EP3765783B1 - Scheinwerfer mit regelbarer lichtverteilung - Google Patents

Scheinwerfer mit regelbarer lichtverteilung Download PDF

Info

Publication number
EP3765783B1
EP3765783B1 EP19712718.6A EP19712718A EP3765783B1 EP 3765783 B1 EP3765783 B1 EP 3765783B1 EP 19712718 A EP19712718 A EP 19712718A EP 3765783 B1 EP3765783 B1 EP 3765783B1
Authority
EP
European Patent Office
Prior art keywords
leds
clusters
cluster
led
headlamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19712718.6A
Other languages
English (en)
French (fr)
Other versions
EP3765783A1 (de
Inventor
Timo Eichele
Jochen Holzbauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siteco GmbH
Original Assignee
Siteco GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siteco GmbH filed Critical Siteco GmbH
Publication of EP3765783A1 publication Critical patent/EP3765783A1/de
Application granted granted Critical
Publication of EP3765783B1 publication Critical patent/EP3765783B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0091Reflectors for light sources using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/04Arrangement of electric circuit elements in or on lighting devices the elements being switches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/10Outdoor lighting
    • F21W2131/105Outdoor lighting of arenas or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements

Definitions

  • the present invention relates to a headlight for stationary mounting in an indoor or outdoor space, in particular to stadium headlights, and in particular to headlights with LEDs (which means any form of semiconductor light sources, including organic LEDs) arranged in a cluster in the headlight are.
  • LEDs which means any form of semiconductor light sources, including organic LEDs
  • LVK light distribution curve to be generated
  • LVK which should generally be rotationally symmetrical in a conic curve, have a given half divergence angle and a maximum luminous intensity, which preferably lies along the optical axis of the headlight.
  • certain levels of illuminance must be achieved. This can only be achieved by superimposing different LDCs with different half beam angles and maximum light intensities, since the position of the spotlights in the stadium is different and the distance between the spotlights and the area to be illuminated is different.
  • Lighting devices with one or more LED clusters are disclosed in the following publications: U.S. 2015/009677 A1 , U.S. 2009/046453 A1 , WO 2014/117704 A2 , U.S. 2012/068615 A1 , U.S. 2012/319616 A1 , U.S. 2017/002987 A1 and EP 2 985 512 A1 .
  • the object of the present invention is to provide a stationary headlight whose light distribution with LEDs can be adapted to the local conditions for fulfilling the lighting task in the simplest possible way.
  • a special feature of the headlight according to the invention is that the LEDs within a cluster can be switched on and off and/or dimmed independently of at least some of the other LEDs within the cluster.
  • different LDCs can be achieved by a cluster, possibly with an associated optical component of the cluster.
  • Both symmetrical and asymmetrical LDCs can be achieved by switching LEDs on and off within the cluster depending on the design of the cluster and the different patterns in which the LEDs are switched on and off within the cluster.
  • the LVKs can even be continuously transformed into each other. In a cluster, LEDs that are not needed for the desired light distribution of the headlight simply cannot be fitted on the LED circuit board. A continuous transformation of the LVKs is then only possible to a limited extent due to the remaining LEDs in the cluster.
  • the cluster has common optics for all LEDs in the cluster.
  • a reflector and/or a lens in particular a lens with total internal reflection, can be provided for all LEDs in the cluster.
  • the optical component does not have to be changed to adjust the LVK. It is fixed to the LEDs in the cluster and the light is distributed by switching the LEDs on and off or dimming them within the cluster. This is a significant advantage compared to the systems in the prior art, in which a lens or a reflector has to be moved in a complex manner relative to the light sources or has to be manufactured individually for the headlight in order to fulfill the special lighting task according to the local conditions of the headlight be able.
  • the cluster is formed by a square matrix of LEDs.
  • an LED cluster may include a 3x3, 4x4, or 5x5 matrix of LEDs.
  • the larger the cluster the more variations are possible for switching the LEDs within the cluster.
  • the larger the basic cluster the more different assembly variants of LEDs are possible.
  • the cluster can also be formed by two LED rows running perpendicular to one another or rectangular LED matrices running perpendicular to one another.
  • the LED cluster has an arrangement of LEDs that is symmetrical to two mirror planes, the mirror planes having the perpendicular bisector through the cluster as a common line of intersection and being perpendicular to one another.
  • This symmetry of the LED cluster is suitable for circular light distributions and also light distributions that extend in different directions along the main axes of the mirror-symmetrically arranged LEDs by switching LEDs on and off in a targeted manner or by dimming LEDs.
  • asymmetrical LDCs can also be achieved with this arrangement.
  • this type of LED cluster offers a high degree of variation in terms of the light distribution to be achieved.
  • the headlight also has a plurality of the clusters mentioned above, which are arranged in the headlight at a distance from one another, and in particular in a regular array.
  • the clusters can all be designed identically and arranged identically to one another.
