EP3801652A1 - Pansement cellularise et son procede de fabrication - Google Patents

Pansement cellularise et son procede de fabrication

Info

Publication number
EP3801652A1
EP3801652A1 EP19740640.8A EP19740640A EP3801652A1 EP 3801652 A1 EP3801652 A1 EP 3801652A1 EP 19740640 A EP19740640 A EP 19740640A EP 3801652 A1 EP3801652 A1 EP 3801652A1
Authority
EP
European Patent Office
Prior art keywords
cells
dressing
cellularized
printed
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19740640.8A
Other languages
German (de)
English (en)
Inventor
Delphine FAYOL
Fabien Guillemot
Catherine VAN DER MEE
Christelle Laurensou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Urgo Recherche Innovation et Developpement
Poietis SAS
Original Assignee
Urgo Recherche Innovation et Developpement
Poietis SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Urgo Recherche Innovation et Developpement, Poietis SAS filed Critical Urgo Recherche Innovation et Developpement
Publication of EP3801652A1 publication Critical patent/EP3801652A1/fr
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/425Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/00987Apparatus or processes for manufacturing non-adhesive dressings or bandages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/26Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/40Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing ingredients of undetermined constitution or reaction products thereof, e.g. plant or animal extracts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/44Medicaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3813Epithelial cells, e.g. keratinocytes, urothelial cells

