EP3800344A1 - Kraftstoffeinspritzventil - Google Patents

Kraftstoffeinspritzventil Download PDF

Info

Publication number
EP3800344A1
EP3800344A1 EP20210871.8A EP20210871A EP3800344A1 EP 3800344 A1 EP3800344 A1 EP 3800344A1 EP 20210871 A EP20210871 A EP 20210871A EP 3800344 A1 EP3800344 A1 EP 3800344A1
Authority
EP
European Patent Office
Prior art keywords
fuel injection
control chamber
chamber
fuel
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20210871.8A
Other languages
English (en)
French (fr)
Other versions
EP3800344B1 (de
Inventor
Richard Pirkl
Razvan-Sorin STINGHE
Markus HÖLLBACHER
Alexander Preis
Michael Schmid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liebherr Components Deggendorf GmbH
Original Assignee
Liebherr Components Deggendorf GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liebherr Components Deggendorf GmbH filed Critical Liebherr Components Deggendorf GmbH
Publication of EP3800344A1 publication Critical patent/EP3800344A1/de
Application granted granted Critical
Publication of EP3800344B1 publication Critical patent/EP3800344B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/042The valves being provided with fuel passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/025Hydraulically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/14Arrangements of injectors with respect to engines; Mounting of injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1886Details of valve seats not covered by groups F02M61/1866 - F02M61/188
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0003Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure
    • F02M63/0005Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure using valves actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0028Valves characterised by the valve actuating means hydraulic
    • F02M63/0029Valves characterised by the valve actuating means hydraulic using a pilot valve controlling a hydraulic chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0033Lift valves, i.e. having a valve member that moves perpendicularly to the plane of the valve seat
    • F02M63/0035Poppet valves, i.e. having a mushroom-shaped valve member that moves perpendicularly to the plane of the valve seat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0054Check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/008Means for influencing the flow rate out of or into a control chamber, e.g. depending on the position of the needle

