EP3784865B1 - Schmelzkopf einer eis-schmelzvorrichtung - Google Patents

Schmelzkopf einer eis-schmelzvorrichtung Download PDF

Info

Publication number
EP3784865B1
EP3784865B1 EP19720527.1A EP19720527A EP3784865B1 EP 3784865 B1 EP3784865 B1 EP 3784865B1 EP 19720527 A EP19720527 A EP 19720527A EP 3784865 B1 EP3784865 B1 EP 3784865B1
Authority
EP
European Patent Office
Prior art keywords
melting head
melting
region
inner recess
propagation direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19720527.1A
Other languages
English (en)
French (fr)
Other versions
EP3784865A1 (de
EP3784865C0 (de
Inventor
Peter Linder
Simon ZIERKE
Dirk Heinen
Christopher WIEBUSCH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinisch Westlische Technische Hochschuke RWTH
Original Assignee
Rheinisch Westlische Technische Hochschuke RWTH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rheinisch Westlische Technische Hochschuke RWTH filed Critical Rheinisch Westlische Technische Hochschuke RWTH
Publication of EP3784865A1 publication Critical patent/EP3784865A1/de
Application granted granted Critical
Publication of EP3784865B1 publication Critical patent/EP3784865B1/de
Publication of EP3784865C0 publication Critical patent/EP3784865C0/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/14Drilling by use of heat, e.g. flame drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/14Drilling by use of heat, e.g. flame drilling
    • E21B7/15Drilling by use of heat, e.g. flame drilling of electrically generated heat
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/008Drilling ice or a formation covered by ice
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible

Definitions

  • the invention relates to a melting head of an ice-melting device, comprising an attachment area at the rear with respect to the propagation direction for attachment to a drilling device or a drill pipe and a heatable front area at the front with respect to the propagation direction, the front area having a radially outer surface area in which the front area in the Propagation direction up to the front axial melt head end in the external cross section tapers, in particular the outer diameter tapers, and the radially outer surface area surrounds an inner recess whose free internal cross section decreases from the axial melt head end counter to the propagation direction.
  • a connection created from such a melting head and the drilling device or a rod assembly can then preferably form an ice-melting device.
  • Such a melting head is known, for example, from the publications SU 1 149 670 A1 , SU 1 087 648 A1 and DE 19 36 902 B1 .
  • the direction of propagation is understood to mean the direction in which the melting head or an ice melting device formed with it moves forward melting in the ice when used as intended.
  • the direction of propagation preferably coincides with a center axis, in particular a center longitudinal axis of the melting head and/or an ice melting device formed therewith.
  • Melting heads of this type are generally known in the prior art and are used to drill holes in ice, in particular because the ice surrounding the melting head is melted by the heated front area of the melting head and the melting head, together with the drilling device or drill rods connected to it, is Gravity direction through the acting weight force penetrates into the depth. possibly an additional driving force can also be exerted by means of a drill rod.
  • heating elements within the melting head are supplied with energy that is provided by the drilling device or the rods.
  • a drilling device forms a cylindrical housing, at the front end of which, in the direction of propagation, the melting head is attached with its rear attachment area.
  • the melting head preferably has a maximum external cross section, in particular diameter, which corresponds to the cross section, in particular diameter, of the cylindrical drilling device.
  • an energy source possibly also additional electronics, can be carried along, in particular, for example, a supply of cable that can be unwound, in order to provide a communication option and/or energy transmission via the cable between the drilling device and the surface.
  • a possible area of application is, for example, drilling holes in water-ice, for example in glacier areas or arctic areas of the world.
  • Another application is the creation of boreholes in the ice surface of distant astronomical bodies (e.g. planets, moons, comets, etc.).
  • ice is not limited to water ice.
  • ice is also understood to mean any other substance that is in the solid state and is converted into another state of aggregation by means of the heat of the melt drill head can be, particularly in the liquid state or even gaseous state.
  • fusion heads of fusion drilling devices have heating elements with which heat is generated, e.g. by resistance heating, which is transported by thermal conduction between the heating element and the material of the fusion head to its outer surface in order to bring about the melting process there.
  • heat is transported not only from the typically multiple heating elements to the outside to the surface of the front region of the fusion head heated thereby, but also into the interior of the fusion head and the entire drilling device, which can lead to problems.
  • heat can build up inside, which can have an effect on the electronics or energy storage devices that are carried along. Furthermore, the heat given off to the inside is effectively not available or only available with reduced efficiency for heating the front of the fusion head and is therefore possibly lost via the rear areas of the fusion head or the drilling device without having contributed to the progress of the fusion drilling.
  • This object is achieved according to the invention in that in a region between the point of intersection of the inner recess with the central axis and the axial melt head end, the surface sizes of the radially outer surface area and the surface of the inner recess are the same and the surfaces projected in the propagation direction of the outer Surface area and the surface of the inner recess are equal.
  • the plane in which the axially front melting head end lies preferably also forms the plane of the opening of the inner recess.
  • a normal vector on this (opening) plane preferably lies parallel to the propagation direction.
  • the heated front area has both a heated surface lying on the outside in the radial direction and a heated surface lying on the inside in the radial direction, namely that of the inner recess.
  • the radial direction is understood as being perpendicular to the propagation direction or central longitudinal axis of the melting head.
  • Located radially on the inside and on the outside means in connection with the surfaces mentioned that the inner surface has a smaller radial distance to the central axis than the outer surface.
  • Both the inner and the outer surface of the front area are not parallel or inclined to the propagation direction due to the respective tapers in or counter to the axial direction to the propagation direction, so that the movement of the melting head in the propagation direction results in an effective application of force to the surrounding ice through these surface areas results.
  • the inner projection surface actually corresponds to the inner free cross section of the inner recess in the plane of the front axial one melting head end.
  • the outer projection surface forms a ring surrounding the inner projection surface, the outer cross section, in particular outer diameter, of which corresponds to the maximum outer cross section of the melting head and preferably of the entire drilling device.
  • the amount of heat emitted by the heat transport from the heating elements to the outside and inside can thus be dissipated to the environment much better, according to the invention in each case via the front area of the melting head, which contributes to improved drilling progress and prevents internal heat build-up.
  • the front axial melting head end forms a frame, in particular a ring, via which the radially outer surface area and the surface of the inner recess merge into one another.
  • the end face of this ring pointing in the direction of propagation can, for example, be sharp-edged or crowned (or rounded) or flattened.
  • the result is that the front area of the melting head forms an annular area that extends in the axial direction, the annular width of which is the difference between the external and internal cross-sections from the front axial melt head end against the direction of propagation increases, in particular up to the axial position of the bottom of the inner recess.