Definitions

  • the present invention relates to a cellularized dressing and method of manufacturing such a dressing, which method preferably comprises a step of bio-printing cells.
  • the cellularized dressings or cutaneous substitutes are known and marketed for a long time.
  • the advantage of the cellularized dressings lies in the fact that the exogenous supply of living cells contributes to the healing of the wound.
  • the cells provided by the dressing participate directly or indirectly (through the secretion of factors) in the healing process.
  • Such dressings are generally in the form of at least one resorbable material (the at least one material naturally present in the cellular environment).
  • GRAFIX® products marketed by OSIRIS. These products are composed of a placental membrane containing a collagen-rich extracellular matrix (ECM), growth factors, fibroblasts, mesenchymal stem cells and epithelial cells.
  • ECM extracellular matrix
  • APLIGRAF® marketed by Organogenesis, composed of keratinocytes, fibroblasts and bovine collagen.
  • the product DERMAGRAFT® marketed by the company Advanced Biohealing, contains dermal derivatives and human fibroblasts.
  • Such cellularized dressings although having a proven effectiveness on healing, however, have risks of transmitting viruses such as, for example, prions (in particular for cellularized dressings containing compounds of animal origin).
  • the cell density, the cell localization zone or the homogeneous distribution of the cells are poorly controlled parameters.
  • the patent application WO2016 / 115034 also describes a bio-mask comprising a hydrogel layer containing cells inside this hydrogel, said hydrogel being then bio-printed on a polyurethane structure.
  • This patent application therefore does not describe the bio-printing of cells on the polyurethane structure. Indeed, there is no direct contact between the bio-printed cells and a non-absorbable material.
  • the polyurethane structure corresponds to a bio-printed polyurethane gel: this polyurethane structure therefore does not allow the absorption of exudates.
  • Biomaterials and tissue engineering are also known to replace part or function of an organ or tissue.
  • Biomaterials are materials, either synthetic or living, that can be used for medical purposes to replace a part or function of an organ or tissue. The said biomaterials must respect several obligations:
  • Tissue engineering consists in the manufacture of a tissue by multiplication of cells around a matrix or scaffolding ("scaffold" type). Concrete realization, however, faces various problems. For example, in an artificial environment cells tend to lose their ability to differentiate. Of the more the cells sometimes express atypical proteins which, after implantation, can cause inflammations or rejection reactions.
  • non-absorbable materials comprising cells
  • this matrix is not resorbable it is intended to be kept in place within the body for at least a long time, it is not intended to be withdrawn. It is the same for the use of non-absorbable biomaterials.
  • the present invention relates to the therapeutic use of non-absorbable materials (preferably synthetic materials), but said materials are not intended to replace a part or function of an organ or tissue. They are not intended to be held in place within the body, they are intended to be removed after regeneration of the organ or tissue on which they were applied. According to the invention, the materials thus have a transitional dressing role.
  • bio-printing of cells as described in applications WO2016 / 115034 and WO20160 / 073782 is carried out on bio-resorbable materials.
  • Bioprinting methods are also described in WO2011 / 107599, WO2016 / 097619 and WO2016 / 097620. These requests notably describe that bio-printing can be used to produce tissues (for example implantable tissues for regenerative medicine).
  • cells are thus printed on nonabsorbable materials.
  • Said materials are used as dressings.
  • Such materials are not naturally present in the cellular environment and are not usually used in cell culture.
  • bio-printed cells on such materials were not only viable, able to proliferate, but were also capable of migration.
  • the advantage of such printing or bio-printing is that it is possible to customize or adapt to each patient and each wound the dressing, allowing a tailor-made treatment to optimize the healing of wounds.
  • the cellularized dressings according to the present invention make it possible to avoid the risks of virus transmission, in particular because they do not contain compounds of animal origin.
  • Bio-printing also makes it possible to precisely locate on the dressing an area on which the cells will be present at a controlled concentration.
  • the cells can be printed specifically on the grid, or outside the grid. The precision of this technique is of the order of ten pm. The cell density, the cell localization zone and / or the homogeneous distribution of the cells are thus better controlled in the dressings according to the invention compared with the cellularized dressings of the prior art.
  • the invention thus relates to a cellularized dressing intended to be applied transiently to a wound, said dressing comprising cells on a non-resorbable material.
  • cellularized dressing means that the dressing comprises cells.
  • the term "intended to be applied transiently to a wound” means that the dressings are intended to be removed from the wound.
  • This expression also means that the dressings according to the invention are in a form suitable for transient application to a wound.
  • the dressings according to the invention have indeed a protective role and are intended to be removed once the organ or tissue of the wound has regenerated.
  • the dressings according to the invention do not resorb, and they are not intended to be held in place for a long time (several days or weeks).
  • the dressing covers all or part of the wound, preferably the entire wound.
  • the expression "said dressing comprising cells on a non-resorbable material” means that the cells are in direct contact with the non-resorbable material.
  • the cells are not mixed with a hydrogel or incorporated inside a hydrogel.
  • said dressing is devoid of hydrogel.
  • non-absorbable material means that the material does not progressively dissolve within the wound, unlike the materials resorbable which they break down naturally.
  • the removal / degradation of a non-absorbable material therefore requires a physical / mechanical action, in contrast to the degradation of a resorbable material.
  • Said non-resorbable material advantageously has the following properties: (1) it allows the absorption of the exudates, and / or (2) it can undergo a dimensional change (by gelling or deformation related to the absorption), and / or (3) it does not adhere to the tissues, and / or (4) it is preferably partially hydrophilic in the hydrated state, and / or (5) it exhibits hydrated slip, and / or (6) it is not cytotoxic.
  • the "slipperiness in the hydrated state” means that the material has a surface state which does not allow the cells to adhere to it but which nevertheless keeps them alive.
  • said non-absorbable material is chosen from:
  • said non-absorbable material is a material comprising fibers, in particular the interface dressing or the absorbent dressing.
  • the non-absorbable material allows the absorption of exudates.
  • the non-resorbable material according to the invention is a hydrophilic polyurethane foam for the absorption of exudates.
  • an interface dressing is as described in patent application EP2793773, that is to say an adherent interface dressing comprising: (i) a non-adherent, cohesive gel formed of a hydrophobic elastomeric matrix consisting of a triblock elastomer of styrene - (ethylene - butylene) - styrene or styrene (ethylene - propylene) - styrene type optionally combined with a diblock copolymer of the styrene - (ethylene - butylene) or styrene - (ethylene - propylene) type, said elastomer being strongly plasticized by means of a mineral oil, and dispersively containing a small amount of hydrophilic particles of a hydrocolloid, and (ii) an open-meshed flexible fabric, said fabric comprising yarns which are coated with the non-cohesive gel adherent so as to leave the stitches essentially unsealed
  • said nonadherent cohesive gel is formed of a hydrophobic elastomeric matrix comprising, per 100 parts by weight of elastomer chosen from a triblock elastomer of the styrene - (ethylene - butylene) - styrene or styrene (ethylene) type.
  • styrene - (ethylene - butylene) or styrene - (ethylene - propylene) type 1000 to 2000 parts by weight of a paraffin oil, and containing in dispersion from 2 to 20% by weight, based on the total weight of the elastomeric matrix, of hydrophilic particles of a hydrocolloid.
  • an absorbent dressing is as described in the patent application EP2696828, that is to say an adhesive absorbent dressing comprising an absorbent nonwoven (6) and a fluid-impermeable and permeable protective support.
  • the water vapor (4) characterized in that: (i) the support is constituted by the assembly of a continuous film (4a) and a perforated reinforcement coated, on at least one of its faces, with adhesive silicone gel (4b), without closing the openings of the frame, said frame covering the entire surface of the film, (ii) in that said dressing further comprises a non-absorbent veil (5) and a non-absorbent complementary woven fabric (7) which are fixed to each other on their periphery by wrapping said absorbent nonwoven, preferably without a point of attachment with the latter, and (iii) in that said non-absorbent web (5) adheres adhesive silicone gel (4b) coated on said frame.
  • the cells present in the dressing are cells adhering to a substrate (for example polystyrene in a box or a culture flask). They are chosen in particular from the cells of the dermis or epidermis. They are especially chosen from fibroblast-type cells and / or epithelial-type cells.
  • the cells are chosen from fibroblasts and / or keratinocytes, in particular primary fibroblasts and / or primary keratinocytes. Even more advantageously, the cells are chosen from primary dermal fibroblasts and / or primary epidermal keratinocytes.
  • fibroblasts refers to spindle-shaped, irregularly shaped cells that are responsible for fiber formation.
  • epithelial cells refers to cells opposite to each other that form a mosaic-like continuous tissue with very few intercellular substances as can be seen in in vitro cultures, tissues or tissues. organs.
  • fibroblast-like cells refers to cells that are attached to a substrate and that appear elongated and bipolar. In cell cultures, various cell types have similar morphologies. Cells that take irregular shapes or Spindle shapes are often referred to as fibroblasts.
  • epithelial cells refers to cells that are attached to a substrate and appear flat and polygonal in shape. In cell cultures, epithelial cells can take a variety of forms but tend to form into tight polygonal cell tissue.
  • the cells are (or have been previously) bio-printed on said non-absorbable material.
  • the cells are also directly bio-printed on said non-absorbable material, said dressing therefore does not include a bio-printing of hydrogel.
  • Some dressings have the property of not adhering to wounds, and the cells do not adhere to the materials generally used in dressings. It is therefore complicated to support cells on the surface of this type of dressing since the cells will not be able to adhere to it.
  • One of the advantages of bio-printing is that it makes it possible to print the cells on the surface of this type of dressing, and to hold them there until the dressing is transferred to the wound.
  • the applications WO2016 / 115034, WO20160 / 073782 WO2011 / 107599, WO2016 / 097619 and WO2016 / 097620 describe bio-printing processes that can be used to bio-print a dressing according to the invention.
  • the cells are present (or have been bio-printed) at the level of the fibers of said material (ie on the fibers themselves) or within a or patterns defined by the fibers.
  • the cells can thus be present (or be bio-printed) at the level of the fibers of a concentric pattern, a radial pattern, a geometric pattern or a non-geometric random pattern (that is, not representing a geometric shape), or within at least one of these patterns.
  • the cells are present (or have been bio-printed) at the level of the fibers of said material, at the intersection of the fibers of said material and / or in the center of each quadrangle of said material. .
  • said dressing is saturated with liquid up to 90% of its absorption capacity.
  • said dressing is saturated with liquid at a content of between at least 50% of its absorption capacity, preferably at least 80%, and up to 90% of its absorption capacity.
  • “between at least 50% and up to 90%” means all values between 50% and 90%, and in particular 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85% and 90%.
  • the dressing according to the invention must also ensure the absorption or gelling functions of the exudates. When adding the cells to the non-resorbable material or when bio-printing the cells, only a few picoliters of cellular ink are deposited or printed.
  • the cells must be in an environment saturated with moisture or liquid to be able to survive and grow. It is therefore necessary to maintain a certain cell viability, while allowing the dressing to perform these functions. It is therefore important to find a balance between the absorption or gelling of the exudates by the dressing, and the cell survival.
  • the dressing should be sufficiently hydrated (but not saturated) so that the cells on its surface survive, and thus facilitate healing.
  • the inventors have found that the dressing according to the present invention responds particularly to this equilibrium when the dressing is saturated with liquid at 90% of its absorption capacity.
  • the absorption capacity of the dressing is measured according to standard NF EN 13726-1.
  • said dressing comprises a cell concentration of between 50 and 30,000 cells / cm 2 , preferably between 200 and 20,000 cells per cm 2 .
  • said dressing further comprises an active agent, preferably an active agent having a favorable role in the treatment of wounds.
  • said active agent is chosen from an antiseptic, an antibacterial agent, an antibiotic, a painkiller, an anti-inflammatory, anesthetic or a compound that promotes the healing of the wound.
  • the antibacterials / antibiotics may be silver derivatives such as silver salts or other metals (for example silver sulfate, chloride or nitrate and silver sulfadiazine), complexes of silver or other metals (for example silver zeolites such as alphasan, or ceramics), metodinazole, neomycin, Polymyxin B, penicillins (Amoxycillin), clavulanic acid, tetracyclines, Minocycline, chlorotetracycline, aminoglycosides, Amikacin, Gentamicin or probiotics.
  • silver derivatives such as silver salts or other metals (for example silver sulfate, chloride or nitrate and silver sulfadiazine), complexes of silver or other metals (for example silver zeolites such as alphasan, or ceramics), metodinazole, neomycin, Polymyxin B, penicillins (Amoxycillin), clavula
  • the antiseptics may be chlorhexidine, triclosan, biguanide, hexamidine, thymol, Lugol, Povidone iodine, Benzalkonium Chloride and Benzethonium.
  • the painkillers may be Paracetamol, Codeine, Dextropropoxyphene, Tramadol, Morphine and its derivatives, Corticosteroids and derivatives.
  • Anti-inflammatory drugs may be Glucocorticoids, Nonsteroidal Anti-Inflammatory Drugs, Aspirin, Ibuprofen, Ketoprofen, Flurbiprofen, Diclofenac, Aceclofenac, Ketorolac, Meloxicam, Piroxicam, Tenoxicam, Naproxen, Indomethacin, Naproxcinod, Nimesulide, Celecoxib, Etoricoxib, Parecoxib, Rofecoxib, Valdecoxib, Phenylbutazone, Niflumic acid, Mefenamic acid.
  • active ingredients promoting healing can also be used, for example retinol, vitamin A, vitamin E, N-acetyl-hydroxyproline, extracts of Centella Asiatica, papain, essential oils of thyme, niaouli, rosemary and sage, hyaluronic acid polysulfated oligosaccharides and their salts (in particular synthetic sulphated oligosaccharides having 1 to 4 unsaturated units such as the potassium salt of octasulfated sucrose or the silver salt of octasulfated sucrose), sucralfate, Allantoin, urea , metformin, enzymes (for example proteolitics such as streptokinase, trypsin or collagenase), peptides or protease inhibitors.
  • Anesthetics such as benzocaine, lidocaine, dibucaine, pramoxine hydrochloride, bupivacaine, mepivacaine, pri
  • the invention also relates to a kit comprising (a) a dressing according to the invention and (b) an asset as mentioned above.
  • the dressing according to the invention may also comprise any other material conventionally used by those skilled in the field of dressings, for example at least one protective bag or a culture box or any system making it easier to handle and / or his transfer.
  • the invention also relates to the method of manufacturing a dressing as defined above.
  • Example 1 illustrates a method for manufacturing a dressing according to the invention.
  • the invention thus relates to a method of manufacturing a cellularized dressing as defined above, comprising a step of placing in contact, advantageously a direct contact, cells with a non-absorbable material.
  • This contacting step may consist of a direct application of the cells with the non-absorbable material, an impregnation step or a printing step.
  • the contacting step is a step of bioprinting cells on said non-absorbable material.
  • the method of manufacture relates to the printing of two cell types (primary fibroblasts and primary keratinocytes) on three materials: an interface dressing, an absorbent dressing, a hydrophilic polyurethane foam (HPU).
  • the bio-printing step is carried out using a bio-ink comprising the cells to be printed.
  • the method of manufacturing a dressing according to the invention does not include a step of bio-printing a hydrogel. Even more advantageously, the method of manufacturing a dressing according to the invention does not include a step of bio- printing a hydrogel having been mixed with cells or a hydrogel into which cells have been incorporated.
  • the bio-printing of cells is carried out from a bio-ink in which the cells are in suspension or in the form of aggregates.
  • said bio-ink consists of a culture medium comprising a concentration of suspended cells of about 0.1.10 6 to 100.10 6, preferably from 1.10 6 to 80.10 6.
  • the bio-still may be prepared according to the following protocol: after a cell culture step (for example under standard conditions known to those skilled in the art), the cells intended to be bio-printed are recovered and then centrifuged (for example at 400g for 5 minutes). The cell pellet is then recovered and then suspended in a culture medium at a cell density of 70 ⁇ 10 6 cells / ml.
  • the bio-ink may also be in the form of cellular aggregates (or micro-aggregates).
  • the cell concentration is greater than 100 ⁇ 10 6 cells / ml.
  • These aggregates can be, for example, in the form of those described in the patent application WO2016 / 089825.
  • said non-absorbable material is wet or dry, preferably moist. Even more advantageously, said material is wet or dry when the bio-printing step is performed on the interface dressing. Alternatively, said material is wet when the bio-printing step is performed on the absorbent dressing or on the hydrophilic polyurethane foam.
  • the dressings Before the bio-printing step the dressings can be prepared, in particular cut under sterile conditions if necessary.
  • said dressings may be wetted with a culture medium (for example with 1-2 ml of culture medium for a dressing of about 1.5 cm x 1.5 cm ) and then, if necessary, the excess culture medium can be absorbed.
  • a culture medium for example with 1-2 ml of culture medium for a dressing of about 1.5 cm x 1.5 cm
  • the interface dressing is moistened, it is preferable to absorb the excess culture medium before the bio-printing step.
  • the method according to the invention comprises the following steps:
  • a step of preparing a bio-ink comprising the cells intended to be bio-printed optionally, a moistening step of nonabsorbable material, using a culture medium,
  • said non-resorbable material is bio-printed at the level of the fibers of said material or within one or more units defined by the fibers.
  • the pattern may typically be a concentric pattern, a radial pattern, a geometric pattern, or a non-geometric random pattern (i.e., not representing a geometric shape), or the interior of at least one of these patterns.
  • said non-resorbable material is bio-printed at the level of the fibers of said material, at the intersection of the fibers of said material and / or in the center of each quadrangle of said material.
  • the invention also relates to the use of a dressing as defined above.
  • the invention thus relates to a method of treating a wound in a patient comprising:
  • said method may also comprise the following steps:
  • the invention also relates to a kit for obtaining a cellularized dressing according to the present invention, said kit comprising:
  • a "suitable medium for cell survival” means, for example, a suitable culture medium. Such media are known to those skilled in the art.
  • the dressing according to the invention may more particularly be adapted to the wound of the patient to be treated, and prepared shortly before its administration.
  • Said kit intended to obtain a cellularized dressing according to the present invention may also comprise an asset as mentioned above or any other material conventionally used by those skilled in the field of dressings, for example at least one protective bag or a culture box or any system facilitating its handling and / or transfer.
  • Figure 1 shows the first print pattern on the Urgotul® interface dressing: the print spots are positioned at the intersection of the fibers.
  • Figure 2 shows the second print pattern on the Urgotul® interface dressing: print spots are added on each of the fibers.
  • the printing spots are positioned at the intersection of the fibers, on the fibers themselves, and in the center of each quadrille.
  • Figure 4 shows the results of primary fibroblast prints and seeding on the interface, the absorbent dressing and the HPU foam, when the dressings are wet. *** means that p ⁇ 0.00l.
  • Figure 5 shows the results of control fibroblast priming impressions and seeding on the interface, the absorbent dressing and the HPU foam, when the dressings are dry. *** means that p ⁇ 0.00l.
  • Figure 6 shows the standardized results of Figure 4, where a corresponds to the results obtained with the Urgotul® interface dressing, the absorbent Urgotul Absorb® dressing and the HPU foam. *** means that p ⁇ 0.00l.
  • Figure 7 shows the standardized results of Figure 5, where a corresponds to the results obtained with the Urgotul® interface dressing, the absorbent Urgotul Absorb® dressing and the HPU foam. *** means that p ⁇ 0.00l.
  • Figure 8 shows the results of the primary keratinocyte control prints and sownings on the wet Urgotul® interface and the wet HPU foam. * means that p ⁇ 0.05.
  • Figure 9 shows the normalized results of keratinocyte viability in which a represents the results obtained with the Urgotul® interface and b with the HPU foam. * means that p ⁇ 0.05.
  • Figure 10 shows the immunolabeling results of collagen I fibroblasts printed on the interface (c, d) and foam HPU (e, f) moistened and control fibroblasts at the bottom of the culture wells (a, b).
  • FIG. 11 represents the immunolabeling results of the fibronectin synthesized by the fibroblasts printed on the humidified interface (c, d) and the foam HPU (e, f) and by the control fibroblasts at the bottom of the culture wells (a, b).
  • FIG. 12 represents the immunolabeling results of collagen III synthesized by the fibroblasts printed on the humidified interface (c, d) and foam HPU (e, f) and by the control fibroblasts at the bottom of the culture wells (a, b).
  • FIG. 13 represents the immunolabeling results of the Ki67 antigen present in the nucleus of the proliferative fibroblasts printed on the humidified interface (c, d) and the HPU foam (e, f) and by the control proliferative fibroblasts (a, b).
  • Figure 14 represents the percentage of Ki67 labeled cells.
  • Figure 15 shows the results of prints and control seedings of primary keratinocytes on the interface and the HPU foam. * means that p ⁇ 0.05.
  • Figure 16 represents the number of days it took the keratinocytes to migrate from the dressings (the interface and the HPU foam) on which they were printed or witnessed.
  • FIG. 17 represents the immunolabeling results of the Ki67 antigen present in the nucleus of the proliferative keratinocytes printed on the humidified interface (c, d) and the HPU foam (e, f) and by the control proliferative keratinocytes (a, b).