Definitions

  • the invention relates to a fuel injection valve for the intermittent injection of fuel into the combustion chamber of an internal combustion engine.
  • Such fuel injection valves are used in fuel injection systems in which fuel is preferably injected directly into the combustion chambers of self-igniting high-speed internal combustion engines, the injection taking place under high pressure.
  • the fuel is conveyed from a fuel tank by a high-pressure fuel pump, compressed to high pressure and conveyed into a so-called rail, which serves as a store for the compressed fuel.
  • Several lines, which are used to supply the fuel injection valves, extend from this high-pressure fuel reservoir.
  • the fuel injection valves currently in use work according to the servohydraulic principle, ie they contain a nozzle needle which is arranged longitudinally displaceably in the high-pressure chamber of the fuel injection valve and which opens or closes one or more injection openings through its longitudinal movement.
  • the Movement of the nozzle needle and thus the beginning and end of each injection are controlled hydraulically.
  • a control room filled with fuel is available for this purpose.
  • the high-pressure fuel exerts pressure on the nozzle needle and presses it against a nozzle seat by means of the hydraulic closing force applied in this way, the pressure here also being applied via a needle closing spring, which already exerts pressure on the nozzle needle when there is no hydraulic pressure is available ..
  • Via a control valve the pressure exerted on the upper side of the nozzle needle can be reduced so that it lifts off the nozzle seat into its open position and thus releases the injection opening again.
  • control valves or control devices are used to open and close the injection valve hydraulically with the required force via the nozzle needle when an electrical actuator, for example a piezo or solenoid, is operated.
  • an electrical actuator for example a piezo or solenoid
  • the electric actuator releases an outlet throttle via a pilot valve.
  • the pressure reduction in the control chamber causes the nozzle needle to open.
  • the pilot valve is closed, the control chamber is filled via an inlet throttle and the nozzle needle closes again.
  • an electrical actuator also releases a discharge throttle via a pilot valve.
  • the pressure reduction in the control room opens the nozzle needle.
  • a generic fuel injection valve is from EP 1991773 B1 known.
  • a 3/2-way control device is implemented here.
  • the known control device is constructed in several parts and has a control valve with a valve insert guided in a valve guide.
  • An outlet throttle is arranged in the valve insert, which permanently connects the areas of the control room that are divided by the control valve.
  • fuel can be permanently exchanged between the two areas of the control chamber divided by the control valve via the outlet throttle.
  • the object of the present invention is to develop a generic fuel injection valve in such a way that the hydraulic efficiency is improved during the intermittent injection of the fuel into the combustion chamber and that the opening and closing of the nozzle needle can take place more quickly than in the prior art.
  • a fuel injection valve for the intermittent injection of fuel into the combustion chamber of an internal combustion engine with a housing which has a high pressure chamber which is in communication with a high pressure inlet, and a low pressure chamber, furthermore with a nozzle needle which is longitudinally movable in the high pressure chamber and which interacts with a nozzle seat and a connection of the high-pressure chamber with an injection opening opens and closes through its longitudinal movement, the nozzle needle being acted upon by a compression spring with a closing force directed in the direction of the nozzle seat and the compression spring being supported on one side on a spring sleeve in which the nozzle needle is in its free end is guided, further with a limited by the spring sleeve and by the upper end of the nozzle needle control chamber, which can be filled with fuel under pressure and thus exerts a controlled closing force on the nozzle needle, also with a control chamber orderly control valve that divides the control chamber into a first
  • connection formed by the outlet throttle can be interrupted by closing the outlet throttle by means of a switching element.
  • the switching element consists of a ball arranged in the outlet throttle.
  • This can advantageously consist of steel or ceramic.
  • the switching element can also be a slide with a cone, a cylinder or a plate.
  • the switching element provided in each case can be held by a pretensioned spring in a sealing seat provided in the outlet throttle. In this way, the desired switching characteristic can be implemented particularly well.
  • the second control chamber can be partially delimited by a seat plate which is connected to the low-pressure chamber via a throttle bore that can be closed in a controlled manner.
  • the throttle bore can be closed by an armature arranged in the low-pressure chamber, the armature being able to be lifted off the throttle bore in a controlled manner by means of an electrical actuator against the bias of the spring.
  • This armature represents the so-called pilot valve, which actuates the fuel injection valve.
  • valve insert can be designed in the shape of a mushroom.
  • the valve guide further advantageously has an inlet throttle with a supply of fuel under high pressure into the second control chamber.
  • valve guide can have at least one diagonally arranged bore via which the first control chamber can be connected to the high-pressure chamber for the supply of fuel under high pressure. It is particularly advantageous to provide two bores arranged diagonally or offset by 120 °.
  • valve guide and the valve insert can advantageously be guided in the spring sleeve in a longitudinally displaceable manner. This creates a particularly compact design.
  • the mode of operation of the fuel injection valve according to the invention is as follows: In the initial state, when the pilot valve is closed, i.e. when the throttle bore is closed and the outlet throttle is blocked at the same time, all pressure chambers have a balanced pressure level in the stationary state, which corresponds to the system pressure.
  • the advantageously mushroom-shaped valve insert is in its lower stop position, so that the two-part control chamber is connected to the high-pressure chamber through the open control valve.
  • the switching element which is preferably designed as a ball, closes the connection formed by the outlet throttle between the first control chamber and the second control chamber either by its own force of gravity or, in the version with the compression spring, with corresponding spring assistance.
  • the pilot valve now opens, ie if the armature is lifted from the throttle bore, the pressure level in the second control chamber first drops as the fuel flows off via the throttle bore. Although fuel continues to flow through the inlet throttle, it cannot prevent a pressure drop in the second control chamber.
  • the emerging The pressure gradient from the first to the second control chamber means that the valve insert is now moved into its upper stop position and thus closes the inlet from the high-pressure chamber. Due to the simultaneous interruption of the connection formed by the outlet throttle between the first and second control chamber, this process is accelerated, since the pressure is first reduced in the second control chamber. However, the switching element, for example the ball, is then also displaced from its closed position on the conical seat and fuel flows continuously from the first control chamber via the second control chamber.
  • the pressure drop in the first control chamber reduces the closing force of the nozzle needle on the nozzle seat until the fuel infiltrates the needle seat surface, so that the nozzle needle opens.
  • the nozzle needle then performs its opening stroke, which is maintained by the pressure difference between the high-pressure chamber and the control chamber.
  • the nozzle needle would now carry out an opening stroke until it rests against the upper needle stop on the valve insert.
  • this attachment point is designed in such a way that it is never reached in normal operation in engine operation and is therefore of no relevance.
  • the pressure in the first control chamber now increases rapidly up to the system pressure level, which reduces the resulting opening force on the nozzle needle to zero.
  • the fast closing process of the nozzle needle now takes place through the force of the needle spring alone.
  • the nozzle seat seals and the injection is ended.
  • the switching times can be shortened, which leads to a better overall function and in particular an improvement in the hydraulic efficiency.
  • the injection process begins and ends earlier. In this way, in the case of multiple injections, the interval between two injections can be shortened.
  • a rapid opening of the nozzle needle ensures an earlier build-up of the injection jet, which results in improved combustion in the combustion chamber.
  • the faster nozzle needle opening can be used for shorter injection intervals, especially with multiple injections.
  • the faster closing of the nozzle needle can also be used for shorter injection intervals for multiple injections.
  • the outlet and inlet throttles can be designed for smaller flow rates. This in turn reduces the fuel outflow during the injection via the outlet throttle, so that the hydraulic efficiency of the entire common rail system is improved. A higher hydraulic efficiency also reduces the fuel consumption of an internal combustion engine.
  • FIG. 1 a fuel injection valve according to the invention is shown schematically in longitudinal section.
  • the fuel injection valve comprises a housing 10 which is connected to a nozzle 14 via a nozzle clamping nut 12.
  • the housing 10 is connected to an electrical connection wedge 18 via a closure cap 16.
  • a high pressure chamber 20 is formed in the interior of the housing 10.
  • the fuel injection valve is divided into a high pressure area and a low pressure area.
  • the high pressure region 20 is delimited at its end on the combustion chamber side by a nozzle seat 22.
  • a nozzle needle 24 is arranged to be longitudinally displaceable. This interacts with the nozzle seat 22 to open and close at least one injection opening 26, which is formed in the nozzle 14 facing the combustion chamber.
  • the nozzle needle 24 is guided at its end facing away from the nozzle seat in a spring sleeve 28, a compression spring 32 being arranged under compressive prestress between the spring sleeve 28 and a disc 30 placed on a shoulder of the nozzle needle.
  • This compression spring on the one hand presses the nozzle needle 24 against the nozzle seat 22. On the other hand, it presses the spring sleeve 28 against a control valve 34.
  • the multi-part control valve 34 is supported on a seat plate 36.
  • the high-pressure chamber 20 can be filled with fuel at high pressure via a high-pressure connection 25, not shown in detail here, which fuel has been compressed by a high-pressure pump not shown in the drawing.
  • This high fuel pressure prevails in the entire high-pressure chamber 20 and has a hydraulic effect Force on the nozzle needle 24, which by far exceeds the force of the closing spring 32.
  • the nozzle needle delimits a first control chamber 38 with its end face facing away from the nozzle seat, which is laterally delimited by the spring sleeve 28 (cf. Figure 3 ).
  • the side of the first control chamber 38 opposite the nozzle needle 24 is delimited by the two-part control valve 34.
  • This control valve 34 consists of a mushroom-shaped valve insert 40 and an annular valve guide 42. Both the valve insert 40 and the valve guide 42 are each arranged in the spring sleeve 28, as shown in FIG Figure 3 a can be seen.
  • the valve insert 40 is guided in a longitudinally displaceable manner in the valve guide 42.
  • the valve guide 42 rests against the seat plate 36 and, together with the valve insert 40 and the valve guide 42, encloses a second control chamber 44.
  • This second control chamber 44 opens into a throttle bore 46 which can be closed in a controlled manner via an armature 48 (cf. Figure 3 a, b, c ).
  • the armature is located on the low pressure side of the fuel injector, as can be seen from the Figure 1 results. Fuel emerging from the throttle bore 46 is discharged from the housing 10 in the low-pressure region via a leakage oil connection, also not shown here.
  • the armature 48 is urged in the direction of the throttle bore 46 via a spring 50. In the resting state, the armature 48 closes the throttle bore tightly due to the spring force of the compression spring 50. The armature 48 can be lifted from the throttle bore 46 by means of an electromagnet against the spring force of the compression spring 50.
  • control valve 34 is designed in two parts in the exemplary embodiment shown here. It consists of the mushroom-shaped valve insert 40. This has a bore 54, as in FIG Figure 3 shown.
  • the valve guide in which the valve insert is guided in a longitudinally displaceable manner, has an inlet throttle 56 and an outlet throttle 58.
  • the inlet throttle connects the high pressure chamber 20 to the second control chamber 44.
  • the outlet throttle 58 connects the first control chamber 38 with the second control chamber 44.
  • the outlet throttle 58 can be closed by a ball 60 (cf. in particular the Figures 2 and 3 ).
  • the valve guide 42 also has two diametrically opposite, diagonally arranged bores 62 through which fuel can flow.
  • the function of the fuel injection valve according to the invention is as follows.
  • the electromagnet 52 When the electromagnet 52 is de-energized, the armature 48 closes the throttle bore 46 of the seat plate 36 and prevents the fuel from flowing out of the second control chamber 44 into the leakage area, that is, the area in the low-pressure part of the fuel injection valve.
  • the seat plate 36 is pressed against the housing 10 (cf. Figure 1 ). Due to the high surface quality and evenness on the bearing surface, a radial seal is provided between the high pressure and the low pressure area (leakage area) and between the high pressure area and the second control chamber 44. This avoids permanent leakage.
  • the armature 48 is lifted from the throttle bore 46 so that fuel flows through the throttle bore 46 of the seat plate 36 from the second control chamber 44 into the low-pressure area and thus generates a pressure drop in the second control chamber 44.
  • the pressure drop creates a pressure difference between the second control chamber 44 and the first control chamber 38.
  • This pressure difference ensures that the valve insert 40 and the ball 60 are pushed upwards and fuel flows through the outlet throttle 58 in the valve guide 42 from the first into the second control chamber, which in turn creates a pressure equalization between the two control chambers 38, 44 ( compare Figure 3a ).
  • the resulting pressure drop in the first control chamber 38 compared to the high pressure area leads to a lifting of the nozzle needle 24, whereby the injection opening 26 of the nozzle 14 is released and the injector is injected into the combustion chamber (not shown here).
  • the armature 48 closes the throttle bore 46 of the seat plate 36 and the ball 60 is pressed again into a valve seat of the valve guide, not shown here, in order to close the outlet throttle 58.
  • the first control space 38 is immediately separated from the second control space 44.
  • the pressure difference between the first and the second control chamber arises due to the fuel flowing in from the high pressure area via the inlet throttle 56 of the valve guide 42 without any further losses by flowing out into the first control chamber 38 (cf. Figure 3b ).
  • the closed position of the ball 60 is clearly shown, in which the outlet throttle 35 is closed.
  • the ball 60 closes due to gravity.
  • the ball can additionally be supported by a spring not shown in detail.
  • the representation according to Figure 2b shows the ball 60 in a lifted position. Here, due to the pressure gradient, the ball 60 is moved away from the outlet throttle 58, so that the outlet throttle 58 is released.
  • the time profile of the injection rate according to the present invention (curve I) is compared with the time profile of the injection rate according to the prior art (curve II).
  • the outlet throttle 58 cannot be closed by a ball 60, so that fuel can flow through the outlet throttle in every state.
  • the rising edge and the falling edge are shown enlarged in order to show the differences in the course more clearly.
  • the start of injection and the end of injection of the embodiment of the present invention (curve I) take place a few microseconds earlier than in the prior art (curve II).
  • this has a great advantage in particular in the case of multiple injection tongues.
  • Short spray intervals however, have a great advantage when it comes to meeting emissions from internal combustion engines, as this enables more even burn-up in the combustion chamber.