  • the heating elements are arranged at least in certain areas, in particular at least with their tip areas that emit heat, in the material of the front area of the melting head, which is arranged between the tapering outer surface and the surface of the inner recess, i.e. actually in the material of the named ring area of the front area.
  • the melting head can comprise a plurality of heating elements, in particular which are each inserted in rearward recesses of the melting head, which in particular are open counter to the direction of propagation, the heating elements and/or recesses each having a radial distance from the central axis of the melting head which corresponds to the radial distance of the frame- or at least essentially corresponds to the annular, axially front melt head end, in particular corresponds to the radial spacing of the melt head end.
  • the transport path to the inner surface and the transport path to the outer surface are at least essentially of the same length.
  • the axial length of the tapering radially outer surface area and the axial depth of the inner recess are the same. This also contributes to the equalization of the heat transport.
  • the area sizes of the radially outer surface and the area of the inner recess are the same in a region between the point of intersection of the inner recess with the central axis of the melting head and the front axial end of the melting head. This ensures that at least essentially the same amount of heat can be transported away through these respective surfaces per unit of time, in particular which in turn equalizes the heat transport to the inside and to the outside.
  • the areas of the outer surface area and the area of the inner recess projected in the direction of propagation are the same are large, in particular since an at least substantially equal application of force then takes place as a result of the propagation onto the inner and outer surfaces.
  • the invention can preferably provide that the surface area lying on the outside and the inner recess are configured n-fold rotationally symmetrically, preferably rotationally symmetrically, about a central axis of the melting head lying in the direction of propagation.
  • the outer and inner cross-section of the melting head (viewed perpendicularly to the propagation) is n-polygonal, or the respective outer and inner surfaces are faceted, and with a rotationally symmetrical design, the respective cross-section is therefore circular.
  • a preferred, in particular rotationally symmetrical geometry of the melting head can provide that the outer surface area and the surface of the inner recess each correspond to a cone section or a section of a paraboloid.
  • the invention can also provide that the tapering front area corresponds to a body of rotation which is rotationally symmetrical about the central axis, in particular a cone section or paraboloid section, the tip area of which is folded over on the plane in which the front axial end of the melting head lies, to form the recess towards the interior of the melting head.
  • the shape in particular the cross-sectional shape viewed along the central axis of the outer surface area and the inner recess, apart from the sign and an axial displacement, in particular an axial displacement of twice the axial length of the front area, can obey the same mathematical function depending on the radial distance from the central axis .
  • the Figures 1A to 1D show different geometries of the outer surface 1a and inner surface 1b of a melting head 1 in cross section, ie cut in a plane in which the central axis 2 of the melting head 1 lies.
  • the Figures 1A and 1D show here inventive designs and the Figures 1B and 1C not according to the invention.
  • the propagation direction 3 is for everyone figures 1 using the arrow to the left of the figures 1 visualized.
  • the front area 1c of the melting head 1 comprises the radially outer surface area 1a.
  • This surface area tapers in cross section perpendicularly to the central axis 2 in the direction of propagation.
  • the outer diameter of the outer surface area 1a thus decreases in a direction from the rear attachment area 4 to the axially front melting head end 1d.
  • the start of the taper at the collar 1e preferably defines the axial start of the front area and the melting head end 1d the end of the front area.
  • the upper circular area representations over the Figures 1A to 1D visualize the surfaces of the radially outer surface area and the inner surface 1b of the respective recess 5 projected in the propagation direction or direction of the central axis 2.
  • the versions represent the possibilities, the sizes of the surfaces 1a and 1b or to make the sizes of the projections p1a and p1b the same or different, in particular with the special advantages as they are mentioned in the general part of the description.
  • Figure 1A represents an embodiment according to the invention, in which the inner surface 1b and the outer surface 1a in the cross section shown here are each described by a parabola.
  • the two parabolas differ only in the sign and an offset along the central axis 2 and are otherwise parameterized in the same way.
  • the mathematical description thus obeys the cross-sectional shape of both surfaces of the same function depending on the radial distance to the central axis 2 apart from the offset and an inversion. Due to the rotational symmetry, Figure 1A in space the shape of a paraboloid section of both surfaces.
  • the figures 2 show various inventive embodiments of the melting head 1 according to Figure 1A , So with a respective paraboloid shape of the inner and outer surfaces 1b and 1a.
  • the front axial melting head end 1d forms a sharp-edged shape on the axial end face
  • Figure 2B forms the melt head end 1d a rounded or crowned shape and at Figure 2C a flattened shape.
  • the figures also visualize recesses 6 which serve to accommodate heating elements, or the heating elements 6′ themselves. This is supplementary in the figure 3 shown more clearly. It can be seen here that the recesses 6 or heating elements 6 ′ are all arranged on a circle with a radius which corresponds to the radial distance of the melting head end 1d from the central axis 2 .
  • At least the heat-dissipating tips of the heating elements 6' are preferably centered in the ring area 7 of the front area of the melting head, so that their heat can be dissipated both outwards and inwards over a short distance.
  • a drilling device 8 with a cylindrical housing is connected to the rear of the rear fastening area 4, which, for example, energy sources 9 for the heating elements 6', shown here only symbolically, or other electronics 9 or cable 10 can accommodate.
  • the melting head 1 thus forms, together with this drilling device 8, an ice melting device.
  • R is the maximum outer diameter of the melting head 1
  • h is the depth of the recess 5 or the height of the tapered front area or annular area 7.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Description

