EP3225315A1 - Verfahren und dosiervorrichtung zum druckgeregelten dosieren eines flüssigen oder pastösen produkts - Google Patents

Verfahren und dosiervorrichtung zum druckgeregelten dosieren eines flüssigen oder pastösen produkts Download PDF

Info

Publication number
EP3225315A1
EP3225315A1 EP16163483.7A EP16163483A EP3225315A1 EP 3225315 A1 EP3225315 A1 EP 3225315A1 EP 16163483 A EP16163483 A EP 16163483A EP 3225315 A1 EP3225315 A1 EP 3225315A1
Authority
EP
European Patent Office
Prior art keywords
pressure
product
mixing chamber
valve
dosing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16163483.7A
Other languages
English (en)
French (fr)
Other versions
EP3225315B1 (de
Inventor
Gerald Pfeiler
Justin Kyle Brown
Georg Senftl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Viscotec Pumpen und Dosiertechnik GmbH
Original Assignee
Viscotec Pumpen und Dosiertechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Viscotec Pumpen und Dosiertechnik GmbH filed Critical Viscotec Pumpen und Dosiertechnik GmbH
Priority to ES16163483T priority Critical patent/ES2828927T3/es
Priority to EP16163483.7A priority patent/EP3225315B1/de
Priority to PCT/EP2017/052577 priority patent/WO2017167478A1/de
Priority to US16/088,010 priority patent/US11154829B2/en
Publication of EP3225315A1 publication Critical patent/EP3225315A1/de
Application granted granted Critical
Publication of EP3225315B1 publication Critical patent/EP3225315B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/221Control or regulation of operational parameters, e.g. level of material in the mixer, temperature or pressure
    • B01F35/2213Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0225Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work characterised by flow controlling means, e.g. valves, located proximate the outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/49Mixing systems, i.e. flow charts or diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/50Pipe mixers, i.e. mixers wherein the materials to be mixed flow continuously through pipes, e.g. column mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/211Measuring of the operational parameters
    • B01F35/2113Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7176Feed mechanisms characterised by the means for feeding the components to the mixer using pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • B05C11/1007Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to condition of liquid or other fluent material
    • B05C11/1013Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to condition of liquid or other fluent material responsive to flow or pressure of liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1036Means for supplying a selected one of a plurality of liquids or other fluent materials, or several in selected proportions, to the applying apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/14Arrangements for controlling delivery; Arrangements for controlling the spray area for supplying a selected one of a plurality of liquids or other fluent materials or several in selected proportions to a spray apparatus, e.g. to a single spray outlet
    • B05B12/1418Arrangements for controlling delivery; Arrangements for controlling the spray area for supplying a selected one of a plurality of liquids or other fluent materials or several in selected proportions to a spray apparatus, e.g. to a single spray outlet for supplying several liquids or other fluent materials in selected proportions to a single spray outlet
    • B05B12/1427Arrangements for controlling delivery; Arrangements for controlling the spray area for supplying a selected one of a plurality of liquids or other fluent materials or several in selected proportions to a spray apparatus, e.g. to a single spray outlet for supplying several liquids or other fluent materials in selected proportions to a single spray outlet a condition of a first liquid or other fluent material in a first supply line controlling a condition of a second one in a second supply line
    • B05B12/1436Arrangements for controlling delivery; Arrangements for controlling the spray area for supplying a selected one of a plurality of liquids or other fluent materials or several in selected proportions to a spray apparatus, e.g. to a single spray outlet for supplying several liquids or other fluent materials in selected proportions to a single spray outlet a condition of a first liquid or other fluent material in a first supply line controlling a condition of a second one in a second supply line the controlling condition of the first liquid or other fluent material in the first supply line being its flow rate or its pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/03Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
    • B05B9/04Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump
    • B05B9/0403Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump with pumps for liquids or other fluent material
    • B05B9/0416Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump with pumps for liquids or other fluent material with pumps comprising rotating pumping parts, e.g. gear pump, centrifugal pump, screw-type pump

