avec le trait de découpe et la bille des moyens de rupture ;
- la figure 8 représente un panneau de verre feuilleté muni d’un trait de découpe composé d’une pluralité de points d’impact ;
- la figure 9 représente une vue en coupe d’un panneau de verre feuilleté subissant au moins deux passages du faisceau laser pour son découpage
Description détaillée
Aux figures 1 et 2, un panneau P de verre feuilleté est représenté. Ce panneau de verre feuilleté comprend une première feuille 1 de verre et une seconde feuille 2 de verre. Ce panneau comprend en outre un film intercalaire 3 agencé entre la première feuille de verre et la seconde feuille de verre.
Un tel panneau de verre présente une épaisseur totale comprise entre 2 et 30mm. De préférence, l’épaisseur est au moins égale à 4mm, encore plus de préférence strictement supérieure à 4mm.
Ce panneau de verre feuilleté est soumis à un procédé de séparation. Ce procédé de séparation comprend, en première étape, une étape consistant à se munir d’un panneau de verre feuilleté. Ce dernier se présente sous la forme d’un panneau ayant des larges dimensions devant être découpé en au moins deux morceaux.
Dans une seconde étape, le panneau P de verre feuilleté est traité pour qu’un trait de découpe T soit réalisé comme visible à la figure 3. Pour cela, le panneau de verre feuilleté est placé sur un support tel qu’une table de découpe. Le panneau de verre P est ainsi posé à plat.
Le trait de découpe T, ou ligne de séparation, est un trait de fragilisation du panneau de verre P afin que ledit panneau puisse être séparé en plusieurs morceaux.
Selon la présente invention, le trait de découpe est réalisé à l’aide d’un dispositif laser 10 générant un faisceau laser F comme visible en figure 6. Le faisceau laser F généré est tel qu’il permet de réaliser ce trait de découpe T. Afin de permettre la réalisation d’un tel trait de découpe T, le dispositif laser est conçu, agencé pour mettre en forme le faisceau laser pour obtenir un faisceau de Bessel.
Un tel faisceau F de Bessel, visible à la figure 5, se caractérise par un profil en coupe comprenant un point central Pc et au moins un anneau A ou couronne dont le centre est ledit point central. Ce point central Pc est la zone où l’intensité du faisceau est la plus élevée.
Le faisceau laser utilisé se caractérise également par une longueur d’onde. Plus particulièrement, le dispositif laser est tel qu’il émet dans une gamme de longueur d’onde pour laquelle à la fois le verre et l’intercalaire sont transparents - typiquement dans la gamme du visible ou du proche infrarouge. A ce titre, la longueur d’onde est comprise dans un intervalle de 400 à 1100nm.
Afin de réaliser le trait de découpe T, le faisceau laser est mis en forme pour que sa longueur soit au moins égale à l’épaisseur du panneau. La longueur LB d’un faisceau de Bessel est représentée à la figure 4
Pour mettre en forme ce faisceau à la longueur souhaitée, un dispositif et des paramètres tel que présents dans l’article Meyer et al. Appl. Phys. Lett. 114, 201105 (2019) sont utilisés.
Cela permet d’avoir un faisceau de Bessel dont la longueur LB permet de traiter le verre feuilleté sur toute son épaisseur E. Ainsi, les deux feuilles de verre 1 , 2 et le film intercalaire 3 sont traités simultanément. Pour cela, il a été déterminé que le faisceau de Bessel doit permettre de traiter le panneau de verre P sur une épaisseur égale à au moins 80% de son épaisseur. Cette valeur de 80% est suffisante car il a été montré que qu’à proximité de cette longueur LB, la densité de puissance est telle que le substrat traité par ces portions du faisceau sont conformes à ce qui est attendu..
Ledit faisceau présente aussi des caractéristiques de puissance et de fréquence de travail, celle-ci étant caractéristique de la durée entre chaque impulsion. En effet, le faisceau laser comprend une fréquence propre liée à sa longueur d’onde mais également une fréquence de travail. La fréquence de travail est liée au fait que le faisceau laser est pulsé et que les impulsions sont générées avec une certaine fréquence, dite de travail.