Abstract

Die Erfindung betrifft ein Kraftstoffeinspritzventil zur intermittierenden Einspritzung von Kraftstoff in den Brennraum einer Verbrennungskraftmaschine mit einem Gehäuse, das einen Hochdruckraum und einen Niederdruckraum aufweist. Zusätzlich weist das Kraftstoffeinspritzventil einen Steuerraum auf, der mittels eines Steuerventils in einen ersten und einen zweiten Steuerraum unterteilt wird. Das Steuerventil wiederum weist eine Ventilführung und einen Ventileinsatz auf, wobei in der Ventilführung eine Ablaufdrossel angeordnet ist, die den ersten Steuerraum mit dem zweiten Steuerraum verbindet. Erfindungsgemäß ist die durch die Ablaufdrossel gebildete Verbindung zwischen dem ersten Steuerraum und dem zweiten Steuerraum gezielt zeitweise unterbrechbar.

Description

  • Die Erfindung betrifft ein Kraftstoffeinspritzventil zur intermittierenden Einspritzung von Kraftstoff in den Brennraum einer Verbrennungskraftmaschine.
  • Derartige Kraftstoffeinspritzventile werden in Kraftstoffeinspritzsystemen verwendet, bei denen vorzugweise Kraftstoff unmittelbar in Brennräume von selbstentzündlichen schnell laufenden Brennkraftmaschinen eingespritzt wird, wobei die Einspritzung unter hohem Druck geschieht. Hierzu wird der Kraftstoff durch eine Kraftstoffhochdruckpumpe aus einem Kraftstofftank befördert, auf hohen Druck verdichtet und in ein sogenanntes Rail gefördert, das als Speicher für den verdichteten Kraftstoff dient. Von diesem Kraftstoffhochdruckspeicher gehen mehrere Leitungen ab, die der Versorgung der Kraftstoffeinspritzventile dienen.
  • Die derzeit eingesetzten Kraftstoffeinspritzventile arbeiten nach dem servohydraulischen Prinzip, d.h. sie beinhalten eine Düsennadel, die längsverschieblich im Hochdruckraum des Kraftstoffeinspritzventils angeordnet ist und die durch ihre Längsbewegung eine oder mehrere Einspritzöffnungen öffnet bzw. verschließt. Die Bewegung der Düsennadel und damit der Beginn und das Ende jeder Einspritzung werden dabei hydraulisch gesteuert. Dazu ist ein mit Kraftstoff gefüllter Steuerraum vorhanden. Der unter Hochdruck stehende Kraftstoff übt Druck auf die Düsennadel aus und drückt diese mittels der so aufgeprägten hydraulischen Schließkraft gegen einen Düsensitz, wobei hier der Druck zusätzlich über eine Nadelschließfeder aufgeprägt wird, die ja schon einen Druck auf die Düsennadel ausübt, wenn noch kein hydraulischger Druck zur Verfügung steht.. Über ein Steuerventil kann der auf die obere Seite der Düsennadel ausgeübte Druck abgesenkt werden, so dass diese sich vom Düsensitz in ihre Öffnungsstellung abhebt und so die Einspritzöffnung wieder freigibt.
  • In den bekannten Kraftstoffeinspritzventilen werden entsprechende Steuerventile bzw. Steuervorrichtungen verwendet, um bei der Betätigung eines elektrischen Aktuators, beispielsweise eines Piezos oder Solenoids, das Einspritzventil über die Düsennadel hydraulisch mit der erforderlichen Kraft zu öffnen und zu schließen. Dabei sind grundsätzlich folgende Ausführungsformen bekannt.
  • Bei einer 2-/2-Wege-Steuervorrichtung gibt der elektrische Aktuator über ein Pilotventil eine Ablaufdrossel frei. Der Druckabbau im Steuerraum bewirkt die Öffnung der Düsennadel. Bei geschlossenem Pilotventil wird der Steuerraum über eine Zulaufdrossel befüllt und die Düsennadel schließt wieder.
  • Bei einer 3/2-Wege-Steuerrichtung gibt ein elektrischer Aktuator ebenfalls über ein Pilotventil eine Ablaufdrossel frei. Der Druckabbau im Steuerraum öffnet die Düsennadel. Beim Schließen des Pilotventils und beim Schließen der Steuereinrichtung über die Zulaufdrossel erfolgt aber eine Zuschaltung eines weiteren Kraftstoffkanals, der den Steuerraum schneller füllt.
  • Ein gattungsgemäßes Kraftstoffeinspritzventil ist aus der EP 1991773 B1 bekannt. Hier ist eine 3/2-Wege-Steuervorrichtung realisiert. Die bekannte Steuervorrichtung ist mehrteilig ausgebildet und weist ein Steuerventil mit einem in einer Ventilführung geführten Ventileinsatz auf. In dem Ventileinsatz ist eine Ablaufdrossel angeordnet, die permanent die durch das Steuerventil unterteilten Bereiche des Steuerraums miteinander verbindet. Bei dieser Ausführung kann permanent Kraftstoff über die Ablaufdrossel zwischen den beiden durch das Steuerventil unterteilten Bereichen des Steuerraums ausgetauscht werden.
  • Aufgabe der vorliegenden Erfindung ist es, ein gattungsgemäßes Kraftstoffeinspritzventil derart weiterzubilden, dass der hydraulische Wirkungsgrad bei der intermittierenden Einspritzung des Brennstoffs in den Brennraum verbessert wird und dass das Öffnen bzw. Schließen der Düsennadel im Vergleich zum Stand der Technik schneller erfolgen kann.
  • Erfindungsgemäß wird diese Aufgabe durch die Kombination der Merkmale des Anspruchs 1 gelöst. Demnach wird ein Kraftstoffeinspritzventil zur intermittierenden Einspritzung von Kraftstoff in den Brennraum einer Verbrennungskraftmaschine mit einem Gehäuse vorgeschlagen, das einen Hochdruckraum, der mit einem Hochdruckeinlass in Verbindung steht, und einen Niederdruckraum aufweist, ferner mit einer im Hochdruckraum längsbeweglichen Düsennadel, die mit einem Düsensitz zusammenwirkt und durch ihre Längsbewegung eine Verbindung des Hochdruckraums mit einer Einspritzöffnung öffnet und schließt, wobei die Düsennadel über eine Druckfeder mit einer in Richtung auf den Düsensitz gerichteten Schließkraft beaufschlagt wird und wobei die Druckfeder sich auf einer Seite an einer Federhülse aufstützt, in der die Düsennadel in ihrem freien Ende geführt ist, ferner mit einem durch die Federhülse und durch das obere Ende der Düsennadel begrenzten Steuerraum, der mit Kraftstoff unter Druck befüllbar ist und so gesteuert eine Schließkraft auf die Düsennadel ausübt, ferner mit einem im Steuerraum angeordneten Steuerventil, das den Steuerraum in einen ersten und einen zweiten Steuerraum unterteilt, wobei das Steuerventil aus einem in eine Ventilführung geführten Ventileinsatz besteht und wobei in der Ventilführung eine Ablaufdrossel angeordnet ist, die auf der einen Seite mit dem ersten Steuerraum und auf der anderen Seite mit dem zweiten Steuerraum verbunden ist, wobei die durch die Ablaufdrossel gebildete Verbindung zwischen dem ersten Steuerraum und dem zweiten Steuerraum gezielt zeitweise unterbrechbar ist.