Definitions

  • the present invention relates to a method and a metering device for pressure-controlled metering of a liquid or pasty product.
  • dosing pumps with downstream integrated static or dynamic mixers are used for the application of single- or multi-component adhesives and sealants or even paints.
  • these are piston or gear metering devices or metering devices based on the eccentric screw principle, which realize the exact quantity or the volume and the mixing ratio at the input of the mixer by means of a control unit.
  • Static mixing takes place by means of so-called static mixers with mixing spirals, whereby the two components are mixed by multiple throws. Due to the friction in the static or dynamic mixer, pressure losses occur which must be overcome by the metering pumps.
  • shut-off valves may be arranged both at the inlet and at the outlet of the mixer in order to interrupt the product flow at the start and stop of the dosing and thus prevent dripping or repressing.
  • the amount or volume per component during the dosing process can be influenced by various factors. These include, but are not limited to, the backpressure in the static mixer, the viscosity of the components, the compressibility, and other rheological properties, such as the flow limit of the components.
  • the compressibility of adhesives can take on a significant degree here, for example, by air or gas inclusions. Especially with compressible components, the accuracy of the volume or the amount is not always guaranteed due to the change in volume and the change in pressure conditions in the dynamic and static state, so that there may be partial errors in the mixing ratio as well as in the total.
  • an object of the present invention is to provide an improved method for dosing a liquid or pasty product.
  • a method for pressure-controlled metering of a liquid or pasty product comprises the steps of metering the product into a mixing chamber by means of a metering pump, determining a product pressure of the product after the mixing chamber, determining a deviation of the product pressure from a predetermined target pressure, and opening or closing a pressure regulating valve provided at an exit nozzle of the mixing chamber equalize the product pressure to the target pressure, wherein the product pressure is reduced at the opening of the pressure control valve and increased at the closing of the pressure control valve.
  • the pressure regulating valve is regulated in particular in such a way, preferably regulated so steadily that the product pressure is equalized to the target pressure.
  • the method is carried out in particular by means of a dosing device described below.
  • the product can have several components.
  • the product may have two components, each product being associated with a metering pump.
  • the method may then include a step of metering a first component and a second component into the mixing chamber.
  • the product may also have only one component.
  • the product is continuously metered into the mixing chamber. That is, throughout the process, the metering pump meters the product into the mixing chamber.
  • the product may be, for example, an adhesive or sealant, water, an aqueous solution, a paint, a suspension, a viscous raw material, an emulsion or a fat.
  • the product may be a two or more component adhesive.
  • a paste or a pasty product is to be understood as meaning a solid-liquid mixture, in particular a suspension, with a high content of solids.
  • the product may have a content Fillers, for example, so-called microballoons have.
  • the product pressure is raised at least to the target pressure or above the target pressure. The process ensures that the product is always kept at the target pressure. As a result, metering inaccuracies, which could be caused by pressure losses arising in the mixing chamber, are prevented.
  • the product pressure is raised to the target pressure by the pressure regulating valve, or the product pressure is lowered to the target pressure by the pressure regulating valve.
  • the product pressure is preferably maintained in a certain pressure range which corresponds to the target pressure plus / minus a predetermined tolerance.
  • the pressure regulating valve is not an open-close valve which can only be switched into two switching positions, namely optionally into an open position or into a closed position.
  • Such an open-close valve may also be referred to as a shut-off valve or shut-off valve.
  • a regulating valve or pressure regulating valve is to be understood as meaning a valve which can be continuously brought into any, in particular infinite, number of intermediate positions between an open position, that is to say minimum product pressure, and a closed position, that is to say maximum product pressure. This allows any product pressure between the minimum product pressure and the maximum product pressure can be adjusted continuously.
  • the pressure regulating valve preferably has a valve tappet or valve body which can be displaced by means of a drive element, in particular linear.
  • the valve body may be, for example, acicular (needle valve) or spherical (ball valve).
  • the drive element is preferably an electric motor or an electric motor with an adjusting spindle as an actuator. As a result, the valve body can be moved to any position between the open position and the closed position.
  • the pressure control valve is thus steplessly controlled or regulated.
  • the open position may also be referred to as an open or opened state and the closed position may also be referred to as a closed or locked state.
  • the product is compressible, wherein the product is incompressible from the target pressure.
  • Compressible may be understood to mean that the product is near or substantially compressible. Incompressible may further be understood to mean that the product is nearly or substantially incompressible.
  • the product may be slightly compressible again when pressurized above the target pressure.
  • the product may be further compressible at a significantly higher pressure than the target pressure.
  • the product may show a compressibility (volume change) of about 20% at a pressure of about 15 bar. In a range from 15 bar to 30 bar, the compressibility (volume change) can be significantly incompressible relative to a lower pressure range of 0 bar to 15 bar.
  • a fluid whose density does not depend on pressure is called incompressible - in contrast to compressible fluids.
  • a characteristic of the fluids is the compressibility, which describes the change in the density of a fluid under pressure change and the property of the volume change with temperature change.
  • the compressibility of a fluid is the decision criterion with regard to a distinction between gas (compressible) and liquid (almost incompressible).
  • the terms hydraulics (almost incompressible fluids such as liquids, mostly oil) and pneumatics (compressible fluids such as gases, mostly air) are understood to mean techniques that realize and control "force movements" with fluids. Furthermore, a distinction is made between ideal and real fluids.
  • At least two different components of the product are metered into the mixing chamber.
  • the product may also have more than two, for example three or four components.
  • the product may be a two-component adhesive.
  • one of the components can be filled with one filler and the other component can be unfilled.
  • the at least two components in the mixing chamber are mixed together by means of a static mixer and / or a dynamic mixer.
  • a static mixer is meant a mixer which has no moving parts.
  • mixing elements or mixing helix can be arranged, which are set up to mix the two components by multiple Uberwerfitch.
  • a dynamic mixer has a movable mixing element.
  • the mixing element can be moved in rotation via a drive shaft.
  • the product pressure is maintained in a predetermined pressure window.
  • the method further comprises a calibration step in which an input in the mixing chamber is closed and the product is passed to a calibration output, wherein a product pressure of the product is determined before the calibration output, wherein a deviation of the product pressure from a predetermined target pressure determined wherein a pressure valve provided at the calibration port is pressure-responsively opened or closed to equalize the product pressure to the target pressure and wherein the product pressure is reduced upon opening of the pressure control valve and increased upon closing of the pressure control valve.
  • a first channel for a first component and a second channel for a second component are provided at the entrance of the mixing chamber.
  • the two channels can each be closed and opened by these associated shut-off valves.
  • a stable pressure state which corresponds to the same pressure state as during the dosing, can be achieved for the calibration step. Since in this calibration step the product flow but each component is dosed individually from the respective component associated calibration opening, can be done very easily a pressurized calibration of each component. For this purpose, the amount of the respective component is measured and can then be used as the measured value of a calibration function of the metering device.
  • the same product pressure as in the mixing chamber is achieved in the calibration step.
  • the values determined during calibration can simply be transferred to the dosing process of the product.
  • the calibration step is performed separately for different components of the product.
  • the calibration step may be performed separately for the first component of the product and for the second component of the product.
  • the calibration step can also be carried out if the product has only one component.
  • a metering device for pressure-regulating metering of a liquid or pasty product.
  • the metering device comprises a mixing chamber, at least one metering pump arranged upstream of the mixing chamber for metering the product into the mixing chamber, a pressure sensor for determining a product pressure of the product in the mixing chamber, a pressure regulating valve for pressure-dependent opening or closing of an outlet nozzle of the mixing chamber and a control device adapted thereto is to control the pressure control valve pressure-dependent, to adjust the product pressure to a target pressure.
  • the metering pump may be an eccentric screw pump, a gear pump, a piston dispenser or the like.
  • the metering pump is an eccentric screw pump.
  • An eccentric screw pump preferably comprises a stator accommodated in a pump housing, which has an elastically deformable elastomer part with a central opening.
  • the breakthrough preferably comprises a helical or helical inner contour.
  • a rotatable rotor is preferably provided, which comprises a corresponding to the elastomer part screw or helical outer contour.
  • the rotor can be driven via a drive shaft mounted in a bearing housing of the eccentric screw pump.
  • a drive device in particular an electric motor, can preferably be connected to the drive shaft.
  • the drive shaft can be fixedly connected to the rotor by means of a flexible shaft, a joint or a flexible shaft.
  • the mixing chamber is provided in particular in a tubular or rectangular mixing block.
  • a pipe or a hose can be arranged between the mixing chamber and the at least one metering pump so that the mixing chamber can be arranged away from the metering pump.
  • the pressure sensor may be provided directly on the mixing chamber or on a product diverter block.
  • the mixing chamber has a static mixer and / or a dynamic mixer.
  • a static mixer is provided in the mixing chamber.
  • the metering device is particularly low maintenance.
  • a static mixer is less expensive than a dynamic mixer.
  • the pressure regulating valve is a needle valve.
  • a needle valve in particular has a needle-shaped valve body.
  • a needle valve is used, which can act as possible dead space directly as dosing tip.
  • the pressure control valve is a ball valve with a spherical valve body.
  • the pressure control valve has a drive element, preferably a spindle drive or an electric motor with an adjusting spindle as an actuator, and a needle-shaped valve body which is arranged in a bore of a nozzle tube.
  • a product diversion block for diverting the product is provided on the mixing chamber, the pressure sensor and a drive element of the pressure regulating valve being provided on the product diversion block.
  • the product diverter block is preferably configured to divert the product twice through an angle of 90 °.
  • the product redirection block is dispensable. By diverting the product into the product diversion block, it can be achieved that the valve body is axially displaceable in a flow direction of the product in order to open and close the pressure regulating valve.
  • the metering device further comprises a flow block arranged between the at least one metering pump and the mixing chamber, with a channel through which the product can be passed, a pressure sensor for detecting a product pressure of the product in the channel and a shut-off valve for closing the channel in front of the channel mixing chamber.
  • the flow block may include a mixing head block and a flow shut-off block, wherein the mixing head block is disposed between the flow shut-off block and the metering pump.
  • the channel preferably penetrates both the flow blocking block and the mixing head block.
  • a first channel for the first component and a second channel, which is fluidically separated from the first channel, for the second component can be provided in the flow block.
  • Each of the channels can be assigned its own pressure sensor.
  • each of the channels can be assigned a shut-off valve. With the help of the shut-off valves, the entrance of the mixing chamber can be closed and opened.
  • the dosing device further comprises a calibration block with a calibration output and a pressure control valve for pressure-dependent opening or closing of the calibration output, wherein the control device is adapted to control the pressure control valve pressure-dependent to equalize the product pressure with a closed shut-off valve to a desired pressure.
  • the calibration block is preferably attached to the flow block.
  • the calibration block preferably has a first calibration output and a second calibration output, wherein a first pressure regulating valve is associated with the first calibration output and a second pressure regulating valve is associated with the second calibration output.
  • the calibration outputs are each connected via a bore with their associated channels in the flow block.
  • the control device is preferably set up to control the pressure control valves and the shut-off valves in each case as a function of determined measured values of the pressure sensors assigned to them.
  • the control device can have a computer program with a control algorithm, preferably a PID control.
  • the metering device has a first metering pump for metering a first component of the product and a second metering pump for metering a second component of the product.
  • the number of dosing pumps is arbitrary.
  • the metering device may also comprise three or more metering pumps.
  • the metering pumps may be attached to the flow block.
  • the metering pumps and the flow block can be coupled by means of a connecting line.
  • the Fig. 1 shows a schematic perspective view of an embodiment of a metering device 1 for pressure-controlled metering of a liquid or pasty product P.
  • the Fig. 2 shows a schematic sectional view of the metering device 1 and the Fig. 3 shows a schematic perspective partial sectional view of the metering device 1.
  • the Fig. 1 to 3 simultaneously referred to.
  • the product may be, for example, an adhesive or sealant, water, an aqueous solution, a paint, a suspension, a viscous raw material, an emulsion or a fat.
  • the product P may have one or more than one component K1, K2.
  • the product P may be a two-component adhesive.
  • the product may be filled with fillers such as microballoons.
  • Microballoons are hollow glass spheres which are used, for example, as fillers for epoxy and polyester resin systems. Such microballoons may for example have a bulk density of 140 to 150 g / l, a specific gravity of 0.26 g / cm 3 , a particle size distribution of 50 microns and a maximum particle size of 200 microns.
  • a pasty product or a paste is a solid-liquid mixture, in particular a suspension, to be understood as having a high content of solids.
  • the metering device 1 comprises at least one metering pump 2, 3.
  • the metering pumps 2, 3 may be, for example, progressing cavity pumps, gear pumps, piston dispensers or the like.
  • the metering pumps 2, 3 are designed as eccentric screw pumps.
