EP3759405B1 - Appareil frigorifique et procédé de fonctionnement d'un appareil frigorifique - Google Patents

Appareil frigorifique et procédé de fonctionnement d'un appareil frigorifique Download PDF

Info

Publication number
EP3759405B1
EP3759405B1 EP19706582.4A EP19706582A EP3759405B1 EP 3759405 B1 EP3759405 B1 EP 3759405B1 EP 19706582 A EP19706582 A EP 19706582A EP 3759405 B1 EP3759405 B1 EP 3759405B1
Authority
EP
European Patent Office
Prior art keywords
evaporator
variable
representative
limit value
storage chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19706582.4A
Other languages
German (de)
English (en)
Other versions
EP3759405A1 (fr
Inventor
Andreas BABUCKE
Frank Cifrodelli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Hausgeraete GmbH filed Critical BSH Hausgeraete GmbH
Publication of EP3759405A1 publication Critical patent/EP3759405A1/fr
Application granted granted Critical
Publication of EP3759405B1 publication Critical patent/EP3759405B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/02Detecting the presence of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control

Definitions

  • the present invention relates to a refrigeration appliance with a defrost heater, in particular a household refrigeration appliance in a no-frost design, in which an evaporator to be defrosted by the defrost heater is housed in an evaporator chamber that is separate from a storage chamber and the storage chamber is cooled by an air flow provided by a fan is circulated between the evaporator chamber and the storage chamber.
  • Moisture that is released by the refrigerated goods stored in the storage chamber or that enters the storage chamber from the outside when a door of the storage chamber is opened is deposited on the evaporator as frost over time.
  • the increasing thickness of the frost layer over time hinders both the air circulation and the heat exchange between the air circulating in contact with the evaporator and a refrigerant evaporating into the evaporator, so that as the thickness of the frost layer increases, an ever higher performance of the fan is required, to maintain air circulation between the evaporator chamber and the storage chamber, and an ever lower evaporator temperature is required to cool the circulating air down to a desired temperature for the storage compartment. Both increase the energy consumption of the refrigerator.
  • the layer of frost must be removed from time to time.
  • a simple solution is to operate the defrost heater at regular intervals. However, this results in the defrost heater being switched on unnecessarily if little or no frost has formed within the fixed time interval. In such a case, the energy required for defrosting unnecessarily affects the energy efficiency of the refrigerator.
  • the US 2014150477 A1 discloses a refrigeration device in which frost formation on an evaporator occurs by observing fan behavior in terms of current or speed.
  • EP0 713 065 B1 describes the use of a capacitive sensor to detect ice on an evaporator.
  • Optical and acoustic methods for detecting ripeness are also known. What all of these methods have in common is that additional, sometimes complex sensors are required for ripeness detection.
  • the DE 2922633 A1 describes detecting a frosted evaporator by detecting a pressure change in a pressure generated by a fan.
  • the WO 2017131426 A1 discloses a refrigeration device with a differential pressure sensor for determining a frosted evaporator.
  • the US 3643457 A discloses a refrigeration device with an air speed sensor for determining a frosted evaporator.
  • the object of the present invention is to create a refrigeration device and an operating method for it that enable demand-based control of the defrost heater using simple and cost-effective means.
  • the representative variable responsible for the pressure drop is an electrical variable of the fan. Electrical variables can be recorded without the need for an additional sensor in the area around the evaporator; The measurement data required to determine the representative size can be connected to a motor via suitable circuits
  • Fan and in particular on a power supply of the fan can be tapped.
  • the electrical power of the fan can be used as a representative variable. Since the operating voltage of the fan is fixed and unchangeable in the simplest case, measuring the current drawn by the fan is equivalent to determining the power. In the event that the operating voltage of the fan is variable, the quotient of electrical power and operating voltage can be determined in an equivalent manner as a representative variable.
  • the speed of the fan can also be used as a representative variable linked to the performance.
  • the control unit should be set up to monitor the ratio of the representative size when the storage chamber door is closed and to interrupt monitoring when the door is open. There can be several reasons for such an interruption, for example the operation of the fan can be linked to the position of the door in order to prevent warm, moist air from entering the storage chamber when the door is open by switching off the fan when the door is open and their moisture can be separated immediately on the evaporator. If the fan is switched off with the door open, no meaningful measurement values for the power and speed of the fan are available for the frost thickness.
