EP3794373A1 - Détecteur radar à entrées et sorties multiples (mimo) pour véhicules automobiles - Google Patents

Détecteur radar à entrées et sorties multiples (mimo) pour véhicules automobiles

Info

Publication number
EP3794373A1
EP3794373A1 EP19709900.5A EP19709900A EP3794373A1 EP 3794373 A1 EP3794373 A1 EP 3794373A1 EP 19709900 A EP19709900 A EP 19709900A EP 3794373 A1 EP3794373 A1 EP 3794373A1
Authority
EP
European Patent Office
Prior art keywords
arrays
antennas
transmitting
board
receiving antennas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19709900.5A
Other languages
German (de)
English (en)
Inventor
Michael Schoor
Benedikt Loesch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3794373A1 publication Critical patent/EP3794373A1/fr
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them

Definitions

  • the invention relates to a MIMO radar sensor for motor vehicles, having an antenna arrangement on a rectangular board whose edges define a y-direction and a z-direction, the antenna arrangement comprising at least two arrays of transmitting antennas and at least two arrays of receiving antennas, transmitting antennas within each array in the z-direction are offset from each other, while the two arrays of the transmitting antennas are offset from one another in the y-direction, and the receiving antennas within each array in the y-direction are offset from each other, while the two arrays of the receiving antennas in z direction are offset from each other.
  • PRIOR ART Radar sensors are used in driver assistance systems or autonomous vehicle guidance systems for motor vehicles for environmental monitoring, in particular for measuring distances, relative speeds and directional angles of other vehicles and also of stationary objects.
  • the azimuth angle of an object ie the angle between seeing the forward direction of the vehicle and the visual ray to the object in a horizontal plane
  • the elevation angle required ie the angle between the line of sight to the object and the horizontal plane.
  • the elevation angle allows a statement about the relevance of the destination, ie whether the destination is passable or navigable (eg a bridge) or whether it is a real obstacle.
  • Azimuth and elevation angles of the targets can be determined from amplitudes and / or phase differences between a plurality of transmitting and / or receiving antennas of an antenna array.
  • MIMO multiple-input-multiple-output
  • the signals received by the individual receive antennas must be evaluated in separate evaluation channels.
  • the individual antennas In order to improve the angular accuracy and the angular separation capability in the azimuth given a given number of evaluation channels, one often selects distances between the individual antennas which are larger than half the wavelength l / 2 of the radar waves. However, this can lead to ambiguities, which must be resolved either by means of a separate antenna array or by other methods, for example by tracking the targets located over a longer period.
  • the frequency of the transmitted radar signal is modulated in a ramp.
  • the received signal is mixed with a portion of the signal transmitted at the time of reception so as to obtain an intermediate frequency signal whose frequency corresponds to the frequency difference between the transmitted signal and the received signal.
  • This frequency difference is due to the frequency modulation of the signal transit time and due to the Doppler effect of the relative speed depends on the object, so that you get information about the distance and the relative speed of the object in several measuring cycles in which ramps are driven with different pitch.
  • the intermediate frequency signal recorded during a measurement cycle is converted by a Fast Fourier Transform (FFT) into a spectrum in which each located object is characterized by a peak in a specific frequency bin.
  • FFT Fast Fourier Transform
  • DML functions deterministic maximum likelihood functions
  • the antenna arrangement as a whole should have the largest possible aperture or at least the largest possible virtual aperture both in the y-direction and in the z-direction.
  • the antenna arrangement must therefore have relatively large dimensions, so that a correspondingly large board is needed. Since the board must be made of an expensive high frequency suitable material, this leads to increased costs.
  • the object of the invention is to provide an antenna arrangement which allows a high angular resolution in azimuth and elevation and yet can be accommodated on a compact board.
  • This object is achieved in that the two arrays of the transmitting antennas are arranged adjacent to two opposite edges of the board, the two arrays of the receiving antennas adjacent to the two remaining edges of the board are arranged and in a central region of the board between the Arrays of the transmitting and receiving antennas at least one high frequency component is arranged on the board.
  • the outer edges of the antenna arrays form a rectangular frame which, taking into account a certain minimum distance between the antenna patches and the edge of the board, dictates the shape and dimensions of the rectangular board.
  • the space available on the rectangular board can be used optimally for an antenna arrangement with high apertures in azimuth and in elevation.
  • the antenna arrays can be configured depending on the desired angular resolution and uniqueness of the angle estimates.
  • the y-direction is the azimuthal direction.
  • the receive antennas may form two arrays extending along the top and bottom edges of the board, while the transmit antennas may be two Arrays can form, which extend along the lateral edges of the board.
  • the transmission antennas can lie in the gap between the two arrays of the receiving antennas in the z-direction. However, in another embodiment they can also be arranged laterally next to the arrays of the receiving antennas so that they cover the entire direction in the z-direction space available on the board.
  • 1 is a schematic representation of an antenna arrangement of a radar sensor and an object to be located with the aid of this antenna arrangement;
  • FIG. 2 is a diagram analogous to FIG. 1, illustrating different signal propagation paths
  • FIG. 3 shows the antenna arrangement according to FIG. 1 in a front view
  • FIG. 4 shows an antenna arrangement according to another exemplary embodiment.
  • FIG. 1 shows an antenna arrangement 10 and a control and evaluation device 12 of a radar sensor, which serves to measure distances, relative speeds and directional angles of objects.
  • a single object 14 is shown here.
  • the radar sensor is installed, for example, in the front part of a motor vehicle, not shown, and serves in particular In particular, to detect preceding vehicles or other objects in the apron of the vehicle.
  • the radar sensor shown here is designed for a two-dimensional angle estimation in which both the azimuth angle Q and the elevation angle f of the object 14 are estimated.
  • the elevation angle f is defined as the angle between the visual ray S from the center of the radar sensor to the object 14 and an azimuthal (horizontal) plane P, which is spanned by a forward direction x of the vehicle and a sideways direction y.
  • the azimuth angle Q is defined as the angle between the forward direction x and the vertical projection of the line of sight s onto the azimuthal plane P.