Le traitement du faisceau laser consiste à fragiliser ledit panneau de verre feuilleté. Cette fragilisation des deux feuilles de verre et du film intercalaire de façon simultanée consiste à créer une zone dans laquelle la matière des feuilles de verre est localement modifiée de sorte à induire un champ de contraintes localisé et dans laquelle, l’intercalaire présente des micro-canaux créés sans ablation de matière, ces micro-canaux s’étendant dans la direction de l’épaisseur du film et la matière autour du centre des micro-canaux est vraisemblablement plus dense.
Le trait de découpe T est ainsi réalisé ayant un déplacement relatif entre le panneau de verre feuilletée et le faisceau laser afin que ledit trait puisse être réalisée. De préférence, le dispositif laser 10 est monté mobile par rapport au panneau de verre comme visible en figure 6.
Selon l’invention, le trait de découpe T est constitué d’une pluralité de point PI, chaque point correspondant à un impact du faisceau laser. La distance d entre chaque point dit point d’impact PI est telle qu’elle permet à chaque point PI de traiter une zone du panneau P sans impacter un point contigu comme visible à la figure 8.
Effectivement, le faisceau laser est tel qu’il permet de créer une contrainte dans chacune des feuilles de verre et des micro canaux dans le film intermédiaire.
Or, si deux points d’impact Plj et Plj+1 sont trop proches alors le point d’impact Plj+1 présente une influence sur le point d’impact précédent Plj. Cette influence peut se traduire par le fait que les contraintes induites par l’impact du faisceau sur le point Plj+1 entraîne une réduction ou modification des contraintes dues par l’impact du faisceau sur le point PI. Ainsi, il est possible que les micro-canaux créés par l’impact du faisceau sur le point Plj se referment par l’impact du faisceau sur le point Plj+1. Ainsi, la conséquence serait que l’utilisation du faisceau au point Plj+1 rendrait le point Plj inopérant et donc que le trait de découpe serait inutile.
L’invention se propose donc de définir une distance entre deux points d’impact permettant d’éviter cette problématique.
Pour cela, la distance d entre deux points de contact est choisie pour dépendre des dimensions du faisceau laser. Plus particulièrement, le diamètre du faisceau de Bessel et notamment la largeur du lobe central dans la zone de focalisation est utilisée. En effet, le lobe central est la zone la plus énergétique du faisceau c’est-à-dire la zone qui im pacte le plus le panneau de verre feuilleté, il s’agit donc de la zone à utiliser comme référence.
Dans ce cas, une distance d’entre deux points d’impact est choisie pour être égale à une valeur comprise entre deux et sept fois ledit diamètre du lobe central Pc. Pour mettre en œuvre cette distance, deux paramètres du dispositif laser sont pris en compte. Ces paramètres sont la vitesse de déplacement relative entre le panneau de verre P et le dispositif laser 10 et la fréquence de travail.
En effet, la vitesse du déplacement relative est représentative de la différence de vitesse de déplacement qu’il peut y avoir entre le panneau de verre posé sur un support et le dispositif laser à savoir que le panneau de verre et/ou le dispositif laser peuvent se déplacer. Cette vitesse de déplacement peut aussi être appelée vitesse de balayage.
La fréquence de travail est la fréquence avec laquelle les impulsions sont générées.
Ces deux grandeurs sont donc liées de sorte que la vitesse de balayage et la fréquence de travail permettent de définir le pas maximal entre deux points d’impact. En effet, la fréquence de travail est exprimée en Hertz soit en s-1 alors que la vitesse de balayage est exprimé en m. s 1 ou mm. s-1, le rapport entre les deux permet d’obtenir une valeur en m ou mm.
Dans le cas présent, il est nécessaire que cette valeur de rapport entre la vitesse de balayage et la fréquence de travail soit égale à une valeur comprise entre deux et sept fois ledit diamètre du lobe central. Cela permet de déterminer les valeurs de fréquence et de vitesse de balayage utilisée.
