EP3775669A1 - Tankanordnung und verfahren zur füllstandsregelung - Google Patents
Tankanordnung und verfahren zur füllstandsregelungInfo
- Publication number
- EP3775669A1 EP3775669A1 EP19720394.6A EP19720394A EP3775669A1 EP 3775669 A1 EP3775669 A1 EP 3775669A1 EP 19720394 A EP19720394 A EP 19720394A EP 3775669 A1 EP3775669 A1 EP 3775669A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressure
- tank
- cryogenic
- medium
- line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 13
- 239000007788 liquid Substances 0.000 claims abstract description 40
- 239000012530 fluid Substances 0.000 claims description 11
- 230000001105 regulatory effect Effects 0.000 claims description 10
- 230000001276 controlling effect Effects 0.000 claims description 8
- 230000006870 function Effects 0.000 claims description 7
- 239000007789 gas Substances 0.000 description 39
- 238000009835 boiling Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/02—Special adaptations of indicating, measuring, or monitoring equipment
- F17C13/025—Special adaptations of indicating, measuring, or monitoring equipment having the pressure as the parameter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0104—Shape cylindrical
- F17C2201/0109—Shape cylindrical with exteriorly curved end-piece
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/05—Size
- F17C2201/054—Size medium (>1 m3)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0323—Valves
- F17C2205/0332—Safety valves or pressure relief valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/011—Oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/013—Carbone dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/014—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/016—Noble gases (Ar, Kr, Xe)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/032—Hydrocarbons
- F17C2221/033—Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
- F17C2223/0161—Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/033—Small pressure, e.g. for liquefied gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/035—High pressure (>10 bar)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/01—Propulsion of the fluid
- F17C2227/0107—Propulsion of the fluid by pressurising the ullage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/01—Propulsion of the fluid
- F17C2227/0128—Propulsion of the fluid with pumps or compressors
- F17C2227/0135—Pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/03—Control means
- F17C2250/032—Control means using computers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/04—Indicating or measuring of parameters as input values
- F17C2250/0404—Parameters indicated or measured
- F17C2250/043—Pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/04—Indicating or measuring of parameters as input values
- F17C2250/0404—Parameters indicated or measured
- F17C2250/043—Pressure
- F17C2250/0434—Pressure difference
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/04—Indicating or measuring of parameters as input values
- F17C2250/0404—Parameters indicated or measured
- F17C2250/0439—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/04—Indicating or measuring of parameters as input values
- F17C2250/0404—Parameters indicated or measured
- F17C2250/0443—Flow or movement of content
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/06—Controlling or regulating of parameters as output values
- F17C2250/0605—Parameters
- F17C2250/0626—Pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/06—Controlling or regulating of parameters as output values
- F17C2250/0689—Methods for controlling or regulating
- F17C2250/0694—Methods for controlling or regulating with calculations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/02—Improving properties related to fluid or fluid transfer
- F17C2260/024—Improving metering
Definitions
- the invention relates to a tank arrangement for cryogenic media and to a method for level control of cryogenic media in a tank arrangement.
- a tank assembly for level measurement of cryogenic fluids comprising a tank and a differential pressure gauge, which is connected via a fluid line to the lower tank area in the liquid portion of the cryogenic medium and also via a further fluid line the upper tank area is connected in the gaseous portion of the cryogenic medium.
- a temperature sensor for detecting the temperature of the fluid and / or an absolute pressure measuring device serve to detect the pressure in and / or the temperature of the fluid in the upper tank area.
- An evaluation unit which communicates with the differential pressure gauge and the absolute pressure measurement submission and / or the temperature sensor, calculates the fill level on the basis of the determined values. In this tank arrangement, only the level is measured so that the potential of this tank assembly can not be exhausted.
- the invention has for its object to provide a tank assembly by which not only the level can be measured, but extended in the application of the known tank assembly and energy-saving operation of the tank assembly is to be achieved.
- a tank arrangement according to the invention for regulating the level of cryogenic media comprises a tank with an inflow line and a discharge line. Furthermore, the tank arrangement detects a differential pressure measuring device, which via a fluid line with a lower Tank region is connected in which the liquid portion of the medium is present and is connected via a further fluid line to an upper tank area in which the gaseous portion of the medium is present as a gas bubble, an absolute pressure measuring device and / or a
- the tank arrangement comprises an evaporator in a branch line between the inflow line and the upper tank area of the tank. Furthermore, the tank arrangement comprises a control unit which regulates a gas pressure control valve which is suitable for pressure control and follows the evaporator in the branch line in order to control the pressure in the upper tank area. Furthermore, the control unit and a ground pressure regulator connected to the differential pressure measuring device and the absolute pressure measuring device and / or a temperature sensor for controlling the gas pressure control valve, wherein the ground pressure regulator is configured, the pressure in the gaseous portion of the medium in the tank depending on the Level of the liquid portion of the medium to a constant ground pressure to regulate.