  • Figure 18 shows the 100% confluent keratinocyte mat only below the dressing, obtained after 8 days of migration from samples of the HPU foam.
  • the two cell types used are primary dermal fibroblasts and primary epidermal keratinocytes extracted from operative samples (mammoplasty and foreskin).
  • the DMEM fibroblast culture medium is composed of 10% fetal calf serum, 1% antibiotics: penicillin, streptomycin, amphotericin.
  • the culture medium for keratinocytes is the CNT-PR medium marketed by CellnTec.
  • the culture media of these two cell types are changed every 2 to 3 days.
  • the fibroblasts and keratinocytes are detached from the culture flask with 0.25% trypsin / EDTA and fetal calf serum is added after detachment of the cells to stop the enzymatic reaction. Trypan blue counting is performed to enumerate the population and determine cell viability. The cells are then centrifuged at 400 g for 5 minutes. The printing ink is prepared by suspending the cell pellet in culture medium at a density of 70x10 6 cells / ml.
  • the cells are optionally labeled with a fluorescent cell tracer, the Orange CMRA Dye CellTracker TM (ThermoFischer Scientific, reference C34551) to visualize the cells after printing.
  • a fluorescent cell tracer the Orange CMRA Dye CellTracker TM (ThermoFischer Scientific, reference C34551) to visualize the cells after printing.
  • the cell pellet obtained after trypsination is suspended in the CMRA cell tracer and the cells are put in the incubator for 15 minutes at 37 ° C. and then centrifuged again.
  • the three dressings are cut under sterile conditions, using a scalpel (about 1.5cm x 1.5cm) and positioned in wells of 12-well culture plates.
  • a scalpel about 1.5cm x 1.5cm
  • 1 ml of culture medium is deposited on the Urgotul® interface
  • 2 ml is deposited on the absorbent dressing Urgotul Absorb® and the foam HPU which are thicker.
  • the culture medium is removed from each of the culture wells containing the dressings to be able to position the culture plate during the printing step.
  • the dressing In the case of the Urgotul® interface, it is preferable (and in some cases necessary) to deposit the dressing before printing on a sterile compress so that the excess of culture medium between the grid fibers is absorbed. Indeed, if the medium is still present between the grid of the interface, the imaging system hardly detects the dressing.
  • the cell bioprinting performed in this example utilizes the laser-assisted bioprotection modality of the printer as described in patent applications WO2011 / 107599, WO2016 / 097619 and WO2016 / 097620.
  • This bioprinting process requires the prior creation of a print file containing all the instructions to be executed by the machine.
  • the pattern (geometry and spacing of points) is part of the information contained in this file.
  • the bio-ink is first deposited on a cartridge consisting of a glass slide covered with a very thin layer of gold. When printing, the laser beam passes through this cartridge and reaches the area of the bio-ink. A cavity is formed and propagated to finally generate a jet that causes the formation of a drop of liquid and its deposit on the recipient.
  • the laser beam By moving on the donor blade, the laser beam generates drops that are deposited on the recipient in a predefined cell pattern.
  • This laser-assisted bio-printing process is based on the physical phenomenon of material laser interaction and involves many parameters. Some are fixed during the design of the machine (as for example the wavelength of the laser), others can be adjusted by the operator according to the printing conditions (as for example the energy of the laser) .
  • Table 1 The fixed print parameters during the bio-printing step performed in the examples
  • An imaging system and a software tool have been developed to automate the creation of custom print patterns based on observable gridlines on dressing materials. This tool makes it possible to match the observable grids on the dressings (Urgotul® interface and absorbent Urgotul Absorb® dressing) with the printing areas. It is also possible to vary the fiber density by modulating the spacing between the printing spots.
  • Two patterns were chosen for the Urgotul® interface. On the first, the printing spots are positioned at the intersection of the fibers ( Figure 1). The second pattern is created by adding spots on each of the fibers ( Figure 2). For the absorbent dressing, the spots of the pattern are located at the intersection of the fibers, on the fibers themselves, and in the center of each quadrille ( Figure 3).
  • the dressing is deposited at the bottom of a well of a culture plate (12-well plate). Then, the imaging system performs image acquisition and reconstruction so as to restore the entire surface of the material (12 photos in total).
  • the imaging software must fulfill two objectives to be validated.
  • the calculation must generate a good positioning of the points on the dressing, to reproduce the desired pattern.
  • This objective was fulfilled during the software development. Imaging of the dressing interface can generate images with greater contrast than the absorbent dressing. Inadequate contrast is a source of errors in calculating the positioning of the points, which is the case with the absorbent dressing.
  • An intermediate solution has been found: a pattern correction function has been added to the software. It allows to delete or add points manually and thus to correct errors in the calculation of the reason on a case-by-case basis.
  • the bio-printed drops on the dressing support In a second step, it is necessary to validate the correct positioning of the bio-printed drops on the dressing support. To be certain of correctly visualizing the result of the printing, it is primary fibroblasts and primary keratinocytes labeled with fluorescent tracer in the orange that have been printed in place of the initially planned hydrogel.
  • the patterns of keratinocytes printed on the interface using the software makes it possible to specifically position the cell spots on the fibers of the interface. Regardless of the type of cell printed, the software leaves the choice as to the pattern to use.
  • the cell spots can be positioned automatically at the intersection of each fiber of the dressing, or the user can position himself the cell spots at a predefined distance (300-500-800pm ).
  • the pattern printed on the HPU foam is a square of 1 cm 2 with a spacing between the cell spots (keratinocytes or fibroblasts) of 200 ⁇ m.
  • the dressings are either dry or moistened.
  • 30,000 cells are deposited on each of the dressings in 7.5 ⁇ L of culture medium.
  • the dressings are immersed in 2 ml of culture medium and are "flushed" (in order to recover the maximum of cells on the materials, successive "flush” are made using a pipette).
  • the cells are then labeled and counted on Malassez cell. The marking is performed on the cells directly after printing.
  • the cells are left in culture (post-impression) at least 24 hours before the cell viability test.
  • the keratinocytes or fibroblasts in solution are then inoculated in a new culture well and are placed in an incubator at 37 ° C. and 5% CO 2 . After 24 hours, the culture medium is removed and the cells are labeled with the solution of calcein and ethidium. The percentage of cell viability is calculated after counting the number of live cells and dead cells in 6 zones per culture well.
  • the "live dead” technique is performed on the primary fibroblasts printed or control on the Urgotul® interface, the absorbent Urgotul Absorb® dressing and the dry and wet HPU foam.
  • the "live dead” technique makes it possible to distinguish live cells from dead cells within the same culture.
  • the ubiquitous intracellular esterase activity and the presence of an intact plasma membrane are the characteristics of living cells. These cells transform the non-fluorescent dye acetoxymethyl calcein (AM) into fluorescent calcein (green). Dead cells are characterized by a loss of the integrity of their plasma membrane.
  • the ethidium homodimer-1 (EthD-1) penetrates these cells and binds to the nucleic acids, which results in the presence of red fluorescence.
  • the cell viability was studied on the printed or control primary keratinocytes on the Urgotul® interface and on the wet HPU foam.
  • the statistical test used to analyze the cell viability count results is a Student's test whose a value is 0.05.
  • the absorbent dressing and the HPU foam are moistened, the viability of the fibroblasts is greater than 94%, and also very close to that of the control cells.
  • the printed and control fibroblasts on these 3 wet dressings remain viable. The low value of the standard deviations proves that these results are reproducible.
  • the viability results of dry dressing impressions are highly variable except for the Urgotul® interface.
  • the viability of the printed or control cells on the dry interface is close to the results on the wet interface. The cells therefore remain viable after printing on the wet or dry Urgotul® interface.
  • the control cells on the absorbent Urgotul Absorb® dry dressing and the dry HPU foam give results of viability comparable to the results on these dressings but wet.
  • the viability results of the fibroblasts printed on the absorbent dressing Urgotul Absorb® are of great variability. The result is 57% ⁇ 46%.
  • the cells printed on the dry HPU foam have a cell viability of 36%. A little more than half of the cells die after printing on this dry dressing compared to this same wet dressing. Typically, cells do not support environments and dry print media, which may explain this difference in cell viability.
  • Figure 8 The results of the primary keratinocyte control prints and seedings on the wet Urgotul® interface and the wet HPU foam are shown in Figure 8.
  • Figure 9 shows the normalized results of keratinocyte viability in which a represents the results obtained with the Urgotul® interface and b with the HPU foam.
  • the cells printed on the wet Urgotul® interface have viability close to that of the control cells on the interface, with approximately 70% ⁇ 7% viability.
  • the viabilities between the control cells and the printed cells being close, printing on this medium is therefore not the cause of the 30% of dead cells.
  • the percentage viability of primary keratinocyte impressions on the wet HPU foam is 81% ⁇ 6%.
  • the control cells on this same dressing have a viability percentage of 90% ⁇ 7%. The difference between these two values is significant.
  • the dressings are either dry or moistened.
  • the control cells are inoculated onto the dressings, with 30,000 cells in 7.5 ⁇ l of culture medium.
  • the dressings are kept either 30 minutes or 3 hours in an incubator at 37 ° C and 5% CO 2 . This period is called the shelf life.
  • Each dressing is subsequently inverted (printed side against the culture well) and immersed in 2 ml of culture medium.
  • a stainless steel ring is deposited on each dressing so that it does not float.
  • the culture medium is changed every 2 to 3 days.
  • the dressings are kept in culture for 4 days for primary fibroblasts and 8 days for primary keratinocytes (migration time needed to reach 50% confluence), in order to subsequently label and immunostain the cells that migrated from the dressings onto the plastic surface of the culture wells.
  • the conditions tested with wet dressings are the same as with dry dressings.
  • Printed fibroblasts take 4 to 9 days to migrate from wet Urgotul Absorb® absorbent dressings after 30 minutes or 3 hours post-print.
  • the control cells on this wet dressing put a comparable time to migrate: 4 days and 5 days with a waiting time respectively 30 minutes and 3 hours post-printing.
  • Control fibroblasts generally take longer to migrate from the Urgotul® interface, absorbent Urgotul Absorb® dressing and wet HPU foam if the shelf life is 3 hours. This result appears similar on the absorbent Urgotul Absorb® dressing and the HPU foam when the fibroblasts were printed. They take almost twice as long to migrate from the absorbent dressing and they do not migrate from the HPU foam. The storage time of 30 minutes seems more suitable for cells printed on wet dressings.
  • the migration time of the bio-printed fibroblasts was studied from the Urgotul® interface, and the wet HPU foam, after a storage time of 30 minutes. of the Additional results were acquired on 30 samples per condition. For each sample, one observes over a period of 4 days if the bio-printed cells migrate out of the dressing.
  • the fibroblast migration results from the Urgotul® interface are more variable. The migration is observed after 2 days after printing for a good part of the interface samples (19 out of 30 samples). After 4 days the fibroblasts started to migrate from 4 samples, and no migration was observed since 7 samples.
  • the percentage of proliferation (cells that express the Ki67 antigen) is calculated to be able to quantify the expression of the Ki67 antigen and compare the printed cells. with the control cells.
  • the control keratinocytes have a proliferation percentage of 68% ⁇ 18%. This great variability can be explained by a keratinocyte seeding density that is too low (2000 cells / cm 2 ).
  • the percentage of proliferation of keratinocytes printed on the interface is 92%.
  • the percentage of proliferation of keratinocytes printed on the HPU foam is 80% ⁇ 18%. This result is comparable to the percentage of proliferation of control keratinocytes.
  • the keratinocytes printed on the HPU foam therefore do not undergo any change in their ability to proliferate.
  • the dressings After printing and pipetting fibroblasts or keratinocytes on the Urgotul® interface and the moistened HPU foam with a storage time of 30 minutes, the dressings are turned over (print side against the bottom of the culture well) during 4 days for fibroblasts and 8 days for keratinocytes. The cells are then fixed, then, in order to verify that the cellular metabolism is not affected by the contact of the dressing after printing, immunostaining is performed on the cells.
  • actin filaments are made using a phalloidin labeling. Phalloidin coupled with a red fluorescent marker (texas red) will bind to the actin filaments and prevent their depolymerization. The actin filaments then appear fluorescent in the red.
  • Phalloidin coupled with a red fluorescent marker texas red
  • the cells are fixed with 4% formaldehyde.
  • the cell membranes are permeabilized with a Triton solution, then treatment with BSA (bovine serum albumin) reduces nonspecific binding.
  • BSA bovine serum albumin
  • the cells are then labeled with phalloidin and then observed under a fluorescence microscope.
  • Collagen I and III are fibrillar polypeptides synthesized and secreted by primary dermal fibroblasts. Their role is to participate in the elasticity and resistance of the extracellular matrix of the dermis. Fibronectin is a glycoprotein also synthesized and secreted by primary dermal fibroblasts. It participates in adhesion and cell migration in the extracellular matrix.
  • the three labeled proteins are located in the cell cytoplasm. If no labeling is observed it is because the cells do not express and synthesize the targeted protein.
  • the cells are fixed and the cell membranes are permeabilized with methanol.
  • the aspecific binding sites are saturated with a solution of BSA, then the cells are labeled first with the primary antibody, then in a second step with the secondary antibody (which binds to the primary antibody to fluoresce) and the Dapi (which marks the cell nuclei in blue).
  • the cells are then observed under a fluorescence microscope.
  • Ki67 is the antigen of a nuclear protein present in the proliferating cells in the Gl, S, G2 and M phase.
  • the cells in the quiescent phase GO do not express this nuclear protein. This marking is located in the nucleus of the cells. If some cells do not express this antigen, it is because the cells are not proliferative. In order to quantify the results, the percentage of the number of cells in proliferative phase is calculated.
  • Figure 10 shows the immunolabeling results of collagen I of the fibroblasts printed on the interface (c, d) and the foam HPU (e, f) moistened and control fibroblasts at the bottom of the culture wells (a, b). .
  • the cells printed on the interface and the HPU foam as well as the control cells express collagen I.
  • the intensity of the labeling is stronger in the cytoplasm of some cells, which could be explained by the higher synthesis of collagen I This difference in intensity is observed in the population of fibroblasts printed on both types of dressings (interface and HPU foam) and controls.
  • Figure 11 shows the immunolabeling results of the fibronectin synthesized by the fibroblasts printed on the humidified interface (c, d) and the foam HPU (e, f) and by the control fibroblasts at the bottom of the culture wells (a). , b). No difference immunolabeling targeting the synthesis of this protein is observed between the printed fibroblasts, and control fibroblasts. The impression on the interface and the HPU foam does not interfere with fibronectin synthesis by fibroblasts.
  • FIG. 12 shows the immunolabeling results of collagen III synthesized by the fibroblasts printed on the interface (c, d) and the foam HPU (e, f) moistened and by the control fibroblasts at the bottom of the culture wells (a). , b).
  • collagen III is also correctly present in the fibroblasts printed on the interface and the HPU foam and controls.
  • Immunolabeling results, fibroblasts printed on both interface and HPU foam dressings as well as control fibroblasts are similar.
  • the impression on these two materials does not interfere with the fibroblasts' synthesis of these proteins, which play an essential role in the formation of the extracellular matrix in the dermis.
  • the Ki67 antigen is present only in the nucleus of proliferative cells. Its labeling will make it possible to compare the level of proliferative cells between the fibroblasts printed on the interface and the HPU foam and the control fibroblasts.
  • Figure 13 shows the immunolabeling results of the Ki67 antigen present in the nucleus of the proliferative fibroblasts printed on the humidified interface (c, d) and the HPU foam (e, f) and by the control proliferative fibroblasts (a). , b). Whatever the condition tested, cells in the quiescence phase (unlabeled nucleus) are observed. In some cases, contact inhibition may explain this non-proliferative state of the cells. From a qualitative point of view, the printed fibroblasts as well as the control fibroblasts express the Ki67 antigen and are therefore, for the most part, in the proliferation phase.
  • the percentage of labeled cells is calculated in FIG. 14 in order to be able to quantify the expression of the Ki67 antigen and to compare the cells printed with the control cells.
  • the control fibroblasts are mostly proliferative with 83% of the counted cells that express the Ki67 antigen.
  • the results of the printed cells oscillate between 65% and 90% expression of the Ki67 antigen according to the samples.
  • the average level of proliferating cells among the printed cells having migrated from the interface (76% ⁇ 15%) or the HPU foam (81% ⁇ 11%) is comparable to that of the control cells (83% ⁇ 5%).
  • the standard deviations of the Ki67 antigen expression percentages of the The fibroblasts printed on the two dressings are relatively large, which brings the results of the printed cells closer to the results of the control cells.
  • Markings and immunolabelings give similar results between the printed cells and the control cells.
  • the impression of the fibroblasts on the interface and the wet HPU foam does not modify the synthesis of actin, collagen I and III, fibronectin and Ki67 antigen by the fibroblasts.
  • the metabolism of the primary fibroblasts printed on the interface and the wet HPU foam is thus not modified and remains comparable to the metabolism of the primary non-printed fibroblasts that grow on the surface of a culture well.
  • the results of the primary keratinocyte priming prints and seeding on the interface and the HPU foam are shown in Figure 15.
  • the cells printed on the interface have viability close to that of the control cells on the interface, with about 70 % ⁇ 7% viability.
  • the viabilities between the control cells and the printed cells being close, printing on this medium is therefore not the cause of the 30% of dead cells.
  • the percentage of viability of primary keratinocyte impressions on the HPU foam is 81% ⁇ 6%.
  • the control cells on this same dressing have a viability percentage of 90% ⁇ 7%. The difference between these two values is significant.
  • Figure 16 shows the number of days it took the keratinocytes to migrate from the dressings (the interface and the HPU foam) on which they were printed or witnessed. For 50% of the interface dressings on which the keratinocytes were printed and pipetted, no migration is observed. From the remaining 50% of the samples, keratinocyte migration was observed between 2 and 4 days after manual cell printing or seeding. The migration time from the interface is relatively short but this migration is observed only from too few interface samples. Since 19 samples of HPU foam on which the keratinocytes were printed or controls, the migration was observed between 2 and 4 days. The migration of printed keratinocytes has not been observed since only a sample of HPU foam which is negligible. The migration time of the printed and control keratinocytes from the HPU foam is short and concerns almost all the samples.
  • FIG. 17 shows the immunolabeling results of the Ki67 antigen present in the nucleus of the proliferative keratinocytes printed on the humidified interface (c, d) and the HPU foam (e, f) and by the control proliferative keratinocytes (a). , b). From the observations of Figure 17, the keratinocytes printed on the interface and the HPU foam as well as the control keratinocytes express for the most part the Ki67 antigen. Some cells whose nucleus is blue do not express the K647 antigen and are observed among the printed keratinocytes but also among the control keratinocytes.
  • the control keratinocytes have a proliferation percentage of 68% ⁇ 18%. This great variability can be explained by a keratinocyte seeding density that is too low (2000 cells / cm 2 ).
  • the percentage of proliferation of keratinocytes printed on the interface is 92%.
  • the percentage of proliferation of keratinocytes printed on the HPU foam is 80% ⁇ 18%. This result is comparable to the percentage of proliferation of control keratinocytes.
  • the keratinocytes printed on the HPU foam therefore do not undergo any change in their ability to proliferate.
  • the viability of the keratinocytes printed on the interface is close to the viability of the control keratinocytes.
  • keratinocytes migrate from the interface only once in two. In cases where the keratinocytes migrated from the interface, the cells grew very well during the 8 to 10 days of migration time and began to cover the surface of the culture well.
  • the results of the percentage proliferation calculations following immunolabelings of the Ki67 antigen indicate that the proliferation of viable keratinocytes is very good.
  • the keratinocytes are for the most part in proliferation phase 8 days after printing on the interface. Seeding by impression or pipetting on the interface appears to affect primary keratinocytes since their viability is lower than that on HPU foam. In contrast, cells migrating from the dressing have a high rate of proliferation. Two hypotheses can explain this phenomenon:
  • the first hypothesis is that primary keratinocytes are a fragile cell type. The stress induced by seeding or printing on this material can therefore cause significant mortality, the time that the cells adapt to this material.
  • keratinocytes largely survive printing on HPU foam. This result is comparable to the percentage of viability of the control keratinocytes on this same material.
  • Printing as pipetting on this support does not interfere with the survival of primary keratinocytes.
  • the keratinocytes migrate after 2 to 4 days from the HPU foam after the printing or deposition step. the pipette. The cells are not affected by the culture over several days in this dressing. They migrate quickly and colonize the entire surface of the culture well covered by HPU foam. Proliferation of printed keratinocytes proceeds smoothly and appears to increase in contact with HPU foam.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Botany (AREA)
  • Dispersion Chemistry (AREA)
  • Cell Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Urology & Nephrology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