La fréquence de travail est comprise entre 1 et 1000kHz.
Le faisceau laser est aussi caractérisé par son énergie par impulsion / groupe d’impulsions. Celle-ci varie de 10 à 2500pJ, de préférence de 10 à 2000pJ, et encore plus de préférence de 10 à 1000pJ.
Les impulsions du faisceau laser présente aussi des caractéristiques comme une caractéristique de durée. En effet, la quantité d’énergie dépend de l’intensité de l’impulsion mais aussi de sa durée.
Dans le cadre de la présente invention, les impulsions ont une durée comprise entre 0.1 et 100ps, voire entre 0.1 et 10 ps.
Dans une variante, chaque impulsion du faisceau laser est tel qu’il est composé qu’au moins deux sous-impulsions. On comprend par-là que le dispositif laser est tel que chaque impulsion est en réalité un train d’impulsions. Ces impulsions ont également une durée comprise entre 0.1 et 100ps, voire entre 0.1 et 10 ps.
La fréquence des impulsions, liée à la durée entre deux impulsions du même train d’impulsions, est supérieure à celle de la fréquence de travail. Les fréquences entre deux impulsions du même train d’impulsions sont supérieures au moins d’un ordre de grandeur à la fréquence de travail.
Pour réaliser un trait de découpe, il faut donc que le faisceau laser traite au moins 80% de l’épaisseur du panneau de verre. Or, il existe un besoin d’utiliser un faisceau dont la longueur est inférieure à 80% pour des questions coût : puissance du laser, complexité de l’optique de mise en forme.
Afin d’utiliser un laser dont la longueur du faisceau de Bessel est inférieure à la valeur de 80% de l’épaisseur du panneau, l’invention se propose astucieusement de procéder à une réalisation du trait de découpe en opérant au moins deux passages Pi du faisceau laser sur le tracé du trait de découpe. Le nombre de passages dépend de la longueur du faisceau.
Ces différents passages Pi sont présents, non pas pour accentuer le passage précédent mais pour se compléter sur l’épaisseur du panneau de verre.
Pour se faire, la réalisation du trait de découpe se caractérise par une variation de la distance D entre le dispositif laser et le panneau de verre entre chaque passage Pi comme visible à la figure 9. Cette variation de la distance permet au faisceau de traiter différentes épaisseurs du panneau de verre.
Ainsi, l’unité de commande qui gère le déplacement du dispositif laser est apte à faire varier la hauteur du dispositif laser ou sa distance par rapport au panneau de verre. Plus particulièrement, l’unité de commande se déplace selon les axes x et y pour que les points d’impact suivent le trajet du trait de découpe et se déplace selon un axe z vertical.
Pour opérer ces passages P1 à des hauteurs différentes, le dispositif laser 10 est apte à se déplacer, outre selon des directions X et Y de longueur et largeur, horizontale, selon une direction Z qui correspond à la hauteur ou selon une direction verticale.
On peut voir sur la figure 9, une vue en coupe d’un panneau de verre à découper dans le cas de deux passages P1 et P2.
Dans le cas d’un passage P1 , le dispositif laser 10 générant le faisceau F se trouve à une distance D = D1 du panneau de verre et dans le passage P2 le dispositif laser générant le faisceau F se trouve à une distance D = D2, la distance D2 étant inférieure à la distance D1. Cette variation de distance D illustre l’invention selon laquelle le découpage du panneau est opéré en traitant successivement le panneau de verre mais avec des profondeurs différentes.
Pour illustrer ceci, on peut prendre l’exemple d’un panneau de verre ayant une épaisseur de 10mm. Comme vu précédemment, un faisceau dont la longueur est égale à 80% de l’épaisseur du panneau suffit pour réaliser le trait de découpe c’est-à-dire une longueur de 8mm. Si le faisceau présente une longueur plus courte, il est donc nécessaire de passer ledit faisceau selon au moins deux hauteurs différentes pour traiter le panneau de verre sur au moins 80% de son épaisseur.
Ainsi, le nombre de passage Pi dépend du rapport entre la valeur égale à 80% de l’épaisseur du panneau de verre et longueur du faisceau laser.