  • An eccentric screw pump preferably comprises a stator accommodated in a pump housing, which has an elastically deformable elastomer part with a central opening.
  • the breakthrough preferably comprises a screw or helical inner contour.
  • a rotatable rotor is preferably provided, which comprises a corresponding to the elastomer part screw or helical outer contour.
  • the rotor may be driven via a drive shaft of a drive element, in particular an electric motor.
  • the drive shaft may be fixedly connected to the rotor by means of a flexible shaft or flex shaft or propeller shaft.
  • the product P or the components K1, K2 are conveyed away from the drive shaft according to the endless piston principle by interaction with the elastomer part of the stator in a longitudinal direction of the eccentric screw pump.
  • the delivery volume is dependent on the speed, the size, the pitch and the geometry of the rotor.
  • the first metering pump 2 and the second metering pump 3 are mounted on a flow head or flow block 4.
  • the metering pumps 2, 3 are arranged V-shaped or parallel.
  • the flow block 4 may for example be made of a steel or an aluminum material.
  • the flow block 4 may be formed in two parts and a mixing head block 5, to which the metering pumps 2, 3 are attached, and a flow blocking block 6 have.
  • the mixing head block 5 is arranged between the flow blocking block 6 and the metering pumps 2, 3.
  • the flow block 4 comprises a first channel 7 penetrating through the mixing head block 5 and the throughflow blocking block 6, through which the first component K1 can be passed, and a second channel 8 at least partially parallel to the first channel 7, through which the second component K2 can be passed.
  • the flow block 4 further comprises a first pressure sensor 9 for determining a pressure of the first component K1 in the first channel 7 and a second pressure sensor 10 for determining a pressure of the second component K2 in the second channel 8.
  • the flow block 4 comprises a first shut-off valve 11 for closing the first channel 7 downstream of the first pressure sensor 9.
  • the first Shut-off valve 11 comprises a drive element 12, for example an electric motor, as well as a valve tappet or valve body 13, which is displaceable into it for closing the first channel 7 and can be displaced out of it again to open the first channel 7.
  • the flow block 4 comprises a second shut-off valve 14 for closing the second channel 8 downstream of the second pressure sensor 10.
  • the second shut-off valve 14 also comprises a drive element 15 and a valve stem or valve body 16, which closes and opens the second channel 8 in the second channel 8 in and out of this again verlagerbar.
  • the dosing device 1 comprises a calibration block 17 fastened to the mixing head block 5.
  • the calibration block 17 can be screwed to the mixing head block 5, for example.
  • the calibration block 17 comprises a first calibration output 18 and a second calibration output 19.
  • the calibration block 17 comprises a first pressure regulating valve 20 for pressure-dependent opening or closing of the first calibration output 18 and a second pressure regulating valve 21 for pressure-dependent opening or closing of the second calibration output 19.
  • the second pressure regulating valve 21 comprises a drive element 22 and a valve tappet or valve body 23 which is linearly displaceable by means of the drive element 22 in a longitudinal direction L1 of the metering device 1.
  • the drive element 22 is preferably an electric motor with an adjusting spindle as an actuator. With the aid of the valve body 23, the second calibration 19 can be opened or closed.
  • the valve body 23 is preferably needle-shaped.
  • the second pressure regulating valve 21 is a needle valve.
  • the valve body 23 of the second pressure regulating valve 21 is arranged in a bore 24 provided in the calibration block 17.
  • the bore 24 may be parallel to the second channel 8.
  • the second channel 8 is connected via a bore 25 passed through the mixing head block 5 and the calibration block 17 the bore 24 fluidly connected. With the help of the second pressure control valve 21, the second calibration output 19 can be closed and opened.
  • the first pressure control valve 20 also has such a drive element 22 and a needle-shaped valve body 23. With the aid of the first pressure regulating valve 20, the first calibration outlet 18 can be closed and opened.
  • the valve body 23 of the first pressure control valve 20 is provided in a parallel to the first channel 7 arranged bore 24 which is fluidly connected via a further bore 25 to the first channel 7.
  • the first calibration output 18 associated bores 24, 25 and the valve body 23 of the first pressure control valve 20 are in the Fig. 1 to 3 Not shown.
  • the metering device 1 comprises a mixing block 26, which is fastened on the front side to the flow blocking block 6.
  • the mixing block 26 may be attached directly to the flow blocking block 6, or a pipe or hose may be provided between the flow blocking block 6 and the mixing block 26.
  • the mixing block 26 is tubular and encloses a cylindrical mixing chamber 27, in which the first components K1 and the second component K2 are mixed.
  • a static mixer and / or a dynamic mixer may be provided in the mixing chamber 27.
  • a static mixer By a static mixer is meant a mixer which has no moving parts. Such a static mixer has, in particular, mixing helix or mixing body, wherein the two components K1, K2 are mixed through the mixing chamber 27 during conveying thereof by multiple blow-ups.
  • a dynamic mixer has one or more movable, for example a rotatable mixing element.
  • the components K1, K2 are mixed to the product P.
  • the product P is not Herkomponentig, the product P from the metering pump 2, 3, in this case only from a metering pump 2, 3, metered into the mixing chamber 27 and mixed there.
  • the mixing block 26 has an outlet nozzle 28, which does not necessarily have to be provided directly on the mixing block 26.
  • the exit nozzle 28 is provided on a tapered nozzle tube 29.
  • a redesignum glacisblock 30 is provided between the nozzle tube 29 and the mixing block 26, a Marinum glacisblock 30 is provided.
  • the product diverter block 30 is configured to divert the product twice through an angle of 90 °.
  • a coiled channel 31 is provided in the product diversion block 30, which fluidly connects the mixing chamber 27 with a channel 32 provided in the nozzle tube 29.
  • the channels 31, 32 may be part of the mixing chamber 27.
  • a drive element 33 of a further, in particular a third, pressure control valve 34 is provided.
  • the drive element 33 is preferably an electric motor with an adjusting spindle as an actuator.
  • the pressure control valve 34 With the help of the pressure control valve 34, the output nozzle 28 can be opened or closed depending on the pressure.
  • the pressure regulating valve 34 has a valve tappet or valve body 35 provided in the channel 32 of the nozzle tube 29.
  • the valve body 35 is linearly displaceable in the channel 32, in particular in the longitudinal direction L1.
  • the pressure regulating valve 34 is in particular a needle valve.
  • the pressure control valves 20, 21, 34 are in particular not designed as open-close valves.
  • An on-off valve can be switched only in two switching positions, namely either in an open position or in a closed position.
  • Such an open-close valve may also be referred to as a shut-off valve or shut-off valve.
  • a regulating valve or pressure regulating valve is to be understood as meaning a valve which can be continuously brought into any, in particular infinite, number of intermediate positions between an open position, that is to say minimum product pressure, and a closed position, that is to say maximum product pressure. This allows any product pressure to be set between the minimum product pressure and the maximum product pressure.
  • the respective pressure control valve 20, 21, 34 preferably respectively the previously mentioned valve body 23, 35 which, with the aid of the respective drive element 22, 33, in particular linear, is displaceable.
  • the valve body 22, 33 may be, for example, acicular (needle valve) or spherical (ball valve).
  • the drive element 22, 33 is preferably in each case an electric motor or an electric motor with an adjusting spindle as an actuator. In this way, the respective valve body 23, 35 can be moved to any position between the open position and the closed position.
  • the metering device 1 comprises a pressure sensor 36 for determining a product pressure of the product P after the mixing chamber 27.
  • the pressure sensor 36 may be arranged directly on the mixing chamber 27 or, as in the Fig. 1 to 3 shown on the product redirection block 30 and in particular in the channel 31 of the product redirection block 30th
  • the metering device 1 further comprises a control device 37, which is set up to detect measured values of the pressure sensors 9, 10, 36 and to control the pressure control valves 20, 21, 34 and the shut-off valves 11, 14.
  • the control device 37 is also set up to compare the measured values recorded with the aid of the pressure sensors 9, 10, 36 with a desired value.
  • the amount or the volume per component K1, K2 during the dosing process can be influenced by various factors. These may include the backpressure in the mixing chamber 27, the viscosity of the product P or the components K1, K2, the compressibility of the product P or the components K1, K2 and other rheological properties, such as the yield point.
  • the compressibility of the product P or the components K1, K2 can in this case take on a considerable degree by air or gas inclusions or by the addition of microballoons.
  • the accuracy of the metered volume or the amount is not guaranteed due to the change in volume and the changes in pressure conditions both in the dynamic and in the static state, so that there may be partial errors in the mixing ratio and the total amount.
  • the product P or the components K1, K2 are metered into the mixing chamber 27 with the aid of the respective metering pump 2, 3.
  • the dosing can be done continuously. That is, the metering pumps 2, 3 provide a continuous flow.
  • the shut-off valves 11, 14 are opened, so that the channels 7, 8 are fluidically connected to the mixing chamber 27. That is, the metering pumps 2, 3 promote into the mixing chamber 27.
  • the product pressure of the product P after the mixing chamber 27 is measured.
  • This determined product pressure is compared with the aid of the control device 37 with a predetermined target pressure, and the deviation of the product pressure from the target pressure is determined.
  • the control device 37 can for this purpose have a computer program with a control algorithm, preferably with a PID control (English: proportional integral derivative).
  • the target pressure is preferably so high that the product P is no longer compressible and in particular is almost or substantially no longer compressible.
  • the product pressure is so low that the product P is not damaged, for example, so small as to prevent microballoons contained in the product P from being crushed. That is, the product pressure is maintained in a predetermined pressure window.
  • the control device 37 controls the pressure control valve 34 so that the outlet nozzle 28 is opened or closed depending on the pressure. Upon opening of the pressure regulating valve 34, the product pressure is thus lowered because the product P can exit through the outlet nozzle 28. When closing the pressure control valve 34, the product pressure increases in the mixing chamber 27, since no product P can escape from the outlet nozzle 28 more.
  • the Fig. 4 shows For this purpose, the pressure control valve 34 in the closed state and the Fig. 5 shows the pressure control valve 34 in the open state.
  • the product pressure of the product P can be kept constant during the entire dosing both in the static and in the dynamic state, in order to minimize or completely prevent inaccuracies of the dosage.
  • the control device 37 controlled via the pressure control valve 34 in response to the product pressure measured by the pressure sensor 36, a high pressure state can be kept constant. This is independent of whether the product P flows or does not flow, that is, in both a static and a dynamic state.
  • the product pressure is thus independent of the flow and the back pressure by the static mixer in the mixing chamber 27 and through the outlet nozzle 28th
  • a calibration under pressure can be made possible.
  • an input of the mixing chamber 27 by means of the shut-off valves 11, 14 is closed.
  • the first shut-off valve 11 is opened, that is, the valve body 13 does not block the first passage 7 provided in the flow block 4.
  • the second shut-off valve 14 is closed, that is, the valve body 16 is displaced into the second channel 8 in order to block it.
  • a stable pressure state is reached via the pressure sensor 10, the control device 37 and the pressure control valve 21, which preferably corresponds to the same pressure state as in the dosage of the product P.
  • the volume flow per component K1, K2 is metered individually from the respective calibration output 18, 19, a pressurized calibration per component K1, K2 can very easily take place.
  • the amount of component K1, K2 per unit of time is measured and used as the measured value of a calibration function of the dosing device 1.
  • compressible products P or with compressible components K1, K2 in particular at the beginning and at the end of a dosing process, set up different flows and volumes or masses whose determination can not be determined by a backpressure generated by flow resistances.
  • the Fig. 7 shows the open pressure control valve 21 and the Fig. 8 shows the pressure control valve 21 in a closed state.
  • the product pressure is always maintained in a pressure window that is greater than or equal to the target pressure. If the product P or the components K1, K2 contain fillers, such as microballoons, which could burst above a certain pressure, the target pressure can be adjusted so that on the one hand the maximum possible amount of the product P is metered by limiting it to one Maximum pressure but the bursting of the fillers is prevented.
  • fillers such as microballoons
  • a like in Fig. 9 illustrated method for pressure-controlled dosing of the liquid or pasty product P has several steps.
  • a step S1 the product P is metered into the mixing chamber 27 with the aid of the metering pump 2, 3.
  • step S1 at least two components K1, K2 of the product P from different metering pumps 2, 3 can also be metered into the mixing chamber 27.
  • the dosing can be done continuously. That is, throughout the process, the metering pump meters the product P into the mixing chamber 27.
  • the product pressure of the product P after the mixing chamber 27 is determined.
  • the pressure sensor 36 is used, which may be provided directly on the mixing block 26 or also on the product diversion block 30 or on the nozzle tube 29.
  • a deviation of the product pressure from a predetermined target pressure is determined.
  • the target pressure is in particular so high that the product P or the components K1, K2 are no longer compressible from the target pressure.
  • the at the output nozzle 28th the mixing chamber 27 provided pressure control valve 34 is opened or closed to equalize the product pressure to the target pressure or to raise above the target pressure.
  • the product pressure is reduced when the pressure regulating valve 34 is opened and increased when the pressure regulating valve 34 is closed.
  • the method may further include a calibration step S5, in which the channels 7, 8, that is, the input of the mixing chamber 27, are closed and the product P or the individual components K1, K2 are passed to the calibration output 18, 19.
  • the product pressure of the product P or the components K1, K2 is determined before the calibration output 18, 19 and a deviation of the determined product pressure from the predetermined target pressure, which may correspond to the above-mentioned target pressure determined.
  • the pressure regulating valve 20, 21 provided at the respective calibration output 18, 19 is thereby opened or closed in a pressure-dependent manner in order to equalize the product pressure to the target pressure, the product pressure being reduced at the opening of the respective pressure control valve 20, 21 and at the closing of the respective pressure control valve 20, 21 is increased.
  • the calibration step S5 can be carried out separately for the different components K1, K2 of the product P. In the case that the product P has only one component K1, K2, the calibration step S5 is carried out directly for the product P.
  • the aim here is in particular the pump calibration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Dispersion Chemistry (AREA)
  • Accessories For Mixers (AREA)

