EP3759405B1 - Refrigeration device and method for operating a refrigeration device - Google Patents

Refrigeration device and method for operating a refrigeration device Download PDF

Info

Publication number
EP3759405B1
EP3759405B1 EP19706582.4A EP19706582A EP3759405B1 EP 3759405 B1 EP3759405 B1 EP 3759405B1 EP 19706582 A EP19706582 A EP 19706582A EP 3759405 B1 EP3759405 B1 EP 3759405B1
Authority
EP
European Patent Office
Prior art keywords
evaporator
variable
representative
limit value
storage chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19706582.4A
Other languages
German (de)
French (fr)
Other versions
EP3759405A1 (en
Inventor
Andreas BABUCKE
Frank Cifrodelli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Hausgeraete GmbH filed Critical BSH Hausgeraete GmbH
Publication of EP3759405A1 publication Critical patent/EP3759405A1/en
Application granted granted Critical
Publication of EP3759405B1 publication Critical patent/EP3759405B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/02Detecting the presence of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control

Definitions

  • the present invention relates to a refrigeration appliance with a defrost heater, in particular a household refrigeration appliance in a no-frost design, in which an evaporator to be defrosted by the defrost heater is housed in an evaporator chamber that is separate from a storage chamber and the storage chamber is cooled by an air flow provided by a fan is circulated between the evaporator chamber and the storage chamber.
  • Moisture that is released by the refrigerated goods stored in the storage chamber or that enters the storage chamber from the outside when a door of the storage chamber is opened is deposited on the evaporator as frost over time.
  • the increasing thickness of the frost layer over time hinders both the air circulation and the heat exchange between the air circulating in contact with the evaporator and a refrigerant evaporating into the evaporator, so that as the thickness of the frost layer increases, an ever higher performance of the fan is required, to maintain air circulation between the evaporator chamber and the storage chamber, and an ever lower evaporator temperature is required to cool the circulating air down to a desired temperature for the storage compartment. Both increase the energy consumption of the refrigerator.
  • the layer of frost must be removed from time to time.
  • a simple solution is to operate the defrost heater at regular intervals. However, this results in the defrost heater being switched on unnecessarily if little or no frost has formed within the fixed time interval. In such a case, the energy required for defrosting unnecessarily affects the energy efficiency of the refrigerator.
  • the US 2014150477 A1 discloses a refrigeration device in which frost formation on an evaporator occurs by observing fan behavior in terms of current or speed.
  • EP0 713 065 B1 describes the use of a capacitive sensor to detect ice on an evaporator.
  • Optical and acoustic methods for detecting ripeness are also known. What all of these methods have in common is that additional, sometimes complex sensors are required for ripeness detection.
  • the DE 2922633 A1 describes detecting a frosted evaporator by detecting a pressure change in a pressure generated by a fan.
  • the WO 2017131426 A1 discloses a refrigeration device with a differential pressure sensor for determining a frosted evaporator.
  • the US 3643457 A discloses a refrigeration device with an air speed sensor for determining a frosted evaporator.
  • the object of the present invention is to create a refrigeration device and an operating method for it that enable demand-based control of the defrost heater using simple and cost-effective means.
  • the representative variable responsible for the pressure drop is an electrical variable of the fan. Electrical variables can be recorded without the need for an additional sensor in the area around the evaporator; The measurement data required to determine the representative size can be connected to a motor via suitable circuits
  • Fan and in particular on a power supply of the fan can be tapped.
  • the electrical power of the fan can be used as a representative variable. Since the operating voltage of the fan is fixed and unchangeable in the simplest case, measuring the current drawn by the fan is equivalent to determining the power. In the event that the operating voltage of the fan is variable, the quotient of electrical power and operating voltage can be determined in an equivalent manner as a representative variable.
  • the speed of the fan can also be used as a representative variable linked to the performance.
  • the control unit should be set up to monitor the ratio of the representative size when the storage chamber door is closed and to interrupt monitoring when the door is open. There can be several reasons for such an interruption, for example the operation of the fan can be linked to the position of the door in order to prevent warm, moist air from entering the storage chamber when the door is open by switching off the fan when the door is open and their moisture can be separated immediately on the evaporator. If the fan is switched off with the door open, no meaningful measurement values for the power and speed of the fan are available for the frost thickness.
  • a second reason is that the performance of the fan is not only determined by the flow resistance of the evaporator, but also by that of the storage chamber. Therefore, due to the removal or addition of refrigerated goods in the storage chamber when the door is open, the flow resistance can change suddenly without this being due to a change in the amount of frost on the evaporator.
  • the limit value can be the sum of the representative size immediately after the evaporator has defrosted and a predetermined deviation.
  • the control unit should be set up to update the limit value after the door is closed
  • the control unit is set up to record the representative size before and after the door is closed and to change the limit value based on the difference between these two recorded sizes. In this way, changes in the representative size that occur when the door is open due to the removal or addition of refrigerated goods can be prevented from affecting the control of the defrost heater.