- the pressure in the gaseous medium required to maintain the target ground pressure decreases with increase of the liquid medium, resulting in a saving of required medium in the operation. This evaporates a minimal amount of liquid medium over the lifetime.
- the gas pressure control valve is directly driven by the control unit using the absolute pressure and / or the temperature in the upper tank area as a controlled variable, the control margin can be reduced and the gas bubble in the upper tank area can be made smaller.
- a memory is provided in the control unit, in which a desired pressure in the gaseous portion of the cryogenic medium in the tank is preferably stored as a function or table depending on the level of the liquid portion of the cryogenic medium.
- a temperature sensor in the branch pipe may be used in the region of the gas pressure control valve for controlling the flow rate such that an evaporator disposed in the branch pipe is capable of evaporating the amount of gas passed by the control valve. If the temperature sensor measures a temperature indicative of liquid medium, the flow of the medium through the gas pressure control valve is throttled to the point where the evaporator can completely vaporize the medium arriving at the gas pressure control valve so that the
- Tank arrangement can work trouble-free.
- the tank assembly comprises a flow meter in the inflow conduit and in the control unit a flow regulator configured to control the inflow of the cryogenic fluid through an inflow control valve in the inflow conduit.
- the tank assembly includes a flow meter in the drain line and in the controller a flow regulator configured to control the flow of cryogenic fluid through a drain control valve in the drain line.
- the inflow of the cryogenic liquid to the tank is controlled in consideration of a control signal from the bottom pressure regulator and the inflow controller, and when the outflow of the cryogenic liquid from the tank is controlled taking into account a control signal of the bottom pressure regulator and the outflow regulator, then advantageously For the target discharge velocity or the target inflow rate required ground pressure can be adjusted so that the specifications are met and that a predetermined outflow or inflow rate can be kept constant. As a result, a much more accurate and above all safer filling and emptying of the tank can be achieved.
- the tank arrangement may comprise a pump for filling the tank, in particular temporarily via a tanker truck, connected to the inflow line of the tank arrangement.
- the inflow of the cryogenic liquid to the tank is controlled taking into account a control signal from the flow controller and an inflow pump, wherein the control signal is dependent on the liquid level determined by the controller.
- a method for level control of cryogenic media according to the invention comprises the features of claim 8, while advantageous embodiments of the method according to the invention are characterized in the remaining subclaims.
- the advantages are achieved analogously to those of the tank arrangement according to claims 1 to 7
- the invention relates to a method for level control of cryogenic media in a tank comprising measuring a differential pressure by a
- Differential pressure measuring device which is connected via a connecting line to the lower tank area and is also connected via a further connecting line to the upper tank area, further comprising measuring an absolute pressure by an absolute pressure measuring device and / or a temperature sensor in the upper tank area in the gaseous portion the cryogenic medium, and controlling the pressure in the gaseous portion of the cryogenic medium in the tank by a gas pressure control valve, wherein the pressure in the gaseous portion of the cryogenic medium regulated by the gas pressure control valve in a branch line between an inflow line and the upper tank area is, and driving the gas pressure control valve by one with the
- the soil pressure regulator regulates the pressure in the gaseous fraction of the cryogenic medium in the tank to a constant ground pressure, depending on the fill level of the liquid fraction of the cryogenic medium.
- a desired pressure in the gaseous fraction of the cryogenic medium in the tank is preferably stored in the bottom pressure regulator as a function of the fill level of the liquid fraction of the cryogenic medium.
- the target pressure in the gaseous portion of the cryogenic medium in the tank is stored as a function or table depending on the level of the liquid portion of the cryogenic medium.
- an inflow of the cryogenic liquid is controlled to the tank, taking into account a control signal from the ground pressure regulator and an inflow controller via a control valve.
- the inflow of the cryogenic liquid to the tank taking into account a control signal from the ground pressure regulator and the inflow control a
- Inflow pump to be regulated.