La présente invention a trait à un pansement cellularisé et au procédé de fabrication d' un tel pansement, ce procédé comprenant de préférence une étape de bio-impression de cellules.

Description

PANSEMENT CELLULARISE ET SON PROCEDE DE FABRICATION
La présente invention a trait à un pansement cellularisé et au procédé de fabrication d’un tel pansement, ce procédé comprenant de préférence une étape de bio-impression de cellules.
Les pansements cellularisés ou substituts cutanés sont connus et commercialisés depuis longtemps. L’avantage des pansements cellularisés réside dans le fait que l’apport exogène de cellules vivantes participe à la cicatrisation de la plaie. Les cellules apportées par le pansement participent directement ou indirectement (via la sécrétion de facteurs) au processus de cicatrisation.
De tels pansements se présentent généralement sous la forme d’au moins un matériau résorbable (Le. au moins un matériau naturellement présent dans l’environnement cellulaire). A titre d’exemple, on peut citer les produits GRAFIX®, commercialisés par la société OSIRIS. Ces produits sont composés d’une membrane placentaire contenant une matrice extracellulaire (MEC) riche en collagène, de facteurs de croissances, de fibroblastes, de cellules souches mésenchymateuses et de cellules épithéliales. On peut également citer le produit APLIGRAF®, commercialisé par Organogenesis, composé de kératinocytes, de fibroblastes et de collagène bovin. Le produit DERMAGRAFT®, commercialisé par la société Advanced Biohealing, contient quant à lui des dérivés dermiques et des fibroblastes humains.
De tels pansements cellularisés, bien que présentant une efficacité prouvée sur la cicatrisation, présentent toutefois des risques de transmission de virus tels que, par exemple, les prions (en particulier pour les pansements cellularisés contenant des composés d’origine animale).
Par ailleurs, dans un pansement cellularisé, la densité cellulaire, la zone de localisation des cellules ou la répartition homogène des cellules sont des paramètres mal contrôlés.
Il existe donc un besoin pour de nouveaux pansements cellularisés ne présentant pas les inconvénients de l’art antérieur.
L’impression de cellules, encore appelée bio-impression, directement sur des matériaux bio-résorbables afin de reconstituer un derme ou un épiderme est connue et décrit dans la demande de brevet WO2016/115034 de Wake Forest University ou dans la demande de brevet W020160/073782 d’Organovo. Ces demandes de brevet portent sur l’impression de cellules et de composants extracellulaires (tels que par exemple le collagène, l’acide hyaluronique, ...) pour fabriquer de la peau ex vivo. Les matériaux ou substrats sur lesquels les cellules sont imprimées sont des matériaux utilisés de manière classique dans les cultures cellulaires (hydrogels contenant du collagène, hyaluronane, polyéthylène glycol...)· La demande de brevet WO2016/ 115034 décrit également un bio-masque comprenant une couche d’hydrogel contenant des cellules à l’intérieur de cet hydrogel, ledit hydrogel étant ensuite bio-imprimé sur une structure en polyuréthane. Cette demande de brevet ne décrit donc pas la bio-impression de cellules sur la structure en polyuréthane. En effet, il n’y a pas de contact direct entre les cellules bio-imprimées et un matériau non résorbable. Par ailleurs, dans la demande de brevet WO2016/115034, la structure en polyuréthane correspond à un gel de polyuréthane bio-imprimé : cette structure en polyuréthane ne permet donc pas l’absorption des exsudais.
Les biomatériaux et l’ingénierie tissulaire sont également connus pour remplacer une partie ou une fonction d’un organe ou d’un tissu.
Les biomatériaux sont des matériaux, synthétiques ou vivants, utilisables à des fins médicales pour remplacer une partie ou une fonction d’un organe ou d’un tissu. Lesdits biomatériaux doivent respecter plusieurs obligations :
être bien tolérés par le receveur, c’est à dire ne pas provoquer d’infection, d’inflammation, d’allergie, voire de réaction de rejet s’il s’agit de matériel vivant ;
- ne pas contenir de substance toxique, comme des perturbateurs endocriniens ou des agents cancérigènes ;
répondre à des contraintes mécaniques pour s’adapter aux pressions exercées par l’environnement (la pression sanguine pour les prothèses vasculaires, des millions d’ouvertures et fermetures pour une valve cardiaque, le poids du corps pour des prothèses de hanche ou de genou, ...) ;
- pouvoir être mis en forme, être implantables ou injectables, dégradables (résorbables) ou non suivant le cas, éventuellement poreux s’ils doivent être colonisés une fois implantés, ....
L’ingénierie tissulaire consiste quant à elle à la fabrication d’un tissu par multiplication des cellules autour d'une matrice ou d’un échafaudage (type « scaffold »). La réalisation concrète se heurte cependant à divers problèmes. Par exemple, dans un environnement artificiel les cellules ont tendance à perdre leur aptitude à se différencier. De plus les cellules expriment parfois des protéines atypiques qui, après implantation, peuvent occasionner des inflammations ou des réactions de rejet.
L’utilisation à des fins thérapeutiques de matériaux non résorbables comprenant des cellules est donc décrite dans l’art antérieur (par exemple dans le cas de la fabrication d’un tissu à l’aide d’une matrice « scaffold »). Néanmoins, lorsque cette matrice n’est pas résorbable elle est destinée à être maintenue en place au sein de l’organisme au moins pendant une longue durée, elle n’a pas vocation à être retirée. Il en est de même pour l’utilisation des biomatériaux non résorbables.
Au contraire, la présente invention concerne G utilisation à des fins thérapeutiques de matériaux non résorbables (de préférence des matériaux synthétiques), mais lesdits matériaux ne sont pas destinés à remplacer une partie ou une fonction d’un organe ou d’un tissu. Ils ne sont pas destinés à être maintenus en place au sein de l’organisme, ils ont vocation à être retirés après régénération de l’organe ou du tissu sur lequel ils ont été appliqués. Selon l’invention, les matériaux ont ainsi un rôle de pansement transitoire.
La bio-impression de cellules telle que décrite dans les demandes WO2016/115034 et W020160/073782 s’effectue sur des matériaux bio-résorbables. Des procédés de bio- impression sont également décrits dans les demandes WO2011/107599, WO2016/097619 et W02016/097620. Ces demandes décrivent notamment que la bio-impression peut être utilisée pour produire des tissus (par exemple des tissus implantables pour la médecine régénératrice).
La bio-impression de cellules sur des matériaux non résorbables destinés à être utilisés de façon transitoire n’est donc pas décrite dans l’art antérieur.
Dans le cadre de la présente invention on vient ainsi imprimer des cellules sur des matériaux non résorbables. Lesdits matériaux sont utilisés comme pansements. De tels matériaux ne sont pas naturellement présents dans l’environnement cellulaire et ne sont pas habituellement utilisés en culture cellulaire. De façon surprenante les inventeurs ont constaté que les cellules bio-imprimées sur de tels matériaux étaient non seulement viables, capables de proliférer, mais étaient également capables de migration. L’avantage d’une telle impression ou bio-impression est qu’il est possible de personnaliser ou d’adapter à chaque patient et à chaque plaie le pansement, permettant ainsi un traitement sur mesure afin d’optimiser la cicatrisation des plaies. Ainsi, en fonction de la phase de cicatrisation dans laquelle se trouve la plaie, il est possible d’intégrer des cellules du derme et des cellules de l’épiderme ou seulement un de ces deux types cellulaires. On peut également, au sein d’un même pansement, faire varier la densité cellulaire d’un endroit à l’autre afin d’optimiser le traitement selon la morphologie de la plaie. Par ailleurs, les pansements cellularisés selon la présente invention permettent d’éviter les risques de transmission de virus, notamment parce qu’ils ne contiennent pas de composés d’origine animale. La bio-impression permet également de localiser précisément sur le pansement une zone sur laquelle les cellules seront présentes à une concentration contrôlée. Pour les pansements qui présentent des fibres quadrillées, les cellules peuvent être imprimées spécifiquement sur le quadrillage, ou en dehors du quadrillage. La précision de cette technique est de l’ordre de la dizaine de pm. La densité cellulaire, la zone de localisation des cellules et/ou la répartition homogène des cellules sont ainsi mieux contrôlés dans les pansements selon l’invention par rapport aux pansements cellularisés de l’art antérieur.
Dans un premier aspect l’invention concerne ainsi un pansement cellularisé destiné à être appliqué de façon transitoire sur une plaie, ledit pansement comprenant des cellules sur un matériau non résorbable.
Aux fins de la présente invention, par « pansement cellularisé », on entend que le pansement comprend des cellules.
Selon l’invention, l’expression « destiné à être appliqué de façon transitoire sur une plaie » signifie que les pansements sont destinés à être retirés de la plaie. Cette expression signifie également que les pansements selon l’invention sont sous une forme adaptée à une application transitoire sur une plaie. Les pansements selon l’invention ont en effet un rôle protecteur et sont destinés à être retirés une fois que l’organe ou le tissu de la plaie s’est régénéré. Les pansements selon l’invention ne se résorbent pas, et ils ne sont pas destinés à être maintenus en place pendant une longue durée (plusieurs jours ou plusieurs semaines). Avantageusement le pansement recouvre tout ou partie de la plaie, de préférence toute la plaie.
Selon l’invention, l’expression « ledit pansement comprenant des cellules sur un matériau non résorbable » signifie que les cellules sont en contact direct avec le matériau non résorbable. Avantageusement, les cellules ne sont donc pas mélangées avec un hydrogel ou incorporées à l’intérieur d’un hydrogel. Selon un mode de réalisation de l’invention, ledit pansement est donc dépourvu d’hydrogel.
Aux fins de la présente invention, par « matériau non résorbable », on entend que le matériau ne s’élimine pas progressivement au sein de la plaie, à la différence des matériaux résorbables qui eux se décomposent naturellement. Le retrait/la dégradation d’un matériau non résorbable nécessite donc une action physique/mécanique, au contraire de la dégradation d’un matériau résorbable.
Ledit matériau non résorbable présente avantageusement les propriétés suivantes : (1) il permet l’absorption des exsudais, et/ou (2) il peut subir un changement dimensionnel (par la gélification ou la déformation liée à l’absorption), et/ou (3) il n’adhère pas aux tissus, et/ou (4) il est, de préférence, partiellement hydrophile à l’état hydraté, et/ou (5) il présente une glissance à l’état hydraté, et/ou (6) il n’est pas cytotoxique. Selon l’invention, la « glissance à l’état hydraté » signifie que le matériau a un état de surface qui ne permet pas aux cellules d’adhérer sur celui-ci mais qui les maintient néanmoins en vie.
Avantageusement, ledit matériau non résorbable est choisi parmi :
- un pansement interface,
- un pansement absorbant, ou
- une mousse hydrophile de polyuréthane.
Avantageusement, ledit matériau non résorbable est un matériau comprenant des fibres, notamment le pansement interface ou le pansement absorbant.
Avantageusement, le matériau non résorbable permet l’absorption des exsudais. Préférentiellement, le matériau non résorbable selon l’invention est une mousse hydrophile de polyuréthane permettant l’absorption des exsudais.
A titre d’exemple, un pansement interface est tel que décrit dans la demande de brevet EP2793773, c’est-à-dire un pansement interface adhérent comprenant : (i) un gel cohésif non adhérent formé d'une matrice élastomérique hydrophobe constituée d'un élastomère tribloc du type styrène - (éthylène - butylène ) - styrène ou styrène (éthylène - propylène) - styrène éventuellement associé à un copolymère dibloc du type styrène - (éthylène - butylène) ou styrène - (éthylène-propylène), ledit élastomère étant fortement plastifié au moyen d'une huile minérale, et contenant en dispersion une faible quantité de particules hydrophiles d'un hydrocolloïde, et (ii) un tissu flexible à mailles ouvertes, ledit tissu comprenant des fils qui sont enrobés par le gel cohésif non adhérent de façon à laisser les mailles essentiellement non obturées, caractérisé en ce que le tissu est un tricot thermofixé avec fils tramés, lesdits fils étant des fils continus à filaments non élastiques, qui présente dans le sens transversal une extensibilité mesurée selon la norme EN 13726-4 comprise entre 0,01 et 0,5 N/cm. Selon un mode de réalisation préféré, ledit gel cohésif non adhérent est formé d'une matrice élastomérique hydrophobe comprenant, pour 100 parties en poids d'élastomère choisi parmi un élastomère tribloc du type styrène - (éthylène - butylène) - styrène ou styrène (éthylène - propylène) - styrène éventuellement associé à un copolymère dibloc du type styrène - (éthylène - butylène) ou styrène - (éthylène-propylène), 1 000 à 2 000 parties en poids d'une huile de paraffine, et contenant en dispersion de 2 à 20 % en poids, rapporté au poids total de la matrice élastomérique, de particules hydrophiles d'un hydrocolloïde.
A titre d’exemple, un pansement absorbant est tel que décrit dans la demande de brevet EP2696828, c’est-à-dire un pansement absorbant adhésif comportant un non tissé absorbant (6) et un support de protection imperméable aux fluides et perméable à la vapeur d'eau (4), caractérisé en ce que : (i) le support est constitué par l'assemblage d'un film continu (4a) et d'une armature ajourée enduite, sur au moins une de ses faces, de gel de silicone adhésif (4b), sans obturer les ouvertures de l'armature, ladite armature recouvrant l'intégralité de la surface du film, (ii) en ce que ledit pansement comprend en outre un voile non absorbant (5) et un non tissé complémentaire (7) lesquels sont fixés l'un à l'autre sur leur périphérie en enveloppant ledit non tissé absorbant, de préférence sans point de fixation avec ce dernier, et (iii) en ce que ledit voile non absorbant (5) colle au gel de silicone adhésif (4b) enduit sur ladite armature.
Selon un mode de réalisation de l’invention, les cellules présentes au sein du pansement sont des cellules adhérentes à un substrat (par exemple le polystyrène dans une boite ou une flasque de culture). Elles sont notamment choisies parmi les cellules du derme ou de l’épiderme. Elles sont notamment choisies parmi les cellules de type fibroblaste et/ou les cellules de type épithélial. Avantageusement les cellules sont choisies parmi les fibroblastes et/ou les kératinocytes, notamment les fibroblastes primaires et/ou les kératinocytes primaires. De façon encore plus avantageuse, les cellules sont choisies parmi les fibroblastes dermiques primaires et/ou les kératinocytes épidermiques primaires. Le terme « fibroblastes » fait référence à des cellules en forme de fuseau nu, de forme irrégulière, qui sont responsables de la formation des fibres. Dans les cultures de cellules, de nombreux autres types cellulaires, ne peuvent être, sur le plan morphologique, distingués des fibroblastes. Dans les cultures d'organes et de tissus dans lesquelles les rapports entre cellules sont conservés, il est possible d’identifier les fibroblastes à l'aide de critères histologiques acceptés. Le terme « cellules épithéliales » fait référence à des cellules opposées les unes aux autres qui forment un tissu continu semblable à de la mosaïque avec très peu de substances intercellulaires comme il est possible d’en voir dans des cultures in vitro, de tissus ou d’organes. Le terme « cellules de type fibroblaste » fait référence aux cellules qui sont attachées à un substrat et qui apparaissent allongées et bipolaires. Dans les cultures cellulaires, divers types cellulaires présentent des morphologies similaires. Les cellules qui prennent des formes irrégulières ou des formes de fuseaux sont souvent qualifiées de fibroblastes. Le terme « cellules de type épithélial » fait référence aux cellules qui sont attachées à un substrat et qui apparaissent plates et de forme polygonale. Dans les cultures de cellules, les cellules épithéliales peuvent prendre diverses formes mais ont tendance à se constituer en tissu de cellules polygonales serrées.
Selon un mode de réalisation de l’invention, dans ledit pansement, les cellules sont (ou ont été préalablement) bio-imprimées sur ledit matériau non résorbable. Dans ce mode de réalisation les cellules sont également directement bio-imprimées sur ledit matériau non résorbable, ledit pansement ne comprend donc pas une bio-impression d’hydrogel. Certains pansements ont la propriété de ne pas adhérer aux plaies, et les cellules n’adhèrent pas aux matériaux généralement utilisés dans les pansements. Il est donc compliqué de faire vivre des cellules à la surface de ce type de pansement puisque les cellules ne pourront pas y adhérer. Un des avantages de la bio-impression est qu’elle permet d’imprimer les cellules à la surface de ce type de pansement, et de les y maintenir jusqu’au transfert du pansement sur la plaie. A titre d’exemple, les demandes WO2016/115034, WO20160/073782 WO2011/107599, WO2016/097619 et WO2016/097620 décrivent des procédés de bio-impression qui peuvent être utilisés pour bio-imprimer un pansement selon l’invention.