  • Die Erfindung betrifft einen Schmelzkopf einer Eis-Schmelzvorrichtung, umfassend einen bezüglich der Propagationsrichtung hinteren Befestigungsbereich zur Befestigung an einer Bohrvorrichtung oder einem Bohrgestänge und einen bezüglich der Propagationsrichtung vorderen beheizbaren Frontbereich, wobei der Frontbereich einen radial außen liegenden Flächenbereich aufweist, in welchem der Frontbereich in der Propagationsrichtung bis zum vorderen axialen Schmelzkopfende im Außenquerschnitt sich verjüngend ausgebildet ist, insbesondere im Außendurchmesser verjüngend ausgebildet ist, und der radial außen liegende Flächenbereich eine innere Ausnehmung umgibt, deren freier Innenquerschnitt sich vom axialen Schmelzkopfende entgegen der Propagationsrichtung verringert. Eine erstellte Verbindung aus einem solchen Schmelzkopf und der Bohrvorrichtung bzw. einem Gestänge kann sodann bevorzugt eine Eis-Schmelzvorrichtung bilden.
  • Ein solcher Schmelzkopf ist z.B. bekannt aus den Publikationen SU 1 149 670 A1 , SU 1 087 648 A1 und DE 19 36 902 B1 .
  • Unter der Propagationsrichtung wird die Richtung verstanden in der sich der Schmelzkopf bzw. eine damit gebildete Eis- Schmelzvorrichtung bei bestimmungsgemäßer Verwendung schmelzend im Eis fortbewegt. Die Propagationsrichtung ist dabei bevorzugt übereinstimmend mit einer Mittenachse, insbesondere Mittenlängsachse des Schmelzkopfes und/oder einer damit gebildeten Eis-Schmelzvorrichtung.
  • Schmelzköpfe dieser Art sind allgemein im Stand der Technik bekannt und werden eingesetzt um Bohrungen in Eis durchzuführen, insbesondere dadurch, dass durch den beheizten Frontbereich des Schmelzkopfes das den Schmelzkopf umgebende Eis aufgeschmolzen wird und der Schmelzkopf zusammen mit der damit verbundenen Bohrvorrichtung bzw. dem Bohrgestänge in Schwerkraftrichtung durch die wirkende Gewichtskraft in die Tiefe vordringt. Ggfs. kann mittels eines Bohrgestänges auch eine zusätzliche treibende Kraft ausgeübt werden.
  • Der Stand der Technik und auch die hier weiterhin beschriebene Erfindung kann vorsehen, dass Heizelemente innerhalb des Schmelzkopfes mit Energie versorgt werden, die durch die Bohrvorrichtung oder das Gestänge bereitgestellt wird.
  • Z.B. kann es vorgesehen sein, dass eine Bohrvorrichtung ein zylindrisches Gehäuse ausbildet, an dessen in Propagationsrichtung vorderen Ende der Schmelzkopf mit seinem hinteren Befestigungsbereich befestigt ist. Der Schmelzkopf hat bevorzugt einen maximalen Außenquerschnitt, insbesondere Durchmesser, der dem Querschnitt, insbesondere Durchmesser der zylindrischen Bohrvorrichtung entspricht. Im Inneren der Bohrvorrichtung kann z.B. eine Energiequelle, ggfs. auch eine weitere Elektronik mitgeführt werden, insbesondere z.B. auch ein abspulbarer Kabelvorrat, um eine Kommunikationsmöglichkeit und/oder eine Energieübertragung über das Kabel zwischen der Bohrvorrichtung und der Über-Tage-Oberfläche bereitzustellen.
  • Ein mögliches Einsatzgebiet ist z.B. die Erstellung von Bohrungen in Wasser-Eis, z.B. in Gletschergebieten oder auch arktischen Gebieten der Erde. Eine Anwendung ist ebenso gegeben bei der Erstellung von Bohrungen in die Eisoberfläche von erdfernen astronomischen Körpern (z.B. Planeten, Monde, Kometen etc.). Insbesondere ist darauf hinzuweisen, dass der Begriff "Eis" nicht auf Wasser-Eis beschränkt ist. Unter Eis im Sinne der Erfindung wird auch jeglicher andere Stoff verstanden, der im festen Zustand vorliegt und mittels der Wärme des Schmelzbohrkopfes in einen anderen Aggregatzustand überführt werden kann, insbesondere in den flüssigen Zustand oder sogar gasförmigen Zustand.
  • Schmelzköpfe von Schmelzbohrvorrichtungen weisen wie eingangs genannt Heizelemente auf, mit denen Wärme erzeugt wird, z.B. durch Widerstandsbeheizung, die durch Wärmeleitung zwischen dem Heizelement und dem Material des Schmelzkopfes an dessen äußere Oberfläche transportiert wird, um dort den Schmelzprozess hervorzurufen.
  • Ein Wärmetransport erfolgt dabei im Regelfall nicht nur von den typischerweise mehreren Heizelementen nach außen zur hierdurch beheizten Fläche des Frontbereiches des Schmelzkopfes, sondern auch in das Innere des Schmelzkopfes und der gesamten Bohrvorrichtung, was zu Problemen führen kann.
  • Beispielsweise kann es im Inneren zu einem Wärmestau kommen, der auf die mitgeführte Elektronik oder Energiespeicher zurückwirken kann. Weiterhin steht die zum Inneren abgegebene Wärme effektiv auch nicht oder nur mit verringertem Wirkungsgrad für die Beheizung der Schmelzkopffront zur Verfügung und geht somit ggfs. über die hinteren Bereiche des Schmelzkopfes oder der Bohrvorrichtung verloren ohne zum Schmelzbohrfortschritt beigetragen zu haben.
  • Es ist daher eine Aufgabe der Erfindung einen verbesserten Schmelzkopf bereit zu stellen, mit dem es ermöglich wird, die genannten Nachteile zu überwinden, insbesondere die von Heizelementen im Schmelzkopf nach außen und nach innen abgegebene Wärmemenge besser nutzbar zu machen.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass in einem Bereich zwischen dem Schnittpunkt der inneren Ausnehmung mit der Mittenachse und dem axialen Schmelzkopfende die Flächengrößen von dem radial außen liegenden Flächenbereich und der Fläche von der inneren Ausnehmung gleich sind und die in Propagationsrichtung projizierten Flächen von dem äußeren Flächenbereich und der Fläche der inneren Ausnehmung gleich groß sind.
  • Die Ebene, in der das axial vordere Schmelzkopfende liegt, bildet hierbei bevorzugt auch die Ebene der Öffnung der inneren Ausnehmung. Bevorzugt liegt ein Normalenvektor auf dieser (Öffnungs-) Ebene parallel zur Propagationsrichtung.
  • Die hier benannten Außen- und Innenquerschnitte verstehen sich als betrachtet senkrecht zur Propagationsrichtung.
  • Durch diese erfindungsgemäße Ausgestaltung wird erzielt, dass der beheizte Frontbereich sowohl eine beheizte in radialer Richtung außen liegende Fläche aufweist als auch eine beheizte in radialer Richtung innen liegende Fläche, nämlich die der inneren Ausnehmung.