  • a second reason is that the performance of the fan is not only determined by the flow resistance of the evaporator, but also by that of the storage chamber. Therefore, due to the removal or addition of refrigerated goods in the storage chamber when the door is open, the flow resistance can change suddenly without this being due to a change in the amount of frost on the evaporator.
  • the limit value can be the sum of the representative size immediately after the evaporator has defrosted and a predetermined deviation.
  • the control unit should be set up to update the limit value after the door is closed
  • the control unit is set up to record the representative size before and after the door is closed and to change the limit value based on the difference between these two recorded sizes. In this way, changes in the representative size that occur when the door is open due to the removal or addition of refrigerated goods can be prevented from affecting the control of the defrost heater.
  • control unit should be set up to record the representative variable before a compressor is switched off, so that if the door is opened while the compressor is switched off, a meaningful measured value for the representative variable is available.
  • FIG. 1 Shows as an example of a refrigeration device according to the invention Fig. 1 a No-Frost combination device in a schematic section in the depth direction.
  • a body 1 of the refrigeration appliance two cavities are delimited by an inner container 2 which is preferably deep-drawn in one piece from plastic.
  • One of the cavities is a storage chamber, here a normal refrigerator compartment 3.
  • the other cavity is divided by a vertical partition 4 into a second storage chamber, here a freezer compartment 5, and an evaporator chamber 6. Both storage chambers 3, 5 are each closed by a door 20.
  • the invention described below is of course also applicable to refrigeration appliances with a single or more than two storage chambers.
  • the evaporator chamber 6 contains a finned evaporator 7 with parallel to the cutting plane of the Fig. 1 arranged slats.
  • a defrost heater 10 for defrosting the finned evaporator 7 is accommodated in a free space 8 of the evaporator chamber 6 located below the finned evaporator 7.
  • a compressor 19 for driving the refrigerant flow through the finned evaporator 7 is housed in a machine room separated from the body 1 at the level of the freezer compartment 5.
  • the free space 8 here forms an inlet volume on an upstream side of the finned evaporator 7, which communicates with the freezer compartment 5 via an inlet gap 11.
  • the vertical intermediate wall 4 contains a distribution chamber 12, which communicates with a second, here downstream, free space 14 of the evaporator chamber 6 above the evaporator 7 via an opening at which a fan 13 is arranged.
  • a first outlet 15 of the distribution chamber 12 opens into the freezer compartment 5 close to the ceiling.
  • Another outlet is formed by a line 16 extending in a wall of the body 1 to the normal refrigerator compartment 3.
  • a flap controlled by a thermostat can be provided in this line 16, which allows the cold air supply to the normal refrigerator compartment 3 to be stopped if there is only a need for cooling in the freezer compartment 5. If there is a need for cooling in the normal refrigerator compartment 5 and the flap is therefore open, the cold air circulated by the fan 13 is distributed to both storage chambers 3, 5.
  • a structure can also be considered in which a fan in the evaporator pumps cooled air into the freezer compartment, air from the freezer compartment enters the normal refrigerator compartment via a gap or other passage, and air is sucked in from the normal refrigerator compartment into the evaporator.
  • Moisture which is absorbed by the air as it circulates through the storage chambers 3, 5, is deposited on the fins of the evaporator 7 and thus reduces the free gap width between the fins. This gap width has a strong influence on the pressure loss of the circulating air.
  • L is the length of the evaporator 7 in the flow direction of the air flow
  • H is the height of the evaporator measured transversely to the flow direction in the plane of one of the fins
  • d is the free gap width between two fins
  • n is the number of fins
  • is the dynamic viscosity of the air
  • V ⁇ denotes the volume flow.
  • the pressure loss ⁇ p is inversely proportional to the cube of the free gap width d and is therefore sensitive to the thickness of the frost layer on the slats.
  • a differential pressure sensor 21 can be connected to the two free spaces 8, 14. Since the pressure in the storage chambers 3, 5 (at least under stationary operating conditions, when the doors 20 have been closed long enough ago) does not differ significantly from atmospheric pressure, an absolute pressure sensor can alternatively also be provided on one of the two free spaces 8, 14. A pressure sensor is not required if the pressure loss ⁇ p is estimated based on electrical operating variables of the fan 13, as described below.
  • the diagram of the Fig. 2 illustrates the pressure loss ⁇ p against which the fan 13 works as a function of the gap width d.