  • Bevorzugte Ausführungsformen der erfindungsgemäßen Lösung ergeben sich aus den sich an den Hauptanspruch anschließenden Unteransprüchen.
  • Demnach kann die Unterbrechung der durch die Ablaufdrossel gebildeten Verbindung durch ein Verschließen der Ablaufdrossel mittels eines Schaltelementes erfolgen.
  • Gemäß einer besonders bevorzugten Ausgestaltung der Erfindung besteht das Schaltelement aus einer in der Ablaufdrossel angeordneten Kugel. Diese kann vorteilhaft aus Stahl oder Keramik bestehen.
  • Gemäß einer anderen alternativen vorteilhaften Ausgestaltung der Erfindung kann das Schaltelement aber auch ein Schieber mit Konus, ein Zylinder oder eine Platte sein.
  • Zur Verbesserung des Schaltmechanismus kann das jeweils vorgesehene Schaltelement durch eine vorgespannte Feder in einem in der Ablaufdrossel vorgesehenen Dichtsitz gehalten sein. Hierdurch kann die gewünschte Schaltcharakteristik besonders gut realisiert werden.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung kann der zweite Steuerraum teilweise von einer Sitzplatte begrenzt werden, die über eine gesteuert verschließbare Drosselbohrung mit dem Niederdruckraum in Verbindung steht. Die Drosselbohrung kann über einen im Niederdruckraum angeordneten Anker verschließbar sein, wobei der Anker über einen elektrischen Aktuator entgegen der Vorspannung der Feder von der Drosselbohrung gesteuert abhebbar ist. Dieser Anker stellt das sogenannte Pilotventil dar, über dessen Betätigung das Kraftstoffeinspritzventil angesteuert wird.
  • Der Ventileinsatz kann entsprechend einer besonders vorteilhaften Ausführungsform pilzförmig ausgestaltet sein.
  • Die Ventilführung weist weiter vorteilhaft eine Zulaufdrossel mit Zuführung von unter Hochdruck stehendem Kraftstoff in den zweiten Steuerraum auf.
  • Des Weiteren kann die Ventilführung mindestens eine diagonal angeordnete Bohrung aufweisen, über die der erste Steuerraum mit dem Hochdruckraum zur Zuführung von unter Hochdruck stehendem Kraftstoff verbindbar ist. Besonders vorteilhaft sind zwei diagonal oder drei versetzt um 120 ° angeordnete Bohrungen vorgesehen.
  • Die Ventilführung und der Ventileinsatz können vorteilhaft längsverschieblich in der Federhülse geführt sein. Hierdurch ist eine besondere kompakte Bauform geschaffen.
  • Die Funktionsweise des erfindungsgemäßen Kraftstoffeinspritzventils ergibt sich wie folgt:
    Zum Ausgangszustand haben beim geschlossenen Pilotventil, also bei verschlossener Drosselbohrung, bei gleichzeitig versperrter Ablaufdrossel im stationären Zustand alle Druckräume ein ausgeglichenes Druckniveau, welches dem Systemdruck entspricht. Der vorteilhaft pilzförmige Ventileinsatz liegt in seiner unteren Anschlagposition, sodass der zweiteilige Steuerraum durch das offene Steuerventil mit dem Hochdruckraum verbunden ist. Das Schaltelement, das vorzugsweise als Kugel ausgebildet ist, verschließt die durch die Ablaufdrossel gebildete Verbindung zwischen dem ersten Steuerraum und dem zweiten Steuerraum entweder durch die eigene Schwerkraft oder in der Ausführung mit der Druckfeder entsprechend federunterstützt.
  • Öffnet nun das Pilotventil, d.h. wird der Anker von der Drosselbohrung abgehoben, so sinkt zunächst das Druckniveau im zweiten Steuerraum, indem der Kraftstoff über die Drosselbohrung abfließt. Über die Zulaufdrossel fließt zwar Kraftstoff nach, kann aber einen Druckabfall im zweiten Steuerraum nicht verhindern. Das entstehende Druckgefälle vom ersten zum zweiten Steuerraum führt dazu, dass nun der Ventileinsatz in seine obere Anschlagposition verschoben wird und so den Zulauf aus dem Hochdruckraum verschließt. Durch die gleichzeitige Unterbrechung der durch die Ablaufdrossel gebildeten Verbindung zwischen erstem und zweiten Steuerraum läuft dieser Vorgang beschleunigt ab, da zuerst im zweiten Steuerraum der Druck abgebaut wird. Anschließend wird aber auch das Schaltelement, also beispielsweise die Kugel, aus ihrer Schließposition am Konussitz verschoben und Kraftstoff fließt kontinuierlich vom ersten Steuerraum über den zweiten Steuerraum ab. Der Druckabfall im ersten Steuerraum reduziert die Schließkraft der Düsennadel am Düsensitz bis zur Kraftstoffunterwanderung an der Nadelsitzfläche, sodass die Düsennadel öffnet. Daraufhin führt die Düsennadel ihren Öffnungshub aus, der durch die Druckdifferenz zwischen Hochdruckraum und Steuerraum aufrechterhalten wird. Die Düsennadel würde nun solange einen Öffnungshub ausführen, bis sie an den oberen Nadelanschlag am Ventileinsatz anliegt. Dieser Anschlagpunkt ist aber so ausgelegt, dass er im Normallbetrieb im Motorbetrieb nie erreicht wird und so auch keine Relevanz hat.
  • Schließt das Pilotventil, also verschließt der Anker die Drosselöffnung. Der kontinuierlich vorhandene Kraftstofffluss aus dem Hochdruckraum über die Zulaufdrossel sorgt für den Druckanstieg im zweiten Steuerraum. Unmittelbar nach dem Druckanstieg wirkt das umkehrende Druckgefälle, welches sich nun vom zweiten Steuerraum zum ersten Steuerraum einstellt, als Schließkraft auf das erfindungsgemäß vorgesehene Schaltelement, das vorzugsweise als Kugel ausgeführt ist, sodass die Ablaufdrossel zwischen dem ersten Steuerraum und dem zweiten Steuerraum unterbrochen bzw. versperrt wird. Das Verschließen der Ablaufdrossel unterstützt den schnelleren Druckanstieg im zweiten Steuerraum, sodass der Ventileinsatz mit dem Schaltventilsitz früher öffnet und einen großen Querschnitt für den Kraftstoffzulauf aus dem Hochdruckraum freigibt. Es kommt nun zu einem schwunghaften Anstieg des Drucks im ersten Steuerraum bis zum Systemdruckniveau, was die resultierende Öffnungskraft an der Düsennadel auf null reduziert. Allein durch die Nadelfederkraft erfolgt nun der rasche Schließvorgang der Düsennadel. Der Düsensitz dichtet ab und die Einspritzung ist beendet.