  • Insbesondere wird die radiale Richtung als senkrecht zur Propagationsrichtung bzw. Mittenlängsachse des Schmelzkopfes verstanden. Radial innen liegend und außen liegend bedeutet in Verbindung mit den damit genannten Flächen, dass die innen liegende Fläche einen kleineren radialen Abstand zur Mittenachse aufweist als die außen liegende Fläche.
  • Sowohl die innere als auch die äußere Fläche des Frontbereiches sind durch die jeweiligen Verjüngungen in bzw. entgegen axialer Richtung zur Propagationsrichtung nicht parallel bzw. zur Propagationsrichtung geneigt, so dass durch die Bewegung des Schmelzkopfes in Propagationsrichtung sich eine effektive Kraftbeaufschlagung des umgebenden Eises durch diese Flächenbereiche ergibt.
  • Durch diese Neigungen der inneren und äußeren Flächen ergeben sich bei Betrachtung einer gedachten Projektion dieser Flächen in Richtung der Propagation bzw. der Mittenachse des Schmelzkopfes jeweilige Projektionsflächen die somit senkrecht zur Propagation liegen und durch das Eis beaufschlagt sind.
  • Die innere Projektionsfläche entspricht dabei faktisch dem inneren freien Querschnitt der inneren Ausnehmung in der Ebene des vorderen axialen Schmelzkopfendes. Die äußere Projektionsfläche bildet einen die innere Projektionsfläche umgebenden Ring, dessen Außenquerschnitt, insbesondere Außendurchmesser dem maximalen Außenquerschnitt des Schmelzkopfes und bevorzugt der gesamten Bohrvorrichtung entspricht.
  • Die durch den Wärmtransport von den Heizelementen nach außen und nach innen abgegebene Wärmemenge kann somit deutlich besser zur Umgebung abgeführt werden und zwar erfindungsgemäß jeweils über den Frontbereich des Schmelzkopfes was zu einem verbesserten Bohrfortschritt beiträgt und einem inneren Wärmestau vorbeugt.
  • Durch die beschriebene Ausführung bildet das vordere axiale Schmelzkopfende einen Rahmen, insbesondere einen Ring, über den der radial außen liegende Flächenbereich und die Fläche der inneren Ausnehmung ineinander übergehen. Die in Propagationsrichtung weisende Stirnseite dieses Rings kann z.B. scharfkantig oder ballig (bzw. gerundet) oder abgeflacht ausgebildet sein.
  • Aufgrund der Außenquerschnittsvergrößerung des radial äußeren Flächenbereichs ausgehend vom vorderen Schmelzkopfende entgegen der Propagationsrichtung und der Innenquerschnittsverringerung der Ausnehmung entgegen der Propagationsrichtung ergibt es sich, dass der Frontbereich des Schmelzkopfes einen in axialer Richtung erstreckten Ringbereich ausbildet, dessen Ringbreite, also die Differenz von Außen- zu Innenquerschnitt vom vorderen axialen Schmelzkopfende entgegen der Propagationsrichtung zunimmt, insbesondere bis zur axialen Position des Bodengrundes der inneren Ausnehmung.
  • Es stellt eine besonders bevorzugte Ausführung der Erfindung dar, wenn die Heizelemente zumindest bereichsweise, insbesondere zumindest mit deren die Wärme abgebenden Spitzenbereichen, in dem Material des Frontbereiches des Schmelzkopfes angeordnet sind, welches zwischen der sich verjüngenden Außenfläche und der Fläche der inneren Ausnehmung angeordnet ist, also faktisch im Material des benannten Ringbereiches des Frontbereichs. Hierdurch wird besonders gut sichergestellt, dass die von den Heizelementen abgegebene Wärme sowohl über den verjüngten Außenflächenbereich als auch die Innenfläche der Ausnehmung durch einen besonders kurzen, insbesondere nahezu radialen Transport zur Umgebung abgeführt werden kann und zum Aufschmelzen beiträgt.
  • Besonders bevorzugt kann der Schmelzkopf mehrere Heizelemente umfassen, insbesondere die jeweils in rückwärtige, insbesondere entgegen der Propagationsrichtung offene Ausnehmungen des Schmelzkopfes eingesetzt sind, wobei die Heizelemente und/oder Ausnehmungen jeweils einen radialen Abstand zur Mittenachse des Schmelzkopfes aufweisen, der dem radialen Abstand des rahmen- oder ringförmigen axial vorderen Schmelzkopfendes zumindest im Wesentlichen entspricht, insbesondere dem radialen Abstand des Schmelzkopfendes entspricht. Hierdurch wird erzielt, dass der Transportweg zur inneren Fläche und der Transportweg zur äußeren Fläche zumindest im Wesentlichen gleich lang ist.
  • Insbesondere kann es auch vorgesehen sein, dass die axiale Länge des sich verjüngenden radial außen liegenden Flächenbereichs und die axiale Tiefe der inneren Ausnehmung gleich sind. Auch dies trägt zur Vergleichmäßigung des Wärmetransports bei.
  • Erfindungsgemäß ist es vorgesehen, dass in einem Bereich zwischen dem Schnittpunkt der inneren Ausnehmung mit der Mittenachse des Schmelzkopfes und dem vorderen axialen Schmelzkopfende die Flächengrößen von der radial außen liegenden Fläche und der Fläche von der inneren Ausnehmung gleich sind. Hierdurch wird sichergestellt, dass durch diese jeweiligen Flächen pro Zeiteinheit zumindest im Wesentlichen dieselbe Wärmemenge abtransportiert werden kann, insbesondere was wiederum den Wärmetransport nach innen und nach außen vergleichmäßigt.
  • Weiterhin ist es erfindungsgemäß vorgesehen, dass in Kombination mit vorgenannter Ausführung, die in Propagationsrichtung projizierten Flächen von dem äußeren Flächenbereich und der Fläche der inneren Ausnehmung gleich groß sind, insbesondere da sodann durch die Propagation auf die Innen- und Außenfläche eine zumindest im wesentlichen gleiche Kraftbeaufschlagung erfolgt.
  • Bei allen möglichen Ausführungen kann es die Erfindung bevorzugt vorsehen, dass der außen liegende Flächenbereich und die innere Ausnehmung um eine in Propagationsrichtung liegende Mittenachse des Schmelzkopfes n-fach drehsymmetrisch, bevorzugt rotationssymmetrisch ausgebildet sind. Bei n-facher Drehsymmetrie ist der Außen- bzw. Innenquerschnitt des Schmelzkopfes (betrachtet senkrecht zur Propagation) n-polygonal, bzw. die jeweiligen Außen- bzw. Innenflächen facettiert und bei rotationssymmetrischer Ausbildung ist der jeweilige Querschnitt somit kreisförmig.