  • a free gap width d of 5 mm between the fins is assumed and for the circulation through the storage chambers 3, 5 a contribution to the pressure loss ⁇ p of 15 Nm/m 2 is assumed, which is independent of the gap width.
  • the electric motor of the fan 13 can react differently to the change in pressure loss ⁇ p depending on the design or operating point, for example by running more slowly or by increasing power consumption.
  • Fig. 3 shows exemplary characteristics for the power P, the efficiency n and the pressure loss ⁇ p of the fan 13 as a function of the volume flow V ⁇ .
  • the operating point of the fan 13 should be in the vicinity of a maximum of efficiency n, shown as a solid curve. In this in the diagram of the Fig.
  • both the pressure loss ⁇ p, shown as a dashed curve, and the power P, shown as a dash-dotted curve, are clear functions of the volume flow V ⁇ , so that a measured power P of the fan 13 clearly indicates the pressure loss ⁇ p on the evaporator 7 and thus the thickness of the frost layer can be concluded. If the operating voltage of the fan 13 is fixed, knowledge of the current drawn by the fan 13 is sufficient to be able to estimate the thickness of the layer of frost on the fins of the evaporator 7.
  • Figure 4 shows schematically a development of the pressure drop over time at the evaporator 7 of the refrigeration device Figure 1 ;
  • Fig. 5 shows a flowchart from a control unit 18 of the refrigeration device Fig. 1 carried out work procedure.
  • the free gap width in the evaporator 7 is maximum when all frost adhering to the fins of the evaporator 7 has been removed by the operation of the defrost heater 10.
  • the pressure loss ⁇ p, against which the fan 13 has to work is essentially determined by a flow resistance of the storage chambers 3, 5.
  • this is not known a priori, since refrigerated goods placed in the storage chambers 3, 5 depend on their quantity and Arrangement can hinder the flow of air to varying degrees.
  • step S1 the defrost heater 10 is switched off after the evaporator 7 has completely defrosted.
  • step S2 the control unit 18 starts the compressor 19 to resume cooling the evaporator 7.
  • the fan 13 is also switched on in step S3.
  • the current intensity l absorbed by the fan 13 is recorded as a variable representative of the pressure loss ⁇ p (S4).
  • the measured value l 0 obtained is saved in step S5. Its amount will generally vary from one defrosting process to another since it depends on the distribution of the goods to be cooled in the chambers 3, 5.
  • a limit value l end of the current strength is then set, if this is exceeded it is assumed that so much frost has accumulated on the evaporator 7 that defrosting is necessary.
  • the limit value l end is calculated in step S6 as the sum of the previously stored initial value l 0 and a predetermined difference value D.
  • step 7 the current intensity l is recorded again and compared with the limit value l end in step S8. As long as the limit value l end has not yet been reached, the method branches to step S9 to check whether the door 20 of one of the storage chambers 3, 5 is open.
  • step S10 If the doors 20 are closed, it is next checked in step S10 whether the compressor 19 is switched off - because the cooling requirement in both storage compartments 3, 5 is satisfied. The fan 13 is then also switched off, so that no meaningful measurement of the current intensity I can be obtained. In this case, the checks in steps S9, S10 are repeated until either the need for cold in at least one of the storage areas 3, 5 leads to the compressor 19 and subsequently also the fan 13 being switched on again and the process to step 7 returns, or a user opens one of the doors 20.
  • the last measured value l t of the current intensity (which can be a value that has no longer been updated since the compressor 19 was switched off) is saved in step S11.
  • the fan 13 is switched off S12 in order to prevent moist ambient air, which enters the storage chamber 3 or 5 through the open door 20, from being pumped from there immediately to the evaporator 7 and contributing to the formation of frost there.
  • the processing unit then waits until the time t 2 in Fig. 4 the door 20 is closed again and then returned to step S3.
  • step S5 This new measured value is in turn saved in step S5, and the limit value l end is recalculated in step S6 on the basis of the difference value D updated in the previous step S13.
  • the fan 13 runs again and the layer of frost in the evaporator 7 continues to increase in thickness.
  • the current intensity can exceed the limit value that was valid in the time interval [0, t 1 ] without this triggering a start of the defrost heater 10.
  • the door 20 is opened again, which the control unit 18 recognizes in step S9, the most recent current measurement value obtained in the meantime is saved in step S11 and based on the stored value, the difference value D is updated again in step S13.
  • step S15 in which the heater 10 is switched on.
  • compressor 19 and fan 13 are switched off.
  • the difference value D is reset to a predetermined value D 0 corresponding to an evaporator 7 that is completely free of frost. If it is determined in step S17 that the defrosting process has been completed and there is a need for cold again in one of the storage chambers 3, 5, the method returns to step S2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Defrosting Systems (AREA)