Abstract

Ein Verfahren zum druckgeregelten Dosieren eines flüssigen oder pastösen Produkts (P), mit folgenden Schritten: Eindosieren (S1) des Produkts (P) mit Hilfe einer Dosierpumpe (2, 3) in eine Mischkammer (27); Ermitteln (S2) eines Produktdrucks des Produkts (P) nach der Mischkammer (27); Ermitteln (S3) einer Abweichung des Produktdrucks von einem vorbestimmten Solldruck; und druckabhängiges Öffnen oder Schließen (S4) eines an einer Ausgangsdüse (28) der Mischkammer (27) vorgesehenen Druckregelventils (34), um den Produktdruck an den Solldruck anzugleichen, wobei der Produktdruck bei dem Öffnen des Druckregelventils (34) reduziert und bei dem Schließen des Druckregelventils (34) erhöht wird.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren und eine Dosiervorrichtung zum druckgeregelten Dosieren eines flüssigen oder pastösen Produkts.
  • In der Automatisierungstechnik werden zur Auftragung von ein- oder mehrkomponentigen Kleb- und Dichtstoffen oder auch Farben Dosierpumpen mit nachgeschalteten integrierten statischen oder dynamischen Mischern eingesetzt. Beispielsweise handelt es sich hier um Kolben- oder Zahnraddosierer oder Dosierer nach dem Exzenterschneckenprinzip, die mittels einer Steuereinheit die genaue Menge oder das Volumen und das Mischungsverhältnis am Eingang des Mischers realisieren. Eine statische Mischung erfolgt über sogenannte Statikmischer mit Mischwendeln, wobei die beiden Komponenten durch mehrfache Überwerfungen durchmischt werden. Hierbei entstehen durch die Reibung im statischen oder dynamischen Mischer Druckverluste, die durch die Dosierpumpen überwunden werden müssen. Je nach Ausführung können sowohl am Eingang als auch am Ausgang des Mischers Absperrventile angeordnet sein, um bei Start und Stopp der Dosierung den Produktstrom zu unterbrechen und so ein Nachtropfen oder Nachdrücken zu verhindern. Die Menge beziehungsweise das Volumen pro Komponente während des Dosiervorgangs kann durch verschiedene Faktoren beeinflusst werden. Dies sind unter anderem der Gegendruck in dem statischen Mischer, die Viskosität der Komponenten, die Kompressibilität und andere rheologische Eigenschaften, wie beispielsweise die Fließgrenze der Komponenten. Die Kompressibilität von Klebstoffen kann hier beispielsweise durch Luft- oder Gaseinschlüsse ein erhebliches Maß annehmen. Insbesondere bei kompressiblen Komponenten ist aufgrund der Volumenänderung und der Änderung der Druckzustände im dynamischen als auch im statischen Zustand die Genauigkeit des Volumens beziehungsweise der Menge nicht immer gewährleistet, so dass es zu partiellen Fehlern im Mischverhältnis als auch in der Gesamtmenge kommen kann.
  • Vor diesem Hintergrund besteht eine Aufgabe der vorliegenden Erfindung darin, ein verbessertes Verfahren zum Dosieren eines flüssigen oder pastösen Produkts bereitzustellen.
  • Demgemäß wird ein Verfahren zum druckgeregelten Dosieren eines flüssigen oder pastösen Produkts vorgeschlagen. Das Verfahren umfasst folgende Schritte: Eindosieren des Produkts mit Hilfe einer Dosierpumpe in eine Mischkammer, Ermitteln eines Produktdrucks des Produkts nach der Mischkammer, Ermitteln einer Abweichung des Produktdrucks von einem vorbestimmten Solldruck und druckabhängiges Öffnen oder Schließen eines an einer Ausgangsdüse der Mischkammer vorgesehenen Druckregelventils, um den Produktdruck an den Solldruck anzugleichen, wobei der Produktdruck bei dem Öffnen des Druckregelventils reduziert und bei dem Schließen des Druckregelventils erhöht wird.
  • Dabei wird das Druckregelventil insbesondere derart geregelt, vorzugsweise derart stetig geregelt, dass der Produktdruck dem Solldruck angeglichen wird.
  • Das Verfahren wird insbesondere mit Hilfe einer noch nachfolgend beschriebenen Dosiervorrichtung durchgeführt. Das Produkt kann mehrere Komponenten aufweisen. Beispielsweise kann das Produkt zwei Komponenten aufweisen, wobei jedem Produkt eine Dosierpumpe zugeordnet ist. Das Verfahren kann dann einen Schritt des Eindosierens einer ersten Komponente und einer zweiten Komponente in die Mischkammer umfassen. Das Produkt kann aber auch lediglich eine Komponente aufweisen. Vorzugsweise wird das Produkt kontinuierlich in die Mischkammer eindosiert. Das heißt, während des gesamten Verfahrens dosiert die Dosierpumpe das Produkt in die Mischkammer ein. Das Produkt kann beispielsweise ein Kleb- oder Dichtstoff, Wasser, eine wässrige Lösung, eine Farbe, eine Suspension, ein viskoser Rohstoff, eine Emulsion oder ein Fett sein. Beispielsweise kann das Produkt ein Zwei- oder Mehrkomponentenklebstoff sein. Unter einer Paste oder einem pastösen Produkt ist ein Feststoff-Flüssigkeitsgemisch, insbesondere eine Suspension, mit einem hohen Gehalt an Festkörpern zu verstehen. Beispielsweise kann das Produkt einen Gehalt an Füllstoffen, beispielsweise sogenannte Microballons, aufweisen. Insbesondere wird der Produktdruck zumindest auf den Solldruck oder über den Solldruck angehoben. Mit Hilfe des Verfahrens wird gewährleistet, dass das Produkt stets auf dem Solldruck gehalten wird. Hierdurch können Dosierungenauigkeiten, die durch in der Mischkammer entstehende Druckverluste entstehen könnten, verhindert. Darunter, dass der Produktdruck an den Solldruck angeglichen wird, ist zu verstehen, dass der Produktdruck mit Hilfe des Druckregelventils auf den Solldruck angehoben wird oder dass der Produktdruck mit Hilfe des Druckregelventils auf den Solldruck abgesenkt wird. Dabei wird der Produktdruck vorzugsweise in einem bestimmten Druckbereich gehalten, der dem Solldruck plus/minus einer vorgegebenen Toleranz entspricht.
  • Das Druckregelventil ist insbesondere kein Auf-Zu-Ventil, das nur in zwei Schaltpositionen, nämlich wahlweise in eine Offenposition oder in eine Geschlossenposition, geschaltet werden kann. Ein derartiges Auf-Zu-Ventil kann auch als Absperrventil oder Abschlussventil bezeichnet werden. Unter einem Regelventil oder Druckregelventil ist vorliegend ein Ventil zu verstehen, dass stufenlos in eine beliebige, insbesondere unendliche, Anzahl an Zwischenpositionen zwischen einer Offenposition, das heißt, minimaler Produktdruck, und einer Geschlossenposition, das heißt, maximaler Produktdruck, verbringbar ist. Hierdurch lässt sich jeder beliebige Produktdruck zwischen dem minimalen Produktdruck und dem maximalen Produktdruck stufenlos einstellen. Hierzu weist das Druckregelventil vorzugsweise einen Ventilstößel oder Ventilkörper auf, der mit Hilfe eines Antriebselements, insbesondere linear, verlagerbar ist. Der Ventilkörper kann beispielsweise nadelförmig (Nadelventil) oder kugelförmig (Kugelventil) sein. Das Antriebselement ist vorzugsweise ein Elektromotor oder ein Elektromotor mit einer Verstellspindel als Stellglied. Hierdurch kann der Ventilkörper in jede beliebige Position zwischen der Offenposition und der Geschlossenposition verbracht werden. Das Druckregelventil ist also stufenlos ansteuerbar oder regelbar. Die Offenposition kann auch als offener oder geöffneter Zustand und die Geschlossenposition kann auch als geschlossener oder verschlossener Zustand bezeichnet werden.
  • Gemäß einer weiteren Ausführungsform ist das Produkt komprimierbar, wobei das Produkt ab dem Solldruck inkompressibel ist.
  • Unter komprimierbar kann zu verstehen sein, dass das Produkt nahezu oder im Wesentlichen komprimierbar ist. Unter inkompressibel kann ferner zu verstehen sein, dass das Produkt nahezu oder im Wesentlichen inkompressibel ist. Beispielsweise kann das Produkt bei einer Druckbeaufschlagung über den Solldruck wieder geringfügig komprimierbar sein. Insbesondere kann das Produkt bei einem deutlich höheren Druck als dem Solldruck weiter komprimierbar sein. Beispielsweise kann das Produkt eine Kompressibilität (Volumenänderung) von ca. 20% bei einem Druck von ca. 15 bar zeigen. In einem Bereich von 15 bar bis 30 bar kann die Kompressibilität (Volumenänderung) bezeichnend nahezu inkompressibel gegenüber einem unteren Druckbereich von 0 bar bis 15 bar sein.
  • Ein Fluid, dessen Dichte nicht vom Druck abhängt, wird inkompressibel genannt - im Gegensatz zu kompressiblen Fluiden. Eine Eigenschaft der Fluide ist die Kompressibilität, die die Änderung der Dichte eines Fluids bei Druckänderung beschreibt und die Eigenschaft der Volumenänderung bei Temperaturänderung. Die Kompressibilität eines Fluids ist das Entscheidungskriterium hinsichtlich einer Unterscheidung zwischen Gas (kompressibel) und Flüssigkeit (nahezu inkompressibel). Unter den Begriffen Hydraulik (nahezu inkompressible Fluide wie Flüssigkeiten, meist Öl) und Pneumatik (kompressible Fluide wie Gase, meist Luft) werden Techniken verstanden, die "Kraftbewegungen" mit Fluiden verwirklichen und steuern. Weiterhin wird zwischen idealen und realen Fluiden unterschieden.
  • Gerade bei kompressiblen Produkten können sich vor allem am Anfang und am Ende eines Dosiervorgangs unterschiedliche Strömungen und Volumina beziehungsweise Massen einstellen, deren Bestimmung durch einen durch Strömungswiderstände erzeugte Gegendruck, beispielsweise in der Mischkammer, nicht bestimmbar ist. Da ab dem Solldruck die Kompressibilität des Produkts nahezu null wird, kann dieser Effekt minimiert werden, indem der Produktdruck immer in einem Druckfenster größer als der Solldruck gehalten wird. Weiterhin kann mit Hilfe des Verfahrens verhindert werden, dass empfindliche Füllstoffe, beispielsweise Mikroballons, die ab einem bestimmten Produktdruck platzen könnten, beschädigt werden. Hierzu wird der Solldruck auf einen Maximaldruck begrenzt, der nur so hoch ist, dass eine Beschädigung der Füllstoffe verhindert wird.
  • Gemäß einer weiteren Ausführungsform werden zumindest zwei unterschiedliche Komponenten des Produkts in die Mischkammer eindosiert.
  • Das Produkt kann auch mehr als zwei, beispielsweise drei oder vier Komponenten, aufweisen. Beispielsweise kann das Produkt ein Zweikomponentenklebstoff sein. Dabei kann eine der Komponenten mit einem Füllstoff gefüllt und die andere Komponente kann ungefüllt sein.
  • Gemäß einer weiteren Ausführungsform werden die zumindest zwei Komponenten in der Mischkammer mit Hilfe eines statischen Mischers und/oder eines dynamischen Mischers miteinander vermischt.
  • Unter einem statischen Mischer ist ein Mischer zu verstehen, der keine beweglichen Bauteile aufweist. Beispielsweise können in der Mischkammer Mischelemente oder Mischwendel angeordnet sein, die dazu eingerichtet sind, die beiden Komponenten durch mehrfache Uberwerfungen zu durchmischen. Ein dynamischer Mischer weist im Gegensatz hierzu ein bewegliches Mischelement auf. Beispielsweise kann das Mischelement über eine Antriebswelle rotatorisch bewegt werden.
  • Gemäß einer weiteren Ausführungsform wird der Produktdruck in einem vorbestimmten Druckfenster gehalten.
  • Hierdurch wird gewährleistet, dass das Produkt immer auf dem Solldruck gehalten wird und gleichzeitig kann hierdurch, wie zuvor schon erwähnt, eine Beschädigung von Füllstoffen des Produkts verhindert werden.
  • Gemäß einer weiteren Ausführungsform umfasst das Verfahren ferner einen Kalibrierschritt, bei dem ein Eingang in der Mischkammer verschlossen wird und das Produkt zu einem Kalibrierausgang geleitet wird, wobei ein Produktdruck des Produkts vor dem Kalibrierausgang ermittelt wird, wobei eine Abweichung des Produktdrucks von einem vorbestimmten Solldruck ermittelt wird, wobei ein an dem Kalibrierausgang vorgesehenes Druckventil druckabhängig geöffnet oder geschlossen wird, um den Produktdruck an den Solldruck anzugleichen, und wobei der Produktdruck bei dem Öffnen des Druckregelventils reduziert und bei dem Schließen des Druckregelventils erhöht wird.
  • Insbesondere sind an dem Eingang der Mischkammer ein erster Kanal für eine erste Komponente und ein zweiter Kanal für eine zweite Komponente vorgesehen. Die beiden Kanäle können jeweils durch diesen zugeordnete Absperrventile geschlossen und geöffnet werden. Wie bei der Druckregelung des Dosierstroms kann für den Kalibrierschritt ein stabiler Druckzustand erreicht werden, der dem gleichen Druckzustand entspricht wie bei der Dosierung. Da in diesem Kalibrierschritt der Produktstrom aber je Komponente einzeln aus der der jeweiligen Komponente zugeordneten Kalibrieröffnung dosiert wird, kann sehr einfach eine unter Druck stehende Kalibrierung jeder einzelnen Komponente erfolgen. Hierzu wird die Menge der jeweiligen Komponente gemessen und kann dann als Messwert einer Kalibrierfunktion der Dosiervorrichtung verwendet werden.
  • Gemäß einer weiteren Ausführungsform wird bei dem Kalibrierschritt der gleiche Produktdruck wie in der Mischkammer erreicht.
  • Hierdurch können die beim Kalibrieren ermittelten Werte einfach auf den Dosiervorgang des Produkts übertragen werden.
  • Gemäß einer weiteren Ausführungsform wird der Kalibrierschritt für unterschiedliche Komponenten des Produkts gesondert durchgeführt.
  • Beispielsweise kann der Kalibrierschritt für die erste Komponente des Produkts und für die zweite Komponente des Produkts gesondert durchgeführt werden. Der Kalibrierschritt kann auch dann durchgeführt werden, wenn das Produkt nur eine Komponente aufweist.
  • Weiterhin wird eine Dosiervorrichtung zum druckregelnden Dosieren eines flüssigen oder pastösen Produkts vorgeschlagen. Die Dosiervorrichtung umfasst eine Mischkammer, zumindest eine der Mischkammer vorgeordnete Dosierpumpe zum Eindosieren des Produkts in die Mischkammer, einen Drucksensor zum Ermitteln eines Produktdrucks des Produkts in der Mischkammer, ein Druckregelventil zum druckabhängigen Öffnen oder Schließen einer Ausgangsdüse der Mischkammer und eine Steuereinrichtung, die dazu eingerichtet ist, das Druckregelventil druckabhängig anzusteuern, um den Produktdruck an einen Solldruck anzugleichen.
  • Die Dosierpumpe kann eine Exzenterschneckenpumpe, eine Zahnradpumpe, ein Kolbendosierer oder dergleichen sein. Vorzugsweise ist die Dosierpumpe eine Exzenterschneckenpumpe. Eine Exzenterschneckenpumpe umfasst vorzugsweise einen in einem Pumpengehäuse aufgenommenen Stator, der ein elastisch verformbares Elastomerteil mit einem mittigen Durchbruch aufweist. Der Durchbruch umfasst vorzugsweise eine schrauben- oder schneckenförmige Innenkontur. In dem Stator ist vorzugsweise ein drehbarer Rotor vorgesehen, der eine zu dem Elastomerteil korrespondierende schrauben- oder schneckenförmige Außenkontur umfasst. Der Rotor kann über eine in einem Lagergehäuse der Exzenterschneckenpumpe gelagerte Antriebswelle angetrieben werden. An die Antriebswelle ist vorzugsweise eine Antriebseinrichtung, insbesondere ein Elektromotor, anschließbar. Die Antriebswelle kann mit Hilfe einer flexiblen Welle, einem Gelenk oder einer Flexwelle fest mit dem Rotor verbunden sein. Beim Drehen des Rotors wird das Produkt beziehungsweise die Komponente durch das Zusammenspiel mit dem Elastomerteil des Stators in einer Längsrichtung der Exzenterschneckenpumpe weg von der Antriebswelle nach dem Endloskolbenprinzip gefördert. Die Mischkammer ist insbesondere in einem rohrförmigen oder rechteckigen Mischblock vorgesehen. Zwischen der Mischkammer und der zumindest einen Dosierpumpe kann beispielsweise eine Rohrleitung oder ein Schlauch angeordnet sein, so dass die Mischkammer von der Dosierpumpe entfernt angeordnet sein kann. Der Drucksensor kann direkt an der Mischkammer oder an einem Produktumleitungsblock vorgesehen sein.
  • Gemäß einer Ausführungsform weist die Mischkammer einen statischen Mischer und/oder einen dynamischen Mischer auf.
  • Vorzugsweise ist in der Mischkammer ein statischer Mischer vorgesehen. Hierdurch ist die Dosiervorrichtung besonders wartungsarm. Weiterhin ist ein statischer Mischer kostengünstiger als ein dynamischer Mischer.
  • Gemäß einer weiteren Ausführungsform ist das Druckregelventil ein Nadelventil.
  • Ein Nadelventil weist insbesondere einen nadelförmigen Ventilkörper auf. Vorzugsweise wird ein Nadelventil verwendet, das möglichst totraumfrei direkt als Dosierspitze fungieren kann. Alternativ ist das Druckregelventil ein Kugelventil mit einem kugelförmigen Ventilkörper. Insbesondere weist das Druckregelventil ein Antriebselement, vorzugsweise einen Spindelantrieb oder einen Elektromotor mit einer Verstellspindel als Stellglied, und einen nadelförmigen Ventilkörper auf, der in einer Bohrung eines Düsenrohrs angeordnet ist.
  • Gemäß einer weiteren Ausführungsform ist an der Mischkammer ein Produktumleitungsblock zum Umleiten des Produkts vorgesehen, wobei an dem Produktumleitungsblock der Drucksensor und ein Antriebselement des Druckregelventils vorgesehen sind.
  • Der Produktumleitungsblock ist vorzugsweise dazu eingerichtet, das Produkt zweimal um einen Winkel von 90° umzulenken. Der Produktumleitungsblock ist verzichtbar. Durch die Umleitung des Produkts in dem Produktumleitungsblock kann erreicht werden, dass der Ventilkörper in einer Strömungsrichtung des Produkts axial verlagerbar ist, um das Druckregelventil zu öffnen und zu schließen.
  • Gemäß einer weiteren Ausführungsform umfasst die Dosiervorrichtung ferner einen zwischen der zumindest einen Dosierpumpe und der Mischkammer angeordneten Durchflussblock mit einem Kanal, durch den das Produkt hindurchleitbar ist, einen Drucksensor zum Ermitteln eines Produktdrucks des Produkts in dem Kanal und ein Absperrventil zum Verschließen des Kanals vor der Mischkammer.
  • Der Durchflussblock kann einen Mischkopfblock und einen Durchflussabsperrblock aufweisen, wobei der Mischkopfblock zwischen dem Durchflussabsperrblock und der Dosierpumpe angeordnet ist. Der Kanal durchdringt vorzugsweise sowohl den Durchflussabsperrblock als auch den Mischkopfblock. Insbesondere können in dem Durchflussblock ein erster Kanal für die erste Komponente und ein von dem ersten Kanal fluidisch getrennter zweiter Kanal für die zweite Komponente vorgesehen sein. Jedem der Kanäle kann ein eigener Drucksensor zugeordnet sein. Weiterhin kann jedem der Kanäle ein Absperrventil zugeordnet sein. Mit Hilfe der Absperrventile ist der Eingang der Mischkammer verschließbar und öffenbar.
  • Gemäß einer weiteren Ausführungsform umfasst die Dosiervorrichtung ferner einen Kalibrierblock mit einem Kalibrierausgang und einem Druckregelventil zum druckabhängigen Öffnen oder Schließen des Kalibrierausgangs, wobei die Steuereinrichtung dazu eingerichtet ist, das Druckregelventil druckabhängig anzusteuern, um den Produktdruck bei geschlossenem Absperrventil an einen Solldruck anzugleichen.
  • Der Kalibrierblock ist vorzugsweise an dem Durchflussblock befestigt. Vorzugsweise weist der Kalibrierblock einen ersten Kalibrierausgang und einen zweiten Kalibrierausgang an, wobei dem ersten Kalibrierausgang ein erstes Druckregelventil und dem zweiten Kalibrierausgang ein zweites Druckregelventil zugeordnet ist. Die Kalibrierausgänge sind jeweils über eine Bohrung mit den ihnen zugeordneten Kanälen in dem Durchflussblock verbunden. Die Steuereinrichtung ist vorzugsweise dazu eingerichtet, die Druckregelventile und die Absperrventile jeweils in Abhängigkeit von ermittelten Messwerten der ihnen zugeordneten Drucksensoren anzusteuern. Die Steuereinrichtung kann ein Computerprogramm mit einem Regelalgorithmus, vorzugsweise einer PID-Regelung, aufweisen.
  • Gemäß einer weiteren Ausführungsform weist die Dosiervorrichtung eine erste Dosierpumpe zum Dosieren einer ersten Komponente des Produkts und eine zweite Dosierpumpe zum Dosieren einer zweiten Komponente des Produkts auf.
  • Die Anzahl der Dosierpumpen ist beliebig. Beispielsweise kann die Dosiervorrichtung auch drei oder mehr Dosierpumpen umfassen. Die Dosierpumpen können an dem Durchflussblock befestigt sein. Alternativ können die Dosierpumpen und der Durchflussblock mittels einer Verbindungsleitung gekoppelt sein.
  • Weitere mögliche Implementierungen des Verfahrens und/oder der Dosiervorrichtung umfassen auch nicht explizit genannte Kombinationen von zuvor oder im Folgenden bezüglich der Ausführungsbeispiele beschriebenen Merkmale oder Ausführungsformen. Dabei wird der Fachmann auch Einzelaspekte als Verbesserungen oder Ergänzungen zu der jeweiligen Grundform des Verfahrens und/oder der Dosiervorrichtung hinzufügen.
  • Weitere vorteilhafte Ausgestaltungen und Aspekte des Verfahrens und/oder der Dosiervorrichtung sind Gegenstand der Unteransprüche sowie der im Folgenden beschriebenen Ausführungsbeispiele des Verfahrens und/oder der Dosiervorrichtung. Im Weiteren werden das Verfahren und/oder die Dosiervorrichtung anhand von bevorzugten Ausführungsformen unter Bezugnahme auf die beigelegten Figuren näher erläutert.
    • Fig. 1 zeigt eine schematische perspektivische Ansicht einer Ausführungsform einer Dosiervorrichtung;
    • Fig. 2 zeigt eine schematische Schnittansicht der Dosiervorrichtung gemäß Fig. 1;
    • Fig. 3 zeigt eine schematische perspektivische Teilschnittansicht der Dosiervorrichtung gemäß Fig. 1;
    • Fig. 4 zeigt eine schematische Teilschnittansicht der Dosiervorrichtung gemäß Fig. 1;
    • Fig. 5 zeigt eine weitere schematische Teilschnittansicht der Dosiervorrichtung gemäß Fig. 1;
    • Fig. 6 zeigt eine weitere schematische Teilschnittansicht der Dosiervorrichtung gemäß Fig. 1;
    • Fig. 7 zeigt eine weitere schematische Teilschnittansicht der Dosiervorrichtung gemäß Fig. 1;
    • Fig. 8 zeigt eine weitere schematische Teilschnittansicht der Dosiervorrichtung gemäß Fig. 1; und
    • Fig. 9 zeigt ein schematisches Blockdiagramm einer Ausführungsform eines Verfahrens zum Betreiben der Dosiervorrichtung gemäß Fig. 1.
  • In den Figuren sind gleiche oder funktionsgleiche Elemente mit denselben Bezugszeichen versehen worden, sofern nichts anderes angegeben ist.
  • Die Fig. 1 zeigt eine schematische perspektivische Ansicht einer Ausführungsform einer Dosiervorrichtung 1 zum druckgeregelten Dosieren eines flüssigen oder pastösen Produkts P. Die Fig. 2 zeigt eine schematische Schnittansicht der Dosiervorrichtung 1 und die Fig. 3 zeigt eine schematische perspektivische Teilschnittansicht der Dosiervorrichtung 1. Im Folgenden wird auf die Fig. 1 bis 3 gleichzeitig Bezug genommen.
  • Das Produkt kann beispielsweise ein Kleb- oder Dichtstoff, Wasser, eine wässrige Lösung, eine Farbe, eine Suspension, ein viskoser Rohstoff, eine Emulsion oder ein Fett sein. Das Produkt P kann eine oder mehr als eine Komponente K1, K2 aufweisen. Beispielsweise kann das Produkt P ein Zweikomponentenklebstoff sein. Das Produkt kann beispielsweise mit Füllstoffen, wie Microballons, gefüllt sein. Microballons sind Glashohlkugeln, die beispielsweise als Füllstoffe für Epoxid- und Polyesterharzsysteme Anwendung finden. Derartige Microballons können beispielsweise ein Schüttgewicht von 140 bis 150 g/l, ein spezifisches Gewicht von 0,26 g/cm3, eine Korngrößenverteilung von 50 µm und eine maximale Teilchengröße von 200 µm aufweisen. Unter einem pastösen Produkt oder einer Paste ist ein Feststoff-Flüssigkeitsgemisch, insbesondere eine Suspension, mit einem hohen Gehalt an Festkörpern zu verstehen.
  • Die Dosiervorrichtung 1 umfasst zumindest eine Dosierpumpe 2, 3. Die Dosiervorrichtung 1 kann, wie in den Fig. 1 bis 3 gezeigt, zwei Dosierpumpen 2, 3, insbesondere eine erste Dosierpumpe 2 und eine zweite Dosierpumpe 3, oder eine beliebige Anzahl an Dosierpumpen, beispielsweise drei Dosierpumpen, aufweisen. Die Dosierpumpen 2, 3 können beispielsweise Exzenterschneckenpumpen, Zahnradpumpen, Kolbendosierer oder dergleichen sein. Vorzugsweise sind die Dosierpumpen 2, 3 als Exzenterschneckenpumpen ausgebildet.
  • Eine Exzenterschneckenpumpe umfasst vorzugsweise einen in einem Pumpengehäuse aufgenommenen Stator, der ein elastisch verformbares Elastomerteil mit einem mittigen Durchbruch aufweist. Der Durchbruch umfasst vorzugsweise eine schrauben- oder schneckenförmige Innenkontur. In dem Stator ist vorzugsweise ein drehbarer Rotor vorgesehen, der eine zu dem Elastomerteil korrespondierende schrauben- oder schneckenförmige Außenkontur umfasst. Der Rotor kann über eine Antriebswelle von einem Antriebselement, insbesondere einem Elektromotor, angetrieben sein. Die Antriebswelle kann mit Hilfe einer flexiblen Welle oder Flexwelle oder Gelenkwelle fest mit dem Rotor verbunden sein. Beim Drehen des Rotors wird das Produkt P beziehungsweise die Komponente K1, K2 durch das Zusammenspiel mit dem Elastomerteil des Stators in einer Längsrichtung der Exzenterschneckenpumpe weg von der Antriebswelle nach dem Endloskolbenprinzip gefördert. Das Fördervolumen ist dabei abhängig von der Drehzahl, der Größe, der Steigung und der Geometrie des Rotors.
  • Die erste Dosierpumpe 2 und die zweite Dosierpumpe 3 sind an einem Durchflusskopf oder Durchflussblock 4 montiert. Die Dosierpumpen 2, 3 sind dabei V-förmig oder parallel angeordnet. Der Durchflussblock 4 kann beispielsweise aus einem Stahl- oder einem Aluminiumwerkstoff gefertigt sein. Der Durchflussblock 4 kann zweiteilig ausgebildet sein und einen Mischkopfblock 5, an dem die Dosierpumpen 2, 3 befestigt sind, und einen Durchflussabsperrblock 6 aufweisen. Der Mischkopfblock 5 ist dabei zwischen dem Durchflussabsperrblock 6 und den Dosierpumpen 2, 3 angeordnet.
  • Der Durchflussblock 4 umfasst einen den Mischkopfblock 5 und den Durchflussabsperrblock 6 durchdringenden ersten Kanal 7, durch den die erste Komponente K1 hindurchleitbar ist, und einen zu dem ersten Kanal 7 zumindest teilweise parallel angeordneten zweiten Kanal 8, durch den die zweite Komponente K2 hindurchleitbar ist. Der Durchflussblock 4 umfasst weiterhin einen ersten Drucksensor 9 zum Ermitteln eines Drucks der ersten Komponente K1 in dem ersten Kanal 7 und einen zweiten Drucksensor 10 zum Ermitteln eines Drucks der zweiten Komponente K2 in dem zweiten Kanal 8.
  • Weiterhin umfasst der Durchflussblock 4 ein erstes Absperrventil 11 zum Verschließen des ersten Kanals 7 stromabwärts des ersten Drucksensors 9. Das erste Absperrventil 11 umfasst ein Antriebselement 12, beispielsweise einen Elektromotor, sowie einen Ventilstößel oder Ventilkörper 13, der zum Verschließen des ersten Kanals 7 in diesen hineinverlagerbar und zum Öffnen des ersten Kanals 7 wieder aus diesem herausverlagerbar ist. Ferner umfasst der Durchflussblock 4 ein zweites Absperrventil 14 zum Verschließen des zweiten Kanals 8 stromabwärts des zweiten Drucksensors 10. Das zweite Absperrventil 14 umfasst ebenfalls ein Antriebselement 15 sowie einen Ventilstößel oder Ventilkörper 16, der zum Schließen und Öffnen des zweiten Kanals 8 in den zweiten Kanal 8 hinein- und wieder aus diesem herausverlagerbar ist.
  • Weiterhin umfasst die Dosiervorrichtung 1 einen an dem Mischkopfblock 5 befestigten Kalibrierblock 17. Der Kalibrierblock 17 kann beispielsweise mit dem Mischkopfblock 5 verschraubt sein. Der Kalibrierblock 17 umfasst einen ersten Kalibrierausgang 18 und einen zweiten Kalibrierausgang 19. Weiterhin umfasst der Kalibrierblock 17 ein erstes Druckregelventil 20 zum druckabhängigen Öffnen oder Schließen des ersten Kalibrierausgangs 18 und ein zweites Druckregelventil 21 zum druckabhängigen Öffnen oder Schließen des zweiten Kalibrierausgangs 19.
  • Das zweite Druckregelventil 21 umfasst ein Antriebselement 22 und einen Ventilstößel oder Ventilkörper 23, der mit Hilfe des Antriebselements 22 in einer Längsrichtung L1 der Dosiervorrichtung 1 linear verlagerbar ist. Das Antriebselement 22 ist vorzugsweise ein Elektromotor mit einer Verstellspindel als Stellglied. Mit Hilfe des Ventilkörpers 23 kann der zweite Kalibrierausgang 19 geöffnet oder verschlossen werden. Der Ventilkörper 23 ist vorzugsweise nadelförmig. Insbesondere ist das zweite Druckregelventil 21 ein Nadelventil.
  • Der Ventilkörper 23 des zweiten Druckregelventils 21 ist in einer in dem Kalibrierblock 17 vorgesehenen Bohrung 24 angeordnet. Die Bohrung 24 kann parallel zu dem zweiten Kanal 8 verlaufen. Der zweite Kanal 8 ist über eine durch den Mischkopfblock 5 und den Kalibrierblock 17 hindurchgeführte Bohrung 25 mit der Bohrung 24 fluidisch verbunden. Mit Hilfe des zweiten Druckregelventils 21 ist der zweite Kalibrierausgang 19 verschließbar und öffenbar.
  • Das erste Druckregelventil 20 weist ebenfalls ein derartiges Antriebselement 22 sowie einen nadelförmigen Ventilkörper 23 auf. Mit Hilfe des ersten Druckregelventils 20 ist der erste Kalibrierausgang 18 verschließbar und öffenbar. Der Ventilkörper 23 des ersten Druckregelventils 20 ist in einer parallel zu dem ersten Kanal 7 angeordneten Bohrung 24 vorgesehen, die über eine weitere Bohrung 25 mit dem ersten Kanal 7 fluidisch verbunden ist. Die dem ersten Kalibrierausgang 18 zugeordneten Bohrungen 24, 25 sowie der Ventilkörper 23 des ersten Druckregelventils 20 sind in den Fig. 1 bis 3 nicht gezeigt.
  • Die Dosiervorrichtung 1 umfasst einen Mischblock 26, der vorderseitig an dem Durchflussabsperrblock 6 befestigt ist. Der Mischblock 26 kann direkt an dem Durchflussabsperrblock 6 befestigt sein oder es kann zwischen dem Durchflussabsperrblock 6 und dem Mischblock 26 eine Rohrleitung oder ein Schlauch vorgesehen sein. Der Mischblock 26 ist rohrförmig und umschließt eine zylinderförmige Mischkammer 27, in der die erste Komponenten K1 und die zweite Komponente K2 gemischt werden. Hierzu kann in der Mischkammer 27 ein statischer Mischer und/oder ein dynamischer Mischer vorgesehen sein.