Exemple 1 : pour un panneau de verre de 10mm et un faisceau de 4mm, il faudra faire (0.8*10) / 4 : au moins 2 passages P1 et P2.
Exemple 2: pour un panneau de verre de 25mm et un faisceau laser de 7mm, il faudra faire (0.8*25) / 7 : 2.85 donc au moins 3 passages seront réalisés. Dans le cas d’une valeur arrondie, le nombre entier supérieur sera choisie en partant du fait que le calcul est basé sur une valeur de 80% de l’épaisseur.
Après la réalisation du trait de découpe, une étape, dite de séparation, consistant en l’application d’un effort mécanique est opérée. Cet effort mécanique est appliquée au verre au niveau de la ligne de découpe (similaire à la découpe d’un verre monolithique). Les deux feuilles de verre ayant été mises localement sous contraintes une fissure se propage dans les deux feuilles. Par ailleurs, le PVB ayant été fragilisé par les canaux créés par le laser, le verre feuilleté se sépare en deux partie sous la seule action mécanique appliquée pour la rupture du verre avec une bonne qualité de bords.
Pour appliquer cet effort mécanique, le support sur lequel le panneau de verre feuilleté est posé comprend des moyens de rupture permettant d’exercer un appui mécanique sur la ligne de découpe/séparation.
Ces moyens de rupture 20 permettant d’exercer un appui mécanique sur la ligne de découpe/séparation se présentent sous la forme d’une bille B ou d’une barre, visible à la figure 7, montée sur un socle. Le socle est monté mobile afin de se déplacer selon deux directions horizontales orthogonales l’une de l’autre. Le socle est en outre agencé pour permettre à la bille B de se déplacer en hauteur. On comprend par la que la bille/barre est capable d’être déplacée verticalement. Cela permet à la bille d’être mise en contact avec le panneau de verre afin d’appliquer l’appui mécanique.
Un des avantages de la présente invention est de permettre la réalisation du trait de découpe et la rupture du verre sans manipulation excessive. En effet, dans un procédé actuel, il est souvent nécessaire de retourner la feuille de verre ou le panneau de verre afin d’effectuer la séparation, la rupture ou avoir une machine capable d’exercer de la pression des deux côtés du verre feuilleté.
Avec la présente invention et la capacité à créer un trait de découpe sur toute l’épaisseur, il devient inutile de manipuler le panneau de verre pour le retourner pour opérer la rupture.
Ces moyens de rupture 20 peuvent aussi comprendre un module de suivi tel une caméra permettant de repérer le trait de découpe.
Ce module de suivi permet d’une part, de vérifier que le faisceau laser est en regard du trait de découpe.
D’autre part, il est possible que le module de suivi soit couplé avec une unité de commande. Ce couplage du module de suivi avec une unité de commande permet de contrôler les moyens de ruptures via le module de suivi. On comprend alors que le module de suivi est apte à repérer le trait de découpe pour commander le déplacement des moyens de rupture.
Dans une variante, les moyens de rupture comprennent en outre une unité d’appui apte à exercer un appui sur la face opposée à la face sur laquelle la bille est appliquée. En effet, sans ces moyens de rupture, le poids de la feuille de verre fait office de contrepoids. Ce contrepoids permet d’exercer une force qui limite le déplacement de la feuille de verre lors du rom page.
Avantageusement, cette unité d’appui comprend au moins un élément d’appui qui permet d’exercer une force supérieure. Cet élément d’appui prend la forme d’une bille ou d’un plot venant prendre appui sur le panneau de verre feuilleté. Dans ce cas d’un seul élément d’appui, celui-ci prend appui directement en regard de la bille c’est- à-dire au niveau du trait de découpe.
Dans une alternative, l’unité d’appui comprend deux éléments d’appui disposés de part et d’autre du trait de découpe.
Bien entendu, la présente invention ne se limite pas à l’exemple illustré mais est susceptible de diverses variantes et modifications qui apparaîtront à l’homme de l’art.