  • Durch die erfindungsgemäß vorgesehene zeitweise Unterbrechung der Verbindung zwischen dem ersten Steuerraum und dem zweiten Steuerraum durch die Ablaufdrossel können die Schaltzeiten verkürzt werden, was zu einer besseren Gesamtfunktion und insbesondere einer Verbesserung des hydraulischen Wirkungsgrades führt. Der Einspritzvorgang beginnt und endet früher. Hierdurch kann im Fall von Mehrfacheinspritzungen der Abstand zwischen zwei Einspritzungen verkürzt werden.
  • Weitere Vorteile der erfindungsgemäßen Lösung bestehen darin, dass eine schnelle Öffnung der Düsennadel für einen früheren Einspritzstrahlaufbau sorgt, was eine verbesserte Verbrennung im Brennraum zur Folge hat. Das schnellere Düsennadelöffnen kann gerade bei Mehrfacheinspritzungen für kürzere Spritzabstände genutzt werden.
  • Das schnellere Schließen der Düsennadel kann ebenfalls für kürzere Spritzabstände bei Mehrfacheinspritzungen genutzt werden. Die Ablauf- und auch Zulaufdrossel können auf kleinere Durchflüsse ausgelegt werden. Das wiederrum reduziert den Kraftstoffabfluss während der Einspritzung über die Ablaufdrossel, sodass der hydraulische Wirkungsgrad des gesamten Common-Rail-Systems verbessert wird. Ein höherer hydraulischer Wirkungsgrad reduziert darüberhinaus den Kraftstoffverbrauch einer Verbrennungskraftmaschine.
  • Weitere Merkmale, Einzelheiten und Vorteile der Erfindung werden anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Es zeigen:
  • Figur 1:
    einen Längsschnitt durch ein erfindungsgemäßes Kraftstoffein-spritzventil,
    Figur 2a, b:
    eine Detaildarstellung des Kraftstoffeinspritzventils gemäß eines Ausschnitts aus Figur 1,
    Figur 3a-c:
    weitere Detaildarstellungen gemäß dem Längsschnitt durch das Kraftstoffeinspritzventil entsprechend Figur 1 in unterschiedlichen Arbeitspositionen und
    Figur 4:
    den zeitlichen Verlauf der Einspritzrate unter Verwendung eines erfindungsgemäßen Einspritzventils im Vergleich zu einem herkömmlichen Einspritzventil.
  • In Figur 1 ist ein erfindungsgemäßes Kraftstoffeinspritzventil in Längsschnitt schematisch dargestellt. Das Kraftstoffeinspritzventil umfasst ein Gehäuse 10, welches über eine Düsenspannmutter 12 mit einer Düse 14 verbunden ist. Auf der gegenüberliegenden Seite ist das Gehäuse 10 über eine Verschlusskappe 16 mit einem elektrischen Anschlusskeil 18 verbunden. Im Inneren des Gehäuses 10 ist ein Hochdruckraum 20 ausgebildet.
  • Wie in Figur 1 dargestellt, ist das Kraftstoffeinspritzventil im einem Hochdruckbereich und einen Niederdruckbereich unterteilt. Der Hochdruckbereich 20 ist an seinem brennraumseitigen Ende von einem Düsensitz 22 begrenzt. Im Hochdruckbereich 20 ist eine Düsennadel 24 längsverschieblich angeordnet. Diese wirkt mit dem Düsensitz 22 zum Öffnen und Schließen mindestens einer Einspritzöffnung 26, die dem Brennraum zugewandt in der Düse 14 ausgebildet ist, zusammen. Die Düsennadel 24 wird an ihrem düsensitzabgewandten Ende in einer Federhülse 28 geführt, wobei zwischen der Federhülse 28 und einer auf einem Absatz der Düsennadel aufgelegten Scheibe 30 eine Druckfeder 32 unter Druckvorspannung angeordnet ist. Diese Druckfeder drückt einerseits die Düsennadel 24 gegen den Düsensitz 22. Andererseits drückt sie die Federhülse 28 gegen ein Steuerventil 34. Das mehrteilige Steuerventil 34 stützt sich an einer Sitzplatte 36 ab.
  • Der Hochdruckraum 20 ist über einen hier nicht näher dargestellten Hochdruckanschluss 25 mit Kraftstoff unter hohem Druck befüllbar, der von eine in der Zeichnung nicht dargestellten Hochdruckpumpe verdichtet worden ist. Dieser hohe Kraftstoffdruck herrscht im gesamten Hochdruckraum 20 und bewirkt eine hydraulische Kraft auf die Düsennadel 24, die die Kraft der Schließfeder 32 bei weitem übersteigt. Zur Erzeugung einer für die Längsbewegung der Düsennadel 24 notwendigen Gegenkraft begrenzt die Düsennadel mit ihrer dem Düsensitz abgewandten Stirnseite einen ersten Steuerraum 38, der durch die Federhülse 28 seitlich begrenzt wird (vgl. Figur 3). Die der Düsennadel 24 gegenüberliegende Seite des ersten Steuerraums 38 wird von dem zweiteiligen Steuerventil 34 begrenzt. Dieses Steuerventil 34 besteht aus einem pilzförmigen Ventileinsatz 40 und einer ringförmigen Ventilführung 42. Sowohl der Ventileinsatz 40 wie auch die Ventilführung 42 sind jeweils in der Federhülse 28 angeordnet, wie dies aus Figur 3 a ersichtlich ist. Der Ventileinsatz 40 ist längsverschieblich in der Ventilführung 42 geführt. Die Ventilführung 42 liegt an der Sitzplatte 36 an und umschließt zusammen mit dem Ventileinsatz 40 und der Ventilführung 42 einen zweiten Steuerraum 44. Dieser zweite Steuerraum 44 mündet in einer Drosselbohrung 46, welche über einen Anker 48 gesteuert verschließbar ist (vgl. Figur 3 a, b, c). Der Anker befindet sich auf der Niederdruckseite des Kraftstoffeinspritzventils, wie sich aus der Figur 1 ergibt. Aus der Drosselbohrung 46 austretender Kraftstoff wird im Niederdruckbereich über einen hier ebenfalls nicht dargestellten Leckölanschluss aus dem Gehäuse 10 ausgeschleust.
  • Der Anker 48 ist über eine Feder 50 in Richtung auf die Drosselbohrung 46 beaufschlagt. Im ruhenden Zustand verschließt der Anker 48 die Drosselbohrung dicht aufgrund der Federkraft der Druckfeder 50. Gegen die Federkraft der Druckfeder 50 kann der Anker 48 über einen Elektromagnet von der Drosselbohrung 46 abgehoben werden.