  • the radar sensor is thus angle-resolving in the y-direction (measurement of the azimuth angle) and in the z-direction (Measurement of elevation angle).
  • the antenna arrangement 10 has two arrays AR1, AR2 each with eight receiving antennas RX and two arrays AT1, AT2 each with four transmitting antennas TX, which are formed on a rectangular board 16.
  • the edges of the board run in y- and z-direction.
  • the receiving antennas RX of each array are arranged at regular intervals on a straight line that extends in the y direction.
  • the receiving antennas thus form a so-called ULA (Uniform Linear Array).
  • the transmitting antennas TX are formed separately from the receiving antennas (bistatic antenna concept) and are arranged offset in the y direction as well as in the z direction offset from the receiving antennas.
  • FIG. 2 shows in solid lines a signal propagation path which leads from one of the transmit antennas TX to the object 14 and from there back to one of the receive antennas RX, and in broken lines a signal propagation path for another pair of transmit and transmit signals receiving antennas.
  • the radar signal originates from a phase center of the transmitting antenna (a point in the middle of the relevant group antenna) and runs to a corresponding phase center of the receiving antenna.
  • a high-frequency module 18 is arranged, e.g. a MMIC (Monolithic Microwave Integrated Circuit), comprising a transmitting part 20 which generates the transmission signals for the transmitting antennas, and a receiving part 22 which receives the signals from the receiving antennas RX in separate receiving channels and mixes them down into an intermediate frequency band and the thus obtained intermediate frequency signals transmitted to the control and evaluation device 12.
  • the signals are recorded and digitized at a specific sample rate over a measuring cycle. In this way, digitalized received signals are obtained, which are then further evaluated in a processor 24.
  • the processor 24 also controls the RF module 18 and determines, among other things, when which of the transmit antennas TX will transmit.
  • the signal propagation paths Due to the offset of the transmit and receive antennas, the signal propagation paths, of which only two are shown by way of example in FIG. 2, have a different length for each pair of transmit antenna and receive antenna.
  • the different lengths of the signal paths lead to characteristic differences in the amplitudes and phases of the signals received in the four receiving channels. These differences depend on the pairing of the transmitting and receiving antennas and on the azimuth angle Q and elevation angle f of the object 14. This effect is used in the digital evaluation of the data in the processor 24 for estimating the azimuth angle and the elevation angle of the object.
  • Both the transmit antennas TX and the receive antennas RX are each configured as a group antenna and, in the example shown, consist of two vertically (in the z-direction) columns each having eight antenna elements or patches 26.
  • the patches 26 are fed with in-phase transmission signals, which are supplied by the transmitting part 20.
  • the receive antennas RX in this example also consist of patches 26 which have the same arrangement as the patches in the transmit antennas.
  • the signals received by the individual patches 26 are combined into a single signal by signal lines which are not shown, without the phase relationships between the signals being changed by the different patches.
  • the delay lobes of the receiving antennas thus have, in this example, the same shape as the transmitting lobes of the transmitting antennas.
  • the patches 26 of the transmit antennas and the receive antennas are square and have an edge length of 1/4, where 1 is the (middle) wavelength , g.
  • the patch-to-patch spacing within each array antenna is 1/2 in both horizontal and vertical.
  • the eight receiving antennas RX of each array RA1, RA2 are arranged at intervals of 2l, that is, the distance between the phase centers of two adjacent receive antennas in the y-direction is 2l. In the z direction, the antennas of each array are at the same height.
  • the upper edges of the antennas of the array RA1 are all the same distance dz1 from the top edge of the board 16, and accordingly the bottom edges of the antennas of the array RA2 are all the same distance dz2 from the bottom edge of the board.
  • the arrays TA1, TA2 of the transmitting antennae TX lie in the z-direction entirely within the space between the arrays RA1, RA2 of the receiving antennas.
  • the four transmit antennas are offset in the z direction and form two pairs of antennas that are at the same height in the y direction.
  • the left edges of the two outer antennas of the array TA1 thus have the same distance dy1 to the left edge of the board 16.
  • the right edges of the two outer antennas of the array TA2 have the same distance dy2 to the right edge of the board.
  • the displacements of the antennas relative to each other are different, but in each case in the y-direction and in the z-direction are in each case an integer multiple of 1/2.
  • the offsets in the two arrays TA1 and TA2 match, so that the array TA2 is a shifted copy of the array TA1.
  • the antenna spacings in the virtual array are not completely uniform. This gives constructive freedom for the optimization of the virtual array with regard to the respective requirements.
  • larger gaps between the virtual antennas increase the aperture, while, on the other hand, increasing the filling of the gaps reduces the possibility of ambiguity in the determination of the angle.
  • the arrays RA1 and RA2 of the receive antennas extend along the top and bottom edges of the board 16, while the arrays TA1 and TA2 of the transmit antennas extend along the vertical edges of the board.
  • the (real) arrays RA1 and RA2 of the receiving antennas therefore already have a large aperture in the y-direction.
  • the arrays TA1 and TA2 of the transmitting antennas have the greatest distance from one another in the y direction, which is permitted by the width of the board 16, the virtual aperture for the azimuth angle determination is maximized.
  • the board 16 Since the arrays RA1 and RA2 of the receiving antennas in the z-direction have the greatest distance from one another, which the height of the board 16 allows, and the gaps between these two arrays are filled up by the virtual arrays, the board 16 will also be given a given dimension maximizes the aperture for angle determination in elevation. Since the remaining free space inside the board 16 is used for the radio-frequency module 18 and for the lines to the transmitting and receiving antennas, the space available on the board 16 is optimally utilized so that, given the material costs for the board 16 achieves optimum performance.
  • Fig. 4 shows, as another example, a slightly modified antenna arrangement 10 'in which the arrays TA1 and TA2 of the transmit antennas (outlined in dashed lines in the drawing) extend over the entire available height of the board 16 and laterally beside the opposite ends of the arrays RA1 and RA2 of the receiving antennas are arranged. This allows a further enlargement of the aperture in the z-direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