  • Unter einem statischen Mischer ist ein Mischer zu verstehen, der keine beweglichen Teile aufweist. Ein derartiger statischer Mischer weist insbesondere Mischwendel oder Mischkörper auf, wobei die beiden Komponenten K1, K2 beim Fördern derselben durch die Mischkammer 27 durch mehrfache Überwerfungen durchmischt werden. Ein dynamischer Mischer weist im Gegensatz hierzu ein oder mehrere bewegliche, beispielsweise ein rotierbares Mischelement, auf. In der Mischkammer 27 werden die Komponenten K1, K2 zu dem Produkt P vermischt. Für den Fall, dass das Produkt P nicht mehrkomponentig ist, wird das Produkt P von der Dosierpumpe 2, 3, in diesem Fall nur von einer Dosierpumpe 2, 3, in die Mischkammer 27 eindosiert und dort durchmischt.
  • Der Mischblock 26 weist eine Ausgangsdüse 28 auf, die nicht zwingend direkt an dem Mischblock 26 vorgesehen sein muss. Die Ausgangsdüse 28 ist an einem spitz zulaufenden Düsenrohr 29 vorgesehen. Zwischen dem Düsenrohr 29 und dem Mischblock 26 ist ein Produktumleitungsblock 30 vorgesehen. Mit Hilfe des Produktumleitungsblocks 30 kann das Produkt P umgeleitet werden. Insbesondere ist der Produktumleitungsblock 30 dazu eingerichtet, das Produkt zweimal um einen Winkel von 90° umzulenken. Hierzu ist in dem Produktumleitungsblock 30 ein gewundener Kanal 31 vorgesehen, der die Mischkammer 27 fluidisch mit einem in dem Düsenrohr 29 vorgesehenen Kanal 32 verbindet. Die Kanäle 31, 32 können Teil der Mischkammer 27 sein.
  • An dem Produktumleitungsblock 30 ist ein Antriebselement 33 eines weiteren, insbesondere eines dritten, Druckregelventils 34 vorgesehen. Das Antriebselement 33 ist vorzugsweise ein Elektromotor mit einer Verstellspindel als Stellglied. Mit Hilfe des Druckregelventils 34 kann die Ausgangsdüse 28 druckabhängig geöffnet oder geschlossen werden. Hierzu weist das Druckregelventil 34 einen in dem Kanal 32 des Düsenrohrs 29 vorgesehenen Ventilstößel oder Ventilkörper 35 auf. Der Ventilkörper 35 ist in dem Kanal 32 insbesondere in der Längsrichtung L1 linear verlagerbar. Das Druckregelventil 34 ist insbesondere ein Nadelventil.
  • Die Druckregelventile 20, 21, 34 sind insbesondere nicht als Auf-Zu-Ventile ausgebildet. Ein Auf-Zu-Ventil kann nur in zwei Schaltpositionen, nämlich wahlweise in eine Offenposition oder in eine Geschlossenposition, geschaltet werden. Ein derartiges Auf-Zu-Ventil kann auch als Absperrventil oder Abschlussventil bezeichnet werden. Unter einem Regelventil oder Druckregelventil ist vorliegend ein Ventil zu verstehen, dass stufenlos in eine beliebige, insbesondere unendliche, Anzahl an Zwischenpositionen zwischen einer Offenposition, das heißt, minimaler Produktdruck, und einer Geschlossenposition, das heißt, maximaler Produktdruck, verbringbar ist. Hierdurch lässt sich jeder beliebige Produktdruck zwischen dem minimalen Produktdruck und dem maximalen Produktdruck einstellen. Hierzu weist das jeweilige Druckregelventil 20, 21, 34 vorzugsweise jeweils den zuvor schon erwähnten Ventilkörper 23, 35 auf, der mit Hilfe des jeweilgen Antriebselements 22, 33, insbesondere linear, verlagerbar ist. Der Ventilkörper 22, 33 kann dabei beispielsweise nadelförmig (Nadelventil) oder kugelförmig (Kugelventil) sein. Das Antriebselement 22, 33 ist vorzugsweise jeweils ein Elektromotor oder ein Elektromotor mit einer Verstellspindel als Stellglied. Hierdurch kann der jeweilige Ventilkörper 23, 35 in jede beliebige Position zwischen der Offenposition und der Geschlossenposition verbracht werden. Weiterhin umfasst die Dosiervorrichtung 1 einen Drucksensor 36 zum Ermitteln eines Produktdrucks des Produkts P nach der Mischkammer 27. Der Drucksensor 36 kann direkt an der Mischkammer 27 angeordnet sein oder, wie in den Fig. 1 bis 3 gezeigt, an dem Produktumleitungsblock 30 und insbesondere in dem Kanal 31 des Produktumleitungsblocks 30.
  • Die Dosiervorrichtung 1 umfasst weiterhin eine Steuereinrichtung 37, die dazu eingerichtet ist, Messwerte der Drucksensoren 9, 10, 36 zu erfassen und die Druckregelventile 20, 21, 34 sowie die Absperrventile 11, 14 anzusteuern. Die Steuereinrichtung 37 ist auch dazu eingerichtet, die mit Hilfe der Drucksensoren 9, 10, 36 erfassten Messwerte mit einem Sollwert zu vergleichen.
  • Die Funktionalität der Dosiervorrichtung 1 wird im Folgenden mit Bezug auf die Fig. 4 bis 8 erläutert, die jeweils geschnittene Detailansichten der Dosiervorrichtung 1 zeigen. Die Menge beziehungsweise das Volumen pro Komponente K1, K2 während des Dosiervorgangs kann durch verschiedene Faktoren beeinflusst werden. Dies können unter anderem der Gegendruck in der Mischkammer 27, die Viskosität des Produkts P beziehungsweise der Komponenten K1, K2, die Kompressibilität des Produkts P beziehungsweise der Komponenten K1, K2 und andere rheologische Eigenschaften, wie beispielsweise die Fließgrenze, sein. Die Kompressibilität des Produkt P beziehungsweise der Komponenten K1, K2 kann hierbei durch Luft- oder Gaseinschlüsse oder durch Hinzufügung von Microballons ein erhebliches Maß annehmen.
  • Insbesondere bei kompressiblen Komponenten K1, K2 ist aufgrund der Volumenänderung und der Änderungen der Druckzustände sowohl im dynamischen als auch im statischen Zustand die Genauigkeit des dosierten Volumens beziehungsweise der Menge nicht gewährleistet, so dass es zu partiellen Fehlern im Mischverhältnis als auch der Gesamtmenge kommen kann. Um dies zu verhindern, werden bei der Dosiervorrichtung 1 das Produkt P beziehungsweise die Komponenten K1, K2 mit Hilfe der jeweiligen Dosierpumpe 2, 3 in die Mischkammer 27 eindosiert. Das Eindosieren kann dabei kontinuierlich erfolgen. Das heißt, die Dosierpumpen 2, 3 liefern einen kontinuierlichen Volumenstrom. Im Normalbetrieb der Dosiervorrichtung 1 sind die Absperrventile 11, 14 geöffnet, so dass die Kanäle 7, 8 fluidisch mit der Mischkammer 27 verbunden sind. Das heißt, die Dosierpumpen 2, 3 fördern in die Mischkammer 27 hinein.
  • Mit Hilfe des Drucksensors 36 wird der Produktdruck des Produkts P nach der Mischkammer 27 gemessen. Dieser ermittelte Produktdruck wird mit Hilfe der Steuereinrichtung 37 mit einem vorbestimmten Solldruck verglichen, und die Abweichung des Produktdrucks von dem Solldruck wird ermittelt. Die Steuereinrichtung 37 kann hierzu ein Computerprogramm mit Regelalgorithmus, vorzugsweise mit einer PID-Regelung (engl.: proportional integral derivative), aufweisen. Der Solldruck ist dabei vorzugsweise so hoch, dass das Produkt P nicht mehr komprimierbar und insbesondere nahezu oder im Wesentlichen nicht mehr kompressibel ist. Der Produktdruck ist jedoch so gering, dass das Produkt P nicht beschädigt wird, beispielsweise so gering, dass verhindert wird, dass in dem Produkt P enthaltene Microballons nicht zerquetscht werden. Das heißt, der Produktdruck wird in einem vorbestimmten Druckfenster gehalten.
  • Die Steuereinrichtung 37 steuert das Druckregelventil 34 nun so an, dass die Ausgangsdüse 28 druckabhängig geöffnet oder geschlossen wird. Beim Öffnen des Druckregelventils 34 wird der Produktdruck demnach erniedrigt, da das Produkt P durch die Ausgangsdüse 28 austreten kann. Beim Schließen des Druckregelventils 34 steigt der Produktdruck in der Mischkammer 27 an, da kein Produkt P mehr aus der Ausgangsdüse 28 austreten kann. Die Fig. 4 zeigt hierzu das Druckregelventil 34 in dem geschlossenen Zustand und die Fig. 5 zeigt das Druckregelventil 34 in dem geöffneten Zustand.
  • Mit Hilfe der Dosiervorrichtung 1 kann also der Produktdruck des Produkts P während des gesamten Dosiervorgangs sowohl im statischen wie auch im dynamischen Zustand konstant gehalten werden, um damit Ungenauigkeiten der Dosierung zu minimieren beziehungsweise vollständig zu verhindern. Mit Hilfe des über die Steuereinrichtung 37 angesteuerten Druckregelventils 34 in Abhängigkeit von dem von dem Drucksensor 36 gemessenen Produktdruck kann konstant ein hoher Druckzustand gehalten werden. Dies ist unabhängig davon, ob das Produkt P fließt oder nicht fließt, das heißt, sowohl in einem statischen als auch in einem dynamischen Zustand. Der Produktdruck ist damit auch unabhängig vom Durchfluss und vom Gegendruck durch den statischen Mischer in der Mischkammer 27 und durch die Ausgangsdüse 28.
  • Neben der Regelfunktion des Produktdrucks kann auch eine Kalibrierung unter Druck ermöglicht werden. Hierzu wird ein Eingang der Mischkammer 27 mit Hilfe der Absperrventile 11, 14 geschlossen. In der Fig. 6 ist das erste Absperrventil 11 geöffnet, das heißt, der Ventilkörper 13 blockiert den ersten Kanal 7, der in dem Durchflussblock 4 vorgesehen ist, nicht. Das zweite Absperrventil 14 ist geschlossen, das heißt, der Ventilkörper 16 ist in den zweiten Kanal 8 hineinverlagert, um diesen zu versperren. Wie bei der Druckregelung des Volumenstroms des Produkts P wird über den Drucksensor 10, die Steuereinrichtung 37 und das Druckregelventil 21 ein stabiler Druckzustand erreicht, der vorzugsweise dem gleichen Druckzustand entspricht wie bei der Dosierung des Produkts P.
  • Da bei diesem Kalibriervorgang der Volumenstrom je Komponente K1, K2 einzeln aus dem jeweiligen Kalibrierausgang 18, 19 dosiert wird, kann sehr einfach eine unter Druck stehende Kalibrierung je Komponente K1, K2 erfolgen. Dabei wird die Menge an Komponente K1, K2 pro Zeiteinheit gemessen und als Messwert einer Kalibrierfunktion der Dosiervorrichtung 1 verwendet. Gerade bei kompressiblen Produkten P beziehungsweise bei kompressiblen Komponenten K1, K2 stellen sich, insbesondere am Anfang und am Ende eines Dosiervorgangs, unterschiedliche Strömungen und Volumina beziehungsweise Massen ein, deren Bestimmung durch einen durch Strömungswiderstände erzeugten Gegendruck nicht bestimmbar ist. Die Fig. 7 zeigt hierzu das geöffnete Druckregelventil 21 und die Fig. 8 zeigt das Druckregelventil 21 in einem geschlossenen Zustand.
  • Da aber ab dem vorbestimmten Solldruck das Produkt P beziehungsweise die Komponenten K1, K2 nicht mehr komprimierbar sind und die Kompressibilität nahezu null wird, kann dieser Effekt minimiert werden, indem der Produktdruck immer in einem Druckfenster gehalten wird, das größer oder gleich dem Solldruck ist. Falls das Produkt P beziehungsweise die Komponenten K1, K2 Füllstoffe, wie beispielsweise Microballons, beinhalten, welche ab einem bestimmten Druck platzen könnten, kann der Solldruck so eingestellt werden, dass einerseits die maximal mögliche Menge des Produkts P dosiert wird, durch die Begrenzung auf einen Maximaldruck aber das Zerplatzen der Füllstoffe verhindert wird.
  • Ein wie in Fig. 9 dargestelltes Verfahren zum druckgeregelten Dosieren des flüssigen oder pastösen Produkts P weist mehrere Schritte auf. In einem Schritt S1 wird das Produkt P mit Hilfe der Dosierpumpe 2, 3 in die Mischkammer 27 eindosiert. In dem Schritt S1 können auch zumindest zwei Komponenten K1, K2 des Produkts P von unterschiedlichen Dosierpumpen 2, 3 in die Mischkammer 27 eindosiert werden. Das Eindosieren kann kontinuierlich erfolgen. Das heißt, während des gesamten Verfahrens dosiert die Dosierpumpe das Produkt P in die Mischkammer 27 ein. In einem Schritt S2 wird der Produktdruck des Produkts P nach der Mischkammer 27 bestimmt. Hierzu wird der Drucksensor 36 verwendet, der direkt an dem Mischblock 26 oder auch an dem Produktumleitungsblock 30 oder am dem Düsenrohr 29 vorgesehen sein kann.
  • In einem Schritt S3 wird eine Abweichung des Produktdrucks von einem vorbestimmten Solldruck ermittelt. Der Solldruck ist insbesondere so hoch, dass das Produkt P beziehungsweise die Komponenten K1, K2 ab dem Solldruck nicht mehr komprimierbar sind. In einem Schritt S4 wird das an der Ausgangsdüse 28 der Mischkammer 27 vorgesehene Druckregelventil 34 geöffnet oder geschlossen, um den Produktdruck an den Solldruck anzugleichen oder über den Solldruck anzuheben. Insbesondere wird der Produktdruck beim Öffnen des Druckregelventils 34 reduziert und bei dem Schließen des Druckregelventils 34 erhöht.
  • Das Verfahren kann weiterhin einen Kalibrierschritt S5 umfassen, bei dem die Kanäle 7, 8, das heißt, der Eingang der Mischkammer 27, verschlossen werden und das Produkt P beziehungsweise die einzelnen Komponenten K1, K2 zu dem Kalibrierausgang 18, 19 geleitet werden. Dabei wird mit Hilfe des jeweiligen Drucksensors 9, 10 der Produktdruck des Produkts P oder der Komponenten K1, K2 vor dem Kalibrierausgang 18, 19 ermittelt und eine Abweichung des ermittelten Produktdrucks von dem vorbestimmten Solldruck, der dem oben erwähnten Solldruck entsprechen kann, ermittelt.
  • Das an dem jeweiligen Kalibrierausgang 18, 19 vorgesehene Druckregelventil 20, 21 wird dabei druckabhängig geöffnet oder geschlossen, um den Produktdruck an den Solldruck anzugleichen, wobei der Produktdruck bei dem Öffnen des jeweiligen Druckregelventils 20, 21 reduziert und bei dem Schließen des jeweiligen Druckregelventils 20, 21 erhöht wird. Der Kalibrierschritt S5 kann für die unterschiedlichen Komponenten K1, K2 des Produkts P gesondert durchgeführt werden. In dem Fall, dass das Produkt P nur eine Komponente K1, K2 aufweist, wird der Kalibrierschritt S5 direkt für das Produkt P durchgeführt. Ziel ist hierbei insbesondere die Pumpenkalibrierung.
  • Obwohl die vorliegende Erfindung anhand von Ausführungsbeispielen beschrieben wurde, ist sie vielfältig modifizierbar.
  • BEZUGSZEICHENLISTE
  • 1
    Dosiervorrichtung
    2
    Dosierpumpe
    3
    Dosierpumpe
    4
    Durchflussblock
    5
    Mischkopfblock
    6
    Durchflussabsperrblock
    7
    Kanal
    8
    Kanal
    9
    Drucksensor
    10
    Drucksensor
    11
    Absperrventil
    12
    Antriebselement
    13
    Ventilkörper
    14
    Absperrventil
    15
    Antriebselement
    16
    Ventilkörper
    17
    Kalibrierblock
    18
    Kalibrierausgang
    19
    Kalibrierausgang
    20
    Druckregelventil
    21
    Druckregelventil
    22
    Antriebselement
    23
    Ventilkörper
    24
    Bohrung
    25
    Bohrung
    26
    Mischblock
    27
    Mischkammer
    28
    Ausgangsdüse
    29
    Düsenrohr
    30
    Produktumleitungsblock
    31
    Kanal
    32
    Kanal
    33
    Antriebselement
    34
    Druckregelventil
    35
    Ventilkörper
    36
    Drucksensor
    37
    Steuereinrichtung
    K1
    Komponente
    K2
    Komponente
    L1
    Längsrichtung
    P
    Produkt
    S1
    Schritt
    S2
    Schritt
    S3
    Schritt
    S4
    Schritt
    S5
    Schritt

Claims (15)

  1. Verfahren zum druckgeregelten Dosieren eines flüssigen oder pastösen Produkts (P), mit folgenden Schritten:
    Eindosieren (S1) des Produkts (P) mit Hilfe einer Dosierpumpe (2, 3) in eine Mischkammer (27);
    Ermitteln (S2) eines Produktdrucks des Produkts (P) nach der Mischkammer (27);
    Ermitteln (S3) einer Abweichung des Produktdrucks von einem vorbestimmten Solldruck; und
    druckabhängiges Öffnen oder Schließen (S4) eines an einer Ausgangsdüse (28) der Mischkammer (27) vorgesehenen Druckregelventils (34), um den Produktdruck an den Solldruck anzugleichen, wobei der Produktdruck bei dem Öffnen des Druckregelventils (34) reduziert und bei dem Schließen des Druckregelventils (34) erhöht wird.
  2. Verfahren nach Anspruch 1, wobei das Produkt (P) komprimierbar ist und wobei das Produkt (P) ab dem Solldruck inkompressibel ist.
  3. Verfahren nach Anspruch 1 oder 2, wobei zumindest zwei unterschiedliche Komponenten (K1, K2) des Produkts (P) in die Mischkammer (27) eindosiert werden.
  4. Verfahren nach Anspruch 3, wobei die zumindest zwei Komponenten (K1, K2) in der Mischkammer (27) mit Hilfe eines statischen Mischers und/oder eines dynamischen Mischers miteinander vermischt werden.
  5. Verfahren nach einem der Ansprüche 1 - 4, wobei der Produktdruck in einem vorbestimmten Druckfenster gehalten wird.
  6. Verfahren nach einem der Ansprüche 1 - 5, ferner umfassend einen Kalibrierschritt (S5), bei dem ein Eingang der Mischkammer (27) verschlossen wird und das Produkt (P) zu einem Kalibrierausgang (18, 19) geleitet wird, wobei ein Produktdruck des Produkts (P) vor dem Kalibrierausgang (18, 19) ermittelt wird, wobei eine Abweichung des Produktdrucks von einem vorbestimmten Solldruck ermittelt wird, wobei ein an dem Kalibrierausgang (18, 19) vorgesehenes Druckregelventil (20, 21) druckabhängig geöffnet oder geschlossen wird, um den Produktdruck an den Solldruck anzugleichen und wobei der Produktdruck bei dem Öffnen des Druckregelventils (20, 21) reduziert und bei dem Schließen des Druckregelventils (20, 21) erhöht wird.
  7. Verfahren nach Anspruch 6, wobei bei dem Kalibrierschritt (S5) der gleiche Produktdruck wie in der Mischkammer (27) erreicht wird.
  8. Verfahren nach Anspruch 6 oder 7, wobei der Kalibrierschritt (S5) für unterschiedliche Komponenten (K1, K2) des Produkts (P) gesondert durchgeführt wird.
  9. Dosiervorrichtung (1) zum druckgeregelten Dosieren eines flüssigen oder pastösen Produkts (P), mit
    einer Mischkammer (27),
    zumindest einer der Mischkammer (27) vorgeordneten Dosierpumpe (2, 3) zum Eindosieren des Produkts (P) in die Mischkammer (27),
    einem Drucksensor (36) zum Ermitteln eines Produktdrucks des Produkts (P) nach der Mischkammer (27),
    einem Druckregelventil (34) zum druckabhängigen Öffnen oder Schließen einer Ausgangsdüse (28) der Mischkammer (27), und
    einer Steuereinrichtung (37), die dazu eingerichtet ist, das Druckregelventil (34) druckabhängig anzusteuern, um den Produktdruck an einen Solldruck anzugleichen.
  10. Dosiervorrichtung nach Anspruch 9, wobei die Mischkammer (27) einen statischen Mischer oder einen dynamischen Mischer aufweist.
  11. Dosiervorrichtung nach Anspruch 9 oder 10, wobei das Druckregelventil (34) ein Nadelventil ist.
  12. Dosiervorrichtung nach einem der Ansprüche 9 - 11, wobei an der Mischkammer (27) ein Produktumleitungsblock (30) zum Umleiten des Produkts (P) vorgesehen ist und wobei an dem Produktumleitungsblock (30) der Drucksensor (36) und ein Antriebselement (33) des Druckregelventils (34) vorgesehen sind.
  13. Dosiervorrichtung nach einem der Ansprüche 9 - 12, ferner umfassend einen zwischen der zumindest einen Dosierpumpe (2, 3) und der Mischkammer (27) angeordneten Durchflussblock (4) mit einem Kanal (7, 8), durch den das Produkt (P) hindurchleitbar ist, einem Drucksensor (9, 10) zum Ermitteln eines Produktdrucks des Produkts (P) in dem Kanal (7, 8) und einem Absperrventil (11, 14) zum Verschließen des Kanals (7, 8) vor der Mischkammer (27).
  14. Dosiervorrichtung nach Anspruch 13, ferner umfassend einen Kalibrierblock (17) mit einem Kalibrierausgang (18, 19) und einem Druckregelventil (20, 21) zum druckabhängigen Öffnen oder Schließen des Kalibrierausgangs (18, 19), wobei die Steuereinrichtung (37) dazu eingerichtet ist, das Druckregelventil (20, 21) druckabhängig anzusteuern, um den Produktdruck bei geschlossenem Absperrventil (11, 14) an einen Solldruck anzugleichen.
  15. Dosiervorrichtung nach einem der Ansprüche 9 - 14, wobei die Dosiervorrichtung (1) eine erste Dosierpumpe (2) zum Dosieren einer ersten Komponente (K1) des Produkts (P) und eine zweite Dosierpumpe (3) zum Dosieren einer zweiten Komponente (K2) des Produkts (P) aufweist.
EP16163483.7A 2016-04-01 2016-04-01 Verfahren und dosiervorrichtung zum druckgeregelten dosieren eines flüssigen oder pastösen produkts Active EP3225315B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES16163483T ES2828927T3 (es) 2016-04-01 2016-04-01 Procedimiento y dispositivo de dosificación para la dosificación regulada por presión de un producto líquido o pastoso
EP16163483.7A EP3225315B1 (de) 2016-04-01 2016-04-01 Verfahren und dosiervorrichtung zum druckgeregelten dosieren eines flüssigen oder pastösen produkts
PCT/EP2017/052577 WO2017167478A1 (de) 2016-04-01 2017-02-07 Verfahren und dosiervorrichtung zum druckgeregelten dosieren eines flüssigen oder pastösen produkts
US16/088,010 US11154829B2 (en) 2016-04-01 2017-02-07 Method and metering device for metering a liquid or pasty product in a pressure-regulated manner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16163483.7A EP3225315B1 (de) 2016-04-01 2016-04-01 Verfahren und dosiervorrichtung zum druckgeregelten dosieren eines flüssigen oder pastösen produkts

Publications (2)

Publication Number Publication Date
EP3225315A1 true EP3225315A1 (de) 2017-10-04
EP3225315B1 EP3225315B1 (de) 2020-09-02

Family

ID=55963138

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16163483.7A Active EP3225315B1 (de) 2016-04-01 2016-04-01 Verfahren und dosiervorrichtung zum druckgeregelten dosieren eines flüssigen oder pastösen produkts

Country Status (4)

Country Link
US (1) US11154829B2 (de)
EP (1) EP3225315B1 (de)
ES (1) ES2828927T3 (de)
WO (1) WO2017167478A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020207872A1 (de) * 2019-04-08 2020-10-15 Dürr Systems Ag Applikationseinrichtung und entsprechendes applikationsverfahren
CN111804529A (zh) * 2019-04-10 2020-10-23 耿晋 一种电池极片涂布调节装置及其调节方法
DE102021120274A1 (de) 2021-08-04 2023-02-09 Atlas Copco Ias Gmbh Vorrichtung und Verfahren zum Auftragen eines mindestens zweikomponentigen viskosen Materials auf Werkstücke
DE102021123434A1 (de) 2021-09-10 2023-03-16 Audi Aktiengesellschaft Dosiereinrichtung und Verfahren zum dosierten Ausgeben einer viskosen Wärmeleitmasse

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019121347A1 (de) 2019-08-07 2021-02-11 Atlas Copco Ias Gmbh Überwachungsverfahren sowie Auftragsvorrichtung für mehrkomponentiges viskoses Material
DE102019132395A1 (de) * 2019-11-28 2021-06-02 Audi Ag Aufsatzelement für einen Statikmischer sowie Aufsatzsystem umfassend ein derartiges Aufsatzelement, den Statikmischer sowie einen Drucksensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3913000A1 (de) * 1988-04-20 1989-12-07 Lenhardt Maschinenbau Vorrichtung zum abgeben hochviskoser, pastoeser, kompressibler substanzen
DE3912920A1 (de) * 1988-04-20 1989-12-28 Lenhardt Maschinenbau Vorrichtung zum abgeben hochviskoser, pastoeser substanzen, insbesondere zum auftragen von dicht- und klebstoffen auf karosserieteile im karosseriebau
DE20318476U1 (de) * 2003-11-26 2004-04-08 Theato, Nikolaus Vorrichtung zum kontrollierten Auftragen von flüssigen Medien auf festen Gegenständen
EP1691076A1 (de) * 2005-01-27 2006-08-16 Nordson Corporation Auftragsvorrichtung mit volumetrischer Förderpumpe
DE102005058852A1 (de) * 2005-12-09 2007-06-14 Daimlerchrysler Ag Verfahren und Vorrichtung zum Auftrag einer paströsen vorzugsweise zumindest teilweise elastischen Masse
EP2790080A1 (de) * 2013-04-11 2014-10-15 Cinetic Filling Vorrichtung und Verfahren zum kontrollierten Entfernen von Rändern aus dickflüssigen Fluiden

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2965823T3 (pl) * 2014-07-09 2017-07-31 Illinois Tool Works Inc. Aparat do nakładania płynu lub środka lepkiego

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3913000A1 (de) * 1988-04-20 1989-12-07 Lenhardt Maschinenbau Vorrichtung zum abgeben hochviskoser, pastoeser, kompressibler substanzen
DE3912920A1 (de) * 1988-04-20 1989-12-28 Lenhardt Maschinenbau Vorrichtung zum abgeben hochviskoser, pastoeser substanzen, insbesondere zum auftragen von dicht- und klebstoffen auf karosserieteile im karosseriebau
DE20318476U1 (de) * 2003-11-26 2004-04-08 Theato, Nikolaus Vorrichtung zum kontrollierten Auftragen von flüssigen Medien auf festen Gegenständen
EP1691076A1 (de) * 2005-01-27 2006-08-16 Nordson Corporation Auftragsvorrichtung mit volumetrischer Förderpumpe
DE102005058852A1 (de) * 2005-12-09 2007-06-14 Daimlerchrysler Ag Verfahren und Vorrichtung zum Auftrag einer paströsen vorzugsweise zumindest teilweise elastischen Masse
EP2790080A1 (de) * 2013-04-11 2014-10-15 Cinetic Filling Vorrichtung und Verfahren zum kontrollierten Entfernen von Rändern aus dickflüssigen Fluiden

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020207872A1 (de) * 2019-04-08 2020-10-15 Dürr Systems Ag Applikationseinrichtung und entsprechendes applikationsverfahren
CN113692321A (zh) * 2019-04-08 2021-11-23 杜尔系统股份公司 施加装置及相应的施加方法
EP3953058B1 (de) 2019-04-08 2023-05-31 Dürr Systems AG Applikationseinrichtung und entsprechendes applikationsverfahren
US11779952B2 (en) 2019-04-08 2023-10-10 Dürr Systems Ag Application device and corresponding application method
CN111804529A (zh) * 2019-04-10 2020-10-23 耿晋 一种电池极片涂布调节装置及其调节方法
DE102021120274A1 (de) 2021-08-04 2023-02-09 Atlas Copco Ias Gmbh Vorrichtung und Verfahren zum Auftragen eines mindestens zweikomponentigen viskosen Materials auf Werkstücke
DE102021123434A1 (de) 2021-09-10 2023-03-16 Audi Aktiengesellschaft Dosiereinrichtung und Verfahren zum dosierten Ausgeben einer viskosen Wärmeleitmasse

Also Published As

Publication number Publication date
ES2828927T3 (es) 2021-05-28
US20190105621A1 (en) 2019-04-11
WO2017167478A1 (de) 2017-10-05
EP3225315B1 (de) 2020-09-02
US11154829B2 (en) 2021-10-26

Similar Documents

Publication Publication Date Title
EP3225315B1 (de) Verfahren und dosiervorrichtung zum druckgeregelten dosieren eines flüssigen oder pastösen produkts
DE102014209101A1 (de) Dosiereinrichtung zum dosierten Ausbringen eines Schmierfetts auf eine Fläche, Verfahren zum dosierten Ausbringen eines Schmierfetts auf eine Fläche
EP1965176A1 (de) Sensor zum Erfassen der Position eines beweglichen magnetischen Objekts und eine den Sensor aufweisende Fördervorrichtung
DE60106025T2 (de) Dosiereinrichtung
DE69726185T2 (de) Verfahren und vorrichtung zum durchflussgesteuertem zuführen von flüssigkeit zu einer sprühdüse
DE1473040A1 (de) Einrichtung zum Dosieren von Fluessigkeiten
DE19536623C1 (de) Verfahren und Vorrichtung zum Dosieren von Dickstoffen
WO2014040727A1 (de) Spritzenpumpensystem für ein pulsationsfreies dosieren und genaues mischen in der hplc, uhplc, nano- und mikro-hplc
DE2405272A1 (de) Mischvorrichtung fuer gase
EP0644025A1 (de) Verfahren zum Mischen von Werkstoffkomponenten und Vorrichtung zur Durchführung des Verfahrens
WO2016142813A1 (de) Verfahren zur kompensation von leckageverlusten sowie fördersystem zur förderung eines definierten volumens einer flüssigkeit
DE3421581C2 (de)
EP2026044B1 (de) Endstück für eine Dosiervorrichtung zum Dosieren eines Fluids
DE4034500C1 (en) Pulse testing arrangement for component subjected to hydraulic fluid - has connection blocks in closed test liquid circuit and having heating elements controlled by pressure resistant temp. sensors
DE102014014592A1 (de) Vorrichtung zum Auftragen eines viskosen Materials
EP1691076A1 (de) Auftragsvorrichtung mit volumetrischer Förderpumpe
EP0482579B1 (de) Verfahren und Vorrichtung zum Dosieren eines insbesondere hochviskosen Ein- oder Mehrkomponentengemisches
EP3697586B1 (de) Vorrichtung zum mischen von zwei oder mehr komponenten, sowie verfahren zur kalibrierung einer solchen
DE102006045407A1 (de) Ventileinheit zum Unterbrechen oder Freigeben eines Durchflusses eines Mediums längs eines Hohlkanals sowie deren Verwendung in einem Dosiersystem zum dosierten Ausbringen des Mediums sowie Verfahren zum dosierten Ausbringen eines Mediums
EP0647458A1 (de) Zumischeinrichtung zum Zumischen von Zusatzmitteln zu einer Flüssigkeit
EP1712894B1 (de) Partikelzähler für Fremdpartikel in einem Flüssigkeitsstrom
EP1431640A1 (de) Ventileinrichtung mit einem elektromotorisch ansteuerbaren Servoventil
DE4037665A1 (de) Mehrstufige homogenisierungsvorrichtung mit regelbaren drosselquerschnitten
DE202019000576U1 (de) Vorrichtung zum Auftragen mittel- bis hochviskoser flüssiger Materialien
EP0896833B1 (de) Vorrichtung zum Homogenisieren fliessfähiger Stoffe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20170925

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190619

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B05B 12/14 20060101ALN20200511BHEP

Ipc: B05C 11/10 20060101ALI20200511BHEP

Ipc: B01F 7/00 20060101ALI20200511BHEP

Ipc: B05B 9/04 20060101ALN20200511BHEP

Ipc: B05C 5/02 20060101AFI20200511BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: B05B 9/04 20060101ALN20200515BHEP

Ipc: B01F 7/00 20060101ALI20200515BHEP

Ipc: B05C 11/10 20060101ALI20200515BHEP

Ipc: B05C 5/02 20060101AFI20200515BHEP

Ipc: B05B 12/14 20060101ALN20200515BHEP

INTG Intention to grant announced

Effective date: 20200605

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BROWN, JUSTIN KYLE

Inventor name: PFEILER, GERALD

Inventor name: SENFTL, GEORG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1308224

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016010987

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: VALIPAT S.A. C/O BOVARD SA NEUCHATEL, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201203

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2828927

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016010987

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210401

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200923

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230417

Year of fee payment: 8

Ref country code: ES

Payment date: 20230517

Year of fee payment: 8

Ref country code: DE

Payment date: 20230426

Year of fee payment: 8

Ref country code: CH

Payment date: 20230502

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230414

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230420

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902