  • Eine bevorzugte, insbesondere rotationssymmetrische Geometrie des Schmelzkopfes kann es vorsehen, dass der äußere Flächenbereich und die Fläche der inneren Ausnehmung jeweils einem Kegelabschnitt oder einem Abschnitt eines Paraboloids entspricht.
  • Die Erfindung kann weiterhin vorsehen, dass der sich verjüngende Frontbereich einem um die Mittenachse rotationssymmetrischen Rotationskörper, insbesondere Kegelabschnitt oder Paraboloidabschnitt entspricht, dessen Spitzenbereich an der Ebene, in welcher das vordere axiale Schmelzkopfende liegt, zur Bildung der Ausnehmung zum Inneren des Schmelzkopfes umgeklappt ist.
  • Insbesondere kann die Form, insbesondere die Querschnittform betrachtet längs der Mittenachse des äußeren Flächenbereiches und der inneren Ausnehmung abgesehen vom Vorzeichen und einer axialen Verschiebung, insbesondere einer axialen Verschiebung von doppelter axialer Länge des Frontbereiches, derselben mathematischen Funktion in Abhängigkeit vom radialen Abstand von der Mittenachse gehorchen.
  • Ausführungen der Erfindung und nicht erfindungsgemäße Ausführungen werden anhand der Figuren näher beschrieben.
  • Die Figuren 1A bis 1D zeigen verschiedene Geometrien der Außenfläche 1a und Innenfläche 1b eines Schmelzkopfes 1 im Querschnitt, d.h. geschnitten in einer Ebene, in der die Mittenachse 2 des Schmelzkopfes 1 liegt. Die Figuren 1A und 1D zeigen dabei erfindungsgemäße Ausführungen und die Figuren 1B und 1C nicht erfindungsgemäße Ausführungen.
  • Die Propagationsrichtung 3 ist dabei für alle Figuren 1 anhand des Pfeiles links von den Figuren 1 visualisiert.
  • Erkennbar ist für alle Ausführungen der Figuren 1, dass der Frontbereich 1c des Schmelzkopfes1 den radial außen liegenden Flächenbereich 1a umfasst. Dieser Flächenbereich ist im Querschnitt senkrecht zur Mittenachse 2 in Richtung der Propagation verjüngend ausgebildet. Bei der hier vorliegenden Rotationssymmetrie nimmt somit der Außendurchmesser des äußeren Flächenbereiches 1a in einer Richtung vom hinteren Befestigungsbereich 4 zum axial vorderen Schmelzkopfende 1d ab. Der Beginn der Verjüngung am Kragen 1e definiert hierbei bevorzugt den axialen Anfang des Frontbereiches und das Schmelzkopfende 1d das Ende des Frontbereiches.
  • Die oberen Kreisflächendarstellungen über den Figuren 1A bis 1D visualisieren die in Propagationsrichtung bzw. Richtung der Mittenachse 2 projizierten Flächen des radial außen liegenden Flächenbereiches und der inneren Fläche 1b der jeweiligen Ausnehmung 5. Gemäß den Angaben über den projizierten Flächen p1a und p1b repräsentieren die Ausführungen die Möglichkeiten die Größen der Flächen 1a und 1b bzw. die Größen der Projektionen p1a und p1b gleich oder unterschiedlich groß zu gestalten, insbesondere mit den besonderen Vorteilen, wie sie im allgemeinen Beschreibungsteil genannt sind.
  • Figur 1A repräsentiert hier eine erfindungsgemäße Ausführung, bei welcher die innere Fläche 1b und die äußeren Fläche 1a im hier gezeigten Querschnitt jeweils durch eine Parabel beschrieben werden. Die beiden Parabeln unterscheiden sich nur im Vorzeichen und einem Offset entlang der Mittenachse 2 und sind ansonsten gleich parametriert. Damit gehorcht die mathematische Beschreibung der Querschnittsform beider Flächen derselben Funktion in Abhängigkeit vom radialen Abstand zur Mittenachse 2 abgesehen vom Offset und einer Inversion. Durch die Rotationssymmetrie ergibt sich bei Figur 1A im Raum die Form eines Paraboloidabschnittes beider Flächen.
  • Das gleiche kann für die Figuren 1B bis 1D gelten, wobei hier die Funktion eine Gerade beschreibt, was bei der Rotationssymmetrie im Raum zu einer Kegelabschnittform beider Flächen führt.
  • Die Figuren 2 zeigen verschiedene erfindungsgemäße Ausführungen des Schmelzkopfes 1 gemäß Figur 1A, also mit einer jeweiligen Paraboloidform der inneren und äußeren Flächen 1b und 1a.
  • Bei Figur 2A bildet das vordere axiale Schmelzkopfende 1d an der axialen Stirnseite eine scharfkantige Form, bei Figur 2B bildet das Schmelzkopfende 1d eine gerundete bzw. ballige Form und bei Figur 2C eine abgeflachte Form.
  • Die Figuren visualisieren weiterhin Ausnehmungen 6 die zur Aufnahme von Heizelementen dienen, bzw. die Heizelemente 6'selbst. Dies ist ergänzend in der Figur 3 deutlicher dargestellt. Hier erkennt man, dass die Ausnehmungen 6 bzw. Heizelemente 6' alle auf einem Kreis mit demjenigen Radius angeordnet sind, welcher dem radialen Abstand des Schmelzkopfendes 1d von der Mittenachse 2 entspricht.
  • Hierdurch liegen zumindest die wärmeabgebenden Spitzen der Heizelemente 6', bevorzugt zentriert, im Ringbereich 7 des Frontbereiches des Schmelzkopfes, so dass deren Wärmeabgabe sowohl nach außen als auch nach innen auf kurzem Weg erfolgen kann.
  • Rechtsseitig in der Figur 3, welche erfindungsgemäß mögliche Ausführungen betrifft, ist dargestellt, dass sich an den rückwärtigen Befestigungsbereich 4 eine Bohrvorrichtung 8 mit zylindrischem Gehäuse nach hinten anschließt, welches z.B. hier nur symbolisch dargestellte Energiequellen 9 für die Heizelemente 6' oder sonstige Elektronik 9 oder Kabel 10 aufnehmen kann. Der Schmelzkopf 1 bildet somit zusammen mit dieser Bohrvorrichtung 8 eine Eis-Schmelzvorrichtung.
  • Figur 4 verdeutlich, dass in erfindungsgemäßer Ausführung sowohl die Außenfläche 1a als auch die Innenfläche 1b der Ausnehmung 5 durch dieselbe Parabelformel P beschrieben werden und sich nur unterscheiden durch eine Inversion I und einen Offset O entlang der Mittenachse 2.
  • Das axial vordere ringförmige Schmelzkopfende liegt bei der hier dargestellten Parametrierung an der Position r = R 2
    Figure imgb0001
    . Hier gehen die Innenflächen und Außenflächen 1a, 1b ineinander über. R ist dabei der maximale Außendurchmesser des Schmelzkopfes 1 und h die Tiefe der Ausnehmung 5 bzw. Höhe des verjüngten Frontbereiches bzw. Ringbereiches 7.