L'invention concerne un détecteur radar MIMO pour des véhicules automobiles, présentant une disposition d'antennes (10) sur une carte de circuit imprimé rectangulaire (16) dont les bords définissent une direction y et une direction z, la disposition d'antennes comprenant au moins deux séries (TA1, TA2) d'antennes d'émission (TX) et au moins deux séries (RA1, RA2) d'antennes de réception (RX), les antennes d'émission (TX) étant décalées les unes par rapport aux autres dans la direction z dans chaque série alors que les deux séries (TA1, TA2) d'antennes d'émission sont décalées les unes par rapport aux autres dans la direction y et les antennes de réception (RX) sont décalées les unes par rapport aux autres dans la direction y dans chaque série, alors que les deux séries (RA1, RA2) d'antennes de réception sont décalées les unes par rapport aux autres dans la direction z. Selon l'invention, les deux séries (TA1, TA2) d'antennes d'émission sont disposées à proximité de deux bords opposés de la carte de circuit imprimé (16), les deux séries (RA1, RA2) d'antennes de réception sont disposées à proximité des deux autres bords de la carte de circuit imprimé (16) et au moins un module haute fréquence (18) est disposé sur la carte de circuit imprimé dans une zone centrale de la carte de circuit imprimé (16) entre les séries d'antennes d'émission et de réception.
EP19709900.5A 2018-05-17 2019-03-07 Détecteur radar à entrées et sorties multiples (mimo) pour véhicules automobiles Pending EP3794373A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018207686.3A DE102018207686A1 (de) 2018-05-17 2018-05-17 MIMO-Radarsensor für Kraftfahrzeuge
PCT/EP2019/055700 WO2019219262A1 (fr) 2018-05-17 2019-03-07 Détecteur radar à entrées et sorties multiples (mimo) pour véhicules automobiles