  • Wie zuvor ausgeführt ist das Steuerventil 34 im hier dargestellten Ausführungsbeispiel zweiteilig ausgeführt. Es besteht aus dem pilzförmig gebildeten Ventileinsatz 40. Dieser weist eine Bohrung 54 auf, wie in Figur 3 gezeigt.
  • Die Ventilführung, in der der Ventileinsatz längsverschieblich geführt ist, weist eine Zulaufdrossel 56 und eine Ablaufdrossel 58 auf. Die Zulaufdrossel verbindet den Hochdruckraum 20 mit dem zweiten Steuerraum 44. Die Ablaufdrossel 58 verbindet den ersten Steuerraum 38 mit dem zweiten Steuerraum 44. Die Ablaufdrossel 58 ist über eine Kugel 60 verschließbar (vergl. insbesondere die Figuren 2 und 3). Entsprechend der Darstellung aus Figur 3c weist die Ventilführung 42 auch zwei sich diametral gegenüberliegende diagonal angeordnete Bohrungen 62 auf, durch die Kraftstoff fließen kann.
  • Die Funktion des erfindungsgemäßen Kraftstoffeinspritzventils ergibt sich wie folgt. Der Anker 48 verschließt im unbestromten Zustand des Elektromagnets 52 die Drosselbohrung 46 der Sitzplatte 36 und verhindert ein Abströmen des Kraftstoffs aus dem zweiten Steuerraum 44 in den Leckagebereich, also den Bereich im Niederdruckteil des Kraftstoffeinspritzventils. Des Weiteren wird die Sitzplatte 36 gegen das Gehäuse 10 gedrückt (vergl. Figur 1). Aufgrund der hohen Oberflächengüte und Ebenheit an der Auflagefläche wird hierduch eine radiale Abdichtung zwischen dem Hochdruck- und dem Niederdruckbereich (Leckagebereich) sowie zwischen dem Hochdruckbereich und dem zweiten Steuerraum 44 gesorgt. Damit wird eine Dauerleckage vermieden.
  • Sobald der Elektromagnet 52 bestromt wird, wird der Anker 48 von der Drosselbohrung 46 abgehoben, sodass Kraftstoff durch die Drosselbohrung 46 der Sitzplatte 36 aus dem zweiten Steuerraum 44 in den Niederdruckbereich abfließt und somit einen Druckabfall im zweiten Steuerraum 44 erzeugt. Durch den Druckabfall entsteht eine Druckdifferenz zwischen dem zweiten Steuerraum 44 und dem ersten Steuerraum 38.
  • Diese Druckdifferenz sorgt dafür, dass der Ventileinsatz 40 sowie die Kugel 60 nach oben gedrückt werden und Kraftstoff durch die Ablaufdrossel 58 in der Ventilführung 42 aus dem ersten in den zweiten Steuerraum abfließt, wodurch wiederum ein Druckausgleich zwischen den beiden Steuerräumen 38, 44 hergestellt wird (vergl. Figur 3a). Der daraus resultierende Druckabfall im ersten Steuerraum 38 im Vergleich zum Hochdruckbereich führt zu einem Anheben der Düsennadel 24, wodurch die Einspritzöffnung 26 der Düse 14 freigegeben wird und eine Einspritzung des Injektors in den hier nicht dargestellten Brennraum erfolgt.
  • Sobald der Elektromagnet 52 nicht mehr bestromt wird, verschließt der Anker 48 die Drosselbohrung 46 der Sitzplatte 36 und die Kugel 60 wird wieder in einen hier nicht mehr dargestellten Ventilsitz der Ventilführung gedrückt, um die Ablaufdrossel 58 zu verschließen.
  • Dadurch wird der erste Steuerraum 38 vom zweiten Steuerraum 44 unverzüglich getrennt. Die Druckdifferenz zwischen dem ersten und dem zweiten Steuerraum stellt sich aufgrund des über die Zulaufdrossel 56 der Ventilführung 42 aus dem Hochdruckbereich zuströmenden Kraftstoffs ohne weitere Verluste durch ein Abfließen in den ersten Steuerraum 38 ein (vergl. Figur 3b).
  • Im Vergleich zum herkömmlichen Dreiwegeventil, mit einer konstanten Verbindung zwischen dem ersten und zweiten Steuerraum, wird bei diesem erfindungsgemäßen Steuerventil 34 durch den schnelleren Druckaufbau im zweiten Steuerraum 44 der Ventileinsatz 40 früher nach unten gegen die Federhülse 28 gedrückt. Dabei werden die Zulaufbohrungen 62 der Ventilführung 42 freigegeben und der erste Steuerraum 38 wird schlagartig mit Kraftstoff aus dem Hochdruckbereich befüllt (Fig. 3c). Hierdurch stellt sich im zweiten Steuerraum 44 wie auch im ersten Steuerraum 38 dasselbe Druckniveau wie im Hochdruckbereich 20 ein. Die Düsennadel 24 wird durch den im ersten Steuerraum 38 anliegendem Druck und zusätzlich unterstützt durch die Kraft der Druckfeder 32 wieder in den Düsensitz 22 gedrückt und beendet somit die Einspritzung in den hier nicht dargestellten Brennraum.
  • In der Figur 2 ist deutlich die geschlossene Position der Kugel 60 gezeigt, in der die Ablaufdrossel 35 verschlossen ist. Im hier dargestellten Ausführungsbeispiel schließt die Kugel 60 aufgrund der Schwerkraft. In einer hier nicht dargestellten alternativen Ausführungsform kann die Kugel zusätzlich noch durch eine nicht näher dargestellte Feder unterstützt werden. Die Darstellung gemäß Figur 2b zeigt die Kugel 60 in abgehobener Position. Hier wird aufgrund des Druckgefälles die Kugel 60 von der Ablaufdrossel 58 wegbewegt, so dass die Ablaufdrossel 58 freigegeben ist.
  • In Figur 5 wird der zeitliche Verlauf der Einspritzrate gemäß der vorliegenden Erfindung (Kurve I) mit dem zeitlichen Verlauf der Einspritzrate nach dem Stand der Technik (Kurve II) verglichen. Der Unterschied besteht darin, dass nach dem Stand der Technik die Ablaufdrossel 58 nicht über eine Kugel 60 verschließbar ist, so dass in jedem Zustand Kraftstoff durch die Ablaufdrossel fließen kann. Im linken Bereich des Diagramms und im rechten Bereich des Diagramms sind jeweils die ansteigende Flanke und die absteigende Flanke vergrößert dargestellt, um die Unterschiede im Verlauf deutlicher darzulegen. Hier wird deutlich, dass der Einspritzbeginn und das Einspritzende der Ausführungsform der vorliegenden Erfindung (Kurve I) um einige Mikrosekunden früher erfolgt als beim Stand der Technik (Kurve II). Dies hat, wie bereits zuvor dargelegt, insbesondere bei Mehrfacheinspritzzungen einen großen Vorteil. Dadurch lassen sich mehrere Einspritzungen zeitlich näher realisieren. Kurze Spritzabstände haben aber wiederum einen großen Vorteil bei der Emissionserfüllung von Verbrennungsmotoren, da hierdurch ein gleichmä-ßigerer Abbrand im Brennraum möglich ist.