Selon un mode de réalisation de l’invention, dans ledit pansement, les cellules sont présentes (ou ont été bio-imprimées) au niveau des fibres dudit matériau ( i.e . sur les fibres elles-mêmes) ou à l’intérieur d’un ou des motifs définis par les fibres. Avantageusement, selon l’invention, les cellules peuvent ainsi être présentes (ou être bio-imprimées) au niveau des fibres d’un motif concentrique, d’un motif radial, d’un motif géométrique ou d’un motif aléatoire non géométrique (c’est-à-dire ne représentant pas une forme géométrique), ou à l’intérieur d’au moins un de ces motifs. Selon un mode de réalisation encore plus préféré, dans ledit pansement, les cellules sont présentes (ou ont été bio-imprimées) au niveau des fibres dudit matériau, à l’intersection des fibres dudit matériau et/ou au centre de chaque quadrille dudit matériau.
Selon un mode de réalisation de l’invention, ledit pansement est saturé en liquide jusqu’à 90% de sa capacité d’absorption. De préférence, ledit pansement est saturé en liquide à une teneur comprise entre au moins 50% de sa capacité d’absorption, de préférence au moins 80%, et jusqu’à 90% de sa capacité d’absorption. Selon l’invention, « entre au moins 50% et jusqu’à 90% » s’entend de toutes les valeurs comprises entre 50% et 90%, et notamment 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85% et 90%. Le pansement selon l’invention doit également assurer les fonctions d’absorption ou de gélification des exsudais. Lors de l’ajout des cellules sur le matériau non résorbable ou lors de la bio-impression des cellules, seuls quelques picolitres d’encre cellulaire sont déposés ou imprimés. Les cellules doivent être dans un environnement saturé en humidité voir liquide pour pouvoir survivre et croître. Il faut donc pouvoir maintenir une certaine viabilité cellulaire, tout en permettant au pansement d’assurer ces fonctions. H est donc important de trouver un équilibre entre l’absorption ou la gélification des exsudais par le pansement, et la survie cellulaire. De préférence, le pansement devra donc être suffisamment hydraté (mais non à saturation) pour que les cellules à sa surface survivent, et ainsi faciliter la cicatrisation. Les inventeurs ont constaté que le pansement selon la présente invention répondait particulièrement à cet équilibre lorsque le pansement est saturé en liquide à 90% de sa capacité d’absorption. La capacité d’absorption du pansement est mesurée selon la norme NF EN 13726-1.
Selon un mode de réalisation de l’invention, ledit pansement comprend une concentration de cellules comprise entre 50 et 30 000 cellules/cm2, de préférence entre 200 et 20 000 cellules par cm2.
Selon un mode de réalisation de l’invention, ledit pansement comprend en outre un actif, de préférence un actif ayant un rôle favorable dans le traitement des plaies. Avantageusement, ledit actif est choisi parmi un antiseptique, un antibactérien, un antibiotique, un antidouleur, un anti-inflammatoire, un anesthésique ou un composé qui favorise la cicatrisation de la plaie. A titre d’exemple, les antibactériens/antibiotiques peuvent être les dérivés d'argent tels que les sels d'argent ou d'autres métaux (par exemple le sulfate, le chlorure ou le nitrate d'argent et la sulfadiazine argentique), les complexes d'argent ou d'autres métaux (par exemple les zéolithes argent tel que l'alphasan, ou les céramiques), le métrodinazole, la néomycine, le Polymyxine B, les pénicillines (Amoxycilline), l'acide clavulanique, les tétracyclines, la Minocycline, la chlorotétracycline, les aminoglycosides, l'Amikacine, la Gentamicine ou les probiotiques. Les antiseptiques peuvent être la chlorhexidine, le triclosan, le biguanide, l'hexamidine, le thymol, le Lugol, la Povidone iodée, le Chlorure de Benzalkonium et de Benzéthonium. Les antidouleurs peuvent être le Paracétamol, la Codéine, le Dextropropoxyphène, le Tramadol, la Morphine et ses dérivés, les Corticoïdes et dérivés. Les anti-inflammatoires peuvent être les Glucocorticoïdes, les anti- inflammatoires non stéroïdiens, l'Aspirine, l'Ibuprofène, le Kétoprofène, le Flurbiprofène, le Diclofénac, l'Acéclofénac, le Kétorolac, le Méloxicam, le Piroxicam, le Ténoxicam, le Naproxène, l'Indométacine, le Naproxcinod, le Nimésulide, le Célécoxib, l'Etoricoxib, le Parécoxib, le Rofécoxib, le Valdécoxib, la Phénylbutazone, l'acide niflumique, l'acide méfénamique. D’autres principes actifs favorisant la cicatrisation peuvent également être utilisés, par exemple le Rétinol, la Vitamine A, la Vitamine E, la N-acétyl-hydroxyproline, les extraits de Centella Asiatica, la papaïne, les huiles essentielles de thym, de niaouli, de romarin et de sauge, l'acide hyaluronique, les oligosaccharides polysulfatés et leurs sels (en particulier les oligosaccharides sulfatés synthétiques ayant 1 à 4 unités oses tels que le sel de potassium du sucrose octasulfaté ou le sel d'argent du sucrose octasulfaté), le sucralfate, l'Allantoïne, l'urée, la metformine, les enzymes (par exemple protéolitiques telles la streptokinase, la tripsine ou la collagénase), des peptides ou des inhibiteurs de protéases. Des anesthésiques tels que la benzocaïne, la lidocaïne, la dibucaïne, le chlorhydrate de pramoxine, la bupivacaïne, la mepivacaïne, la prilocaïne, ou l'étidocaïne peuvent également être utilisés.
Selon un mode de réalisation, l’invention concerne également un kit comprenant (a) un pansement selon l’invention et (b) un actif tel que mentionné ci-dessus.
Le pansement selon l’invention peut également comprendre tout autre matériau classiquement utilisé par l’homme du métier dans le domaine des pansements, par exemple au moins un sachet de protection ou une boîte de culture ou tout système permettant de faciliter sa manipulation et/ou son transfert.
Dans un deuxième aspect, l’invention concerne également le procédé de fabrication d’un pansement tel que défini ci-dessus. L’exemple 1 illustre un procédé permettant de fabriquer un pansement selon l’invention.
Dans un mode de réalisation, l’invention concerne ainsi procédé de fabrication d’un pansement cellularisé tel que défini ci-dessus, comprenant une étape de mise en contact, avantageusement un contact direct, des cellules avec un matériau non résorbable. Cette étape de mise en contact peut consister en une application directe des cellules avec le matériau non résorbable, une étape d’imprégnation ou une étape d’impression.
Selon un mode de réalisation préféré, l’étape de mise en contact est une étape de bio- impression de cellules sur ledit matériau non résorbable. En particulier, le procédé de fabrication porte sur l'impression de deux types cellulaires (fibroblastes primaires et kératinocytes primaires) sur trois matériaux : un pansement interface, un pansement absorbant, une mousse hydrophile de polyuréthane (HPU). L’étape de bio-impression est réalisée à l’aide d’une bio-encre comprenant les cellules à imprimer.
Avantageusement, le procédé de fabrication d’un pansement selon l’invention ne comprend pas une étape de bio-impression d’un hydrogel, De façon encore plus avantageuse, le procédé de fabrication d’un pansement selon l’invention ne comprend pas une étape de bio- impression d’un hydrogel ayant été mélangé avec des cellules ou d’un hydrogel dans lequel ont été incorporé des cellules.
Selon un mode de réalisation préféré, la bio-impression de cellules est réalisée à partir d’une bio-encre dans laquelle les cellules sont en suspension ou sous forme d’agrégats. Avantageusement, ladite bio-encre consiste en un milieu de culture comprenant une concentration de cellules en suspension d’environ 0,1.106 à 100.106, de préférence 1.106 à 80.106. La bio-encore peut être préparée selon le protocole suivant : après une étape de culture cellulaire (par exemple dans des conditions classiques connues de l’homme du métier), les cellules destinées à être bio-imprimées sont récupérées, puis centrifugées (par exemple à 400g pendant 5 minutes). Le culot cellulaire est ensuite récupéré, puis suspendu dans un milieu de culture à une densité cellulaire de 70.106 cellules/mL. La bio-encre peut également se présenter sous forme d’agrégats (ou micro-agrégats) cellulaires. Dans ce mode de réalisation, la concentration de cellules est supérieure à 100.106 cellules/mL. Ces agrégats peuvent se présenter, par exemple, sous la forme de ceux décrits dans la demande de brevet WO2016/089825.
Avantageusement, lors de l’étape de bio-impression, ledit matériau non résorbable est humide ou sec, de préférence humide. De façon encore plus avantageuse, ledit matériau est humide ou sec lorsque l’étape de bio-impression est réalisée sur le pansement interface. Alternativement, ledit matériau est humide lorsque l’étape de bio-impression est réalisée sur le pansement absorbant ou sur la mousse hydrophile de polyuréthane.
Avant l’étape de bio-impression les pansements peuvent être préparés, notamment découpés dans des conditions stériles le cas échéant.
Eventuellement, avant l’étape de bio-impression, lesdits pansements peuvent être humidifiés à l’aide d’un milieu de culture (par exemple avec 1-2 mL de milieu de culture pour un pansement d’environ l,5cm x l,5cm), puis le cas échéant le milieu de culture en excès peut être absorbé. Avantageusement, lorsque le pansement interface est humidifié, il est préférable d’absorber le milieu de culture en excès avant l’étape de bio-impression.
Selon un mode de réalisation préféré, le procédé selon l’invention comprend les étapes suivantes :
optionnellement, une étape de culture cellulaire des cellules destinées à être bio-imprimées,
- optionnellement, une étape de préparation d’une bio-encre comprenant les cellules destinées à être bio-imprimées, - optionnellement, une étape d’humidification de matériau non résorbable, à l’aide d’un milieu de culture,
- une étape de bio-impression de cellules sur ledit matériau non résorbable.
Selon un mode de réalisation préféré, ledit matériau non résorbable est bio-imprimé au niveau des fibres dudit matériau ou à l’intérieur d’un ou des motifs définis par les fibres. Plus particulièrement, selon l’invention, le motif peut typiquement être un motif concentrique, un motif radial, un motif géométrique ou un motif aléatoire non géométrique (c’est-à-dire ne représentant pas une forme géométrique), ou à l’intérieur d’au moins un de ces motifs.
Selon un mode de réalisation préféré, ledit matériau non résorbable est bio-imprimé au niveau des fibres dudit matériau, à l’intersection des fibres dudit matériau et/ou au centre de chaque quadrille dudit matériau.
Dans un troisième aspect, l’invention concerne également l’utilisation d’un pansement tel que défini ci-dessus.
L’invention concerne ainsi une méthode de traitement d’une plaie chez un patient comprenant :
l’administration topique, sur la plaie destinée à être traitée, du pansement cellularisé tel que défini ci-dessus,
- optionnellement, le retrait dudit pansement.
Selon un mode de réalisation, ladite méthode peut également comprendre les étapes suivantes :
l’administration topique, sur la plaie destinée à être traitée, d’un premier pansement cellularisé tel que défini ci-dessus,
- le retrait du premier pansement,
l’administration topique, sur la plaie destinée à être traitée, d’un second pansement cellularisé tel que défini ci-dessus,
- optionnellement, le retrait du second pansement.
Dans un quatrième aspect l’invention concerne également un kit destiné à obtenir un pansement cellularisé selon la présente invention, ledit kit comprenant:
(a) un matériau non résorbable, et
(b) des cellules destinées à être mise en contact avec (ou bio-imprimées sur) le matériau non résorbable, lesdites cellules étant dans un milieu approprié à la survie cellulaire. Selon l’invention, un « milieu approprié à la survie cellulaire » s’entend par exemple d'un milieu de culture approprié. De tels milieux sont connus de l’homme du métier.
Dans cet aspect le pansement selon l’invention peut plus particulièrement être adapté à la plaie du patient à traiter, et préparé peu avant son administration.
Ledit kit destiné à obtenir un pansement cellularisé selon la présente invention peut également comprendre un actif tel que mentionné ci-dessus ou encore tout autre matériau classiquement utilisé par l’homme du métier dans le domaine des pansements, par exemple au moins un sachet de protection ou une boîte de culture ou tout système permettant de faciliter sa manipulation et/ou son transfert.
L'invention sera mieux illustrée par les exemples et les figures suivantes. Les exemples ci-après visent à éclaircir l'objet de l'invention et à illustrer des modes de réalisation avantageux. Ces exemples ne visent pas à restreindre la portée de l'invention.
FIGURES
La Figure 1 représente le premier motif d’impression sur le pansement interface Urgotul® : les spots d'impression sont positionnés à l'intersection des fibres.
La Figure 2 représente le second motif d’impression sur le pansement interface Urgotul® : des spots d'impression sont ajoutés sur chacune des fibres.
La Figure 3 représente les spots d’impression du motif sur le pansement absorbant : les spots d’impression sont positionnés à l'intersection des fibres, sur les fibres elles-mêmes, et au centre de chaque quadrille.
La Figure 4 représente les résultats des impressions et des ensemencements témoins de fibroblastes primaires sur l'interface, le pansement absorbant et la mousse HPU, lorsque les pansements sont humides. *** signifie que p<0,00l.
La Figure 5 représente les résultats des impressions et des ensemencements témoins de fibroblastes primaires sur l'interface, le pansement absorbant et la mousse HPU, lorsque les pansements sont secs. *** signifie que p<0,00l.
La Figure 6 représente les résultats normalisés de la Figure 4, où a correspond aux résultats obtenus avec le pansement interface Urgotul®, b le pansement absorbant Urgotul Absorb® et c la mousse HPU. *** signifie que p<0,00l. La Figure 7 représente les résultats normalisés de la Figure 5, où a correspond aux résultats obtenus avec le pansement interface Urgotul®, b le pansement absorbant Urgotul Absorb® et c la mousse HPU. *** signifie que p<0,00l.
La Figure 8 représente les résultats des impressions et des ensemencements témoins de kératinocytes primaires sur l'interface Urgotul® humide et la mousse HPU humide. * signifie que p<0,05.
La Figure 9 représente les résultats normalisés de la viabilité des kératinocytes dans laquelle a représente les résultats obtenus avec l’interface Urgotul® et b avec la mousse HPU. * signifie que p<0,05.
La Figure 10 représente les résultats d'immunomarquages du collagène I des fibroblastes imprimés sur l'interface (c, d) et la mousse HPU (e, f) humidifiés et de fibroblastes témoins au fond des puits de culture (a, b).
La Figure 11 représente les résultats d'immunomarquages de la fibronectine synthétisée par les fibroblastes imprimés sur l'interface (c, d) et la mousse HPU (e, f) humidifiés et par les fibroblastes témoins au fond des puits de culture (a, b).
La Figure 12 représente les résultats d'immunomarquages du collagène III synthétisé par les fibroblastes imprimés sur l'interface (c, d) et la mousse HPU (e, f) humidifiés et par les fibroblastes témoins au fond des puits de culture (a, b).
La Figure 13 représente les résultats d'immunomarquages de l'antigène Ki67 présent dans le noyau des fibroblastes prolifératifs imprimés sur l'interface (c, d) et la mousse HPU (e, f) humidifiés et par les fibroblastes prolifératifs témoins (a, b).
La Figure 14 représente le pourcentage de cellules marquées au Ki67.
La Figure 15 représente les résultats des impressions et des ensemencements témoins de kératinocytes primaires sur l'interface et la mousse HPU. * signifie que p<0,05.
La Figure 16 représente représente le nombre de jours qu'il a fallu aux kératinocytes pour migrer depuis les pansements (l'interface et la mousse HPU) sur lesquels ils ont été imprimés ou témoins.
La Figure 17 représente les résultats d'immunomarquages de l'antigène Ki67 présent dans le noyau des kératinocytes prolifératifs imprimés sur l'interface (c, d) et la mousse HPU (e, f) humidifiés et par les kératinocytes prolifératifs témoins (a, b).
La Figure 18 représente le tapis de kératinocytes à 100 % de confluence uniquement en-dessous du pansement, obtenu après 8 jours de migration depuis des échantillons de la mousse HPU. EXEMPLES
Exemple 1 : Procédé de fabrication d’un pansement selon la présente invention
Les deux types cellulaires utilisés sont des fibroblastes dermiques primaires et des kératinocytes épidermiques primaires extraits à partir de prélèvements opératoires (plasties mammaires et prépuces).
1. Culture cellulaire
Le milieu de culture pour fibroblastes DMEM, est composé de 10% de sérum de veau fœtal, 1% d’antibiotiques : pénicilline, streptomycine, amphotéricine.
Le milieu de culture pour kératinocytes est le milieu CNT-PR commercialisé par la société CellnTec.
Les milieux de culture de ces deux types cellulaires sont changés tous les 2 à 3 jours.
2. Préparation de la bio-encre