- the outflow of the cryogenic liquid from the tank can be regulated taking into account a control signal of the bottom pressure regulator and a discharge regulator.
- FIG. 1 is a schematic representation of a first embodiment of the tank assembly according to the invention
- Fig. 2 is a schematic representation of a second embodiment of the tank arrangement according to the invention.
- Fig. 3 is a schematic representation of a third embodiment of the tank assembly according to the invention.
- Fig. 1 shows a tank assembly 2 for controlling the level 4 in a tank 6, which is to be filled with a cryogenic medium 8.
- the tank 6 is connected to an inflow line 10 and a discharge line 12.
- the tank assembly 2 comprises a control unit 14A, which is connected to a differential pressure measuring device 16, an absolute pressure measuring device 18 and a flow sensor in the discharge line 12 for receiving measurement signals.
- the absolute pressure measuring device 18 is connected via a connecting line 20 to an upper tank region 22 and detects the absolute pressure in the gas bubble in the upper tank region 22 correspondingly.
- the differential pressure measuring device 16 is connected by a connecting line to the upper tank region 22 and to a connecting line 26 connected to the lower tank portion 28 in which the liquid portion of the liquid medium is present. The differential pressure measuring device 16 therefore detects the
- the differential pressure measuring device 16 and the absolute pressure measuring device 18 are connected to a control unit 14A in which boiling curves and density curves are stored for selection for different media. These media are, for example, nitrogen, oxygen, argon, carbon dioxide or natural gas. With the measured values of the absolute pressure as well as the differential pressure can under
- the control unit 14A comprises a memory 30 in which boiling curves and density curves for different media, that is, desired pressure values for the pressure in the gaseous portion of the cryogenic medium in the tank 6 depending on the liquid level of the cryogenic medium as a table or function are stored.
- the control unit 14A further comprises a bottom pressure regulator 32 having as input the
- the gas pressure control valve 34 is located in a branch line 36 from the inflow line 10 to the upper tank portion 22 and controls, together with an evaporator 38 which is positioned in the branch line 36 between the inflow line 10 and the gas pressure control valve 34, the inflow of vaporized medium in the upper tank area 22.
- the pressure in the upper tank area 22 becomes too high, the pressure is relieved via an overflow valve 40.
- liquid medium is supplied to the evaporator 38 where it is vaporized and delivered via the gas pressure control valve 34 to the upper tank area 22 until a corresponding desired pressure is reached in the upper tank area 22, whereupon the gas pressure control valve 34 is closed again.
- the control unit 14A comprises a flow regulator 42, which receives as input the output signal of the flow meter 44 and outputs a flow control signal for the control variable YQAUS, which drives a flow control valve 45, with which the flow in the drain line 12 corresponding to the controlled variable Yoaus is controlled.
- the flow control valve 45 is located in the
- the flow controller 42 regulates the flow through a control algorithm for the flow Q au s by a flow control signal for the controlled variable Yoaus is delivered to the flow controller 42.
- eQout Q OFF SET - Q OFF
- YQoff f (GQaus, GQaus, jGQaus dt) wherein eoaus the control difference for the flow rate in the drain line, Q OFF SET, the target flow rate in the drain line, Q OFF is the actual flow rate in the drain line, yQ au s the controlled variable for the flow rate in the drain line, eoaus the time derivative the control difference and Jeoaus dt means the integral of the control difference over time.
- a temperature sensor 46 is arranged which measures the temperature of the medium in the branch line 36 and the corresponding measured values to the control unit 14A emits. In the control unit 14A, it is then determined whether the temperature of the medium at the temperature sensor 46 is in a range in which the cryogenic medium is liquid. If so, the flow through the evaporator is throttled so far that the evaporator 38 is capable of that of the gas pressure control valve 34th
- the tank arrangement according to the invention is designed so that from the measured values for the
- a target pressure in the gaseous medium is determined so that the ground pressure is kept constant regardless of the level, the target Bottom pressure for a particular tank assembly and a specific gas, for example, manufacturer specified.
- y PB ⁇ (q R B, Q R B, ⁇ q R B dt)
- E P B the control difference for the bottom pressure PB SOLL the target bottom pressure PB, the actual ground pressure and y P B the control signal at the output of Soil pressure regulator, e P B the time derivative of
- Control difference and Je P B dt means the integral of the control difference after the time.
- the bottom pressure PB can be kept constant through a variable gas pressure by reducing the gas pressure to the ground pressure PB minus the actual differential pressure Dr is regulated.