Claims (10)

  1. Schmelzkopf (1) einer Eis-Schmelzvorrichtung (1, 8) umfassend einen bezüglich der Propagationsrichtung hinteren Befestigungsbereich (4) zur Befestigung an einer Bohrvorrichtung (8) oder einem Bohrgestänge und einen bezüglich der Propagationsrichtung vorderen beheizbaren Frontbereich (1c), wobei der Frontbereich (1c) einen radial aussen liegenden Flächenbereich (1a) aufweist, in welchem der Frontbereich (1c) in der Propagationsrichtung (3) bis zum vorderen axialen Schmelzkopfende (1d) im Außenquerschnitt sich verjüngend ausgebildet ist und der radial aussen liegende Flächenbereich (1a) eine innere Ausnehmung (5) umgibt, deren freier Innenquerschnitt sich vom axialen Schmelzkopfende (1d) entgegen der Propagationsrichtung (3) verringert, dadurch gekennzeichnet, dass in einem Bereich zwischen dem Schnittpunkt der inneren Ausnehmung (5) mit der Mittenachse (2) und dem axialen Schmelzkopfende (1d) die Flächengrößen von dem radial außen liegenden Flächenbereich (1a) und der Fläche (1b) von der inneren Ausnehmung (5) gleich sind und die in Propagationsrichtung (3) projizierten Flächen (p1a, p1b) von dem äußeren Flächenbereich (1a) und der Fläche (1b) der inneren Ausnehmung (5) gleich groß sind.
  2. Schmelzkopf nach Anspruch 1, dadurch gekennzeichnet, dass das Schmelzkopfende (1d) einen Rahmen, insbesondere Ring bildet, über den der radial aussen liegende Flächenbereich (1a) und die Fläche (1b) der inneren Ausnehmung (5) ineinander übergehen und dessen in Propagationsrichtung (3) weisende Stirnseite scharfkantig oder ballig oder abgeflacht ausgebildet ist.
  3. Schmelzkopf nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der außen liegende Flächenbereich (1a) und die innere Ausnehmung (5) um eine in Propagationsrichtung (3) liegende Mittenachse (2) n-fach drehsymmetrisch, bevorzugt rotationssymmetrisch ausgebildet sind.
  4. Schmelzkopf nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die axiale Länge (h) des sich verjüngenden radial außen liegenden Flächenbereichs (1a) und die axiale Tiefe (h) der inneren Ausnehmung (5) gleich sind.
  5. Schmelzkopf nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass er mehrere Heizelemente (6') umfasst die zumindest bereichsweise in dem Material des Frontbereiches (1c) angeordnet sind, welches zwischen dem sich verjüngenden radial außen liegenden Flächenbereich (1a) und der Fläche (1b) der inneren Ausnehmung (5) angeordnet ist, insbesondere im Material eines axial erstreckten Ringbereiches (7) des Frontbereichs (1c) .
  6. Schmelzkopf nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass er mehrere Heizelemente (6') umfasst, insbesondere die jeweils in rückwärtige Ausnehmungen (6) eingesetzt sind, wobei die Heizelemente (6') und/oder Ausnehmungen (6) jeweils einen radialen Abstand zur Mittenachse (2) aufweisen, der dem radialen Abstand des ringförmigen Schmelzkopfendes (1d) zumindest im Wesentlichen entspricht, insbesondere dem radialen Abstand des Schmelzkopfendes (1d) entspricht.
  7. Schmelzkopf nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der äußere Flächenbereich (1a) und die Fläche (1b) der inneren Ausnehmung (5) jeweils einem Kegelabschnitt oder einem Abschnitt eines Paraboloides entspricht.
  8. Schmelzkopf nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der sich verjüngende Frontbereich (1c) einen um die Mittenachse (2) rotationssymmetrischen Rotationskörper, insbesondere Kegelabschnitt oder Paraboloidabschnitt bildet, dessen Spitzenbereich an der Ebene, in welcher das Schmelzkopfende (1d) liegt, zur Bildung der Ausnehmung (5) nach innen umgeklappt ist.
  9. Schmelzkopf nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Form, insbesondere die Querschnittform längs der Mittenachse (2) des äußeren Flächenbereiches (1a) und der Fläche (1b) der inneren Ausnehmung (5) abgesehen vom Vorzeichen (I) und einer axialen Verschiebung (O), insbesondere von doppelter axialer Länge des Frontbereiches (1c), derselben mathematischen Funktion (P) in Abhängigkeit vom radialen Abstand von der Mittenachse (2) gehorchen.
  10. Eis-Schmelzvorrichtung umfassend einen Schmelzkopf (1) nach einem der vorherigen Ansprüche der an seinem in Propagationsrichtung (3) hinteren Befestigungsbereich (4) mit einer Bohrvorrichtung (8) verbunden ist, insbesondere wobei die Bohrvorrichtung (8) ein axial erstrecktes zylindrisches Gehäuse (8) umfasst, in welchem ein Energiespeicher (9) zur Beheizung von Heizelementen (6) des Schmelzkopfes (1) und/oder ein abspulbarer Kabelvorrat (10) enthalten ist.
EP19720527.1A 2018-04-25 2019-04-25 Schmelzkopf einer eis-schmelzvorrichtung Active EP3784865B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018003378.4A DE102018003378A1 (de) 2018-04-25 2018-04-25 Schmelzkopf einer Eis-Schmelzvorrichtung
PCT/EP2019/060615 WO2019207045A1 (de) 2018-04-25 2019-04-25 Schmelzkopf einer eis-schmelzvorrichtung