Avant utilisation, les fibroblastes et les kératinocytes sont détachés de la flasque culture avec de la trypsine/EDTA 0,25% et du sérum de veau fœtal est ajouté après décollement des cellules pour arrêter la réaction enzymatique. Un comptage au bleu trypan est réalisé pour dénombrer la population et déterminer la viabilité cellulaire. Les cellules sont ensuite centrifugées à 400g pendant 5 minutes. L'encre d'impression est préparée en suspendant le culot cellulaire dans du milieu de culture à la densité de 70xl06 cellules/mL.
3. Marquage en fluorescence des cellules
Les cellules sont éventuellement marquées avec un traceur cellulaire fluorescent, le CellTracker™ orange CMRA Dye (ThermoFischer Scientific, référence C34551) pour visualiser les cellules après impression. Dans ce cas, le culot cellulaire obtenu après trypsination est suspendu dans le traceur cellulaire CMRA et les cellules sont mises 15 minutes dans l'incubateur à 37°C, puis de nouveau centrifugées.
4. Préparation des pansements
Les trois pansements (le pansement interface Urgotul®, le pansement absorbant Urgotul Absorb® et la mousse HPU) sont découpés dans des conditions stériles, à l'aide d'un scalpel (environ l,5cm x l,5cm) et positionnés dans les puits de plaques de culture 12 puits. Dans le cas où les pansements sont humidifiés, lmL de milieu de culture est déposé sur l'interface Urgotul®, et 2mL est déposé sur le pansement absorbant Urgotul Absorb® et la mousse HPU qui sont plus épais. Au bout de 20 minutes, le milieu de culture est retiré de chacun des puits de culture contenant les pansements pour pouvoir positionner la plaque de culture pendant l'étape d'impression. Dans le cas de l'interface Urgotul®, il est préférable (et dans certains cas nécessaire) de déposer le pansement avant impression sur une compresse stérile pour que l’excès de milieu de culture entre les fibres quadrillées soit absorbé. En effet, si du milieu est encore présent entre le quadrillage de l'interface, le système d'imagerie détecte difficilement le pansement.
5. Ensemencement cellulaire
La bio-impression de cellules réalisée dans cet exemple utilise la modalité de bio- impression assistée par laser de l’imprimante telle que décrite dans les demandes de brevets WO2011/107599, WO2016/097619 et W02016/097620. Ce procédé de bio-impression requiert la création préalable d'un fichier d'impression contenant l'ensemble des instructions à exécuter par la machine. Le motif (géométrie et espacement des points) fait partie des informations contenues dans ce fichier. La bio-encre est tout d'abord déposée sur une cartouche constituée d'une lame de verre recouverte d'une très fine couche d'or. Lors de l'impression, le faisceau laser traverse cette cartouche et atteint la zone de la bio-encre. Une cavité se forme et se propage pour finalement générer un jet qui provoque la formation d'une goutte de liquide et son dépôt sur le receveur. En se déplaçant sur la lame donneuse, le faisceau laser génère des gouttes qui se déposent sur le receveur selon un motif cellulaire prédéfini. Ce procédé de bio-impression assistée par laser s'appuie sur le phénomène physique d'interaction laser matière et implique de nombreux paramètres. Certains sont fixés lors de la conception de la machine (comme par exemple la longueur d'onde du laser), d'autres peuvent être ajustés par l'opérateur en fonction des conditions d'impression (comme par exemple l’énergie du laser).
Dans cet exemple, les paramètres ajustables du tableau 1 ci-dessous ont été maintenus à valeur fixe. Le motif a ainsi été l'unique paramètre variable au cours de la bio- impression. Ce motif était créé à partir de l'image du substrat receveur et personnalisé en fonction des caractéristiques géométriques du support. Il était ainsi possible d'imprimer spécifiquement sur le quadrillage de l'interface et du pansement absorbant.
Tableau 1 : Les paramètres d'impression fixes lors de l’étape de bio-impression réalisée dans les exemples
Système d'imaeerie et un outil logiciel
Un système d'imagerie et un outil logiciel ont été mis au point afin de créer de manière automatisée des motifs d'impression personnalisés en fonction du quadrillage observable sur les matériaux pansement. Cet outil permet de faire correspondre les quadrillages observables sur les pansements (interface Urgotul® et pansement absorbant Urgotul Absorb®) avec les zones d'impression. Il est également possible de varier la densité cellulaire par fibre en modulant l'espacement entre les spots d'impression.
Deux motifs ont été choisis pour l'interface Urgotul®. Sur le premier, les spots d'impression sont positionnés à l'intersection des fibres (Figure 1). Le second motif est créé en y ajoutant des spots sur chacune des fibres (Figure 2). Pour le pansement absorbant, les spots du motif sont localisés à l'intersection des fibres, sur les fibres elles- mêmes, et au centre de chaque quadrille (Figure 3).
Le pansement est déposé au fond d'un puits d'une plaque de culture (plaque 12 puits). Puis, le système d'imagerie réalise une acquisition et une reconstruction d'image de manière à restituer la totalité de la surface du matériau (12 photos au total). Lors de la seconde étape, le logiciel binarise l'image obtenue dans la première étape en détectant les zones sombres et les zones claires. Après binarisation, les creux (=centres des quadrillages) apparaissent en noir et les pleins (=fibres), en blanc. Les coordonnées des centres des zones sombres sont ensuite calculées. Ces points se trouvent sur une fibre. En itérant de manière analogue avec les points calculés, il est possible de créer des motifs avec une densité de point par fibre variable. Le motif produit par l'algorithme peut alors être chargé dans le logiciel de l'imprimante afin de l'utiliser comme patron pour l'impression des cellules.
Le logiciel d'imagerie doit remplir deux objectifs pour être validé.
Dans un premier temps, le calcul doit engendrer un bon positionnement des points sur le pansement, afin de reproduire le motif désiré. Cet objectif a été rempli lors du développement du logiciel. L'imagerie du pansement interface permet de générer des images avec un contraste plus important qu'avec le pansement absorbant. Un contraste insuffisant est source d'erreurs dans le calcul du positionnement des points, ce qui est le cas avec le pansement absorbant. Une solution intermédiaire a été trouvée : une fonction de correction de motif a été ajoutée au logiciel. Elle permet de supprimer ou d'ajouter manuellement des points et donc de corriger au cas par cas des erreurs dans le calcul du motif.
Dans un second temps, il faut valider le bon positionnement des gouttes bio-imprimées sur le support pansement. Pour être certains de visualiser correctement le résultat de l'impression, ce sont des fibroblastes primaires et des kératinocytes primaires marqués avec traceur fluorescent dans l'orange qui ont été imprimés à la place de l'hydrogel initialement prévu. Les motifs de kératinocytes imprimés sur l'interface à l'aide du logiciel permet de positionner spécifiquement les spots cellulaires sur les fibres de l'interface. Quel que soit le type cellulaire imprimé, le logiciel laisse le choix quant au motif à utiliser. Par exemple, les spots cellulaires peuvent être positionnés automatiquement à l’intersection de chaque fibre du pansement, ou alors l’utilisateur peut positionner lui-même les spots cellulaires à une distance prédéfinie (300-500-800pm...). Dans cet exemple, le motif imprimé sur la mousse HPU est un carré de lcm2 avec un espacement entre les spots cellulaires (kératinocytes ou fibroblastes) de 200pm.
Exemple 2 : Test de viabilité cellulaire
Avant impression, les pansements sont soit secs, soit humidifiés. Lors de l'ensemencement des témoins, 30 000 cellules sont déposées sur chacun des pansements dans 7,5pL de milieu de culture. Immédiatement après impression ou dépôt à la pipette (pour les témoins) des cellules, les pansements sont immergés dans 2 mL de milieu de culture et sont « flushés » (afin de récupérer le maximum de cellules sur les matériaux, des « flush » successifs sont réalisés à l'aide d'une pipette). Les cellules sont ensuite marquées et comptées sur cellule de Malassez. Le marquage est réalisé sur les cellules directement après l'impression. Les cellules sont laissées en culture (post-impression) minimum 24 heures avant de faire le test de viabilité cellulaire. Les kératinocytes ou les fibroblastes en solution sont alors ensemencés dans un nouveau puits de culture et sont mis dans un incubateur à 37°C et 5 % de C02. Au bout de 24 heures, le milieu de culture est retiré et les cellules sont marquées avec la solution de calcéine et d'éthidium. Le pourcentage de viabilité cellulaire est calculé après avoir compté le nombre de cellules vivantes et de cellules mortes dans 6 zones par puits de culture.
Dans un premier temps la technique de « live dead » est réalisée sur les fibroblastes primaires imprimés ou témoins sur l'interface Urgotul®, le pansement absorbant Urgotul Absorb® et la mousse HPU sec et humide. La technique de « live dead » permet de distinguer les cellules vivantes des cellules mortes au sein d'une même culture. L’activité estérase intracellulaire ubiquitaire et la présence d’une membrane plasmique intacte sont les caractéristiques des cellules vivantes. Ces cellules transforment le colorant non fluorescent l’acétoxyméthyl calcéine (AM) en calcéine fluorescent (vert). Les cellules mortes sont caractérisées par une perte de l'intégrité de leur membrane plasmique. L’homodimer-l d’éthidium (EthD-l) pénètre dans ces cellules et se lie aux acides nucléiques ce qui a pour conséquence la présence de fluorescence rouge.
Dans un second temps, la viabilité cellulaire a été étudiée sur les kératinocytes primaires imprimés ou témoins sur l'interface Urgotul® et sur la mousse HPU humides.
Le test statistique utilisé pour analyser les résultats de comptage de la viabilité cellulaire, est un test de Student dont la valeur de a est de 0,05.
A. Résultat de la viabilité des fibroblastes
Les résultats des impressions et des ensemencements témoins de fibroblastes primaires sur l'interface, le pansement absorbant et la mousse HPU sont représentés à la Figure 4 (avec des pansements humides) et Figure 5 (avec des pansements secs). Les résultats normalisés sont présentés dans les Figures 6 et 7 ou a correspond aux résultats obtenus avec le pansement interface Urgotul®, b le pansement absorbant Urgotul Absorb® et c la mousse HPU.
Lorsque les fibroblastes sont imprimés sur l'interface, le pansement absorbant et la mousse HPU humidifiés, la viabilité des fibroblastes est supérieure à 94%, et également très proche de celle des cellules témoins. Les fibroblastes imprimés et témoins sur ces 3 pansements humides restent viables. La faible valeur des écarts-types prouve que ces résultats sont reproductibles.
En revanche, les résultats de viabilités des impressions sur les pansements secs sont très variables mis à part avec l'interface Urgotul®. La viabilité des cellules imprimées ou témoins sur l'interface sec est proche des résultats sur l'interface humide. Les cellules restent donc viables après impression sur l'interface Urgotul® humide ou sèche. Les cellules témoins sur le pansement absorbant Urgotul Absorb® sec et la mousse HPU sèche donnent des résultats de viabilité comparables aux résultats sur ces même pansements mais humides. Les résultats de viabilité des fibroblastes imprimés sur le pansement absorbant Urgotul Absorb® sont d'une grande variabilité. Le résultat est de 57%±46%. Enfin, les cellules imprimées sur la mousse HPU sèche ont une viabilité cellulaire de 36%. Un peu plus de la moitié des cellules meurent après leur impression sur ce pansement sec par rapport à ce même pansement humide. Généralement, les cellules supportent mal les environnements et les supports d'impression secs, ce qui peut expliquer cette différence de viabilité cellulaire.
B. Résultat de la viabilité des kératinocytes
Les résultats des impressions et des ensemencements témoins de kératinocytes primaires sur l'interface Urgotul® humide et la mousse HPU humide sont représentés à la Figure 8. La Figure 9 présente les résultats normalisés de la viabilité des kératinocytes dans laquelle a représente les résultats obtenus avec l’interface Urgotul® et b avec la mousse HPU.
Les cellules imprimées sur l'interface Urgotul® humide ont une viabilité proche de celle des cellules témoins sur l'interface, avec environ 70%±7% de viabilité. Les viabilités entre les cellules témoins et les cellules imprimées étant proches, l'impression sur ce support n'est donc pas la cause des 30% de cellules mortes.
Le pourcentage de viabilité des impressions de kératinocytes primaires sur la mousse HPU humide est de 8l%±6%. Les cellules témoins sur ce même pansement ont un pourcentage de viabilité de 90%±7%. La différence entre ces deux valeurs est significative.
La normalisation des résultats montre que la viabilité des kératinocytes imprimés sur l'interface Urgotul® et sur la mousse HPU sont très proches de la viabilité des témoins.
Exemple 3 : Test de migration cellulaire
Avant impression les pansements sont soit secs, soit humidifiés. Les cellules témoins sont ensemencées sur les pansements, avec 30 000 cellules dans 7,5 pL de milieu de culture. Après l'étape d'impression et de dépôt à la pipette (témoins) des cellules, les pansements sont conservés soit 30 minutes soit 3 heures dans un incubateur à 37°C et 5% de C02. Cette période est appelée la durée de conservation. Chaque pansement est, par la suite, retourné (face imprimée contre le puits de culture) et immergé dans 2 mL de milieu de culture. Un anneau en inox est déposé sur chaque pansement pour ne pas qu'il flotte. Le milieu de culture est changé tous les 2 à 3 jours. Les pansements sont maintenus en culture 4 jours pour les fibroblastes primaires et 8 jours pour les kératinocytes primaires (temps de migration nécessaire pour arriver à 50% de confluence), pour pouvoir par la suite marquer et immunomarquer les cellules qui ont migrées depuis les pansements sur la surface en plastique des puits de culture. Les conditions testées avec des pansements humides sont les même qu'avec les pansements secs.
A. Résultats sur la migration des fibroblastes
Aucune migration des fibroblastes imprimés n'est observée depuis l'interface Urgotul® humide alors que les fibroblastes témoins migrent au bout de seulement un jour.
Il faut 4 et 9 jours aux fibroblastes imprimés pour migrer depuis les pansements absorbants Urgotul Absorb® humide après un temps d’attente de 30 minutes ou de 3 heures post impression. Les cellules témoins sur ce pansement humide mettent un temps comparable pour migrer : 4 jours et 5 jours avec un temps d’attente respectivement de 30 minutes et de 3 heures post-impression.
Il ne faut qu'un jour aux fibroblastes imprimés et témoins pour migrer depuis la mousse HPU humide avec un temps de conservation de 30 minutes. Enfin, lorsque ce temps de conservation s'allonge à 3 heures, les fibroblastes témoins mettent 5 jours pour migrer et aucune migration n'est observée depuis les pansements sur lesquels les fibroblastes ont été imprimés.
Les fibroblastes témoins mettent globalement plus de temps à migrer depuis l'interface Urgotul®, le pansement absorbant Urgotul Absorb® et la mousse HPU humides si le temps de conservation est de 3 heures. Ce résultat semble similaire sur le pansement absorbant Urgotul Absorb® et la mousse HPU lorsque les fibroblastes ont été imprimés. Us mettent presque deux fois plus de temps à migrer depuis le pansement absorbant et ils ne migrent pas depuis la mousse HPU. Le temps de conservation de 30 minutes semble donc plus adapté aux cellules imprimées sur les pansements humides.
Aucune migration n'est observée depuis l'interface Urgotul®, le pansement absorbant Urgotul Absorb® et la mousse HPU secs lorsque le temps de conservation est de 3 heures alors que les fibroblastes imprimés et témoins migrent depuis tous les pansements secs lorsque le temps de conservation est de 30 minutes. Ce temps de conservation peut être augmenté (au-delà de 30 minutes) en utilisant un volume d'ensemencement plus important (7,5pL<V<lmL), tout en restant inférieur au volume d'hydratation à saturation pour que le pansement cellularisé puisse toujours jouer son rôle d'absorption des exsudais de la plaie.
Le temps de migration des fibroblastes bio-imprimés a été étudié depuis l'interface Urgotul®, et la mousse HPU humides, après un temps de conservation de 30 minutes. Des résultats complémentaires ont ainsi été acquis sur 30 échantillons par condition. Pour chaque échantillon, on observe sur une période de 4 jours si les cellules bio-imprimées migrent hors du pansement.
Dans ces conditions, pour la totalité des échantillons de mousse HPU sur lesquels les fibroblastes ont été imprimés, la migration a été observée à partir de 2 jours.
Les résultats de migration des fibroblastes depuis l'interface Urgotul® sont plus variables. La migration est observée au bout de 2 jours après impression pour une bonne partie des échantillons interface (19 échantillons sur 30). Au bout de 4 jours les fibroblastes ont commencé à migrer depuis 4 échantillons, et aucune migration n'est observée depuis 7 échantillons.
B. Résultats sur la migration des kératinocytes