- FIG. 2 shows a modified embodiment of the tank assembly 2 according to the invention of Fig. 1, wherein like reference numerals are used for corresponding parts.
- the ground pressure regulator 32 for regulating the ground pressure the gas pressure control by the gas pressure control valve 34, the temperature sensor 46 and the flow control circuit are formed in FIG. 2 analogously to the corresponding units in FIG.
- the control unit 14B comprises a flow regulator 50, which receives as an input the output of the flow meter 52 and outputs a flow control signal for the controlled variable Yoein via a control algorithm for the flow Qein, which controls a flow control valve 54, with the flow in the outlet pipe 10 is controlled according to the controlled variable Yoein.
- the flow control valve 54 is located in the inflow line 10 of the tank 6 upstream of the flow measuring device 52 and regulates the flow through a control signal for the controlled variable Yoein, which is discharged from the flow controller 50 to the flow control valve 54.
- the controlled variable Yoein is determined as follows:
- YOein f ( ⁇ Qein, ⁇ Qein, J ⁇ Qein dt) wbei eoein the control difference for the flow rate in the inflow line, Q ON the desired flow rate in the inflow line, Q ON is the actual flow rate in the inflow line, yQ au s is the controlled variable for the flow velocity in the inlet pipe, ⁇ QEIN is the time derivative of the control difference and JeoEiN dt is the integral of the control difference after the time.
- the flow rate in the inflow line 10 is regulated.
- the absolute pressure measuring device 18 in Fig. 1 a instead of the absolute pressure measuring device 18 in Fig. 1 a
- FIG. 3 shows a tank arrangement similar to the tank arrangement described in FIG. 2.
- the tank arrangement according to the invention has, instead of a control valve 54, a pump 58 for filling the tank.
- the pump 58 may be part of a tank truck temporarily connected to the inflow pipe 10 of the tank.
- the arrangement with a pump 58 can also be used in an arrangement according to FIG. 1, in which the gas pressure is effected via an absolute pressure measuring device 18.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018108214.2A DE102018108214A1 (de) | 2018-04-06 | 2018-04-06 | Tankanordnung und Verfahren zur Füllstandsregelung |
PCT/EP2019/058836 WO2019193206A1 (de) | 2018-04-06 | 2019-04-08 | Tankanordnung und verfahren zur füllstandsregelung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3775669A1 true EP3775669A1 (de) | 2021-02-17 |
EP3775669B1 EP3775669B1 (de) | 2024-06-12 |
Family
ID=66334364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19720394.6A Active EP3775669B1 (de) | 2018-04-06 | 2019-04-08 | Tankanordnung und verfahren zur füllstandsregelung |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3775669B1 (de) |
CN (1) | CN112204299A (de) |
DE (1) | DE102018108214A1 (de) |
WO (1) | WO2019193206A1 (de) |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3858404A (en) * | 1973-06-25 | 1975-01-07 | Union Carbide Corp | Phase separator for cryogenic fluid |
US4961325A (en) * | 1989-09-07 | 1990-10-09 | Union Carbide Corporation | High pressure gas supply system |
US5360139A (en) * | 1993-01-22 | 1994-11-01 | Hydra Rig, Inc. | Liquified natural gas fueling facility |
US6044647A (en) * | 1997-08-05 | 2000-04-04 | Mve, Inc. | Transfer system for cryogenic liquids |
FR2841963B1 (fr) * | 2002-07-05 | 2005-07-01 | Air Liquide | Procede de regulation en pression d'un reservoir de fluide cryogenique, et reservoir correspondant |
US6912858B2 (en) * | 2003-09-15 | 2005-07-05 | Praxair Technology, Inc. | Method and system for pumping a cryogenic liquid from a storage tank |
DE102006016555A1 (de) * | 2006-04-07 | 2007-10-11 | Air Liquide Deutschland Gmbh | Verfahren und Vorrichtung zum Aufbauen eines Überdrucks in einem Tank für verflüssigtes Gas eines Kühlfahrzeugs sowie Kühlsystem für ein Kühlfahrzeug und Kühlfahrzeug |