Publications (1)

Publication Number Publication Date
EP3794373A1 true EP3794373A1 (fr) 2021-03-24

Family

ID=65724397

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19709900.5A Pending EP3794373A1 (fr) 2018-05-17 2019-03-07 Détecteur radar à entrées et sorties multiples (mimo) pour véhicules automobiles

Country Status (9)

Country Link
US (1) US11870138B2 (fr)
EP (1) EP3794373A1 (fr)
JP (1) JP7027579B2 (fr)
KR (1) KR20210009355A (fr)
CN (1) CN112136060B (fr)
CA (1) CA3099856A1 (fr)
DE (1) DE102018207686A1 (fr)
MX (1) MX2020012207A (fr)
WO (1) WO2019219262A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220069477A1 (en) * 2019-01-31 2022-03-03 Mitsubishi Electric Corporation Antenna device and radar apparatus
DE102020201023A1 (de) 2020-01-29 2021-07-29 Zf Friedrichshafen Ag Radarsensor mit Antennenanordnung
DE102020201022A1 (de) 2020-01-29 2021-07-29 Zf Friedrichshafen Ag Antennenanordnung für einen Radarsensor
DE102020201025A1 (de) 2020-01-29 2021-07-29 Zf Friedrichshafen Ag Antennenanordnung für einen Radarsensor
DE102020124300A1 (de) * 2020-09-17 2022-03-17 Endress+Hauser SE+Co. KG Winkelauflösendes Füllstandsmessgerät
DE102021200520A1 (de) * 2021-01-21 2022-07-21 Robert Bosch Gesellschaft mit beschränkter Haftung MIMO-Radarsensor mit synchronisierten Hochfrequenzchips
DE102022101752A1 (de) 2022-01-26 2023-07-27 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben eines Radarsystems für ein Fahrzeug, Radarsystem und Fahrzeug