Pour 50% des pansements interface Urgotul® sur lesquels les kératinocytes ont été imprimés et déposés à la pipette, aucune migration n'est observée. Depuis les 50 % d'échantillons restants, la migration de kératinocytes a été observée entre 2 et 4 jours après l'impression ou l’ensemencement manuel des cellules. Le temps de migration depuis l'interface Urgotul® est relativement court mais cette migration n'est observée qu'à partir de la moitié des échantillons d’interface Urgotul®.
Depuis 19 échantillons de mousse HPU sur lesquels les kératinocytes ont été imprimés ou témoins, la migration a été observée entre 2 et 4 jours. La migration des kératinocytes imprimés n'a pas été observée sur un échantillon de mousse HPU ce qui est négligeable. Le temps de migration des kératinocytes imprimés et témoins depuis la mousse HPU est court et concerne la quasi-totalité des échantillons.
Les kératinocytes imprimés sur l'interface Urgotul® et la mousse HPU tout comme les kératinocytes témoins expriment pour la plupart l'antigène Ki67.
Après 8 jours de migration depuis des échantillons de la mousse HPU, de manière surprenante, il a été observé (pour 2 puits sur 4) un tapis de kératinocytes à 100% de confluence uniquement en-dessous du pansement. A la surface de ce tapis, certains kératinocytes commencent à proliférer et à se stratifier. Dans ce cas-là, les kératinocytes ont beaucoup proliféré. Par inhibition de contact une partie de ces cellules n'exprime pas l'antigène Ki67 et sont rentrées en phase de quiescence. D'autres cellules sont restées prolifératives, et ont continué à se diviser à la surface du tapis confluent.
Le pourcentage de prolifération (cellules qui expriment l'antigène Ki67), est calculé pour pouvoir quantifier l'expression de l'antigène Ki67 et comparer les cellules imprimées avec les cellules témoins. Les kératinocytes témoins ont un pourcentage de prolifération de 68%±l8 %. Cette grande variabilité peut s'expliquer par une densité d'ensemencement des kératinocytes trop faible (2000 cellules/cm2).
Le pourcentage de prolifération de kératinocytes imprimés sur l'interface est de 92 %.
Le pourcentage de prolifération des kératinocytes imprimés sur la mousse HPU est de 80 %±l8 %. Ce résultat est comparable au pourcentage de prolifération des kératinocytes témoins. Les kératinocytes imprimés sur la mousse HPU ne subissent donc aucun changement de leur capacité à proliférer.
Exemple 4 : Marquages et immunomarquages sur cellules
Après impression et dépôts à la pipette des fibroblastes ou des kératinocytes sur l'interface Urgotul® et la mousse HPU humidifiés avec un temps de conservation de 30 minutes, les pansements sont retournés (face d'impression contre le fond du puits de culture) pendant 4 jours pour les fibroblastes et 8 jours pour les kératinocytes. Les cellules sont ensuite fixées, puis, afin de vérifier que le métabolisme cellulaire n'est pas affecté par le contact du pansement après impression, des immunomarquages sont réalisés sur les cellules.
Les marquages réalisés sont :
-L'actine, le collagène I, le collagène III, la fibronectine et le Ki67 sur les fibroblastes,
-Le ki67 sur les kératinocytes.
L'observation des filaments d'actine se fait à l'aide d'un marquage à la phalloïdine. La phalloïdine couplée avec un marqueur fluorescent rouge (texas red) va se lier aux filaments d'actine et empêcher leur dépolymérisation. Les filaments d'actine apparaissent alors fluorescents dans le rouge.
Les cellules sont fixées avec du formaldéhyde 4%. Les membranes cellulaires sont perméabilisées à l'aide d'une solution de Triton, puis un traitement avec de la BSA (bovine sérum albumin) permet de réduire les fixations aspécifiques. Les cellules sont ensuite marquées à la phalloïdine puis observées au microscope à fluorescence.
A. Immunomarquages du collagène I, du collagène III et de la fibronectine
Le collagène I et III sont des polypeptides fibrillaires synthétisés et sécrétés par les fibroblastes primaires du derme. Leur rôle est de participer à l'élasticité et à la résistance de la matrice extra cellulaire du derme. La fibronectine, est une glycoprotéine également synthétisée et sécrétée par les fibroblastes primaires du derme. Elle participe à l'adhésion et à la migration cellulaire dans la matrice extra cellulaire.
Les trois protéines marquées sont localisées dans le cytoplasme cellulaire. Si aucun marquage n'est observé c'est que les cellules n'expriment pas et ne synthétisent pas la protéine ciblée.
Les cellules sont fixées et les membranes cellulaires sont perméabilisées avec du méthanol. Les sites de fixation aspécifique sont saturés avec une solution de BSA, puis les cellules sont marquées dans un premier temps avec l'anticorps primaire, puis dans un second temps avec l'anticorps secondaire (qui se fixe sur l'anticorps primaire pour fluorescer) et le Dapi (qui marque les noyaux cellulaires en bleu). Les cellules sont ensuite observées au microscope à fluorescence.
B. Immunomarquage de l'antigène Ki67
Le Ki67 est l'antigène d'une protéine nucléaire présente dans les cellules prolifératives en phase Gl, S, G2 et M. Les cellules en phase de quiescence GO n'expriment pas cette protéine nucléaire. Ce marquage est localisé dans le noyau des cellules. Si certaines cellules n'expriment pas cet antigène, c'est que les cellules ne sont pas prolifératives. Afin de quantifier les résultats, le pourcentage du nombre de cellules en phase prolifératives est calculé.
C. Résultats
La Figure 10, présente les résultats d'immunomarquages du collagène I des fibroblastes imprimés sur l'interface (c, d) et la mousse HPU (e, f) humidifiés et de fibroblastes témoins au fond des puits de culture (a, b). Les cellules imprimées sur l'interface et la mousse HPU ainsi que les cellules témoins expriment le collagène I. L'intensité du marquage est plus forte dans le cytoplasme de quelques cellules, ce qui pourrait s'expliquer par la synthèse plus importante de collagène I. Cette différence d'intensité est observée dans la population de fibroblastes imprimés sur les deux types de pansements (interface et mousse HPU) et témoins.
La Figure 11, présente les résultats d'immunomarquages de la fibronectine synthétisée par les fibroblastes imprimés sur l'interface (c, d) et la mousse HPU (e, f) humidifiés et par les fibroblastes témoins au fond des puits de culture (a, b). Aucune différence d'immunomarquage ciblant la synthèse de cette protéine n'est observée entre les fibroblastes imprimés, et les fibroblastes témoins. L'impression sur l'interface et la mousse HPU ne perturbe donc pas la synthèse de fibronectine par les fibroblastes.
La Figure 12, présente les résultats d'immunomarquages du collagène III synthétisé par les fibroblastes imprimés sur l'interface (c, d) et la mousse HPU (e, f) humidifiés et par les fibroblastes témoins au fond des puits de culture (a, b). Tout comme avec les résultats précédents d'immunomarquages du collagène I et de la fibronectine présents et synthétisés dans le cytoplasme des fibroblastes, le collagène III est également correctement présent dans les fibroblastes imprimés sur l'interface et la mousse HPU et témoins. Les résultats d'immunomarquage, des fibroblastes imprimés sur les deux pansements interface et mousse HPU ainsi que des fibroblastes témoins, sont similaires. L'impression sur ces deux matériaux ne perturbe donc pas la synthèse, par les fibroblastes, de ces protéines qui ont un rôle essentiel dans la formation de la matrice extra cellulaire dans le derme. L'antigène Ki67 n'est présent que dans le noyau des cellules prolifératives. Son marquage va permettre de comparer le taux de cellules prolifératives entre les fibroblastes imprimés sur l'interface et la mousse HPU et les fîbroblastes témoins.
La Figure 13, présente les résultats d'immunomarquages de l'antigène Ki67 présent dans le noyau des fibroblastes prolifératifs imprimés sur l'interface (c, d) et la mousse HPU (e, f) humidifiés et par les fibroblastes prolifératifs témoins (a, b). Quelle que soit la condition testée, on observe des cellules en phase de quiescence (noyau non marqué). Dans certains cas, une inhibition de contact peut expliquer cet état non prolifératif des cellules. D'un point de vue qualitatif, les fibroblastes imprimés tout comme les fibroblastes témoins expriment l'antigène Ki67 et sont donc, pour la plupart, en phase de prolifération.
Le pourcentage de cellules marquées est calculé dans la Figure 14 pour pouvoir quantifier l'expression de l'antigène Ki67 et comparer les cellules imprimées avec les cellules témoins. Les fibroblastes témoins sont pour la plupart prolifératifs avec 83% des cellules comptées qui expriment l'antigène Ki67. Les résultats des cellules imprimées oscillent entre 65% et 90% d'expression de l'antigène Ki67 en fonction des échantillons. Le taux moyen de cellules prolifératives parmi les cellules imprimées ayant migrées depuis l'interface (76%± 15%) ou la mousse HPU (8l%±l l%) est comparable à celui des cellules témoins (83% ± 5%). En effet, les écarts-type des pourcentages d'expression de l'antigène Ki67 des fibroblastes imprimés sur les deux pansements sont relativement importants, ce qui rapproche les résultats des cellules imprimées des résultats des cellules témoins.
Aucune différence qualitative et quantitative n'est donc à noter entre les cellules imprimées sur l'interface et les fibroblastes imprimés sur la mousse HPU. Le métabolisme prolifératif des fibroblastes imprimés sur ces deux matériaux pansements humides fonctionne correctement. La viabilité normalisée des fibroblastes est très élevée (supérieure à 95%) lorsque les cellules sont imprimées sur les pansements humides. Lorsque les pansements sont secs, la viabilité reste élevée pour l'interface mais chute de manière importante pour le pansement absorbant et la mousse HPU.
Les résultats des tests de migrations depuis les pansements humides avec un temps de conservation de 30 minutes sont les plus concluants. Ces paramètres semblent être les plus adaptés à la survie et à la migration des fibroblastes depuis les pansements sur lesquels ils ont été imprimés.
Les marquages et les immunomarquages donnent des résultats similaires entre les cellules imprimées et les cellules témoins. L'impression des fibroblastes sur l'interface et la mousse HPU humides ne modifie pas la synthèse d'actine, de collagène I et III, de fibronectine et d'antigène Ki67 par les fibroblastes. Le métabolisme des fibroblastes primaires imprimés sur l'interface et la mousse HPU humides n'est donc pas modifié et reste comparable au métabolisme des fibroblastes primaires non imprimés et qui poussent à la surface d'un puits de culture.
Toutes les impressions de kératinocytes primaires sont réalisées sur l'interface et la mousse HPU humidifiées avec un temps de conservation de 30 minutes après l'impression dans un incubateur à 37°C avec 5% de C02.
Les résultats des impressions et des ensemencements témoins de kératinocytes primaires sur l'interface et la mousse HPU sont représentés à la Figure 15. Les cellules imprimées sur l'interface ont une viabilité proche de celle des cellules témoins sur l'interface, avec environ 70%±7% de viabilité. Les viabilités entre les cellules témoins et les cellules imprimées étant proches, l'impression sur ce support n'est donc pas la cause des 30% de cellules mortes. Le pourcentage de viabilité des impressions de kératinocytes primaires sur la mousse HPU est de 81%±6%. Les cellules témoins sur ce même pansement ont un pourcentage de viabilité de 90 %±7%. La différence entre ces deux valeurs est significative.
La normalisation des résultats montre que la viabilité des kératinocytes imprimés sur l'interface et sur la mousse HPU sont très proches de la viabilité des témoins.
La Figure 16 représente le nombre de jours qu'il a fallu aux kératinocytes pour migrer depuis les pansements (l'interface et la mousse HPU) sur lesquels ils ont été imprimés ou témoins. Pour 50% des pansements interface sur lesquels les kératinocytes ont été imprimés et déposés à la pipette, aucune migration n'est observée. Depuis les 50% d'échantillons restants, la migration de kératinocytes a été observée entre 2 et 4 jours après l'impression ou l’ensemencement manuel des cellules. Le temps de migration depuis l'interface est relativement court mais cette migration n'est observée qu'à partir de trop peu d'échantillons interface. Depuis 19 échantillons de mousse HPU sur lesquels les kératinocytes ont été imprimés ou témoins, la migration a été observée entre 2 et 4 jours. La migration des kératinocytes imprimés n'a pas été observée depuis seulement un échantillon de mousse HPU ce qui est négligeable. Le temps de migration des kératinocytes imprimés et témoins depuis la mousse HPU est court et concerne la quasi-totalité des échantillons.
La Figure 17, présente les résultats d'immunomarquages de l'antigène Ki67 présent dans le noyau des kératinocytes prolifératifs imprimés sur l'interface (c, d) et la mousse HPU (e, f) humidifiés et par les kératinocytes prolifératifs témoins (a, b). D’après les observations de la Figure 17, les kératinocytes imprimés sur l'interface et la mousse HPU tout comme les kératinocytes témoins expriment pour la plupart l'antigène Ki67. Quelques cellules dont le noyau est bleu n’expriment pas l’antigène KÎ647 et sont observées parmi les kératinocytes imprimés mais aussi parmi les kératinocytes témoins.
Après 8 jours de migration depuis des échantillons de la mousse HPU, de manière surprenante, il a été observé (pour 2 puits sur 4) un tapis de kératinocytes à 100% de confluence uniquement en-dessous du pansement (Figure 18). A la surface de ce tapis, certains kératinocytes commencent à proliférer et à se stratifier. Dans ce cas-là, les kératinocytes ont beaucoup proliféré. Par inhibition de contact une partie de ces cellules n'exprime pas l'antigène Ki67 et sont rentrées en phase de quiescence. D'autres cellules sont restées prolifératives, et ont continué à se diviser à la surface du tapis confluent. Le pourcentage de prolifération (cellules qui expriment l'antigène Ki67), est calculé dans la Figure 18 pour pouvoir quantifier l'expression de l'antigène Ki67 et comparer les cellules imprimées avec les cellules témoins. Les kératinocytes témoins ont un pourcentage de prolifération de 68%±l8 %. Cette grande variabilité peut s'expliquer par une densité d'ensemencement des kératinocytes trop faible (2000 cellules/cm2). Le pourcentage de prolifération de kératinocytes imprimés sur l'interface est de 92%. Le pourcentage de prolifération des kératinocytes imprimés sur la mousse HPU est de 80%±l8%. Ce résultat est comparable au pourcentage de prolifération des kératinocytes témoins. Les kératinocytes imprimés sur la mousse HPU ne subissent donc aucun changement de leur capacité à proliférer. La viabilité des kératinocytes imprimés sur l'interface est proche de la viabilité des kératinocytes témoins. Après l'étude de la migration des kératinocytes (imprimés ou témoins) depuis l'interface, il est observé que les kératinocytes ne migrent depuis l'interface qu'une fois sur deux. Dans les cas où les kératinocytes ont migré depuis l'interface, les cellules ont très bien poussé pendant les 8 à 10 jours de temps de migration et ont commencé à recouvrir la surface du puits de culture. Les résultats des calculs de pourcentage de prolifération suite aux immunomarquages de l'antigène Ki67, indiquent que la prolifération des kératinocytes viables est très bonne. Les kératinocytes sont pour la plupart en phase de prolifération 8 jours après impression sur l'interface. L’ensemencement par impression ou par dépôt à la pipette sur l'interface semble affecter les kératinocytes primaires puisque leur viabilité est inférieure à celle sur la mousse HPU. En revanche, les cellules migrant depuis le pansement présentent un fort taux de prolifération. Deux hypothèses peuvent expliquer ce phénomène :
- La première hypothèse, est que les kératinocytes primaires est un type cellulaire fragile. Le stress induit par un ensemencement ou une impression sur ce matériau peut donc provoquer une mortalité importante, le temps que les cellules s'adaptent à ce matériau.
- Les kératinocytes primaires ont certainement des difficultés à adhérer sur ce type de support. Les kératinocytes différenciés, non prolifératifs qui ont plus de difficultés à adhérer peuvent ne pas survivre à l'impression ou à l'ensemencement manuel sur ce pansement. La seconde hypothèse est donc que l'interface sélectionne les kératinocytes dont le métabolisme est le plus performant avec une capacité de prolifération la plus importante.
Avec un pourcentage de viabilité de 81%, les kératinocytes survivent en grande partie à l'impression sur la mousse HPU. Ce résultat est comparable au pourcentage de viabilité des kératinocytes témoins sur ce même matériau. L'impression tout comme le dépôt à la pipette sur ce support ne perturbe donc pas la survie des kératinocytes primaires. Les kératinocytes migrent au bout de 2 à 4 jours depuis la mousse HPU après l'étape d'impression ou de dépôt à la pipette. Les cellules ne sont donc pas affectées par la culture sur plusieurs jours dans ce pansement. Elles migrent rapidement et colonisent toute la surface du puits de culture recouverte par la mousse HPU. La prolifération des kératinocytes imprimés se déroule correctement et semble augmenter au contact de la mousse HPU.