Claims

Revendications
1. Procédé de séparation d’un panneau en verre feuilleté, le panneau en verre feuilleté comprenant au moins un film et au moins deux feuilles de verre, le film étant intercalé entre les deux feuilles de verre, comprenant l’étape :
-affaiblissement des propriétés mécaniques du panneau en verre feuilleté avec l'énergie d'un faisceau laser au moins le long d'au moins une ligne de séparation prédéterminée par le guidage du faisceau laser le long de la ligne de séparation, ladite ligne de séparation séparant le panneau en au moins deux morceaux, caractérisé en ce qu’un dispositif laser est utilisé pour fournir le faisceau laser, ledit dispositif laser étant agencé pour fournir un faisceau laser de type Bessel avec une longueur d’onde pour laquelle les feuilles de verre et l’intercalaire sont transparents, dont le rapport entre la vitesse de balayage et la fréquence de travail présente une valeur comprise entre deux et sept fois le diamètre du lobe centrale du faisceau de Bessel, et en ce que l’affaiblissement des propriétés mécaniques du panneau en verre feuilleté est réalisé par une pluralité de passages du faisceau laser le long de ladite au moins une ligne de séparation, le nombre de passages étant au minimum le résultat du rapport entre 0.8 fois l’épaisseur du panneau de verre à découper et la longueur du faisceau (LB), lesdits passages étant réalisés avec des distances entre le dispositif laser et le panneau de verre feuilleté différentes permettant de traiter le panneau de verre feuilleté sur au moins 80% de son épaisseur, et dans lequel l’épaisseur du panneau de verre feuilletée est supérieure à 4mm.
2. Procédé selon la revendication 1, dans lequel l’affaiblissement des propriétés mécaniques du panneau en verre feuilleté consiste à créer une série de points d’impact, chaque point permettant d’induire un champ de contraintes localisées dans les feuilles de verre et des micro-canaux dans l’intercalaire, deux points d’impact successifs étant distant d’une distance égale au rapport entre la vitesse de balayage et la fréquence de travail.
3. Procédé selon l’une des revendications précédentes, dans lequel chaque point d’impact est créé par une unique impulsion.
4. Procédé selon l’une des revendications 1 à 3, dans lequel chaque point d’impact est créé par un groupe d’au moins deux impulsions.
5. Procédé selon les revendications 3 ou 4, dans lequel chaque impulsion dure entre 0.1 et 100ps, voire entre 0.1 et 10 ps.
6. Procédé selon les revendications 4 ou 5, dans lequel la cadence entre deux impulsions uniques ou deux groupes d’impulsions est comprise entre 1 et 1000 kHz.
7. procédé selon l’une des revendications précédentes, dans lequel il comprend en outre une étape de séparation consistant en l’application d’un effort mécanique.
8. Dispositif de séparation d’un panneau de verre feuilleté le long d'au moins une ligne de séparation prédéterminée, ledit panneau de verre feuilleté comprenant au moins un film et au moins deux feuilles de verre, le film étant intercalé entre les panneaux de verre, le panneau de verre feuilleté étant affaibli mécaniquement avec l'énergie d'un faisceau laser au moins le long de la ligne de séparation à l’aide du procédé selon l’une des revendications 1 à 7, ledit dispositif comprenant des moyens de rupture permettant d’exercer un appui mécanique sur la ligne de séparation pour séparer au moins deux morceaux du panneau de verre feuilleté.
9. Dispositif de séparation selon la revendication précédente, dans lequel le faisceau laser est généré par un dispositif laser apte à se déplacer selon trois axes orthogonaux.
10. Dispositif de séparation selon les revendications 8 ou 9, dans lequel les moyens de rupture comprennent au moins un élément d’appui pour exercer ledit appui mécanique sur la ligne de séparation.
11. Dispositif de séparation selon la revendication précédente, dans lequel les moyens de rupture comprennent en outre au moins un élément contrepoids pour exercer un appui sur le panneau de verre feuilleté contraire audit appui mécanique sur la ligne de séparation.
PCT/EP2022/069896 2021-07-16 2022-07-15 Procédé de découpage d'un panneau de verre feuilleté WO2023285671A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2107696 2021-07-16
FR2107696A FR3125292A1 (fr) 2021-07-16 2021-07-16 Procédé de découpage d’un panneau de verre feuilleté

Publications (1)

Publication Number Publication Date
WO2023285671A1 true WO2023285671A1 (fr) 2023-01-19

Family

ID=79269632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/069896 WO2023285671A1 (fr) 2021-07-16 2022-07-15 Procédé de découpage d'un panneau de verre feuilleté

Country Status (2)