Claims (12)

  1. Kraftstoffeinspritzventil zur intermittierenden Einspritzung von Kraftstoff in den Brennraum einer Verbrennungskraftmaschine
    mit einem Gehäuse, das einen Hochdruckraum, der mit einem Hochdruckeinlaß für Kraftstoff in Verbindung steht, und einen Niederdruckraum aufweist,
    mit einer im Hochdruckraum längsbeweglichen Düsennadel, die mit einem Düsensitz zusammenwirkt und durch ihre Längsbewegung eine Verbindung des Hochdruckraumes mit einer Einspritzöffnung öffnet und schließt, wobei die Düsennadel über eine Druckfeder mit einer in Richtung auf den Düsensitz gerichteten Schließkraft beaufschlagt wird und wobei die Druckfeder sich auf einer Seite an einer Federhülse abstützt, in der die Düsennadel mit ihrem freien Ende geführt ist,
    mit einem durch die Federhülse und durch das obere Ende der Düsennadel begrenzten Steuerraum, der mit Kraftstoff unter Druck befüllbar ist und so gesteuert eine Schließkraft auf die Düsennadel ausübt,
    mit einem im Steuerraum angeordneten Steuerventil, das den Steuerraum in einen ersten und einen zweiten Steuerraum unterteilt,
    wobei das Steuerventil aus einem in einer Ventilführung geführten Ventileinsatz besteht und wobei in der Ventilführung eine Ablaufdrossel angeordnet ist, die auf der einen Seite mit dem ersten Steuerraum und auf der anderen Seite mit dem zweiten Steuerraum verbunden ist,
    dadurch gekennzeichnet,
    dass die durch die Ablaufdrossel gebildete Verbindung zwischen dem ersten Steuerraum und dem zweiten Steuerraum gezielt zeitweise unterbrechbar ist.
  2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die Unterbrechung der durch die Ablaufdrossel gebildeten Verbindung durch ein Verschließen der Ablaufdrossel mittels eines Schaltelementes erfolgt.
  3. Kraftstoffeinspritzventil nach Anspruch 2, dadurch gekennzeichnet, dass das Schaltelement eine in der Ablaufdrossel angeordnete Kugel ist
  4. Kraftstoffeinspritzventil nach Anspruch 3, dadurch gekennzeichnet, dass die Kugel aus Stahl oder Keramik besteht.
  5. Kraftstoffeinspritzventil nach Anspruch 2, dadurch gekennzeichnet, dass das Schaltelement ein Schieber mit Konus, ein Zylinder oder eine Platte ist.
  6. Kraftstoffeinspritzventil nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass das Schaltelement durch eine vorgespannte Feder in einem in der Ablaufdrossel vorgesehenen Dichtsitz gehalten ist.
  7. Kraftstoffeinspritzventil nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der zweite Steuerraum teilweise von einer Sitzplatte begrenzt ist, die über eine gesteuert verschließbare Drosselbohrung mit dem Niederdruckraum in Verbindung steht.
  8. Kraftstoffeinspritzventil nach Anspruch 7, dadurch gekennzeichnet, dass die Drosselbohrung über einen im Niederdruckraum angeordneten Anker verschließbar ist, wobei .der Anker über einen elektrischen Aktuator entgegen der Vorspannung einer Feder von der Drosselbohrung gesteuert abhebbar ist.
  9. Kraftstoffeinspritzventil nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Ventileinsatz pilzförmig ausgebildet ist.
  10. Kraftstoffeinspritzventil nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Ventilführung eine Zulaufdrossel zur Zuführung von unter Hochdruck stehenden Kraftstoff in den zweiten Steuerraum aufweist.
  11. Kraftstoffeinspritzventil nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Ventilführung mindestens eine diagonal angeordnete Bohrungen aufweist, über die der erste Steuerraum mit dem Hochdruckraum zur Zuführung von unter Hochdruck stehendem Kraftstoff verbindbar ist.
  12. Kraftstoffeinspritzventil nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass Ventilführung und Ventileinsatz in der Federhülse längsverschieblich geführt sind.
EP20210871.8A 2017-03-10 2018-03-09 Kraftstoffeinspritzventil Active EP3800344B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102017002366.2A DE102017002366A1 (de) 2017-03-10 2017-03-10 Kraftstoffeinspritzventil
PCT/EP2018/055975 WO2018162747A1 (de) 2017-03-10 2018-03-09 Kraftstoffeinspritzventil
EP18710846.9A EP3580447B1 (de) 2017-03-10 2018-03-09 Kraftstoffeinspritzventil