  • the LEDs within the cluster can also be controlled identically. This results in the same advantage as in the previously mentioned embodiments in relation to the variation of the light distribution, with the light intensity being increased overall.
  • this embodiment also offers the advantage that the different clusters can be controlled differently. Entire clusters can be switched on or off. Furthermore, the LEDs within the cluster can be switched on and off or dimmed differently. As a result, a very high variation in the LVKs to be achieved is possible.
  • the multiple clusters each individually have associated optics, e.g. B. a reflector or a lens, preferably a lens with total internal reflection on.
  • associated optics e.g. B. a reflector or a lens, preferably a lens with total internal reflection on.
  • the clusters can also be arranged in the headlight with different rotations to one another.
  • the LVKs of the individual clusters are superimposed to form an overall light distribution that differs from the light distribution of the individual clusters. For example, asymmetries in the overall light distribution can be compensated for, which the individual clusters would produce due to the shape of the cluster.
  • a single LED cluster 2 is shown. It comprises nine LEDs 1 arranged in a 3x3 matrix.
  • only one LED cluster is required to form a headlight.
  • multiple of the LED clusters 2 are provided in the headlight to form a multiple cluster array.
  • the clusters 2 are each arranged at a distance a in the array. The distance a between the clusters and their nearest neighbors (measured from center to center) is greater than the distance between the LEDs 1 within the cluster.
  • the LEDs within the clusters can be switched on and off or dimmed individually.
  • the influence of this circuit on the light intensity distribution curve (specified in the light intensity normalized to the total luminous flux), the light intensity (absolute), the half beam angle and the luminous flux in the various switching states is shown in the Figures 3a to 3c shown.
  • Figure 3a shows the 3x3 LED cluster in which only the middle LED 4 is switched on and the remaining LEDs 5 are switched off or are not populated on the circuit board.
  • Figure 3b shows the case in which only the four outer LEDs 5 are switched off or are not present on the circuit board and the remaining LEDs 4 are switched on.
  • Figure 3c shows the case that all nine LEDs 5 of the 3x3 LED cluster are switched on. Since the optical components of the cluster are always the same, the LEDs that are switched on differently result in different LDCs or luminous fluxes and efficiencies.
  • Figure 3a is the greatest luminous intensity (Imax1) in relation to the total luminous flux of the luminaire.
  • the half peak angle (half peak angle 1) is the lowest and at the same time the luminous flux is at the lowest value at Imax1.
  • FIGs 4 and 5 show alternatives for the LED cluster.
  • an LED cluster 6 is shown with a 4x4 matrix of LEDs.
  • figure 5 shows an LED cluster 7 in the form of a 5 ⁇ 5 matrix.
  • the larger clusters allow a higher variation of patterns in which the LEDs can be switched on and off or dimmed.
  • symmetrical or oval light distribution curves can also be generated using switching states of the LEDs, as in Figures 6 and 7 are shown.
  • an asymmetrical LVK is generated in that in the 5x5 matrix of the LED cluster 7 only 3x3 LEDs 4 are operated in one corner, while the other LEDs 5 are switched off.
  • LEDs 4 turned on, which are turned on symmetrically about a central axis of the LED cluster 7 of the 5x5 matrix.
  • an oval LVK can be generated.
  • the details of asymmetric or oval LVK each relate to an LVK measured in a section of the envelope of a cone perpendicular to the optical axis of the headlight, which runs along the perpendicular bisector of the cluster.
  • a lens 3 is provided above a 3 ⁇ 3 LED cluster 2.
  • the lens 3 includes a light entry area and a light exit area at which light radiation is refracted. Furthermore, the lens 3 also has side wall areas at which light rays are totally reflected. Different beam paths in the lens are activated by switching on or off individual LEDs 4, 5 in the LED cluster.
  • Figure 8a only the middle LED 4 is switched on while all other LEDs 5 are switched off. Due to the fact that only a middle LED 5 is switched on, the light beams L11, L12 and L13 leave the lens 3 almost parallel and thus produce a high Imax or a small half divergence angle.
  • Figure 8b all nine lenses 5 of the 3x3 LED cluster switched on.
  • an LED cluster 8 is shown, in which the LEDs approximate a circle.
  • Embodiments with LED clusters, in which the LEDs are mirror-symmetrical to two on top of one another, are very general perpendicular vertical mirror planes are aligned, preferred because they can approximate a circular shape and are therefore particularly suitable for the usual optical devices.
  • the high number of LEDs 1 - in figure 9 37 pieces in total - are preferred to create a wide variety of possible LVKs.
  • FIG 10 an embodiment is shown in which a cluster 11 with 5 LEDs arranged in a cross shape is combined with only a single LED 12 in an array.
  • figure 11 10 shows an arrangement with dimmed LEDs in two clusters 10.
  • the outer four LEDs in a 3 ⁇ 3 cluster are dimmed by around 50%. This results in an Imax that is between an arrangement with nine LEDs on and an arrangement with five LEDs on. A stepless setting of Imax or the half-value angle is therefore possible.
  • nxn clusters can be used.
  • Asymmetric clusters are also possible.
  • individual LEDs within a cluster that are not required for the desired light distributions can also be omitted completely. In this case, a blank is simply provided at the relevant point in the cluster. However, the remaining LEDs in the cluster are controllable as previously described.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Description

  • Die vorliegende Erfindung bezieht sich auf einen Scheinwerfer zur stationären Montage in einem Innen- oder Außenraum, insbesondere auf Stadionscheinwerfer, und insbesondere auf Scheinwerfer mit LEDs (worunter jede Form von Halbleiterlichtquellen verstanden werden, einschließlich organischer LEDs), die in einem Cluster in dem Scheinwerfer angeordnet sind.
  • In Scheinwerfern der eingangs genannten Art hat sich zur Steuerung der Lichtlenkung eine präzise Anordnung von Linsenelementen und Reflektorelementen durchgesetzt. Die zu erzeugende Lichtverteilungskurve, LVK, welche in einer Kegelschnittkurve in der Regel rotationssymmetrisch sein soll, haben einen gegebenen Halbstreuwinkel und eine maximale Lichtstärke, welche vorzugsweise entlang der optischen Achse des Scheinwerfers liegt. Je nach Beleuchtungsaufgabe, z.B. zur Beleuchtung eines Fußballplatzes, müssen gewissen Beleuchtungsstärken erreicht werden. Dies ist nur durch die Überlagerung verschiedener LVK, mit unterschiedlichen Halbstreuwinkel und maximalen Lichtstärken zu realisieren, da die Position der Scheinwerfer im Stadion unterschiedlich sind und der Abstand zwischen den Scheinwerfern und der zu beleuchtenden Fläche unterschiedlich ist. Dadurch werden unterschiedliche LVKs und somit unterschiedliche optische Komponenten oder beweglich optische System im Scheinwerfer benötigt. Dies ist verhältnismäßig aufwendig, da die optischen Komponenten entweder für die einzelnen LEDs oder die LED-Cluster angepasst werden müssen oder ein aufwendiger Verstellmechanismus innerhalb des Scheinwerfers für die optischen Komponenten eingefügt werden muss.
  • Beleuchtungsvorrichtungen mit einem oder mehreren LED-Clustern, welche teilweise auch Optiken aufweisen, sind in folgenden Druckschriften offenbart: US 2015/009677 A1 , US 2009/046453 A1 , WO 2014/117704 A2 , US 2012/068615 A1 , US 2012/319616 A1 , US 2017/002987 A1 und EP 2 985 512 A1 .
  • Aufgabe der vorliegenden Erfindung ist es, einen stationären Scheinwerfer bereitzustellen, dessen Lichtverteilung mit LEDs auf möglichst einfache Weise auf die örtlichen Bedingungen zur Erfüllung der Beleuchtungsaufgabe angepasst werden kann.
  • Gelöst wird die Aufgabe durch einen Scheinwerfer nach Anspruch 1.
  • Eine Besonderheit des erfindungsgemäßen Scheinwerfer besteht darin, dass die LEDs innerhalb eines Clusters unabhängig von wenigstens einigen der übrigen LEDs innerhalb des Clusters zu- und abschaltbar und/oder dimmbar sind. Dadurch wird erreicht, dass durch ein Cluster, ggf. mit zugeordneter optischer Komponente des Clusters, unterschiedliche LVKs erzielt werden können. Sowohl symmetrische als auch asymmetrische LVKs können durch Zu- und Abschalten von LEDs innerhalb des Clusters erzielt werden abhängig von der Ausgestaltung des Clusters und der unterschiedlichen Muster, in denen die LEDs innerhalb des Clusters zu- und abgeschaltet werden. Durch unabhängiges Dimmen der LEDs innerhalb des Clusters können die LVKs sogar kontinuierlich ineinander umgeformt werden. In einem Cluster können LEDs, welche für die gewünschte Lichtverteilung des Scheinwerfers nicht gebraucht werden, auch einfach nicht auf der LED-Platine bestückt werden. Eine kontinuierliche Umformung der LVKs ist dann nur eingeschränkt durch die verbleibenden LEDs im Cluster möglich.
  • Erfindungsgemäß weist das Cluster eine gemeinsame Optik für alle LEDs in dem Cluster auf. Beispielsweise kann ein Reflektor und/oder eine Linse, insbesondere eine Linse mit interner Totalreflexion, für alle LEDs in dem Cluster vorgesehen sein. Die optische Komponente muss zur Einstellung der LVK jedoch nicht geändert werden. Sie ist fest zu den LEDs im Cluster angeordnet und die Lichtverteilung wird durch das Zu- und Abschalten bzw. Dimmen der LEDs innerhalb des Clusters vorgenommen. Dies ist ein wesentlicher Vorteil gegenüber den Systemen im Stand der Technik, bei welchen in aufwendiger Weise eine Linse oder ein Reflektor gegenüber den Leuchtmitteln verschoben werden muss oder für den Scheinwerfer individuell gefertigt werden muss, um die besondere Beleuchtungsaufgabe gemäß den örtlichen Bedingungen des Scheinwerfers erfüllen zu können.
  • Gemäß einer bevorzugten Ausführungsform ist das Cluster durch eine quadratische Matrix von LEDs gebildet. Beispielsweise kann ein LED-Cluster eine 3x3, 4x4 oder 5x5-Matrix von LEDs umfassen. Je größer das Cluster, desto mehr Variationen für die Schaltung der LEDs innerhalb des Clusters sind möglich. Je größer das Grund-Cluster ist, desto mehr verschiedene Bestückungsvarianten von LEDs sind möglich.
  • Gemäß einer weiteren Ausführungsform kann das Cluster auch durch zwei senkrecht zueinander verlaufenden LED-Reihen oder senkrecht zueinander verlaufende rechteckige LED-Matrizen gebildet sein.
  • Erfindungsgemäß weist das LED-Cluster eine Anordnung von LEDs auf, die symmetrisch zu zwei Spiegelebenen ist, wobei die Spiegelebenen die Mittelsenkrechte durch das Cluster als gemeinsame Schnittgerade aufweisen und senkrecht zueinander liegen. Diese Symmetrie des LED-Clusters ist geeignet, um kreisrunde Lichtverteilungen sowie durch gezieltes Zu- und Abschalten von LEDs oder Dimmen von LEDs auch Lichtverteilungen zu erzeugen, die sich in unterschiedliche Richtungen entlang der Hauptachsen der spiegelsymmetrisch angeordneten LEDs erstrecken. Durch asymmetrisches Schalten der LEDs innerhalb der symmetrischen Anordnung lassen sich mit dieser Anordnung auch asymmetrische LVKs erzielen. Generell bietet diese Art von LED-Cluster eine hohe Variation in Bezug auf zu erzielende Lichtverteilungen.
  • Erfindungsgemäß weist der Scheinwerfer auch mehrere der vorhergehend genannten Cluster auf, die im Scheinwerfer beabstandet zueinander, und insbesondere in einem regelmäßigen Array, angeordnet sind. Durch Vorsehen mehrerer Cluster wird insgesamt die Lichtstärke des Scheinwerfers erhöht, da sich das Licht der einzelnen Cluster überlagert. Die Cluster können alle identisch ausgeführt sein und identisch zueinander angeordnet sein. In dieser Ausführung können auch die LEDs innerhalb der Cluster jeweils identisch angesteuert werden. Dadurch ergibt sich der gleiche Vorteil, wie bei den vorhergehend genannten Ausführungsformen in Bezug auf die Variation der Lichtverteilung, wobei insgesamt die Lichtstärke erhöht ist. Allerdings bietet diese Ausführungsform auch noch den Vorteil, dass die unterschiedlichen Cluster verschieden angesteuert werden können. Es können ganze Cluster hinzugeschaltet oder abgeschaltet werden. Ferner können die LEDs innerhalb der Cluster unterschiedlich an- und ausgeschaltet bzw. gedimmt werden. Dadurch ist eine sehr hohe Variation bei den zu erzielenden LVKs möglich.
  • Die mehreren Cluster weisen jeweils einzeln eine zugeordnete Optik, z. B. einen Reflektor oder eine Linse, vorzugsweise eine Linse mit interner Totalreflektion, auf.
  • Gemäß einer Weiterbildung der zuletzt genannten Ausführungsformen mit mehreren Clustern können die Cluster ferner auch unterschiedlich zueinander gedreht in dem Scheinwerfer angeordnet sein. Dadurch überlagern sich die LVKs der einzelnen Cluster zu einer Gesamtlichtverteilung, die sich von der Lichtverteilung der einzelnen Cluster unterscheidet. Z.B. lassen sich dadurch Asymmetrien in der Gesamtlichtverteilung ausgleichen, welche die jeweils einzelnen Cluster aufgrund der Formgebung des Clusters, hervorbringen würden.
  • Weitere Merkmale und Vorteil der vorliegenden Erfindung werden aus der nachfolgenden Beschreibung bevorzugter Ausführungsformen deutlich, die im Zusammenhang mit den beigefügten Figuren gegeben wird. In den Figuren ist Folgendes dargestellt:
  • Figur 1
    zeigt eine 3x3-LED-Cluster.
    Figur 2
    zeigt ein 3x3-Array mit jeweils einem 3x3-LED-Cluster.
    Figuren 3a - 3c
    zeigen die LVK und den Lichtstrom eines 3x3-LED-Cluster, wobei eine, fünf bzw. neun LEDs eingeschaltet sind.
    Figur 4
    zeigt ein 4x4-LED-Cluster.
    Figur 5
    zeigt ein 5x5-LED-Cluster.
    Figuren 6 und 7
    zeigen das 5x5-LED-Cluster, wobei LEDs in unterschiedlichen Musters eingeschaltet sind.
    Figuren 8a und 8b
    zeigen eine Schnittansicht eines 3x3-LED-Clusters mit Totalreflexionslinse, wobei nur eine bzw. alle LEDs eingeschaltet sind.
    Figur 9
    zeigt ein näherungsweise rundes LED-Cluster mit 37 LEDs.
    Figur 10
    zeigt ein Array mit zwei unterschiedlichen LED-Cluster.
    Figur 11
    zeigt ein Array mit zwei gleichen LED-Cluster.
  • Bezugnehmend auf Figur 1 ist ein einzelnes LED-Cluster 2 dargestellt. Es umfasst neun LEDs 1, die in einer 3x3-Matrix angeordnet sind.
  • Zur Bildung eines Scheinwerfers ist in der einfachsten Form lediglich ein LED-Cluster notwendig. Gemäß einer bevorzugten Ausführungsform, die in Figur 2 dargestellt ist, sind in dem Scheinwerfer jedoch mehrere der LED-Cluster 2 vorgesehen, um ein Array aus mehreren Clustern zu bilden. Die Cluster 2 sind in dem Array jeweils mit einem Abstand a angeordnet. Der Abstand a zwischen den Clustern zum jeweils nächsten Nachbarn (gemessen von Mittelpunkt zu Mittelpunkt) ist größer als der Abstand der LEDs 1 innerhalb des Clusters.
  • In den Ausführungsformen der vorliegenden Erfindung lassen sich die LEDs innerhalb der Cluster einzeln ein- und ausschalten oder dimmen. Den Einfluss dieser Schaltung auf die Lichtstärkeverteilungskurve (angegeben in der Lichtstärke normiert auf den Gesamtlichtstrom), die Lichtstärke (absolut), den Halbstreuwinkel sowie den Lichtstrom bei den verschiedenen Schaltungszuständen ist in den Figuren 3a bis 3c dargestellt.
  • Figur 3a zeigt das 3x3-LED-Cluster, bei dem nur die mittlere LED 4 eingeschaltet ist und die übrigen LEDs 5 ausgeschaltet sind oder auf der Platine nicht bestückt sind. Figur 3b zeigt demgegenüber den Fall, dass lediglich die vier äußeren LEDs 5 ausgeschaltet bzw. auf der Platine nicht vorhanden sind und die übrigen LEDs 4 eingeschaltet sind. Figur 3c zeigt den Fall, dass alle neun LEDs 5 des 3x3-LED-Clusters eingeschaltet sind. Da die optischen Komponenten der Cluster immer die gleichen sind, ergeben sich durch die unterschiedlich eingeschalteten LEDs verschiedene LVKs bzw. Lichtströme und Effizienzen. In Figur 3a ist die größte Lichtstärke (Imax1) bezogen auf den Gesamtlichtfluss der Leuchte am höchsten. Der Halbstreuwinkel (Halbstreuwinkel 1) ist am geringsten und gleichzeitig liegt der Lichtstrom bei Imax1 auf dem geringsten Wert. Wenn mehr LEDs 4 hinzugeschaltet sind, wie in Figur 3b gezeigt, vergrößert sich der Halbstreuwinkel, Imax2 sinkt ab und der Lichtstrom steigt an. Wenn alle LEDs 4 in Betrieb sind, wie in Figur 3c dargestellt, sinkt der maximale Lichtstrom bezogen auf den Gesamtlichtstrom auf den geringsten Wert Imax3, während der Halbstreuwinkel den größten Wert annimmt. Der Lichtstrom in Imax3 ist am höchsten.
  • Die Figuren 4 und 5 zeigen Alternativen für die LED-Cluster. In Figur 4 ist ein LED-Cluster 6 mit einer 4x4-Matrix von LEDs dargestellt. Figur 5 zeigt ein LED-Cluster 7 in Form einer 5x5-Matrix. Die größeren Cluster erlauben eine höhere Variation von Mustern, in welchen die LEDs zu- und abgeschaltet bzw. gedimmt werden können. Insbesondere lassen sich auch symmetrischen oder ovale Lichtverteilungskurven erzeugen, mittels Schaltungszuständen der LEDs, wie in Figuren 6 und 7 dargestellt sind. In Figur 6 wird eine asymmetrische LVK erzeugt dadurch, dass in der 5x5-Matrix des LED-Clusters 7 lediglich 3x3-LEDs 4 in einer Ecke betrieben werden, während die anderen LEDs 5 ausgeschaltet sind. In der Figur 7 werden LEDs 4 eingeschaltet, welche symmetrisch um eine Mittelachse des LED-Cluster 7 der 5x5-Matrix angeschaltet sind. In diesem Schaltungszustand kann eine ovale LVK erzeugt werden. Die Angaben asymmetrische bzw. ovale LVK beziehen sich dabei jeweils auf eine LVK gemessen in einem Kegelmantelschnitt senkrecht zu der optischen Achse des Scheinwerfers, welche entlang der Mittelsenkrechten des Clusters verläuft.
  • In der Ausführungsform nach Figuren 8a und 8b ist eine Linse 3 oberhalb eines 3x3-LED-Clusters 2 vorgesehen. Die Linse 3 umfasst einen Lichteintrittsbereich sowie einen Lichtaustrittsbereich, an welchen Lichtstrahlung gebrochen wird. Ferner besitzt die Linse 3 auch Seitenwandbereiche, an denen Lichtstrahlen totalreflektiert werden. Durch das Hinzuschalten oder Abschalten von einzelnen LEDs 4, 5 in dem LED-Cluster werden unterschiedliche Strahlengänge in der Linse aktiviert. In Figur 8a ist nur die mittlere LED 4 eingeschaltet während alle übrigen LED 5 ausgeschaltet sind. Dadurch, dass nur eine mittlere LED 5 eingeschaltet ist, verlassen die Lichtstrahlen L11, L12 und L13 nahezu parallel die Linse 3 und erzeugen somit ein hohes Imax bzw. einen kleinen Halbstreuwinkel. Demgegenüber sind in Figur 8b alle neun Linsen 5 des 3x3-LED-Clusters eingeschaltet. Dadurch, dass die lichtemittierende Fläche größer ist, kommen noch Lichtstrahlen L21 und L22 von den äußeren LEDs hinzu, die nicht mehr parallel die Linse 3 verlassen. Dadurch wird ein geringeres Imax bezogen auf den Gesamtlichtstrom bzw. ein größerer Halbstreuwinkel und gleichzeitig ein erhöhter Lichtstrom erzeugt.
  • In der Ausführungsform gemäß Figur 9 ist ein LED-Cluster 8 dargestellt, bei welchem die LEDs einen Kreis approximieren. Ganz allgemein sind Ausführungsformen mit LED-Clustern, in welchen die LEDs spiegelsymmetrisch zu zwei auf einander senkrecht stehenden vertikalen Spiegelebenen ausgerichtet sind, bevorzugt, weil sie eine Kreisform approximieren können und daher für die gängigen optischen Einrichtungen besonders geeignet sind.
  • Die hohe Anzahl von LEDs 1 - in Figur 9 insgesamt 37 Stück - sind bevorzugt, um eine große Variation von möglichen LVKs zu erzeugen.
  • In Figur 10 ist eine Ausführungsform dargestellt, in welcher ein Cluster 11 mit 5 LEDs, die kreuzförmig angeordnet sind, mit lediglich einer einzelnen LED 12 in einem Array kombiniert sind.
  • Figur 11 zeigt eine Anordnung mit gedimmten LEDs in zwei Clustern 10. Es sind jeweils die äußeren vier LEDs in einem 3x3-Cluster um etwa 50% gedimmt. Dadurch ergibt sich ein Imax, das sich zwischen eine Anordnung mit neun eingeschalteten LEDs und einer Anordnung mit fünf eingeschalteten LEDs befindet. Ein stufenloses Einstellen von Imax bzw. des Halbwertswinkels ist dadurch möglich.
  • Zahlreiche Variationen der vorhergehend beschriebenen Ausführungsformen sind im Rahmen der Erfindung möglich, welche durch die Ansprüche definiert ist. Beispielsweise können verschiedene Kombinationen von nxn-Clustern verwendet werden. Ferner sind auch asymmetrische Cluster möglich. Bevorzugte Ausführungsformen können auch einzelne LEDs innerhalb eines Clusters, die für die gewünschten Lichtverteilungen nicht erforderlich sind, komplett entfallen. In diesem Fall ist an der betreffenden Stelle des Clusters einfach eine Leerstelle vorgesehen. Die übrigen LEDs in dem Cluster sind jedoch regelbar, wie vorhergehend beschrieben.
  • BEZUGSZEICHENLISTE
  • 1
    LED
    2
    3x3-LED-Cluster
    3
    Linse
    4
    LED, eingeschaltet
    5
    LED, ausgeschaltet
    6
    4x4-LED-Cluster
    7
    5x5-LED-Cluster
    8
    LED-Cluster mit 37 LEDs
    11
    kreuzförmiges LED-Cluster
    12
    einzelne LED
    a
    Abstand der LED-Cluster im Array

Claims (7)

  1. Scheinwerfer zur stationären Montage in einem Innen- oder Außenraum, insbesondere Stadionscheinwerfer, wobei der Scheinwerfer mehrere Cluster (2,6,7, 11) mit jeweils mehreren LEDs (1) aufweist, wobei die Cluster in dem Scheinwerfer beabstandet zueinander angeordnet sind, wobei einzelne der LEDs in jeweils einem der Cluster unabhängig von wenigstens einigen der übrigen LEDs in dem Cluster zu- und abschaltbar und/oder dimmbar sind, wobei jedes der Cluster eine eigene Optik (3) für jeweils alle LEDs in dem betreffenden Cluster aufweist und wobei die LED-Cluster jeweils eine Anordnung von LEDs aufweisen, die symmetrisch zu zwei Spiegelebenen ist, wobei die Spiegelebenen die Mittelsenkrechte durch das Cluster als gemeinsame Schnittgrade aufweisen und senkrecht zueinander liegen, dadurch gekennzeichnet, dass die LEDs in jeweils einem der Cluster in verschiedenen Mustern separat schaltbar und/ oder dimmbar sind, die jeweils symmetrisch in Bezug auf die genannten Spiegelebenen sind und die LEDs auch in Mustern schaltbar oder dimmbar sind, welche asymmetrisch in Bezug auf die genannten Spiegelebenen sind, wobei das asymmetrische Schalten der LEDs innerhalb der symmetrischen Anordnung eine asymmetrische Lichtverteilungskurve erzielt.
  2. Scheinwerfer nach Anspruch 1, wobei die Optiken durch einen Reflektor und/oder eine Linse, insbesondere durch eine Linse (3) mit interner Totalreflexion, gebildet sind.
  3. Scheinwerfer nach einem der vorhergehenden Ansprüche, wobei die Cluster (2,6,7) jeweils eine quadratische Matrix von LEDs (1) gebildet ist.
  4. Scheinwerfer nach Anspruch 3, wobei die LED-Cluster (2,6,7) jeweils durch eine 3x3, 4x4 oder 5x5-Matrix von LEDs (1) gebildet sind.
  5. Scheinwerfer nach einem der Ansprüche 1 bis 3, wobei die Cluster (11) jeweils durch zwei senkrecht zueinander verlaufende LED-Reihen oder senkrecht zueinander verlaufende rechteckige LED-Matrizen gebildet ist.
  6. Scheinwerfer nacheinem der vorhergehenden Ansprüche, in welchem die Cluster (2,6,7,11) zueinander gedreht in dem Scheinwerfer angeordnet sind.
  7. Scheinwerfer nach einemeinem der vorhergehenden Ansprüche, wobei wenigstens zwei Cluster (2,6,7,11) über eine unterschiedliche Anzahl, Anordnung und/oder Farbe von LEDs verfügen.
EP19712718.6A 2018-03-16 2019-03-15 Scheinwerfer mit regelbarer lichtverteilung Active EP3765783B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018106223.0A DE102018106223A1 (de) 2018-03-16 2018-03-16 Scheinwerfer mit regelbarer Lichtverteilung
PCT/EP2019/056552 WO2019175390A1 (de) 2018-03-16 2019-03-15 Scheinwerfer mit regelbarer lichtverteilung