Country Link
FR (1) FR3125292A1 (fr)
WO (1) WO2023285671A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150165563A1 (en) * 2013-12-17 2015-06-18 Corning Incorporated Stacked transparent material cutting with ultrafast laser beam optics, disruptive layers and other layers
US20160200621A1 (en) * 2015-01-12 2016-07-14 Corning Incorporated Laser cutting of thermally tempered substrates
EP3127875A1 (fr) * 2015-08-03 2017-02-08 Bottero S.p.A. Machine permettant de couper des feuilles de verre
US20180118603A1 (en) * 2016-11-01 2018-05-03 Albert Roth Nieber Apparatuses and methods for laser processing laminate workpiece stacks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150165563A1 (en) * 2013-12-17 2015-06-18 Corning Incorporated Stacked transparent material cutting with ultrafast laser beam optics, disruptive layers and other layers
US20160200621A1 (en) * 2015-01-12 2016-07-14 Corning Incorporated Laser cutting of thermally tempered substrates
EP3127875A1 (fr) * 2015-08-03 2017-02-08 Bottero S.p.A. Machine permettant de couper des feuilles de verre
US20180118603A1 (en) * 2016-11-01 2018-05-03 Albert Roth Nieber Apparatuses and methods for laser processing laminate workpiece stacks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEYER ET AL., APPL. PHYS. LETT., vol. 114, 2019, pages 201105

Also Published As

Publication number Publication date
FR3125292A1 (fr) 2023-01-20

Similar Documents

Publication Publication Date Title
EP3487656B1 (fr) Procédé et appareil pour la découpe de matériaux par multi-faisceaux laser femtoseconde
EP3057736B1 (fr) Methode et dispositif de micro-usinage par laser
EP3452250B1 (fr) Méthode et dispositif d'assemblage d'un substrat et d'une pièce par la structuration du substrat
EP0988255B1 (fr) Procede de decalottage de pieces en verre
EP2576127B2 (fr) Procédé de gravure d'au moins une rainure formant des amorces de rupture à l'aide d'un dispositif laser à fibre optique
KR101654841B1 (ko) 판 유리의 테두리들 상에 사면들을 생성하기 위한 방법 및 장치
EP0129462B1 (fr) Procédé et dispositif de perçage par laser
JP6121901B2 (ja) レーザーフィラメント形成による材料加工方法
US20150165563A1 (en) Stacked transparent material cutting with ultrafast laser beam optics, disruptive layers and other layers
JP2017528323A (ja) 界面ブロック、そのような界面ブロックを使用する、ある波長範囲内で透過する基板を切断するためのシステムおよび方法
EP1774579B1 (fr) Procédé de réalisation d'une structure multi-couches comportant, en profondeur, une couche de séparation
EP3352974A1 (fr) Systeme et procede de fabrication additive par fusion laser d'un lit de poudre
US20170305780A9 (en) Method and apparatus for separation of strengthened glass and articles produced thereby
WO2013053832A1 (fr) Appareil et procede de decoupe au laser a impulsions de gaz asservies en frequence ou en pression
EP1335884B1 (fr) Procede et installation pour la decoupe de pieces en verre
WO2023285671A1 (fr) Procédé de découpage d'un panneau de verre feuilleté
WO2023285656A1 (fr) Procédé de découpage d'un panneau de verre feuilleté
WO2002096579A2 (fr) Procede de fabrication de profiles metalliques
CA3132943A1 (fr) Procede de realisation d'un effet d'irisation sur la surface d'un materiau, et dispositifs pour sa mise en oeuvre
EP3820644B1 (fr) Procede de nanostructuration de la surface d'un materiau par laser
FR2567872A1 (fr) Procede et dispositif de decoupe du verre
CA3133730A1 (fr) Procede de realisation d'un effet visuel d'irisation sur la surface d'un materiau, dispositifs pour sa mise en oeuvre et piece ainsi obtenue
EP4175745A1 (fr) Machine et procede de traitement de pieces de differentes formes
EP3712717A1 (fr) Methode pour marquer une glace de montre en saphir
WO2019002301A1 (fr) Methode de structurisation d'un substrat, ensemble comprenant un substrat et un dispositif de structuration dudit substrat, et substrat avec une telle structuration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22741785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE