EP3767105B1 - Stator für eine exzenterschneckenpumpe - Google Patents

Stator für eine exzenterschneckenpumpe Download PDF

Info

Publication number
EP3767105B1
EP3767105B1 EP19186418.0A EP19186418A EP3767105B1 EP 3767105 B1 EP3767105 B1 EP 3767105B1 EP 19186418 A EP19186418 A EP 19186418A EP 3767105 B1 EP3767105 B1 EP 3767105B1
Authority
EP
European Patent Office
Prior art keywords
stator
lining
wall thickness
average wall
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19186418.0A
Other languages
English (en)
French (fr)
Other versions
EP3767105A1 (de
Inventor
Thomas PETERHANSEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arnold Jaeger Holding GmbH
Original Assignee
Arnold Jaeger Holding GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arnold Jaeger Holding GmbH filed Critical Arnold Jaeger Holding GmbH
Priority to ES19186418T priority Critical patent/ES2909699T3/es
Priority to EP19186418.0A priority patent/EP3767105B1/de
Priority to PL19186418T priority patent/PL3767105T3/pl
Priority to PCT/EP2020/070106 priority patent/WO2021009275A1/de
Priority to CN202080059862.5A priority patent/CN114341496B/zh
Publication of EP3767105A1 publication Critical patent/EP3767105A1/de
Application granted granted Critical
Publication of EP3767105B1 publication Critical patent/EP3767105B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • F04C2/1071Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
    • F04C2/1073Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type where one member is stationary while the other member rotates and orbits
    • F04C2/1075Construction of the stationary member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/30Geometry of the stator

Definitions

  • the invention relates to a stator for an eccentric screw pump having a rotor.
  • Stators of the generic type have a continuous and coiled pump cavity formed by a lining made of an elastomer, in which an eccentrically mounted rotor rotates. Due to the eccentric mounting of the rotor, chambers are formed between it and the coiled lining as it rotates, which in a sense migrate from a suction side of the eccentric screw pump to its pressure side, so that a medium is pushed or conveyed in the axial direction through the pump or the stator .
  • Such stators can be used in eccentric screw pumps, in particular for pumping media such as plaster, mortar, oil, etc.
  • stators of this type according to, for example EP 0 358 789 A1 , DE 195 31 318 A1 , EP 1 522 729 B2 or DE 41 11 166 C2 provided to taper the lining conically starting from the suction side towards the pressure side.
  • the elastic resilience of the lining is adapted to the conveying pressure, which increases continuously in the axial direction or conveying direction.
  • an adapted transition piece must also be used for the connection to the next component in the eccentric screw pump if the wall thickness of the jacket remains the same over the entire stator and this also adapts to the conical taper.
  • the forces acting on the lining are increased by the medium. If the medium has, for example, coarse material components, for example rocks, then these stress the lining more in an elastically less flexible and already tapered area, so that the lining wears faster overall.
  • the object of the invention is therefore to provide a stator with increased delivery capacity, which is easy to manufacture, has a high level of durability and can be easily integrated into an eccentric screw pump.
  • an average wall thickness of the lining of the stator starting from an end wall thickness, which is present in the area of a preferably cylindrical suction side of the stator, continuously, ie according to a continuous function of any degree, in the axial direction up to a lowest average Wall thickness is reduced, and that the mean wall thickness increases again at least in areas after reaching the lowest mean wall thickness, so that a preferably cylindrical widening is formed in the lining up to a pressure side of the stator.
  • the mean wall thickness of the lining, starting from the lowest mean wall thickness increases again immediately after it has been reached, or after it has been reached, initially remains approximately constant over a certain range and only then increases again in order to develop the expansion in the lining .
  • This advantageously means that, in addition to adapting the mean wall thickness of the lining in the axial direction to the pump pressures acting in the pump cavity of the stator, a suitable transition can be created on the pressure side.
  • the expansion allowed advantageously also a connection, for example via a conventional flange, to the next component of the eccentric screw pump.
  • the wall thickness can also be set as it prevails on the suction side, so that advantageously the same connections, e.g. flanges, can be used for both sides of the stator if the end wall thicknesses on the pressure side and on the suction side roughly match.
  • the lining becomes more flexible again towards the pressure side, as a result of which the conveyed medium, which is normally under high pressure on the pressure side, can stabilize.
  • the pressure increases only slightly in the expansion of the pressure side when the lining becomes more flexible again.
  • the pumped medium experiences an increased pressure increase in the area of the increasingly hard lining due to the continuous reduction in the mean wall thickness in an area before the expansion, which is also desired for the pumping effect in this area. In the area of the expansion, however, there is no longer any increased pressure increase and the medium is thus stabilized.
  • overall an optimized transfer of the conveyed medium into the next component of the eccentric screw pump can take place.
  • the structure of the stator can also achieve an improved retention function if, for example, the eccentric screw pump is switched off.
  • the pumped medium can flow back in the pump cavity if a pressure difference between adjacent chambers in the pump cavity becomes too high. If a harder lining is chosen, the backflow only occurs at higher pressure differences between the chambers.
  • the lining which becomes harder in the axial direction, prevents the conveyed medium from increasing as the pressure increases at the same time there is also a backflow, ie higher pressure differences are possible before the conveyed medium flows back.
  • the stator is therefore divided into different axially spaced zones by the targeted course of the mean wall thickness, the transition preferably being defined by the mean wall thickness of the lining remaining constant at least in the premixing zone and / or in the stabilization zone.
  • the conveyed medium can advantageously be adapted to the changed, tapering shape of the lining in the high-pressure zone or the resulting changed delivery rate of the stator.
  • the mean wall thickness can also be constant in parts of the high pressure zone.
  • the mean wall thickness of the lining in a first high pressure area of the high pressure zone decreases continuously in the axial direction down to the lowest mean wall thickness, the first high pressure area adjoining the premixing zone, and approximately constant in a second high pressure area of the high pressure zone the smallest mean wall thickness remains.
  • a zone is therefore advantageously available to the medium in which it can be homogenized or comminuted on the suction side and / or stabilized on the pressure side.
  • the respective zone can be set in a targeted manner by selecting a corresponding axial extent or an axial width as well as the wall thickness of the lining in the respective zone.
  • the medium can then be "prepared" in the respective zone for the next area in the stator or in the eccentric screw pump.
  • the lining in the high-pressure zone is less stressed when the flexibility decreases, since the medium has already been comminuted or homogenized in the premixing zone.
  • the lining in the high pressure zone therefore wears less.
  • the medium is stabilized in the stabilization zone so that a smoother transition or a smoother exit from the stator can be achieved.
  • the lining of the stator tapers conically in the axial direction, with the mean wall thickness of the lining starting from the end mean wall thickness in the axial direction at least in some areas, for example in the high pressure zone or in parts of the high pressure zone, decreases linearly in the direction of the pressure side or also following a non-linear function.
  • the lining of the stator tapers in the axial direction, at least in some areas, in that a contour of the outer surface of the lining, starting from the end average wall thickness to the lowest average wall thickness, more and more towards a contour of the inner surface of the lining, which is designed as a double helical thread approximates.
  • This increases the tapering and thus the adaptation of the average wall thickness to the pressure acting in the pump cavity, the tapering then also being visible from the outside, since the jacket preferably also adapts to this two-thread shape of the outer surface.
  • this type of tapering can be provided in the first high pressure area of the high pressure zone, so that a transition between the preferably cylindrical premixing zone and the second high pressure area of the high pressure zone can occur, with the jacket in the second high pressure area being adapted to the double shape of the outer surface.
  • the mean wall thickness remaining constant in the second high-pressure area.
  • a type of hybrid stator is formed from a cylindrical premixing zone and a coiled high pressure zone in the second high pressure area.
  • the first high pressure area then acts as a transition with a lining that becomes correspondingly harder due to the continuous adjustment of the mean wall thickness.
  • the mean wall thickness of the lining increases abruptly or continuously after reaching the lowest mean wall thickness and possibly after remaining constant at the lowest mean wall thickness (see second high pressure area) in order to develop the pressure-side expansion.
  • a continuous increase enables a smoother transition between the high pressure zone and the stabilization zone as well as easier production. Nevertheless, an abrupt transition can also be provided in order, for example, to promote stabilization and to keep a further increase in pressure of the conveyed medium within limits.
  • an inside diameter of the jacket corresponds to an outside diameter of the lining, so that the jacket rests flat against the outer surface of the lining over the entire stator and thus assumes the conical or the coiled course corresponding to the outer surface Has constant material thickness.
  • the jacket consists of a harder material than the lining, preferably steel.
  • a stator 1 which has a tubular jacket 2, which is preferably made from a steel tube, for example by forming.
  • the jacket 2 encloses an elastically resilient lining 3, the inner surface 4 of which has a coiled or helical contour K4, with a double helical thread being formed.
  • a pump cavity 5 is thereby formed in the interior of the stator 1, into which a rotor 6 ( Figure 1a ) is inserted, the rotor 6 being designed in the manner of a single-start coarse thread and possibly resting against the elastically flexible lining 3 under prestress.
  • the eccentrically mounted rotor can rotate in the pump cavity 5.
  • the stator 1 has a suction side 7 and a pressure side 8, and when the stator 1 is installed together with the rotor 6 in an eccentric screw pump (not shown), the medium to be conveyed, for example mud, mortar or plaster, is placed in chambers on the suction side 7 is conveyed through the pump cavity 5 in the axial direction X to the pressure side 8 when the rotor 6 is set in rotation.
  • the pressure in the pump cavity 5 increases steadily towards the pressure side 8, so that a lower pressure acts on the elastically flexible lining 3 on the suction side 7 than on the pressure side 8.
  • the lining 3 is designed conically on its outer surface 9, an average wall thickness W of the lining 3 from a position near the suction side 7 of the stator 1 in the axial direction X to the pressure side 8 initially continuously, ie according to a constant function, decreases.
  • a contour K9 of the outside 9 runs from the position near the suction side 7 in the axial direction X, linearly descending at least in some areas, ie according to a linear function. This ensures that the elastic resilience of the lining 3 on the suction side 7 is higher than, for example, in the middle area of the stator 1 or in the area of the stator 1 with the smallest wall thickness WM.
  • the lining 3 becomes harder and harder towards the pressure side 8 (approximately linear).
  • the conical taper can be set in such a way that a mean pump diameter DP remains the same over the entire stator 1, so that no adaptation of the rotor 6 is necessary either.
  • only the outer surface 9 is tapered in the axial direction X towards the pressure side 8.
  • a continuous adaptation of the mean pump diameter DP, in particular a conical taper towards the pressure side 8 can also be provided.
  • the stator 1 has a widening 10 towards the pressure side 8, through which the mean wall thickness W is increased to an end wall thickness WE.
  • the end wall thickness WE on the suction side 7 preferably corresponds to the end wall thickness WE on the pressure side 8.
  • an A dimension A and a B dimension B can be specified for the stator 1, each representing the thickness of the lining 3 in a Z-direction Z or in a Y-direction Y.
  • both the A dimension A and the B dimension B decrease continuously in the axial direction X from the corresponding position.
  • the mean wall thickness W is continuously reduced down to the minimum wall thickness WM. Since the jacket 2 rests flat against the lining 3, preferably is adhered or vulcanized, its inner diameter D is also continuously reduced. An outer diameter E of the lining 3 thus corresponds to the inner diameter D of the jacket 2.
  • the stator 1 is divided into three zones V, H, S or areas:
  • a premixing zone V which begins on the suction side 7 of the stator 1, there is a relatively low pressure in the pump cavity 5 .
  • This premixing zone V is therefore suitable for crushing or pre-compacting a coarse-grained medium, for example mortar, plaster or sludge, which may still contain coarse material components, for example rocks, and mixing it evenly into a homogeneous medium .
  • this premixing zone V Due to the high elastic resilience in this premixing zone V, the forces acting during the comminution of these coarse material constituents can be absorbed by the lining 3 without the lining 3 being damaged significantly beyond normal wear. This is supported by the fact that in the premixing zone V there are still low pressures in the pump cavity 5 and these are only very different increase slightly. This ensures optimal mixing.
  • the mean wall thickness W in the premixing zone V is constant at the end wall thickness WE. From a certain position in the axial direction X, the premixing zone Z changes into a high pressure zone H, this being initiated by a reduction in the mean wall thickness W of the lining 3. The reduction in the mean wall thickness W reduces the elastic resilience of the lining 3. At the same time, the pressure in the pump interior 5 increases in the axial direction X, so that the conveyed medium also acts on the lining 3 with higher forces. However, since the conveyed medium has already been comminuted and homogenized in the premixing zone V, the lining 3 in the high-pressure zone H is less stressed because the material constituents of the medium tend to have smaller particle sizes.
  • the backflow behavior of the stator 1 can be improved by the conical structure of the high pressure zone H.
  • the conveyed medium can flow back if a pressure difference between adjacent chambers in the pump cavity 5 becomes too high. If a harder lining 3 is selected, the backflow only occurs at higher pressure differences between the chambers.
  • the lining 3, which becomes harder in the axial direction X, also prevents backflow as the pressure of the pumped medium in the pump cavity 5 increases, i.e. higher pressure differences are possible before the pumped medium flows back.
  • a stabilization zone S follows in the axial direction X in the stator 1 and is located in the area of the pressure side 8 or the widening 10.
  • the mean wall thickness W of the lining 3 is increased again and then runs constant, so that the elastic flexibility of the lining 3 increases again or the hardness of the lining 3 decreases again.
  • the premixing zone V there is a slight pressure build-up in the pump cavity 5 on the outlet side.
  • a connection for example via a flange, to the next component of the eccentric screw pump can be established to be provided.
  • a connection for example via a flange, to the next component of the eccentric screw pump can be established to be provided.
  • identical or standardized flanges or connections can advantageously be used. Due to the external shape of the stator 1, it can be clearly recognized in which orientation the stator 1 is to be mounted in the eccentric screw pump.
  • the reduction in the mean wall thickness W in the axial direction X is achieved by continuously adapting the outer surface 9 of the lining 3 to the coiled inner surface 4 of the lining 3.
  • the outer surface 9 accordingly also forms a two-start coarse thread from a certain axial position. Since the jacket 2 rests flat against the outer surface 9 of the lining 3 or is adhered or vulcanized to it, the jacket 2 also follows the shape of the double helical thread of the inner surface 4 from a certain axial position.
  • This also divides the stator 1 in the axial direction X into a premixing zone V, a high pressure zone H and a stabilization zone S, with an approximately constant average wall thickness W, which corresponds to the end average wall thickness WE, being formed in the premixing zone V.
  • a high elastic resilience of the lining 3 is achieved over a certain area, whereby the medium provided via the suction side 7 can be comminuted or mixed or homogenized without damaging the lining 3 significantly beyond normal wear.
  • the mean wall thickness W of the lining 3 decreases continuously (dotted line in Fig. 2 ), whereby, as already mentioned, this is achieved in that the outer surface 9 of the lining 3 is attached to the double-helix thread formed by the inner surface 4 is continuously adjusted. This also causes a continuous tapering of the lining 3 in the axial direction starting from the suction side 7 in the direction of the pressure side 8.
  • the reduction in the mean wall thickness W or the increase in hardness takes place according to a different, steeper course, which increases the pumping effect even more, since there is an increased increase in pressure.
  • a high pressure zone H is formed by the continuous tapering of the lining in the axial direction X, in which the elastic resilience of the lining 3 continuously decreases while the pressure in the pump cavity 5 increases at the same time take place, with the liner 3 being prevented from being damaged due to the even lower pressure in the pump cavity 5.
  • the conveyed medium is further homogenized, so that in the area of the minimum wall thickness, low-wear conveyance can be achieved with maximum conveying capacity at the same time.
  • the mean wall thickness W increases in the embodiment according to FIG Figure 2 in the area of the widening 10 and then remains constant, so that a stabilization zone S is also formed here.
  • the pressure in the pump cavity 5 increases only slightly due to the low flexibility, so that a low-wear and smooth transition with a stabilized medium to the next component in the eccentric screw pump can be provided.
  • the end wall thickness WE on the pressure side 8 corresponds to the end wall thickness WE on the suction side 7 in order to create an identical connection on both end sides of the stator 1.
  • Figure 2a shows the section through the stator 1 in the premixing zone V, the A dimension A and the B dimension B at this axial position with the dimensions A, B in Figure 1a essentially coincide with the first embodiment.
  • Figure 2b the section through the stator 1 in the high pressure zone H, ie after the taper, is shown.
  • the A dimension A is compared to the situation in the premixing zone V (see Sect. Figure 2a ) stayed the same. Only the B dimension B has decreased compared to the situation in the premixing zone V.
  • the continuous tapering of the lining 3 in the axial direction is thus achieved solely by adjusting the B dimension.
  • the semiaxes HA1, HA2 of the jacket 2 and the lining 3 behave in a corresponding manner.
  • a first semiaxis HA1 pointing in the Z direction remains constant in the axial direction X, while a second semiaxis pointing in the Y direction is constant HA2 is continuously tapered. Since the jacket 2 rests flat against the lining 3, the semiaxes HA1, HA2 of the jacket 2 (inner surface) and the lining 3 (outer surface) correspond.
  • a width VB of the premixing zone V in the axial direction X is increased compared to the previous embodiments. It can thus be determined in a targeted manner, for example as a function of the area of application of the stator 1, over which extent a low-wear homogenization or mixing of the conveyed medium is to take place. As a result, the amount of coarse material particles in the high pressure zone H can be reduced and the wear on the lining 3 can thus be influenced in a targeted manner.
  • the width SB of the stabilization zone S can also be adjusted accordingly in order to give the medium a sufficiently large area for stabilization and thus to optimize the transition, for example as a function of the area of application.
  • a width HB of the high pressure area H can also be selected accordingly in order to define the area in which the delivery rate is to be increased by a corresponding adaptation of the pressure gradient. This can be done in mutual coordination with the course of the mean wall thickness W in order to achieve a corresponding pressure increase along the conveying direction.
  • the widths VN, HB, SB can also in the first exemplary embodiment according to FIG Fig. 1 can be set variably accordingly.
  • the high pressure zone H is divided into two high pressure areas H1, H2.
  • the mean wall thickness W initially decreases continuously in the axial direction X until the lowest mean wall thickness WM is reached.
  • the mean wall thickness W remains approximately constant at the lowest mean wall thickness WM.
  • the mean wall thickness W of the lining 3 increases again starting from the lowest mean wall thickness WM towards the pressure side 8 of the stator 1, so that the widening occurs on the pressure side 8 10 forms in the lining 3.
  • a type of “hybrid stator” is provided, which is formed from a cylindrical stator in the premixing zone V and a two-flight coiled stator in the second high pressure area H2 of the high pressure zone H.
  • the mean wall thicknesses W within the two hybrid components are different but constant in each case.
  • the transition between the two hybrid components is ensured by the continuous adjustment of the mean wall thickness W in the first high pressure area H1, which at the same time also adjusts the hardness of the lining as in the first design variants in Fig. 1 and Fig. 2 is achieved.
  • the widening 10 is formed in the stabilization zone S by continuously adapting the mean wall thickness W.

Description

  • Die Erfindung betrifft einen Stator für eine einen Rotor aufweisende Exzenterschneckenpumpe.
  • Statoren gattungsgemäßer Art weisen einen durch eine Auskleidung aus einem Elastomer gebildeten, durchgehenden und gewendelten Pumpenhohlraum auf, in dem ein exzentrisch gelagerter Rotor umläuft. Aufgrund der exzentrischen Lagerung des Rotors bilden sich zwischen diesem und der gewendelten Auskleidung bei seiner Drehung Kammern, die gewissermaßen von einer Saugseite der Exzenterschneckenpumpe zu deren Druckseite hinwandern, so dass ein Medium in axialer Richtung durch die Pumpe bzw. den Stator hindurchgedrückt bzw. gefördert wird.
  • Derartige Statoren können in Exzenterschneckenpumpen insbesondere für die Förderung von Medien wie Putz, Mörtel, Öl, etc. verwendet werden. Um eine Förderleistung mit derartigen Statoren zu verbessern, ist gemäß beispielsweise EP 0 358 789 A1 , DE 195 31 318 A1 , EP 1 522 729 B2 oder DE 41 11 166 C2 vorgesehen, die Auskleidung ausgehend von der Saugseite hin zur Druckseite konisch zu verjüngen. Dadurch wird die elastische Nachgiebigkeit der Auskleidung an den sich in axialer Richtung bzw. Förderrichtung kontinuierlich erhöhenden Förderdruck angepasst. Durch die konische Form des Stators ist für die Anbindung zum nächsten Bauteil in der Exzenterschneckenpumpe ein ebenfalls angepasstes Übergangsstück zu verwenden, wenn eine Wandstärke des Mantels über den gesamten Stator gleichbleibt und sich dieser ebenfalls an die konische Verjüngung anpasst.
  • Zudem sind bei einer derartigen konischen Verjüngung die auf die Auskleidung wirkenden Kräfte durch das Medium erhöht. Weist das Medium beispielsweise grobe Materialbestandteile, beispielsweise Gesteinsbrocken, auf, so beanspruchen diese die Auskleidung in einem elastisch weniger nachgiebigen und bereits verjüngten Bereich stärker, so dass die Auskleidung insgesamt schneller verschleißt.
  • Aufgabe der Erfindung ist daher, einen Stator mit erhöhter Förderleistung bereitzustellen, der einfach herstellbar ist, eine hohe Beständigkeit aufweist und einfach in eine Exzenterschneckenpumpe integrierbar ist.
  • Erfindungsgemäß ist dazu vorgesehen, dass sich eine mittlere Wandstärke der Auskleidung des Stators ausgehend von einer endseitigen Wandstärke, die im Bereich einer vorzugsweise zylindrischen Saugseite des Stators vorliegt, kontinuierlich, d.h. gemäß einer stetigen Funktion beliebigen Grades, in axialer Richtung bis hin zu einer geringsten mittleren Wandstärke verringert, und dass die mittlere Wandstärke nach Erreichen der geringsten mittleren Wandstärke zumindest bereichsweise wieder ansteigt, so dass sich bis hin zu einer Druckseite des Stators eine vorzugsweise zylindrischen Aufweitung in der Auskleidung ausbildet. Darunter ist zu verstehen, dass die mittlere Wandstärke der Auskleidung ausgehend von der geringsten mittleren Wandstärke unmittelbar nach deren erreichen wieder ansteigt oder aber nach deren erreichen zunächst über einen gewissen Bereich in etwa konstant bleibt und erst dann wieder ansteigt, um die Aufweitung in der Auskleidung auszubilden.
  • Dadurch wird vorteilhafterweise erreicht, dass neben einer Anpassung der mittleren Wandstärke der Auskleidung in axialer Richtung an die wirkenden Pumpendrücke in dem Pumpenhohlraum des Stators ein geeigneter Übergang auf der Druckseite geschaffen werden kann. Die Aufweitung erlaubt vorteilhafterweise auch einen Anschluss, beispielsweise über einen herkömmlichen Flansch, zum nächsten Bauteil der Exzenterschneckenpumpe. Dabei kann beispielweise auch eine Einstellung der Wandstärke wie sie auf der Saugseite vorherrscht erfolgen, so dass vorteilhafterweise dieselben Anschlüsse, z.B. Flansche, für beide Seiten des Stators verwendet werden können, wenn die endseitigen Wandstärken an der Druckseite und an der Saugseite in etwa übereinstimmen.
  • Zudem wird die Auskleidung zur Druckseite hin wieder nachgiebiger, wodurch sich das geförderte Medium, das an der Druckseite normalerweise unter einem hohen Druck steht, stabilisieren kann. Der Druck erhöht sich in der Aufweitung der Druckseite nämlich nur noch geringfügig, wenn die Auskleidung wieder nachgiebiger wird. Im Gegensatz dazu erfährt das geförderte Medium im Bereich der immer härter werdenden Auskleidung, aufgrund der kontinuierlichen Verringerung der mittleren Wandstärke in einem Bereich vor der Aufweitung, einen erhöhten Druckanstieg, der für die Pumpwirkung in diesem Bereich auch gewollt ist. Im Bereich der Aufweitung jedoch findet kein erhöhter Druckanstieg mehr statt und das Medium wird damit stabilisiert. In dem erfindungsgemäßen Stator kann also insgesamt eine optimierte Überleitung des geförderten Mediums in das nächste Bauteil der Exzenterschneckenpumpe erfolgen.
  • Durch den Aufbau des Stators kann auch eine verbesserte Rückhaltefunktion erreicht werden, wenn beispielsweise die Exzenterschneckenpumpe abgeschaltet wird. Im Pumpenhohlraum kann es zu einem Rückströmen des geförderten Mediums kommen, wenn eine Druckdifferenz zwischen benachbarten Kammern im Pumpenhohlraum zu hoch wird. Wird eine härtere Auskleidung gewählt, tritt das Rückströmen erst bei höheren Druckdifferenzen zwischen den Kammern auf. Die in axialer Richtung härter werdende Auskleidung verhindert also mit höher werdendem Druck des geförderten Mediums gleichzeitig auch ein Rückströmen, d.h. es sind höhere Druckdifferenzen möglich bevor das geförderte Medium zurückströmt.
  • Vorzugsweise kann bei einem derartigen Aufbau weiterhin erreicht werden, dass der Stator aufgrund des axialen Verlaufes der mittleren Wandstärke der Auskleidung
    • im Bereich der Saugseite des Stators eine Vormischzone ausbildet zum Homogenisieren und/oder Zerkleinern des zu fördernden Mediums,
    • im Bereich der Druckseite des Stators in der Aufweitung eine Stabilisierungszone ausbildet zum Stabilisieren und zum sanften Überleiten des geförderten Mediums in der Exzenterschneckenpumpe, und
    • zwischen der Vormischzone und der Stabilisierungszone eine Hochdruckzone mit verminderter Rückströmung des Mediums ausbildet zum Erhöhen des Druckes im Pumpenhohlraum im Betrieb der Exzenterschneckenpumpe aufgrund der in axialer Richtung zumindest bereichsweise kontinuierlich abnehmenden mittleren Wandstärke und damit der zunehmenden Härte der Auskleidung, wobei der Druck in der Hochdruckzone gegenüber der Vormischzone und der Stabilisierungszone zumindest bereichsweise mit einem höheren Druckgradienten angepasst wird.
  • Daher wird der Stator durch den gezielt eingebrachten Verlauf der mittleren Wandstärke in unterschiedliche axial voneinander beabstandete Zonen eingeteilt, wobei der Übergang vorzugsweise dadurch definiert wird, dass die mittlere Wandstärke der Auskleidung zumindest in der Vormischzone und/oder in der Stabilisierungszone konstant bleibt. Dadurch kann das geförderte Medium bei dessen Eintritt in den Stator und/oder bei dessen Austritt aus dem Stator vorteilhafterweise an die geänderte, sich verjüngende Form der Auskleidung in der Hochdruckzone bzw. die daraus resultierende geänderte Förderleistung des Stators angepasst werden.
  • Auch in Teilen der Hochdruckzone kann die mittlere Wandstärke konstant sein. Beispielsweise kann vorgesehen sein, dass die mittlere Wandstärke der Auskleidung in einem ersten Hochdruckbereich der Hochdruckzone in axialer Richtung kontinuierlich abnimmt bis hin zur geringsten mittleren Wandstärke, wobei sich der erste Hochdruckbereich an die Vormischzone anschließt, und in einem zweiten Hochdruckbereich der Hochdruckzone in etwa konstant auf der geringsten mittleren Wandstärke verbleibt.
  • Dem Medium steht also vorteilhafterweise eine Zone zur Verfügung, in der es auf der Saugseite homogenisiert bzw. zerkleinert und/oder auf der Druckseite stabilisiert werden kann. Die jeweilige Zone kann je nach Anwendung und gefördertem Medium durch die Wahl einer entsprechenden axialen Ausdehnung bzw. einer axialen Breite sowie der Wandstärke der Auskleidung in der jeweiligen Zone gezielt eingestellt werden. Das Medium kann dann in der jeweiligen Zone auf den nächsten Bereich im Stator bzw. in der Exzenterschneckenpumpe "vorbereitet" werden.
  • Beispielsweise wird die Auskleidung in der Hochdruckzone bei geringer werdender Nachgiebigkeit weniger stark beansprucht, da das Medium in der Vormischzone bereits zerkleinert bzw. homogenisiert wurde. Die Auskleidung in der Hochdruckzone verschleißt deshalb weniger stark. In der Stabilisierungszone wird das Medium stabilisiert, so dass ein sanfterer Übergang bzw. ein sanfteres Austreten aus dem Stator erreicht werden kann.
  • Für die Verjüngung der Auskleidung ist vorzugsweise vorgesehen, dass sich die Auskleidung des Stators in axialer Richtung konisch verjüngt, wobei die mittlere Wandstärke der Auskleidung dazu ausgehend von der endseitigen mittleren Wandstärke in axialer Richtung zumindest bereichsweise, beispielsweise in der Hochdruckzone oder in Teilen der Hochdruckzone, in Richtung der Druckseite linear oder auch einer nicht-linearen Funktion folgend abnimmt. Somit wird eine einfach herzustellende lineare Verjüngung oder eine Verjüngung gemäß einer nicht-linearen Funktion geschaffen, die vorzugsweise dadurch ausgebildet wird, dass sich die Außenfläche der Auskleidung linear oder einer nicht-linearen Funktion folgend verjüngt, vorzugsweise bei gleichbleibendem Pumpendurchmesser im Pumpenhohlraum.
  • Alternativ kann auch vorgesehen sein, dass sich die Auskleidung des Stators in axialer Richtung zumindest bereichsweise verjüngt, indem sich eine Kontur der Außenfläche der Auskleidung ausgehend von der endseitigen mittleren Wandstärke zur geringsten mittleren Wandstärke immer mehr an eine Kontur der als zweigängiges Steilgewinde ausgeführten Innenfläche der Auskleidung annähert. Dadurch wird die Verjüngung und damit die Anpassung der mittleren Wandstärke an den wirkenden Druck im Pumpenholraum noch verstärkt, wobei die Verjüngung dann auch von außen sichtbar wird, da sich vorzugsweise auch der Mantel an diese zweigängige Form der Außenfläche anpasst.
  • Insbesondere kann diese Art der Verjüngung in dem ersten Hochdruckbereich der Hochdruckzone vorgesehen sein, so dass sich ein Übergang zwischen der vorzugsweise zylindrischen Vormischzone und dem zweiten Hochdruckbereich der Hochdruckzone einstellen kann, wobei der Mantel im zweiten Hochdruckbereich an die zweigängige Form der Außenfläche anpasst ist. Dadurch findet eine Überleitung vom zylindrischen Querschnitt in den gewendelten Querschnitt statt, wobei in dem zweiten Hochdruckbereich die mittlere Wandstärke konstant bleibt. Dadurch wird eine Art Hybrid-Stator aus einer zylindrischen Vormischzone und einer gewendelten Hochdruckzone im zweiten Hochdruckbereich ausgebildet. Der erste Hochdruckbereich wirkt dann als Übergang mit entsprechend härter werdender Auskleidung aufgrund der kontinuierlichen Anpassung der mittleren Wandstärke.
  • Um die Annäherung der Außenfläche an die zweigängige Innenfläche zu erreichen, ist vorzugsweise vorgesehen, dass sich ein B-Maß der Auskleidung ausgehend von der endseitigen mittleren Wandstärke in axialer Richtung zumindest bereichsweise, beispielsweise in der Hochdruckzone oder in Teilen der Hochdruckzone, in Richtung der Druckseite kontinuierlich verringert und ein A-Maß der Auskleidung gleichzeitig konstant bleibt. Dadurch kann der Herstellungsprozess gemäß dieser Alternative vereinfacht werden.
  • Vorzugsweise ist weiterhin vorgesehen, dass die mittlere Wandstärke der Auskleidung nach Erreichen der geringsten mittleren Wandstärke und ggf. nach einem konstanten Verbleib auf der geringsten mittleren Wandstärke (vgl. zweiter Hochdruckbereich), abrupt oder kontinuierlich ansteigt, um die druckseitige Aufweitung auszubilden. Ein kontinuierliches Ansteigen ermöglicht dabei einen sanfteren Übergang zwischen der Hochdruckzone und der Stabilisierungszone sowie eine einfachere Herstellung. Dennoch kann auch ein abrupter Übergang vorgesehen sein, um beispielsweise das Stabilisieren zu begünstigen und einen weiteren Druckanstieg des geförderten Mediums in Grenzen zu halten.
  • Vorzugsweise ist weiterhin vorgesehen, dass ein Innendurchmesser des Mantels einem Außendurchmesser der Auskleidung entspricht, so dass der Mantel über den gesamten Stator flächig an der Außenfläche der Auskleidung anliegt und somit den konischen oder den gewendelten Verlauf entsprechend der Außenfläche annimmt, wobei der Mantel dazu vorzugsweise eine gleichbleibende Materialstärke aufweist. Der Mantel besteht dabei aus einem härteren Material als die Auskleidung, vorzugsweise aus Stahl. Dadurch lässt sich der die Auskleidung umgebende Mantel an die verjüngende Form der Auskleidung einfach anpassen, beispielsweise durch einen Umformvorgang.
  • Die Erfindung wird im Folgenden anhand von Ausführungsbeispielen näher erläutert. Es zeigen:
  • Fig. 1
    einen Stator gemäß einer ersten Ausführungsform;
    Fig. 1a
    eine Schnittansicht des Stators gemäß Fig. 1;
    Fig. 2
    einen Stator in einer weiteren Ausführungsform;
    Fig. 2a, 2b
    Schnittansichten des Stators gemäß Fig. 2;
    Fig. 3
    eine weitere Ausführungsform eines Stators.
  • In Figur 1 ist ein Stator 1 vorgesehen, der einen rohrförmigen Mantel 2 aufweist, der vorzugsweise aus einem Stahlrohr gefertigt ist, beispielsweise durch Umformung. Der Mantel 2 umschließt eine elastisch nachgiebige Auskleidung 3, deren Innenfläche 4 eine gewendelte bzw. schneckenförmige Kontur K4 aufweist, wobei ein zweigängiges Steilgewinde ausgebildet wird. Im Inneren des Stators 1 wird dadurch ein Pumpenhohlraum 5 ausgebildet, in den ein Rotor 6 (Figur 1a) eingesteckt ist, wobei der Rotor 6 nach Art eines eingängigen Steilgewindes ausgeführt wird und gegebenenfalls unter Vorspannung an der elastisch nachgiebigen Auskleidung 3 anliegt. Der exzentrisch gelagerte Rotor kann in dem Pumpenhohlraum 5 umlaufen.
  • Der Stator 1 weist eine Saugseite 7 sowie eine Druckseite 8 auf, wobei bei einem Einbau des Stators 1 zusammen mit dem Rotor 6 in einer Exzenterschneckenpumpe (nicht dargestellt) das zu fördernde Medium, beispielsweise Schlamm, Mörtel oder Putz, in Kammern von der Saugseite 7 durch den Pumpenhohlraum 5 in axialer Richtung X zur Druckseite 8 gefördert wird, wenn der Rotor 6 in Drehung versetzt wird. Dabei erhöht sich der Druck im Pumpenhohlraum 5 zur Druckseite 8 hin stetig, so dass auf die elastisch nachgiebige Auskleidung 3 an der Saugseite 7 ein geringerer Druck wirkt als auf der Druckseite 8.
  • Gemäß der Ausführung in Figur 1 ist die Auskleidung 3 an ihrer Außenfläche 9 konisch gestaltet, wobei eine mittlere Wandstärke W der Auskleidung 3 von einer Position nahe der Saugseite 7 des Stators 1 in axialer Richtung X zur Druckseite 8 hin zunächst kontinuierlich, d.h. gemäß einer stetigen Funktion, abnimmt. Eine Kontur K9 der Außenseite 9 verläuft dabei von der Position nahe der Saugseite 7 in axialer Richtung X zumindest bereichsweise linear absteigend, d.h. gemäß einer linearen Funktion. Dadurch wird erreicht, dass die elastische Nachgiebigkeit der Auskleidung 3 an der Saugseite 7 höher ist als beispielsweise im mittleren Bereich des Stators 1 bzw. in dem Bereich des Stators 1 mit der geringsten Wandstärke WM. Die Auskleidung 3 wird zur Druckseite 8 hin also immer härter (in etwa linear).
  • Die konische Verjüngung kann derartig eingestellt sein, dass ein mittlerer Pumpendurchmesser DP über den gesamten Stator 1 gleichbleibt, so dass auch keine Anpassung des Rotors 6 nötig ist. Dazu ist lediglich die Außenfläche 9 in axialer Richtung X zur Druckseite 8 hin verjüngt. Grundsätzlich kann aber auch eine kontinuierliche Anpassung des mittleren Pumpendurchmessers DP, insbesondere eine konische Verjüngung zur Druckseite 8 hin, vorgesehen sein.
  • Von der geringsten Wandstärke WM der Auskleidung 3 ausgehend weist der Stator 1 zur Druckseite 8 hin eine Aufweitung 10 auf, durch die die mittlere Wandstärke W auf eine endseitige Wandstärke WE erhöht wird. Die endseitige Wandstärke WE an der Saugseite 7 entspricht vorzugsweise der endseitigen Wandstärke WE an der Druckseite 8. Dadurch sind die elastische Nachgiebigkeit bzw. die Härte der Auskleidung 3 an den Stirnseiten des Stators 1 in etwa identisch.
  • Gemäß der Schnittansicht in Figur 1a können für den Stator 1 ein A-Maß A und ein B-Maß B angegeben werden, die jeweils eine Dicke der Auskleidung 3 in eine Z-Richtung Z bzw. in eine Y-Richtung Y angeben. Um die konische Verjüngung der Auskleidung 3 in axialer Richtung X zu erreichen, ist gemäß dieser Ausführungsform vorgesehen, dass sowohl das A-Maß A als auch das B-Maß B in axialer Richtung X ab der entsprechenden Position kontinuierlich abnehmen. Dadurch wird die mittlere Wandstärke W bis zur minimalen Wandstärke WM hin kontinuierlich reduziert. Da der Mantel 2 an der Auskleidung 3 flächig anliegt, vorzugsweise angehaftet bzw. anvulkanisiert ist, reduziert sich auch dessen Innendurchmesser D kontinuierlich. Ein Außendurchmesser E der Auskleidung 3 entspricht damit dem Innendurchmesser D des Mantels 2.
  • Durch die konische Verjüngung der Auskleidung 3 ausgehend von der Saugseite 7 und der sich anschließenden Aufweitung 10 an der Druckseite 8 ist der Stator 1 in drei Zonen V, H, S bzw. Bereiche unterteilt:
    In einer Vormischzone V, die an der Saugseite 7 des Stators 1 beginnt, wirkt ein relativ geringer Druck im Pumpenhohlraum 5. Gleichzeitig ist aufgrund der vergleichbar hohen mittleren Wandstärke W in der Vormischzone V eine hohe elastische Nachgiebigkeit bzw. eine geringe Härte der Auskleidung 3 gegeben. Diese Vormischzone V eignet sich daher dazu, ein über die Saugseite 7 zugeführtes grobkörniges Medium, beispielsweise Mörtel, Putz oder Schlamm, das unter Umständen noch grobe Materialbestandteile, beispielsweise Gesteinsbrocken, beinhalten kann, zu zerkleinern bzw. vorzuverdichten und gleichmäßig zu einem homogenen Medium zu vermischen.
  • Durch die hohe elastische Nachgiebigkeit in dieser Vormischzone V können die bei der Zerkleinerung dieser groben Materialbestandteile wirkenden Kräfte von der Auskleidung 3 aufgenommen werden, ohne dass die Auskleidung 3 dabei signifikant über den normalen Verschleiß hinausgehend beschädigt wird. Dies wird dadurch unterstützt, dass in der Vormischzone V noch geringe Drücke im Pumpenhohlraum 5 wirken und sich diese nur sehr geringfügig erhöhen. Dadurch kann eine optimale Vermischung gewährleistet werden.
  • Die mittlere Wandstärke W liegt in der Vormischzone V konstant bei der endseitigen Wandstärke WE. Ab einer gewissen Position in axialer Richtung X geht die Vormischzone Z in eine Hochdruckzone H über, wobei dies durch eine Verringerung der mittleren Wandstärke W der Auskleidung 3 eingeleitet wird. Durch die Verringerung der mittleren Wandstärke W verringert sich die elastische Nachgiebigkeit der Auskleidung 3. Gleichzeitig erhöht sich der Druck im Pumpeninnenraum 5 in axialer Richtung X, so dass das geförderte Medium auch mit höheren Kräften auf die Auskleidung 3 einwirkt. Da in der Vormischzone V jedoch bereits eine Zerkleinerung und Homogenisierung des geförderten Mediums stattgefunden hat, wird die Auskleidung 3 in der Hochdruckzone H weniger stark beansprucht, da die Materialbestandteile des Mediums eher geringere Partikelgrößen aufweisen.
  • Gleichzeitig kann durch die geringere bzw. in axialer Richtung X geringer werdende elastische Nachgiebigkeit der Auskleidung 3 in der Hochdruckzone H eine höhere Förderleistung erzielt werden, da das Material der Auskleidung 3 einen immer höher werdenden Widerstand gegenüber einer Rückströmung über die Dichtlinie zwischen dem Rotor 6 und der Auskleidung 3 des Stators 1 für das zu geförderte Medium bietet. Der Druck steigt dabei in der Hochdruckzone H aufgrund der geringer werdenden mittleren Wandstärke W bzw. der höher werdenden Härte der Auskleidung 3 stärker an als in der Vormischzone V. Auch in der Hochdruckzone H kann beispielsweise durch den höheren Druck im Pumpenhohlraum 5 sowie die geringer werdende elastische Nachgiebigkeit der Auskleidung 3 eine Zerkleinerung von noch vorhandenen groben Materialbestandteilen erfolgen. Diese treten allerdings nur noch vereinzelt auf und haben bis zur minimalen Wandstärke WM hin sehr stark abgenommen, so dass eine über den normalen Verschleiß hinausgehende Beschädigung der Auskleidung 3 weitestgehend vermieden werden kann.
  • Durch den konischen Aufbau der Hochdruckzone H kann das Rückströmverhalten des Stators 1 verbessert werden. Zu einem Rückströmen des geförderten Mediums kann es kommen, wenn eine Druckdifferenz zwischen benachbarten Kammern im Pumpenhohlraum 5 zu hoch wird. Wird eine härtere Auskleidung 3 gewählt, tritt das Rückströmen erst bei höheren Druckdifferenzen zwischen den Kammern auf. Die in axialer Richtung X härter werdende Auskleidung 3 verhindert also mit immer höher werdendem Druck des geförderten Mediums im Pumpenhohlraum 5 gleichzeitig auch ein Rückströmen, d.h. es sind höhere Druckdifferenzen möglich bevor das geförderte Medium zurückströmt.
  • Ausgehend von der minimalen Wandstärke WM schließt sich im Stator 1 in axialer Richtung X eine Stabilisierungszone S an, die sich im Bereich der Druckseite 8 bzw. der Aufweitung 10 befindet. In der Stabilisierungszone S wird die mittlere Wandstärke W der Auskleidung 3 wieder erhöht und verläuft anschließend konstant, so dass die elastische Nachgiebigkeit der Auskleidung 3 wieder zunimmt bzw. die Härte der Auskleidung 3 wieder abnimmt. Dadurch findet, wie auch in der Vormischzone V, ausgangsseitig ein geringfügiger Druckaufbau im Pumpenhohlraum 5 statt.
  • Im Übergangsbereich zum nächsten Bauteil der Exzenterschneckenpumpe, d.h. auf der Druckseite 8 des Stators 1, tritt dadurch ein verringerter Verschleiß auf und das geförderte Medium wird vor dem Übergang zum nächsten Bauteil stabilisiert.
  • Weiterhin kann durch die Erhöhung der mittleren Wandstärke W auf die endseitige Wandstärke WE im Bereich der Aufweitung 10 ein Anschluss, beispielsweise über einen Flansch, zum nächsten Bauteil der Exzenterschneckenpumpe bereitgestellt werden. Auf der Saugseite 7 und der Druckseite 8 des Stators 1 können bei gleichen endseitigen Wandstärken WE vorteilhafterweise identische bzw. standardisierte Flansche bzw. Anschlüsse verwendet werden. Aufgrund der äußeren Form des Stators 1 kann eindeutig erkannt werden, in welcher Ausrichtung der Stator 1 in der Exzenterschneckenpumpe zu montieren ist.
  • Gemäß einer weiteren Ausführungsform des Stators 1, die in Figur 2 dargestellt ist, wird die Reduzierung der mittleren Wandstärke W in axialer Richtung X durch eine kontinuierliche Anpassung der Außenfläche 9 der Auskleidung 3 an die gewendelte Innenfläche 4 der Auskleidung 3 erreicht. Die Außenfläche 9 bildet demnach ab einer bestimmten axialen Position ebenfalls ein zweigängiges Steilgewinde aus. Da der Mantel 2 an der Außenfläche 9 der Auskleidung 3 flächig anliegt bzw. daran angehaftet bzw. anvulkanisiert ist, folgt auch der Mantel 2 ab einer bestimmten axialen Position der Form des zweigängigen Steilgewindes der Innenfläche 4.
  • Auch dadurch wird der Stator 1 in axialer Richtung X in eine Vormischzone V, eine Hochdruckzone H und eine Stabilisierungszone S unterteilt, wobei in der Vormischzone V zunächst noch eine in etwa konstante mittlere Wandstärke W, die der endseitigen mittleren Wandstärke WE entspricht, ausgebildet ist. Dadurch wird über einen gewissen Bereich eine hohe elastische Nachgiebigkeit der Auskleidung 3 erreicht, wodurch sich das über die Saugseite 7 bereitgestellte Medium zerkleinert bzw. vermischt bzw. homogenisiert werden kann, ohne dabei die Auskleidung 3 signifikant über den normalen Verschleiß hinausgehend zu beschädigen.
  • Ab einem gewissen axialen Position nimmt die mittlere Wandstärke W der Auskleidung 3 kontinuierlich ab (gepunktete Linie in Fig. 2), wobei dies, wie bereits erwähnt, dadurch erreicht wird, dass die Außenfläche 9 der Auskleidung 3 an das durch die Innenfläche 4 ausgebildete zweigängige Steilgewinde kontinuierlich angepasst wird. Auch dadurch wird eine kontinuierliche Verjüngung der Auskleidung 3 in axialer Richtung ausgehend von der Saugseite 7 in Richtung der Druckseite 8 bewirkt. Im Unterschied zu der Ausführungsform in Figur 1 erfolgt die Verringerung der mittleren Wandstärke W bzw. das Erhöhen der Härte jedoch gemäß einem anderen, steileren Verlauf, was den Pumpeneffekt noch verstärkt, da ein erhöhter Druckanstieg erfolgt.
  • Auch in der Ausführungsform gemäß Figur 2 wird durch die kontinuierliche Verjüngung der Auskleidung in axialer Richtung X eine Hochdruckzone H ausgebildet, in der die elastische Nachgiebigkeit der Auskleidung 3 kontinuierlich abnimmt bei gleichzeitig zunehmendem Druck im Pumpenhohlraum 5. Dadurch kann eingangs der Hochdruckzone H, falls noch nötig, eine Zerkleinerung von groben Materialbestandteilen stattfinden, wobei aufgrund des noch geringeren Druckes im Pumpenhohlraum 5 eine Beschädigung der Auskleidung 3 vermieden wird. Im weiteren axialen Verlauf homogenisiert sich das geförderte Medium weiter, so dass im Bereich der minimalen Wandstärke eine verschleißarme Förderung bei gleichzeitig maximaler Förderleistung erreicht werden kann.
  • Ausgehend von der geringsten Wandstärke WM steigt die mittlere Wandstärke W in der Ausführungsform gemäß Figur 2 im Bereich der Aufweitung 10 wieder an und bleibt dann konstant, so dass sich auch hier eine Stabilisierungszone S ausbildet. In dieser erhöht sich der Druck im Pumpenhohlraum 5 aufgrund der geringen Nachgiebigkeit nur noch geringfügig, so dass ein verschleißarmer und sanfter Übergang mit einem stabilisierten Medium zum nächsten Bauteil in der Exzenterschneckenpumpe bereitgestellt werden kann. Auch hier entspricht die endseitige Wandstärke WE an der Druckseite 8 der endseitigen Wandstärke WE an der Saugseite 7, um einen identischen Anschluss an beiden Stirnseiten des Stators 1 schaffen.
  • Gemäß den Schnittansichten in Figur 2a und 2b, die der Ausführungsform in Fig. 2 zugeordnet sind, ist zu erkennen, dass das A-Maß A und das B-Maß B zur Ausbildung der kontinuierlichen Verjüngung der Auskleidung 3 in axialer Richtung X unterschiedlich angepasst werden. Figur 2a zeigt den Schnitt durch den Stator 1 in der Vormischzone V, wobei das A-Maß A bzw. das B-Maß B an dieser axialen Position mit den Maßen A, B in Figur 1a zur ersten Ausführungsform im Wesentlichen übereinstimmen. In Figur 2b ist der Schnitt durch den Stator 1 in der Hochdruckzone H, d. h. nach der Verjüngung, dargestellt. Das A-Maß A ist gegenüber dem Zustand in der Vormischzone V (s. Figur 2a) gleichgeblieben. Lediglich das B-Maß B hat sich gegenüber dem Zustand in der Vormischzone V verringert. Die kontinuierliche Verjüngung der Auskleidung 3 in axialer Richtung wird also allein durch eine Anpassung des B-Maßes B erreicht.
  • In entsprechender Weise verhalten sich auch die Halbachsen HA1, HA2 des Mantels 2 bzw. der Auskleidung 3. Eine erste, in die Z-Richtung weisende Halbachse HA1 bleibt in axialer Richtung X konstant, während sich eine zweite, in die Y-Richtung weisende Halbachse HA2 kontinuierlich verjüngt. Da der Mantel 2 flächig an der Auskleidung 3 anliegt, entsprechen sich die Halbachsen HA1, HA2 des Mantels 2 (Innenfläche) und der Auskleidung 3 (Außenfläche).
  • Dadurch ergibt sich auch die zweigängig gewendelte Außenkontur K9 des Stators 1, die aufgrund der gleichzeitigen Formanpassung des Mantels 2 an die Außenfläche 9 der Auskleidung 3 von außen sichtbar ist. Durch diese Ausgestaltung kann die Unterteilung des Stators 1 in unterschiedliche Zonen V, H, S noch unterstützt werden, da durch die gewendelte Wandstärkenanpassung in axialer Richtung die elastische Nachgiebigkeit an die Druckverhältnisse im Pumpenhohlraum 5 optimal angepasst werden können.
  • Gemäß Figur 3 ist gegenüber der Ausführungsform in Figur 2 vorgesehen, dass eine Breite VB der Vormischzone V in axialer Richtung X vergrößert ist gegenüber den vorherigen Ausführungsformen. Damit kann gezielt festgelegt werden, beispielsweise in Abhängigkeit des Einsatzgebietes des Stators 1, über welche Ausdehnung eine verschleißarme Homogenisierung bzw. Vermischung des geförderten Mediums stattfinden soll. Dadurch kann das Maß an groben Materialpartikeln in der Hochdruckzone H verringert und damit der Verschleiß auf die Auskleidung 3 gezielt beeinflusst werden. Auch die Breite SB der Stabilisierungszone S kann entsprechend eingestellt werden, um dem Medium einen genügend großen Bereich für eine Stabilisierung zu geben und damit den Übergang, z.B. in Abhängigkeit des Anwendungsbereiches, zu optimieren. Auch eine Breite HB des Hochdruckbereiches H kann entsprechend gewählt werden, um den Bereich festzulegen, in dem die Förderleistung durch eine entsprechende Anpassung des Druckgradienten erhöht werden soll. Dies kann in wechselseitiger Abstimmung mit dem Verlauf der mittleren Wandstärke W erfolgen, um eine entsprechende Druckerhöhung entlang der Förderrichtung zu erreichen.
  • Die Breiten VN, HB, SB können auch beim ersten Ausführungsbeispiel gemäß Fig. 1 entsprechend variabel festgelegt werden.
  • In Fig. 3 ist außerdem vorgesehen, dass die Hochdruckzone H in zwei Hochdruckbereiche H1, H2 unterteilt ist. In einem ersten Hochdruckbereich H1 der Hochdruckzone H nimmt die mittlere Wandstärke W zunächst kontinuierlich in axialer Richtung X ab bis die geringste mittlere Wandstärke WM erreicht ist. Im zweiten Hochdruckbereich H2 der Hochdruckzone H bleibt die mittlere Wandstärke W in etwa konstant auf der geringsten mittleren Wandstärke WM. Nachfolgend steigt die mittlere Wandstärke W der Auskleidung 3 ausgehend von der geringsten mittleren Wandstärke WM zur Druckseite 8 des Stators 1 hin wieder an, so dass sich an der Druckseite 8 die Aufweitung 10 in der Auskleidung 3 ausbildet.
  • Mit diesem Aufbau wird eine Art "Hybrid-Stator" bereitgestellt, der aus einem zylindrischen Stator in der Vormischzone V und einem zweigängig gewendelten Stator im zweiten Hochdruckbereich H2 der Hochdruckzone H ausgebildet ist. Die mittleren Wandstärken W innerhalb der beiden hybriden Bestandteile (zylindrischer Stator in der Vormischzone V und zweigängig gewendelter Stator im zweiten Hochdruckbereich H2) sind hierbei unterschiedlich aber jeweils konstant. Der Übergang zwischen den beiden hybriden Bestandteilen wird durch die kontinuierliche Anpassung der mittleren Wandstärke W im ersten Hochdruckbereich H1 gewährleistet, wodurch gleichzeitig auch eine Anpassung der Härte der Auskleidung wie in den ersten Ausführungsvarianten in Fig. 1 und Fig. 2 erreicht wird. In der Stabilisierungszone S wird durch eine kontinuierliche Anpassung der mittleren Wandstärke W die Aufweitung 10 ausgebildet.
  • Bezugszeichenliste
  • 1
    Stator
    2
    Mantel
    3
    Auskleidung
    4
    Innenfläche der Auskleidung 3
    5
    Pumpenhohlraum
    6
    Rotor
    7
    Saugseite
    8
    Druckseite
    9
    Außenfläche der Auskleidung 3
    10
    Aufweitung
    A
    A-Maß
    B
    B-Maß
    D
    Innendurchmesser des Mantels 1
    E
    Außendurchmesser der Auskleidung 3
    DP
    mittlerer Pumpendurchmesser
    H
    Hochdruckzone
    H1
    erster Hochdruckbereich der Hochdruckzone H
    H2
    zweiter Hochdruckbereich der Hochdruckzone H
    HB
    Breite der Hochdruckzone H
    HA1
    erste Halbachse
    HA2
    zweite Halbachse
    K4
    Kontur der Innenfläche 4 der Auskleidung 3
    K9
    Kontur der Außenfläche 9 der Auskleidung 3
    S
    Stabilisierungszone
    SB
    Breite der Stabilisierungszone
    V
    Vormischzone
    VB
    Breite der Vormischzone V
    W
    mittlere Wandstärke
    WE
    endseitige Wandstärke
    WM
    geringste Wandstärke
    X
    axiale Richtung
    Y, Z
    Y,Z- Richtung

Claims (15)

  1. Stator (1) für eine einen Rotor (6) aufweisende Exzenterschneckenpumpe, wobei der Stator (1) eine elastisch nachgiebige Auskleidung (3) mit einer Außenfläche (9) aufweist, wobei die Auskleidung (3) von einem starren Mantel (2) umschlossen ist,
    wobei eine Innenfläche (4) der Auskleidung (3) ein zweigängiges Steilgewinde ausbildet sowie einen in axialer Richtung (X) ausgedehnten Pumpenhohlraum (5) begrenzt zur Aufnahme des Rotors (6) der Exzenterschneckenpumpe,
    wobei sich die Auskleidung (3) des Stators (1) in axialer Richtung (X) zumindest bereichsweise verjüngt, wobei dazu eine mittlere Wandstärke (W) der Auskleidung (3) ausgehend von einer endseitigen Wandstärke (WE), die im Bereich einer Saugseite (7) des Stators (1) vorliegt, zumindest bereichsweise kontinuierlich in axialer Richtung (X) abnimmt, bis eine geringste mittlere Wandstärke (WM) erreicht ist,
    dadurch gekennzeichnet, dass
    die mittlere Wandstärke (W) der Auskleidung (3) ausgehend von der geringsten mittleren Wandstärke (WM) zumindest bereichsweise zu einer Druckseite (8) des Stators (1) hin wieder ansteigt, so dass sich zur Druckseite (8) des Stators (1) hin eine Aufweitung (10) in der Auskleidung (3) ausbildet.
  2. Stator (1) nach Anspruch 1, dadurch gekennzeichnet, dass sich aufgrund des axialen Verlaufes der mittleren Wandstärke (W) der Auskleidung (3)
    - im Bereich der Saugseite (7) des Stators (1) eine Vormischzone (V) ausbildet zum Homogenisieren und/oder Zerkleinern des zu fördernden Mediums,
    - im Bereich der Druckseite (8) des Stators (1) in der Aufweitung (10) eine Stabilisierungszone (S) ausbildet zum Stabilisieren und zum sanften Überleiten des geförderten Mediums in der Exzenterschneckenpumpe, und
    - zwischen der Vormischzone (V) und der Stabilisierungszone (S) eine Hochdruckzone (H) ausbildet zum Erhöhen des Druckes im Pumpenhohlraum (5) im Betrieb der Exzenterschneckenpumpe aufgrund der in axialer Richtung (X) zumindest bereichsweise kontinuierlich abnehmenden mittleren Wandstärke (W).
  3. Stator (1) nach Anspruch 2, dadurch gekennzeichnet, dass die mittlere Wandstärke (W) der Auskleidung (3) in der Vormischzone (V) und/oder in der Stabilisierungszone (S) gleichbleibt.
  4. Stator (1) nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die mittlere Wandstärke (W) der Auskleidung (3) in einem ersten Hochdruckbereich (H1) der Hochdruckzone (H) in axialer Richtung (X) kontinuierlich abnimmt und in einem zweiten Hochdruckbereich (H2) der Hochdruckzone (H) in etwa konstant auf der geringsten mittleren Wandstärke (WM) verbleibt, wobei sich der erste Hochdruckbereich (H1) an die Vormischzone (V) anschließt.
  5. Stator (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich die Auskleidung (3) des Stators (1) in axialer Richtung (X) konisch verjüngt, wobei die mittlere Wandstärke (W) der Auskleidung (3) dazu ausgehend von der endseitigen mittleren Wandstärke (WE) in axialer Richtung (X) in Richtung der Druckseite (8) linear oder einer nicht-linearen Funktion folgend abnimmt.
  6. Stator (1) nach Anspruch 5, dadurch gekennzeichnet, dass sich die Außenfläche (9) der Auskleidung (3) linear oder auch einer nicht-linearen Funktion folgend verjüngt, um die lineare oder einer nicht-linearen Funktion folgenden Abnahme der mittleren Wandstärke (W) ausgehend von der endseitigen mittleren Wandstärke (WE) zu erreichen.
  7. Stator (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass sich die Auskleidung (3) des Stators (1) in axialer Richtung (X) verjüngt, indem sich eine Kontur (K9) der Außenfläche (9) der Auskleidung (3) ausgehend von der endseitigen mittleren Wandstärke (WE) zur geringsten mittleren Wandstärke (WM) immer mehr an eine Kontur (K4) der als zweigängiges Steilgewinde ausgeführten Innenfläche (4) der Auskleidung (3) annähert.
  8. Stator (1) nach Anspruch 7, dadurch gekennzeichnet, dass sich ein B-Maß (B) der Auskleidung (3) ausgehend von der endseitigen mittleren Wandstärke (WE) in axialer Richtung (X) in Richtung der Druckseite (8) kontinuierlich verringert und ein A-Maß (A) der Auskleidung (3) gleichzeitig konstant bleibt.
  9. Stator (1) nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass eine erste Halbachse (HA1) des Mantels (2) in axialer Richtung (X) konstant bleibt und sich eine zur ersten Halbachse (HA1) senkrechte zweite Halbachse (HA2) des Mantels (2) in axialer Richtung (X) kontinuierlich verringert.
  10. Stator (1) nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die Kontur (K9) der Außenfläche (9) der Auskleidung (3) in dem Bereich, in dem die mittlere Wandstärke (W) der endseitigen Wandstärke (WE) entspricht, in etwa rund ist und in dem Bereich, in dem die mittlere Wandstärke (W) der geringsten mittleren Wandstärke (WM) entspricht, parallel zur Kontur (K4) der als zweigängiges Steilgewinde ausgeführten Innenfläche (4) der Auskleidung (3) verläuft.
  11. Stator (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die mittlere Wandstärke (W) in der Aufweitung (10) auf der Druckseite (8) der endseitigen Wandstärke (WE) auf der Saugseite (7) entspricht.
  12. Stator (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die mittlere Wandstärke (W) der Auskleidung (3) nach Erreichen der geringsten mittleren Wandstärke (WM) abrupt oder kontinuierlich ansteigt, um die druckseitige Aufweitung (10) auszubilden.
  13. Stator (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich ein mittlerer Pumpendurchmesser (DP) des Pumpenhohlraumes (5) in axialer Richtung (X) zur Druckseite (8) hin zumindest bereichsweise ebenfalls verjüngt, vorzugsweise linear, oder in axialer Richtung (X) über den gesamten Stator (1) gleichbleibt.
  14. Stator (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Innendurchmesser (D) des Mantels (2) einem Außendurchmesser (E) der Auskleidung (3) entspricht, so dass der Mantel (1) über den gesamten Stator (1) flächig an der Außenfläche (9) der Auskleidung (3) anliegt, wobei der Mantel (2) durch Verformung an eine Kontur (K9) der Außenfläche (9) angepasst ist.
  15. Stator (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Mantel (1) eine in axialer Richtung (X) gleichbleibende Materialstärke aufweist.
EP19186418.0A 2019-07-16 2019-07-16 Stator für eine exzenterschneckenpumpe Active EP3767105B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES19186418T ES2909699T3 (es) 2019-07-16 2019-07-16 Estator para una bomba helicoidal excéntrica
EP19186418.0A EP3767105B1 (de) 2019-07-16 2019-07-16 Stator für eine exzenterschneckenpumpe
PL19186418T PL3767105T3 (pl) 2019-07-16 2019-07-16 Stojan do pompy ślimakowej mimośrodowej
PCT/EP2020/070106 WO2021009275A1 (de) 2019-07-16 2020-07-16 Stator für eine exzenterschneckenpumpe
CN202080059862.5A CN114341496B (zh) 2019-07-16 2020-07-16 用于偏心螺杆泵的定子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19186418.0A EP3767105B1 (de) 2019-07-16 2019-07-16 Stator für eine exzenterschneckenpumpe

Publications (2)

Publication Number Publication Date
EP3767105A1 EP3767105A1 (de) 2021-01-20
EP3767105B1 true EP3767105B1 (de) 2021-12-29

Family

ID=67303409

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19186418.0A Active EP3767105B1 (de) 2019-07-16 2019-07-16 Stator für eine exzenterschneckenpumpe

Country Status (5)

Country Link
EP (1) EP3767105B1 (de)
CN (1) CN114341496B (de)
ES (1) ES2909699T3 (de)
PL (1) PL3767105T3 (de)
WO (1) WO2021009275A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11421533B2 (en) * 2020-04-02 2022-08-23 Abaco Drilling Technologies Llc Tapered stators in positive displacement motors remediating effects of rotor tilt
CA3114159A1 (en) 2020-04-02 2021-10-02 Abaco Drilling Technologies Llc Tapered stators in positive displacement motors remediating effects of rotor tilt

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0358789A1 (de) * 1988-09-14 1990-03-21 FOREG Aktiengesellschaft Stator für Exzenterschneckenpumpen
DE4111166C2 (de) 1991-04-06 1999-03-18 Gummi Jaeger Kg Gmbh & Cie Exzenterschneckenpumpe
DE19531318A1 (de) 1995-08-25 1997-02-27 Artemis Kautschuk Kunststoff Stator für Exzenterschneckenpumpen
RU2214513C1 (ru) * 2002-04-24 2003-10-20 Давыдов Владимир Всеволодович Героторная машина
ES2279917T5 (es) 2003-10-07 2013-06-24 Johann Heinrich Bornemann Gmbh - Kunststofftechnik Obernkirchen - Bomba de tornillo sin fin excéntrico y estator para una bomba semejante
CN2703148Y (zh) * 2004-04-22 2005-06-01 潘立明 锥形单螺杆泵
JP5821058B2 (ja) * 2010-12-27 2015-11-24 兵神装備株式会社 一軸偏心ねじポンプ
DE102012001617A1 (de) * 2012-01-30 2013-08-01 Netzsch Pumpen & Systeme Gmbh Vorrichtung zum Fördern von Medien
CN106907318A (zh) * 2017-04-20 2017-06-30 天津汉诺工业泵制造有限公司 一种单螺杆泵
CN209041106U (zh) * 2018-11-26 2019-06-28 保定毓嘉泵业制造有限公司 带有可调节式定子的螺杆泵

Also Published As

Publication number Publication date
CN114341496A (zh) 2022-04-12
EP3767105A1 (de) 2021-01-20
CN114341496B (zh) 2023-10-13
WO2021009275A1 (de) 2021-01-21
ES2909699T3 (es) 2022-05-10
PL3767105T3 (pl) 2022-05-02

Similar Documents

Publication Publication Date Title
EP2304246B1 (de) Vorrichtung zur laufradabdichtung bei kreiselpumpen
EP2404061B1 (de) Exzenterschneckenpumpe
EP2683955B1 (de) Gleitlagerschale
EP3767105B1 (de) Stator für eine exzenterschneckenpumpe
DE10233213B4 (de) Extruder
DD212919A5 (de) Extruder
DE2460282A1 (de) Zentrifugalpumpe
DE102011101648B4 (de) Schraubenmaschine, insbesondere Schraubenspindelpumpe
EP4137698A1 (de) Regelung der spaltgeometrie in einer exzenterschneckenpumpe
EP3645890A1 (de) Schraubenspindelpumpe, kraftstoffförderaggregat und kraftstofffördereinheit
WO2016156100A1 (de) Spreizanker
EP1549478A1 (de) Extruder/zahnradpumpen-kombination
EP2707629B1 (de) Vorrichtung zum abdichten eines pumpraums einer drehkolbenpumpe, sowie drehkolbenpumpe mit selbiger
EP1276992B1 (de) Zahnradpumpe, insbesondere für eine hochdruck-kraftstoffpumpe
DE4115894A1 (de) Fluegelzellenpumpe
WO2018162360A1 (de) Exzenterschneckenpumpe
WO2018019318A1 (de) Rotor-stator-system mit einem einlauftrichter für eine exzenterschneckenpumpe
DE10200393B4 (de) Partielle Spannsperre für eine Exzenterschneckenpumpe (partiell nachspannbarer Stator)
WO2007131994A1 (de) Zahnradpumpe
DE69909706T2 (de) Drosselmittel für extruder am transfermischertyp
EP3913187B1 (de) Schraubenspindelpumpe
DD276980A3 (de) Schnecke fuer einschneckenpresse zur aufbereitung und verarbeitung von polymerwerkstoffen
EP0620368A2 (de) Zahnradpumpe
DE10346597B3 (de) Exzenterschnecken-Pumpe mit hoher Standzeit
DE8033530U1 (de) Zahnradpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20210929

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1458875

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019003092

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220329

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2909699

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220329

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220429

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019003092

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220716

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220716

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230630

Year of fee payment: 5

Ref country code: NL

Payment date: 20230720

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230713

Year of fee payment: 5

Ref country code: IT

Payment date: 20230731

Year of fee payment: 5

Ref country code: ES

Payment date: 20230821

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230906

Year of fee payment: 5

Ref country code: BE

Payment date: 20230719

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230716