Claims

REVENDICATIONS
1. Pansement cellularisé destiné à être appliqué de façon transitoire sur une plaie, ledit pansement comprenant des cellules sur un matériau non résorbable.
2. Pansement cellularisé selon la revendication 1, dans lequel ledit matériau non résorbable est choisi parmi :
un pansement interface,
un pansement absorbant, ou
- une mousse hydrophile de polyuréthane, de préférence une mousse hydrophile de polyuréthane permettant l’absorption des exsudais.
3. Pansement cellularisé selon l’une quelconque des revendications 1-2, dans lequel les cellules sont choisies parmi les cellules de type fibroblaste et/ou les cellules de type épithélial.
4. Pansement cellularisé selon l’une quelconque des revendications 1-3, dans lequel les cellules sont choisies parmi les fibroblastes et/ou les kératinocytes, notamment les fibroblastes primaires et/ou les kératinocytes primaires.
5. Pansement cellularisé selon l’une quelconque des revendications 1-4, dans lequel les cellules sont bio-imprimées sur le matériau non résorbable.
6. Pansement cellularisé selon l’une quelconque des revendications 1-5, dans lequel les cellules sont présentes au niveau des fibres dudit matériau ou à l’intérieur d’un ou des motifs définis par lesdites fibres.
7. Pansement cellularisé selon la revendication 6, dans lequel les cellules sont présentes au niveau des fibres d’un motif concentrique, un motif radial, un motif géométrique ou un motif aléatoire non géométrique, ou à l’intérieur d’au moins un de ces motifs.
8. Pansement cellularisé selon l’une quelconque des revendications 6-7, dans lequel les cellules sont présentes au niveau des fibres dudit matériau, à l’intersection des fibres dudit matériau et/ou au centre de chaque quadrille dudit matériau.
9. Pansement cellularisé selon l’une quelconque des revendications 1-5, ledit pansement étant saturé en liquide jusqu’à 90% de sa capacité d’absorption.
10. Pansement cellularisé selon l’une quelconque des revendications 1-9, ledit pansement comprenant une concentration de cellules comprise entre 50 et 30 000 cellules/cm2, de préférence entre 200 et 20 000 cellules/cm2.
11. Pansement cellularisé selon l’une quelconque des revendications 1-10, ledit pansement comprenant en outre un actif, de préférence choisi parmi un antiseptique, un antibactérien, un antibiotique, un antidouleur, un anti-inflammatoire, un anesthésique ou un composé qui favorise la cicatrisation de la plaie.
12. Procédé de fabrication d’un pansement cellularisé selon l’une quelconque des revendications 1-11, comprenant une étape de mise en contact des cellules avec un matériau non résorbable, de préférence l’étape de mise en contact étant une étape de bio-impression de cellules sur ledit matériau non résorbable.
13. Procédé de fabrication d’un pansement cellularisé selon la revendication 12 dans lequel la bio-impression de cellules est réalisée à partir d’une bio-encre dans laquelle les cellules sont en suspension ou sous forme d’agrégats.
14. Procédé de fabrication d’un pansement cellularisé selon l’une quelconque des revendications 12-13, dans lequel le matériau non résorbable est humide ou sec.
15. Kit destiné à obtenir un pansement cellularisé selon l’une quelconque des revendications 1-11, ledit kit comprenant:
(a) un matériau non résorbable, et
(b) des cellules destinées à être mise en contact avec le matériau non résorbable, lesdites cellules étant dans un milieu approprié à la survie cellulaire.
EP19740640.8A 2018-06-07 2019-06-06 Pansement cellularise et son procede de fabrication Pending EP3801652A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1854944A FR3082123B1 (fr) 2018-06-07 2018-06-07 Pansement cellularise et son procede de fabrication
PCT/FR2019/051367 WO2019234365A1 (fr) 2018-06-07 2019-06-06 Pansement cellularise et son procede de fabrication

Publications (1)

Publication Number Publication Date
EP3801652A1 true EP3801652A1 (fr) 2021-04-14

Family

ID=63312081

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19740640.8A Pending EP3801652A1 (fr) 2018-06-07 2019-06-06 Pansement cellularise et son procede de fabrication

Country Status (4)

Country Link
US (1) US20210220510A1 (fr)
EP (1) EP3801652A1 (fr)
FR (1) FR3082123B1 (fr)
WO (1) WO2019234365A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0808376D0 (en) 2008-05-08 2008-06-18 Bristol Myers Squibb Co Wound dressing
GB0817796D0 (en) 2008-09-29 2008-11-05 Convatec Inc wound dressing
GB201020236D0 (en) 2010-11-30 2011-01-12 Convatec Technologies Inc A composition for detecting biofilms on viable tissues
CA2819475C (fr) 2010-12-08 2019-02-12 Convatec Technologies Inc. Systeme integre pour evaluer des exsudats de plaie
EP2648794B1 (fr) 2010-12-08 2019-08-28 ConvaTec Technologies Inc. Accessoire de système d'exsudats de plaie
GB201115182D0 (en) 2011-09-02 2011-10-19 Trio Healthcare Ltd Skin contact material
GB2497406A (en) 2011-11-29 2013-06-12 Webtec Converting Llc Dressing with a perforated binder layer
CA2895896A1 (fr) 2012-12-20 2014-06-26 Convatec Technologies Inc. Traitement de fibres cellulosiques chimiquement modifiees
MX2018011801A (es) 2016-03-30 2019-12-16 Convatec Technologies Inc Deteccion de infecciones microbianas en heridas.
CN109564213B (zh) 2016-03-30 2023-01-31 西诺福有限公司 检测伤口微生物感染
CN109640904A (zh) 2016-07-08 2019-04-16 康沃特克科技公司 流体收集设备
BR112019000301A2 (pt) 2016-07-08 2019-04-16 Convatec Technologies Inc. sistema de pressão negativa flexível
BR112019000316A2 (pt) 2016-07-08 2019-04-16 Convatec Technologies Inc. detecção de fluxo de fluido
FR3093944B1 (fr) 2019-03-22 2021-03-19 Poietis Cartouche pour bioimpression
US11771819B2 (en) 2019-12-27 2023-10-03 Convatec Limited Low profile filter devices suitable for use in negative pressure wound therapy systems
US11331221B2 (en) 2019-12-27 2022-05-17 Convatec Limited Negative pressure wound dressing

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8658851B2 (en) * 2006-10-20 2014-02-25 Keracure, Inc. Devices with cells cultured on flexible supports
FI20095355A0 (fi) * 2009-04-01 2009-04-01 Helsingin Yliopisto Regeneroituva aktiivinen matriisi ja sen käytöt
US9039998B2 (en) 2010-03-04 2015-05-26 Institut National De La Sante Et De La Recherche Medical (Inserm) Bioprinting station, assembly comprising such bioprinting station and bioprinting method
FR2974005B1 (fr) 2011-04-15 2014-05-02 Urgo Lab Pansement adhesif mince tres absorbant, ses utilisations pour le traitement des plaies chroniques
WO2013093213A1 (fr) 2011-12-19 2013-06-27 Laboratoires Urgo Pansement interface adherent
JP2017537654A (ja) 2014-11-05 2017-12-21 オルガノボ インコーポレイテッド 人工三次元皮膚組織、そのアレイ、およびその製造方法
US10926001B2 (en) 2014-12-02 2021-02-23 Polarityte, Inc. Methods related to minimally polarized functional units
FR3030360B1 (fr) 2014-12-17 2018-07-13 Universite de Bordeaux Procede d'impression par laser et dispositif pour sa mise en oeuvre
FR3030361B1 (fr) 2014-12-17 2017-01-20 Univ Bordeaux Procede d'impression d'elements biologiques par laser et dispositif pour sa mise en oeuvre
WO2016115034A1 (fr) * 2015-01-12 2016-07-21 Wake Forest University Health Sciences Produits de type substituts cutanés multicouches et leurs procédés de fabrication et d'utilisation

Also Published As

Publication number Publication date
WO2019234365A1 (fr) 2019-12-12
FR3082123A1 (fr) 2019-12-13
FR3082123B1 (fr) 2020-10-16
US20210220510A1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
WO2019234365A1 (fr) Pansement cellularise et son procede de fabrication
CA1296260C (fr) Procede d&#39;obtention d&#39;un equivalent de peau et equivalent de peau correspondant
EP0285474B1 (fr) Equivalent de peau
EP1412484B1 (fr) Utilisation d&#39;inhibiteurs des lysyl oxydases pour la culture cellulaire et le genie tissulaire
DK2265711T3 (en) CONE
Au et al. Cell culture chips for simultaneous application of topographical and electrical cues enhance phenotype of cardiomyocytes
CN108138098B (zh) 组织培养设备和方法
EP2882290B1 (fr) Systeme permettant la maintenance en survie et le transport de biopsies de peau et ses applications
EP3274005B1 (fr) Procédé de reconstruction de peau
JP6674946B2 (ja) シート状細胞培養物の評価方法
FR2927632A1 (fr) Cornee et muqueuse reconstruites.
US20090186408A1 (en) Biocompatible bilayer porous matrix and preparation thereof
CA2977727A1 (fr) Equivalent de peau et utilisation
FR2976001A1 (fr) Modele de cuir chevelu reconstruit et procede de screening de molecules actives
JP2004147585A (ja) 細胞培養基材、培養上皮・表皮の製造法、培養粘膜・皮膚の製造法、培養上皮・表皮、培養粘膜・皮膚及びその適用法
WO2021198177A1 (fr) Biomatériau comprenant une matrice poreuse résorbable et procédé de fabrication associé
WO2022269214A1 (fr) Procede de consolidation d&#39;un hydrogel alginate / gelatine
Proulx et al. Tissue engineering of human cornea
US20200248116A1 (en) Methods for producing mature adipocytes and methods of use thereof
JP2006075121A (ja) 培養移植片の製造方法
WO2019075101A1 (fr) Tissus dérivés ex vivo comprenant des multicouches de cellules souches dérivées de tissu adipeux et utilisations de ceux-ci
Clement et al. Worcester Polytechnic Institute, Worcester, MA, United States
Corradini et al. Corneal Bioengineering

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220124