Claims (7)

  1. Appareil frigorifique, en particulier appareil frigorifique ménager, comprenant un évaporateur (7), un ventilateur (13) pour entraîner un flux d'air à travers l'évaporateur (7), une chambre de stockage (3, 5) refroidie par le flux d'air, un chauffage de dégivrage (10) pour dégivrer l'évaporateur (7) et une unité de commande (18) pour commander le fonctionnement du chauffage de dégivrage (10), dans lequel l'unité de commande (18) est configurée pour comparer une grandeur (I) représentative d'une chute de pression dans l'évaporateur avec une valeur limite (lend) et pour démarrer le chauffage de dégivrage (10) en cas de dépassement de la valeur limite, caractérisé en ce que la grandeur représentative est une grandeur électrique du ventilateur (13), et la valeur limite est la somme de la grandeur représentative immédiatement après un dégivrage de l'évaporateur (7) et d'un écart prédéterminé (D), et l'unité de commande (18) est configurée pour saisir la grandeur représentative avant et après une fermeture d'une porte (20) de la chambre de stockage (3, 5) et modifier la valeur limite à l'aide de la différence entre ces deux grandeurs saisies, afin de tenir compte d'une résistance à l'écoulement variable de la chambre de stockage (3, 5).
  2. Appareil frigorifique selon la revendication 1, caractérisé en ce que la grandeur représentative résulte de la puissance et de la tension de fonctionnement du ventilateur (13).
  3. Appareil frigorifique selon la revendication 1, caractérisé en ce que la grandeur représentative est la puissance électrique ou l'intensité de fonctionnement (I) du ventilateur (13) pour une tension de fonctionnement donnée.
  4. Appareil frigorifique selon l'une des revendications précédentes, caractérisé en ce que la grandeur représentative résulte de la vitesse de rotation du ventilateur (13).
  5. Appareil frigorifique selon l'une des revendications précédentes, caractérisé en ce que l'unité de commande (18) est configurée pour surveiller la grandeur représentative (I) lorsque la porte (20) de la chambre de stockage (3, 5) est fermée et pour interrompre la surveillance lorsque la porte (20) est ouverte.
  6. Appareil frigorifique selon l'une des revendications précédentes, caractérisé en ce que l'unité de commande (18) est configurée pour saisir la grandeur représentative (I) avant une mise à l'arrêt d'un compresseur (19).
  7. Procédé de fonctionnement d'un appareil frigorifique comprenant un évaporateur (7), un ventilateur (13) pour entraîner un flux d'air à travers l'évaporateur (7), une chambre de stockage (3, 5) refroidie par le flux d'air et un chauffage de dégivrage (10) pour dégivrer l'évaporateur (7), comprenant les étapes suivantes :
    a) la saisie d'une grandeur (I) (S4) représentative d'une chute de pression (Δp) dans l'évaporateur (7), dans laquelle la grandeur représentative est une grandeur électrique du ventilateur (13),
    b) la définition (S6) d'une valeur limite (lend) (S6), dans laquelle la valeur limite est la somme de la grandeur représentative immédiatement après un dégivrage de l'évaporateur (7) et d'un écart prédéterminé (D),
    c) la saisie de la grandeur représentative (I) avant et après une fermeture d'une porte (20) de la chambre de stockage (3, 5) (S7) S4),
    d) la modification de la valeur limite à l'aide de la différence entre ces deux grandeurs saisies (S6) pour tenir compte d'une résistance à l'écoulement variable de la chambre de stockage (3, 5),
    e) la saisie de la grandeur (I) représentative d'une chute de pression (Δp) au niveau de l'évaporateur (7) (S4),
    f) la comparaison de la grandeur saisie avec la valeur limite (lend) (S8) et
    g) le démarrage du chauffage de dégivrage (10) en cas de dépassement de la valeur limite (lend) (S15).
EP19706582.4A 2018-02-28 2019-02-20 Appareil frigorifique et procédé de fonctionnement d'un appareil frigorifique Active EP3759405B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018202971.7A DE102018202971A1 (de) 2018-02-28 2018-02-28 Kältegerät mit Abtauheizung
PCT/EP2019/054145 WO2019166291A1 (fr) 2018-02-28 2019-02-20 Réfrigérateur avec dispositif de dégivrage par chauffage

Publications (2)

Publication Number Publication Date
EP3759405A1 EP3759405A1 (fr) 2021-01-06
EP3759405B1 true EP3759405B1 (fr) 2023-11-22

Family

ID=65516620

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19706582.4A Active EP3759405B1 (fr) 2018-02-28 2019-02-20 Appareil frigorifique et procédé de fonctionnement d'un appareil frigorifique

Country Status (4)

Country Link
EP (1) EP3759405B1 (fr)
CN (1) CN111788442B (fr)
DE (1) DE102018202971A1 (fr)
WO (1) WO2019166291A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020215658A1 (de) * 2020-12-10 2022-06-15 Glen Dimplex Deutschland Gmbh Vorrichtung sowie Verfahren zur Erkennung eines Belags auf einer Wärmetauscherfläche
CN114234520B (zh) * 2021-12-21 2023-12-29 海信冰箱有限公司 一种冰箱及其化霜控制方法
DE102022206632A1 (de) 2022-06-30 2024-01-04 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betrieb einer Kraftwärmemaschine und eine Kraftwärmemaschine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3643457A (en) * 1970-11-20 1972-02-22 Westinghouse Electric Corp Frost detector for refrigeration system
DE2922633A1 (de) * 1979-06-02 1980-12-04 Stiebel Eltron Gmbh & Co Kg Verdampfer einer waermepumpe
JPH0886557A (ja) 1994-09-19 1996-04-02 Ishizuka Denshi Kk 着霜検知器
DE69426567T2 (de) 1994-11-17 2001-06-21 Whirlpool Europe B.V., Veldhoven Vorrichtung zur Feststellung von Eis auf einem Kühlgerät-Verdampfer
DE10315523A1 (de) * 2003-04-04 2004-10-14 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät mit adaptiver Abtauautomatik und Abtauverfahren dafür
CN100538202C (zh) * 2005-07-29 2009-09-09 大金工业株式会社 冷冻装置
US9341405B2 (en) * 2012-11-30 2016-05-17 Lennox Industries Inc. Defrost control using fan data
JP5590195B1 (ja) * 2013-07-11 2014-09-17 株式会社富士通ゼネラル 空気調和装置
WO2017131426A1 (fr) * 2016-01-29 2017-08-03 엘지전자 주식회사 Réfrigérateur
CN105737475B (zh) * 2016-03-18 2019-01-18 青岛海尔股份有限公司 一种冰箱及其控制方法
CN106440636B (zh) * 2016-09-21 2018-10-23 合肥华凌股份有限公司 一种冰箱风门结冰检测控制方法、系统、装置及冰箱