FR2922992B1 (fr) * | 2007-10-26 | 2010-04-30 | Air Liquide | Procede de determination en temps reel du niveau de remplissage d'un reservoir cryogenique |
US9869429B2 (en) * | 2010-08-25 | 2018-01-16 | Chart Industries, Inc. | Bulk cryogenic liquid pressurized dispensing system and method |
CN101968665A (zh) * | 2010-09-29 | 2011-02-09 | 杨敏春 | 深冷容器低温保护控制系统 |
CN203570459U (zh) * | 2013-10-29 | 2014-04-30 | 成都客车股份有限公司 | 车用lng燃料温度控制系统 |
FR3022233B1 (fr) * | 2014-06-12 | 2019-06-07 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Dispositif et procede de fourniture de fluide |
DE202014102808U1 (de) | 2014-06-18 | 2014-07-15 | Samson Ag | Tankanordnung zur Füllstandmessung für kryogene Fluide |
-
2018
- 2018-04-06 DE DE102018108214.2A patent/DE102018108214A1/de active Pending
-
2019
- 2019-04-08 EP EP19720394.6A patent/EP3775669B1/de active Active
- 2019-04-08 WO PCT/EP2019/058836 patent/WO2019193206A1/de unknown
- 2019-04-08 CN CN201980036417.4A patent/CN112204299A/zh active Pending
Also Published As
Publication number | Publication date |
---|---|
EP3775669B1 (de) | 2024-06-12 |
CN112204299A (zh) | 2021-01-08 |
DE102018108214A1 (de) | 2019-10-10 |
WO2019193206A1 (de) | 2019-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3914637A1 (de) | Fluessigkeitsbehaelter mit hydrostatischem fuellstandsmesser | |
DE2702953C2 (de) | ||
EP2315950A1 (de) | Vorrichtung zum bereitstellen eines drucks für einen hydraulischen verbraucher und verfahren zum bereitstellen eines drucks | |
EP1437578B1 (de) | Verfahren zur kontinuierlichen Messung eines dynamischen Fluidverbrauchs | |
WO2008095836A2 (de) | Verfahren und vorrichtung zur kontinuierlichen messung eines dynamischen fluidverbrauchs | |
AT514517B1 (de) | Verfahren und Vorrichtung zum Betreiben einer Pumpe | |
EP3225315A1 (de) | Verfahren und dosiervorrichtung zum druckgeregelten dosieren eines flüssigen oder pastösen produkts | |
EP1464932A2 (de) | Verfahren zur kontinuierlichen Messung eines dynamischen Flüssigkeitsverbrauchs, sowie Druckregler und Vorrichtung zur kontinuierlichen Messung eines dynamischen Flüssigkeitsverbrauchs | |
DE4200603A1 (de) | Verfahren und vorrichtung zum genauen und sicheren dosieren von chargen beliebiger medien mit vorgabe eines soll-wertes einer messgroesse | |
AT3350U2 (de) | Vorrichtung zur kontinuierlichen messung des dynamischen kraftstoffverbrauchs eines verbrauchers | |
EP0752094A1 (de) | Vorrichtung und verfahren zum mischen, messen und fördern eines mehrphasengemisches | |
DE3509072C2 (de) | ||
EP3775669A1 (de) | Tankanordnung und verfahren zur füllstandsregelung | |
DE10324076A1 (de) | Fördereinrichtung für eine Lackieranlage | |
DE10308289A1 (de) | LS-Wegeventilblock | |
DE3633852C2 (de) | ||
DE1907906C3 (de) | Verfahren zum Aufrechterhalten eines gleichen und dauernden Flüssigkeitsstromes zu und von einem mit Unterbrechung arbeitenden Gerät und eine Vorrichtung zum Durchführen dieses Verfahrens | |
DE3112561C2 (de) | Steuervorrichtung für eine Flüssigkeitspumpe mit verstellbarem Fördervolumen | |
DE2152699C2 (de) | Testgegerät für Hydraulikanlagen | |
DE102014221865B3 (de) | Verfahren zum Kalibrieren einer Fluidpumpenanordnung | |
AT524422B1 (de) | Vorrichtung zur Dosierung kleiner Volumenströme eines viskosen Mediums aus einer Hochdruckleitung | |
EP3848579B1 (de) | System und verfahren zur dosierung eines flüssigen oder gasförmigen mediums | |
EP1764159A1 (de) | Beschichtungsanlage und zugehöriges Beschichtungsverfahren | |
DE2128944B2 (de) | Verfahren und Vorrichtung zur kontinuierlichen Regelung des pH-Wertes | |
DE102022129473A1 (de) | Mobile Arbeitsmaschine, insbesondere Flurförderzeug |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20201106 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230713 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20240104 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502019011446 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240612 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240612 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240913 |