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP18710846.9A Division EP3580447B1 (de) 2017-03-10 2018-03-09 Kraftstoffeinspritzventil

Publications (2)

Publication Number Publication Date
EP3800344A1 true EP3800344A1 (de) 2021-04-07
EP3800344B1 EP3800344B1 (de) 2023-06-07

Family

ID=61627103

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20210871.8A Active EP3800344B1 (de) 2017-03-10 2018-03-09 Kraftstoffeinspritzventil
EP18710846.9A Active EP3580447B1 (de) 2017-03-10 2018-03-09 Kraftstoffeinspritzventil

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP18710846.9A Active EP3580447B1 (de) 2017-03-10 2018-03-09 Kraftstoffeinspritzventil

Country Status (6)

Country Link
US (1) US11215155B2 (de)
EP (2) EP3800344B1 (de)
CN (1) CN110546376B (de)
DE (1) DE102017002366A1 (de)
ES (1) ES2859671T3 (de)
WO (1) WO2018162747A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3990770A1 (de) 2019-06-25 2022-05-04 Ganser-Hydromag AG Brennstoffeinspritzventil für verbrennungskraftmaschinen
WO2021165275A1 (de) 2020-02-17 2021-08-26 Ganser-Hydromag Ag Brennstoffeinspritzventil für verbrennungskraftmaschinen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1991773A1 (de) * 2006-03-03 2008-11-19 Ganser-Hydromag Ag Brennstoffeinspritzventil für verbrennungskraftmaschinen
DE102012221624A1 (de) * 2012-11-27 2014-05-28 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
EP2867517A1 (de) * 2012-06-29 2015-05-06 Robert Bosch GmbH Kraftstoffeinspritzventil für brennkraftmaschinen

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19516565C2 (de) * 1995-05-05 1998-07-30 Orange Gmbh Einspritzventil einer Brennkraftmaschine
DE19812010C1 (de) * 1998-03-19 1999-09-30 Mtu Friedrichshafen Gmbh Kraftstoffeinspritzventil für eine Brennkraftmaschine
EP1163440B1 (de) 1999-03-18 2005-10-05 Delphi Technologies, Inc. Kraftstoffinjektor
PL2093410T3 (pl) 2008-02-21 2014-07-31 Delphi Int Operations Luxembourg Sarl Wtryskiwacz paliwa z udoskonalonym układem sterującym działaniem zaworu
DE102013212490A1 (de) 2013-06-27 2014-12-31 Robert Bosch Gmbh Kraftstoffeinspritzventil mit einem stoffschlüssig und/oder kraftschlüssig zur Steuerraumhülse verbundenen Ventilkörper
CH710127A1 (de) 2014-09-17 2016-03-31 Ganser Crs Ag Brennstoffeinspritzventil für Verbrennungskraftmaschinen.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1991773A1 (de) * 2006-03-03 2008-11-19 Ganser-Hydromag Ag Brennstoffeinspritzventil für verbrennungskraftmaschinen
EP1991773B1 (de) 2006-03-03 2013-05-15 Ganser-Hydromag AG Brennstoffeinspritzventil für verbrennungskraftmaschinen
EP2867517A1 (de) * 2012-06-29 2015-05-06 Robert Bosch GmbH Kraftstoffeinspritzventil für brennkraftmaschinen
DE102012221624A1 (de) * 2012-11-27 2014-05-28 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen

Also Published As

Publication number Publication date
EP3580447A1 (de) 2019-12-18
CN110546376B (zh) 2022-01-14
EP3580447B1 (de) 2020-12-16
WO2018162747A1 (de) 2018-09-13
US11215155B2 (en) 2022-01-04
US20200116113A1 (en) 2020-04-16
CN110546376A (zh) 2019-12-06
EP3800344B1 (de) 2023-06-07
DE102017002366A1 (de) 2018-09-13
ES2859671T3 (es) 2021-10-04

Similar Documents

Publication Publication Date Title
EP1774166B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
EP0960274A1 (de) Kraftstoffeinspritzvorrichtung für brennkraftmaschinen
DE10052604A1 (de) Magnetventil zur Steuerung eines Einspritzventils einer Brennkraftmaschine
AT501914B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
DE102008032133A1 (de) Kraftstoffeinspritzvorrichtung
EP3580447B1 (de) Kraftstoffeinspritzventil
DE102005030220A1 (de) Injektor mit zuschaltbarem Druckübersetzer
EP2134956A1 (de) Kraftstoffinjektor mit verbessertem steuerventil
EP1925812B1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102009001266A1 (de) Kraftstoff-Injektor mit piezoelektrischem Aktuator sowie hydraulischem Koppler
EP1483499A1 (de) Einrichtung zur druckmodulierten formung des einspritzverlaufes
DE102007034319A1 (de) Injektor
DE102007009167A1 (de) Mehrwegeventil
DE10312738B4 (de) Einspritzventil mit hydraulisch betätigter Nadel und Hohlnadel und Verfahren zum Steuern einer Einspritzung
EP3775527B1 (de) Injektor zum einspritzen von kraftstoff
EP3184802B1 (de) Kraftstoffinjektor
EP3184803B1 (de) Kraftstoffinjektor
DE19940289B4 (de) Kraftstoffeinspritzventil
DE102009000283A1 (de) Injektor zum Einspritzen von Kraftstoff
DE102007001365A1 (de) Injektor mit Steuer- und Schaltkammer
DE102005058556B4 (de) Injektor eines Kraftstoffeinspritzsystems
EP2085604A1 (de) Injektor zum Einspritzen von Kraftstoff
DE102019215119A1 (de) Kraftstoffinjektor
DE102007017126A1 (de) Einspritzmodul
EP1502023A1 (de) Kraftstoffeinspritzeinrichtung für brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 3580447

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211007

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230104

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 3580447

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1575767

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018012440

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230907

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231009

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018012440

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240319

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607