Also Published As

Publication number Publication date
WO2019166291A1 (fr) 2019-09-06
CN111788442B (zh) 2022-10-14
EP3759405A1 (fr) 2021-01-06
CN111788442A (zh) 2020-10-16
DE102018202971A1 (de) 2019-08-29

Similar Documents

Publication Publication Date Title
EP3759405B1 (fr) Appareil frigorifique et procédé de fonctionnement d'un appareil frigorifique
DE69307078T2 (de) Kühlschrank
DE3324590C2 (fr)
EP0690277B1 (fr) Dispositif de commande d'une installation de refroidissement ou congélation
DE20321771U1 (de) Kältegerät mit gesteuerter Entfeuchtung
DE69528112T2 (de) Verfahren zur Steuerung eines Kühlgerätes und ein Gerät zur Durchführung des Verfahrens
EP2769155B1 (fr) Appareil de froid à bac d'évaporation et dispositif de chauffe favorisant l'évaporation
DE10315524A1 (de) Kältegerät und Betriebsverfahren dafür
DE69732468T2 (de) Kühlanlage mit veränderlicher Zwangsbelüftung
DE69304761T2 (de) Verfahren und Einrichtung zum Auswerten der Eisbildung an einem Kühlschrankverdampfer, insbesondere der Art mit Zwangsluftumlauf
WO2003098135A1 (fr) Appareil de congelation a indicateur de degivrage
DE19647642A1 (de) Verfahren zum Betreiben eines Kühlgerätes
DE69518302T2 (de) Verfahren zum Bestimmen eines Temperaturwerts für Anwendung zur Regelung der Temperatur eines Kühlschranks
DE60013374T2 (de) Automatisches Kältegerät mit Abtausteuerung
EP3894766B1 (fr) Appareil frigorifique et procédé pour initialiser une opération de dégivrage dans un appareil frigorifique
EP4400787A1 (fr) Détermination d'un moment de dégivrage d'un évaporateur d'un appareil frigorifique ménager
DE102011078320B4 (de) Kältegerät mit Verdunstungsschale und Hilfseinrichtung zur Verdunstungsförderung
WO2022037880A1 (fr) Procédé pour dégivrer un évaporateur d'un appareil de froid
WO2013000765A1 (fr) Appareil de froid à bac d'évaporation et dispositif auxiliaire favorisant l'évaporation
WO2013000773A2 (fr) Appareil de froid à bac d'évaporation et dispositif auxiliaire favorisant l'évaporation
WO2013000759A2 (fr) Appareil de froid à bac d'évaporation et dispositif auxiliaire favorisant l'évaporation
EP1470375B1 (fr) Appareil frigorifique a reglage de la temperature de l'air
DE10126817A1 (de) Kältegerät
DE102015203159A1 (de) Kältegerät
DE102011079676A1 (de) Kältegerät mit Abtaufunktion

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200928

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230206

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230630

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019009969

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240322

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240223

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240222

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240229

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240222

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019009969

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240220