Publications (3)

Publication Number Publication Date
EP3784865A1 EP3784865A1 (de) 2021-03-03
EP3784865B1 true EP3784865B1 (de) 2023-06-07
EP3784865C0 EP3784865C0 (de) 2023-06-07

Family

ID=66334444

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19720527.1A Active EP3784865B1 (de) 2018-04-25 2019-04-25 Schmelzkopf einer eis-schmelzvorrichtung

Country Status (5)

Country Link
US (1) US11629558B2 (de)
EP (1) EP3784865B1 (de)
CN (1) CN112135955B (de)
DE (1) DE102018003378A1 (de)
WO (1) WO2019207045A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114215489B (zh) * 2021-12-24 2022-09-23 吉林大学 干孔式热冲击回转取心钻具

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3468387A (en) * 1967-04-17 1969-09-23 New Process Ind Inc Thermal coring method and device
DE1936902B1 (de) * 1969-07-19 1970-10-01 Edwin Horbach Verfahren und Vorrichtung zum Abteufen von Bohrungen in Eis
ZA7158B (en) * 1971-01-07 1971-11-24 Co De Signaux Et D Entreprises Method of coding track circuits and permitting the transmission of information to a vehicle moving along a railway track,and receivers for putting this method into practice
US3759046A (en) * 1972-03-23 1973-09-18 Global Marine Inc Movement of marine structures in saline ice
US3991817A (en) * 1974-07-02 1976-11-16 Clay Rufus G Geothermal energy recovery
FR2388125A1 (fr) * 1977-04-22 1978-11-17 Iti Ltd Equipement de thermoforage
SU1023054A1 (ru) * 1982-02-18 1983-06-15 Белорусский Научно-Исследовательский Геологоразведочный Институт Устройство дл электротермического бурени скважин
SU1087648A1 (ru) * 1982-10-27 1984-04-23 Ордена Ленина Арктический И Антарктический Научно-Исследовательский Институт Устройство дл электротермического бурени скважин во льду
SU1149670A1 (ru) * 1983-12-28 1995-12-27 Ленинградский горный институт им.Г.В.Плеханова Устройство для электротермического бурения-плавления скважин во льду с отбором керна
FR2763992B1 (fr) * 1997-05-30 1999-08-20 Drillflex Procede et dispositif pour deboucher un puits ou une canalisation obstrue par des hydrates de gaz
DE10164648C1 (de) 2001-12-31 2003-02-06 Stiftung A Wegener Inst Polar Rechnergesteuerte Schmelzsonde zur Ermittlung unterschiedlicher Messparameter im Eisbereich
DE10332571B3 (de) * 2003-07-13 2004-11-25 Stiftung Alfred-Wegener-Institut Für Polar- Und Meeresforschung Verfahren zum thermischen Bohren von Löchern in Eis und Vorrichtung zur Durchführung des Verfahrens
CN102839918B (zh) * 2012-09-13 2014-07-16 吉林大学 冰层定向钻井热熔钻头

Also Published As

Publication number Publication date
EP3784865A1 (de) 2021-03-03
US20210071478A1 (en) 2021-03-11
CN112135955A (zh) 2020-12-25
US11629558B2 (en) 2023-04-18
DE102018003378A1 (de) 2019-10-31
RU2020132998A (ru) 2022-04-07
CN112135955B (zh) 2022-11-01
WO2019207045A1 (de) 2019-10-31
EP3784865C0 (de) 2023-06-07

Similar Documents

Publication Publication Date Title
AT512725B1 (de) Steckerteil und Buchsenteil zur lösbaren Verbindung eines Rohrbogens eines wassergekühlten Schweißbrenners mit einem Schlauchpaket sowie Verbindungseinrichtung mit einem solchen Steckerteil und Buchsenteil
EP2989281B1 (de) Rohrelement mit composite-rohr und metallverbinder
EP3784865B1 (de) Schmelzkopf einer eis-schmelzvorrichtung
EP0476295B1 (de) Vorrichtung zum Auskleiden von Rohrleitungen mit einer Innenbeschichtung
DE1540862B1 (de) Schweissgeraet fuer das schutzgas lichtbogenschweissen mit abschmelzender elektrode
DE112016002328T5 (de) Antriebswellenbaugruppe mit Gelenkkopf, der an das Antriebswellenrohr reibgeschweisst ist
EP1002932B1 (de) Verfahren und Vorrichtung zum grabenlosen Rohrleitungsaustausch
DE19749007C2 (de) Vorrichtung zum Verbinden eines Nachziehrohres mit einem Ziehgerät
DE19803304C2 (de) Bohrgestänge zum Drehschlagbohren, insbesondere zum Überlagerungsbohren
DE68903538T2 (de) Regelspinne mit demortierbaren staeben fuer ein kernbrennstabbuendel.
DE2227118B2 (de) Schutzgas-SchweiBpistole mit Kühlung durch das Schutzgas
DE2609932C2 (de) Klappleitwerk für Flugkörper
DE2006208C3 (de) Halogenglühlampe
EP3870814B1 (de) Innengekühltes ventil mit kühlmittelleitsystem
DE3806407A1 (de) Vorrichtung zur herstellung von durch zugabe von binde- oder abdichtmitteln verdichteten bodenabschnitten
EP3016761B1 (de) Blindnietanordnung
EP4086427B1 (de) Regeneratlonsbohrgestänge und verfahren zu dessen herstellung
EP3016855B1 (de) Propeller-naben-pressverband
DE4435922A1 (de) In Beton eingießbares Einzelteil einer Schubdornverbindungsanordnung
DE10155362B4 (de) Spannring zur Verbindung von Rohrenden
DE202010009171U1 (de) Vorrichtung, die eine defekte Ölbohrung schließen kann
DE2504449C3 (de) Hydraulisches Schlagwerkzeug
DE126338C (de)
EP3095575A1 (de) Beheizbare folgerplatte zum aufschmelzen von klebstoff
DE102015217130A1 (de) Rohrelement mit Composite-Rohr und Metallverbinder

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201106

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220510

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221130

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WIEBUSCH, CHRISTOPHER

Inventor name: HEINEN, DIRK

Inventor name: ZIERKE, SIMON

Inventor name: LINDER, PETER

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1575633

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019008039

Country of ref document: DE

U01 Request for unitary effect filed

Effective date: 20230614

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230621

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230907

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019008039

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240308

U20 Renewal fee paid [unitary effect]

Year of fee payment: 6

Effective date: 20240417