Publications (2)

Publication Number Publication Date
EP3765783A1 EP3765783A1 (de) 2021-01-20
EP3765783B1 true EP3765783B1 (de) 2022-05-04

Family

ID=65894981

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19712718.6A Active EP3765783B1 (de) 2018-03-16 2019-03-15 Scheinwerfer mit regelbarer lichtverteilung

Country Status (4)

Country Link
EP (1) EP3765783B1 (de)
DE (1) DE102018106223A1 (de)
PL (1) PL3765783T3 (de)
WO (1) WO2019175390A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020130685A1 (de) 2020-11-20 2022-05-25 Bartenbach Holding Gmbh Strahler sowie Leuchte mit einer Vielzahl solcher Strahler

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005022832A1 (de) * 2005-05-11 2006-11-16 Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg Scheinwerfer für Film- und Videoaufnahmen
DE102007046873A1 (de) * 2006-09-28 2008-04-10 Zweverink, Birgit Wand- oder Bodenbelag
US8585253B2 (en) * 2009-08-20 2013-11-19 Illumitex, Inc. System and method for color mixing lens array
US8820963B2 (en) * 2011-06-14 2014-09-02 Osram Sylvania Inc. Solid state light fixture with a tunable angular distribution
US9470406B2 (en) * 2012-09-24 2016-10-18 Terralux, Inc. Variable-beam light source and related methods
CN103968268B (zh) * 2013-01-31 2016-09-21 深圳市光峰光电技术有限公司 一种led光源系统和led照明装置
CN203258423U (zh) * 2013-04-11 2013-10-30 深圳市绎立锐光科技开发有限公司 Led单元模组、发光装置以及光源系统
JP6682773B2 (ja) * 2015-07-03 2020-04-15 ウシオ電機株式会社 Led照明装置

Also Published As

Publication number Publication date
DE102018106223A1 (de) 2019-09-19
WO2019175390A1 (de) 2019-09-19
PL3765783T3 (pl) 2022-08-01
EP3765783A1 (de) 2021-01-20

Similar Documents

Publication Publication Date Title
EP2360427B1 (de) Drei-Zonen Reflektor
DE102011085291A1 (de) Lichtbeeinflussungselement zur Beeinflussung der Lichtabgabe von im Wesentlichen punktförmigen Lichtquellen
DE102008063369A1 (de) Leuchte
AT519084A2 (de) Leuchte
DE102010027322A1 (de) Mikrooptik für angenähert transversalisotrope Aufweitung einer Scheinwerferlichtverteilung
DE202008010884U1 (de) Leuchte
EP3765783B1 (de) Scheinwerfer mit regelbarer lichtverteilung
DE102015219211A1 (de) Lichtmodul für eine Kfz-Beleuchtungseinrichtung
EP2796769A2 (de) LED-Leuchte mit einer Lichtleiter-Anordnung
DE102009050805B4 (de) Leuchte, Fotoapparat oder Camcorder mit selbiger
EP2954258A1 (de) Rasterleuchte mit reflektorzellen und halbleiterlichtquellen
EP2245362B1 (de) Beleuchtungseinrichtung
EP3388741B1 (de) Mehrfachlinsenanordnung für eine beleuchtungsvorrichtung
DE202006004481U1 (de) LED-Scheinwerfer und Beleuchtungssystem mit einem solchen Scheinwerfer
EP3686480B1 (de) Anordnung zur lichtabgabe mit veränderbarer lichtabstrahlcharakteristik
EP3865761A1 (de) Leuchte mit kombinierter shelfwasher- und spotfunktion
DE202014102004U1 (de) Anordnung zur Lichtabgabe für die Raumbeleuchtung
EP2989378A1 (de) Led-leuchte mit unterschiedlich einstellbaren lichtverteilungen
DE4215382C1 (de) Leuchte mit einer verstellbaren rastervorrichtung
DE102020134057B4 (de) LED-Leuchte, insbesondere Straßenleuchte, mit Linsenarray
EP3869086B1 (de) Vorrichtung zum blendungsreduzierten beleuchten voneinander getrennter arbeitsbereiche
WO2015150063A1 (de) Beleuchtungsvorrichtung für ein kraftfahrzeug
EP4063728A1 (de) Leuchte
DE60223737T2 (de) Fahrzeugleuchte
WO2019175389A1 (de) Scheinwerfer mit led-cluster

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201013

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211006

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1489414

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019004273

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220905

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220804

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220805

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019004273

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

26N No opposition filed

Effective date: 20230207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230402

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230315

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240318

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240321

Year of fee payment: 6

Ref country code: GB

Payment date: 20240322

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240306

Year of fee payment: 6

Ref country code: FR

Payment date: 20240320

Year of fee payment: 6