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPR187100A0 (en) 2000-12-04 2001-01-04 Cea Technologies Inc. Slope monitoring system
WO2007045026A1 (fr) * 2005-10-17 2007-04-26 Groundprobe Pty Ltd Radar à synthèse d'ouverture à réseau périmétrique
CN102414574B (zh) 2009-04-23 2013-11-06 三菱电机株式会社 雷达装置及天线装置
DE102010040696A1 (de) * 2010-09-14 2012-03-15 Robert Bosch Gmbh Radarsensor für Kraftfahrzeuge, insbesondere RCA-Sensor
DE102011113018A1 (de) 2011-09-09 2013-03-14 Astyx Gmbh Abbildender Radarsensor mit schmaler Antennenkeule und weitem Winkel-Detektionsbereich
CN102866401B (zh) * 2012-08-06 2014-03-12 西北工业大学 一种基于mimo技术的三维成像方法
DE102012223696A1 (de) 2012-12-19 2014-06-26 Rohde & Schwarz Gmbh & Co. Kg Vorrichtung zur Messung von Mikrowellensignalen und Verfahren zur Konfiguration derselben
DE102013105809B4 (de) * 2013-06-05 2015-01-22 Airbus Defence and Space GmbH Multifunktionale Radaranordnung
DE102014219113A1 (de) 2014-09-23 2016-03-24 Robert Bosch Gmbh MIMO-Radarvorrichtung zum entkoppelten Bestimmen eines Elevationswinkels und eines Azimutwinkels eines Objekts und Verfahren zum Betreiben einer MIMO-Radarvorrichtung
DE102014118031A1 (de) 2014-12-05 2016-06-09 Astyx Gmbh Radarsensor, Radarsensor-System sowie Verfahren zur Bestimmung der Position eines Objekts mit horizontaler und vertikaler digitaler Strahlformung zur Vermessung von punkt- und flächenförmig reflektierenden Objekten
US20160306034A1 (en) 2014-12-23 2016-10-20 Infineon Technologies Ag RF System with an RFIC and Antenna System
DE102016203160A1 (de) 2016-02-29 2017-08-31 Robert Bosch Gmbh Radarsystem, umfassend eine Antennenanordnung zum Senden und Empfangen elektromagnetischer Strahlung
JP2017157961A (ja) 2016-02-29 2017-09-07 パナソニック株式会社 アンテナ基板
DE102016207871A1 (de) 2016-05-09 2017-11-09 Robert Bosch Gmbh Azimutbestimmung mittels eines Radarsensors

Also Published As

Publication number Publication date
JP2021524030A (ja) 2021-09-09
KR20210009355A (ko) 2021-01-26
CA3099856A1 (fr) 2019-11-21
MX2020012207A (es) 2021-01-29
WO2019219262A1 (fr) 2019-11-21
CN112136060A (zh) 2020-12-25
US11870138B2 (en) 2024-01-09
US20210013596A1 (en) 2021-01-14
CN112136060B (zh) 2024-05-14
DE102018207686A1 (de) 2019-11-21
JP7027579B2 (ja) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2019219262A1 (fr) Détecteur radar à entrées et sorties multiples (mimo) pour véhicules automobiles
EP3204788B1 (fr) Capteur radar formeur d'image avec formation numérique horizontale de faisceau et mesure verticale d'objet par comparaison de phases en cas d'émetteurs décalés les uns par rapport aux autres
WO2018108359A1 (fr) Détecteur radar à entrées et sorties multiples (mimo) pour véhicules automobiles
EP3161514B1 (fr) Procédé de mesure d'un mimo radar
DE112008000513B4 (de) Elektronisch abtastendes Radarsystem
EP2659284B1 (fr) Capteur radar pour véhicules
EP2294450B1 (fr) Système radar pourvu d'antennes d'émission et de réception chevauchantes
EP3161513B1 (fr) Procédé de mésure de radar avec des zones de vision différentes
EP3039444B1 (fr) Capteur radar pour véhicules à moteur
EP2769236B1 (fr) Capteur radar à résolution angulaire
EP3752858B1 (fr) Capteur radar à large bande à résolution angulaire pour véhicules automobiles
DE102018212147A1 (de) Radarvorrichtung
DE102013216951A1 (de) Radarsensor für Kraftfahrzeuge
WO2020069921A1 (fr) Système radar destiné à un véhicule
DE102009027003A1 (de) Optimierung der Schaltreihenfolge bei geschalteten Antennenarrays
DE102008011889A1 (de) Digitale Strahlformung mit frequenzmodulierten Signalen
EP2616839B1 (fr) Capteur radar pour véhicules à moteur, notamment capteur rca
EP3740782A1 (fr) Capteur radar fmcw
DE102011079007A1 (de) Winkelauflösender radarsensor für kraftfahrzeuge
DE102021201073A1 (de) MIMO-Radarsensor
EP2225582B1 (fr) Détecteur radar monostatique multifaisceau, et procédé
DE102019219649A1 (de) Kooperatives Radarsensorsystem mit winkelauflösenden Radarsensoren
EP3803443A1 (fr) Radar polarimétrique, son utilisation appropriée et son procédé à cette fin
DE102004045108A1 (de) Empfangssystem für die Bestimmung eines Ziel-Ablagewinkels

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230509

17Q First examination report despatched

Effective date: 20230517