  • control unit should be set up to record the representative variable before a compressor is switched off, so that if the door is opened while the compressor is switched off, a meaningful measured value for the representative variable is available.
  • FIG. 1 Shows as an example of a refrigeration device according to the invention Fig. 1 a No-Frost combination device in a schematic section in the depth direction.
  • a body 1 of the refrigeration appliance two cavities are delimited by an inner container 2 which is preferably deep-drawn in one piece from plastic.
  • One of the cavities is a storage chamber, here a normal refrigerator compartment 3.
  • the other cavity is divided by a vertical partition 4 into a second storage chamber, here a freezer compartment 5, and an evaporator chamber 6. Both storage chambers 3, 5 are each closed by a door 20.
  • the invention described below is of course also applicable to refrigeration appliances with a single or more than two storage chambers.
  • the evaporator chamber 6 contains a finned evaporator 7 with parallel to the cutting plane of the Fig. 1 arranged slats.
  • a defrost heater 10 for defrosting the finned evaporator 7 is accommodated in a free space 8 of the evaporator chamber 6 located below the finned evaporator 7.
  • a compressor 19 for driving the refrigerant flow through the finned evaporator 7 is housed in a machine room separated from the body 1 at the level of the freezer compartment 5.
  • the free space 8 here forms an inlet volume on an upstream side of the finned evaporator 7, which communicates with the freezer compartment 5 via an inlet gap 11.
  • the vertical intermediate wall 4 contains a distribution chamber 12, which communicates with a second, here downstream, free space 14 of the evaporator chamber 6 above the evaporator 7 via an opening at which a fan 13 is arranged.
  • a first outlet 15 of the distribution chamber 12 opens into the freezer compartment 5 close to the ceiling.
  • Another outlet is formed by a line 16 extending in a wall of the body 1 to the normal refrigerator compartment 3.
  • a flap controlled by a thermostat can be provided in this line 16, which allows the cold air supply to the normal refrigerator compartment 3 to be stopped if there is only a need for cooling in the freezer compartment 5. If there is a need for cooling in the normal refrigerator compartment 5 and the flap is therefore open, the cold air circulated by the fan 13 is distributed to both storage chambers 3, 5.
  • a structure can also be considered in which a fan in the evaporator pumps cooled air into the freezer compartment, air from the freezer compartment enters the normal refrigerator compartment via a gap or other passage, and air is sucked in from the normal refrigerator compartment into the evaporator.
  • Moisture which is absorbed by the air as it circulates through the storage chambers 3, 5, is deposited on the fins of the evaporator 7 and thus reduces the free gap width between the fins. This gap width has a strong influence on the pressure loss of the circulating air.
  • L is the length of the evaporator 7 in the flow direction of the air flow
  • H is the height of the evaporator measured transversely to the flow direction in the plane of one of the fins
  • d is the free gap width between two fins
  • n is the number of fins
  • is the dynamic viscosity of the air
  • V ⁇ denotes the volume flow.
  • the pressure loss ⁇ p is inversely proportional to the cube of the free gap width d and is therefore sensitive to the thickness of the frost layer on the slats.
  • a differential pressure sensor 21 can be connected to the two free spaces 8, 14. Since the pressure in the storage chambers 3, 5 (at least under stationary operating conditions, when the doors 20 have been closed long enough ago) does not differ significantly from atmospheric pressure, an absolute pressure sensor can alternatively also be provided on one of the two free spaces 8, 14. A pressure sensor is not required if the pressure loss ⁇ p is estimated based on electrical operating variables of the fan 13, as described below.
  • the diagram of the Fig. 2 illustrates the pressure loss ⁇ p against which the fan 13 works as a function of the gap width d.
  • a free gap width d of 5 mm between the fins is assumed and for the circulation through the storage chambers 3, 5 a contribution to the pressure loss ⁇ p of 15 Nm/m 2 is assumed, which is independent of the gap width.
  • the electric motor of the fan 13 can react differently to the change in pressure loss ⁇ p depending on the design or operating point, for example by running more slowly or by increasing power consumption.
  • Fig. 3 shows exemplary characteristics for the power P, the efficiency n and the pressure loss ⁇ p of the fan 13 as a function of the volume flow V ⁇ .
  • the operating point of the fan 13 should be in the vicinity of a maximum of efficiency n, shown as a solid curve. In this in the diagram of the Fig.
  • both the pressure loss ⁇ p, shown as a dashed curve, and the power P, shown as a dash-dotted curve, are clear functions of the volume flow V ⁇ , so that a measured power P of the fan 13 clearly indicates the pressure loss ⁇ p on the evaporator 7 and thus the thickness of the frost layer can be concluded. If the operating voltage of the fan 13 is fixed, knowledge of the current drawn by the fan 13 is sufficient to be able to estimate the thickness of the layer of frost on the fins of the evaporator 7.
  • Figure 4 shows schematically a development of the pressure drop over time at the evaporator 7 of the refrigeration device Figure 1 ;
  • Fig. 5 shows a flowchart from a control unit 18 of the refrigeration device Fig. 1 carried out work procedure.
  • the free gap width in the evaporator 7 is maximum when all frost adhering to the fins of the evaporator 7 has been removed by the operation of the defrost heater 10.
  • the pressure loss ⁇ p, against which the fan 13 has to work is essentially determined by a flow resistance of the storage chambers 3, 5.
  • this is not known a priori, since refrigerated goods placed in the storage chambers 3, 5 depend on their quantity and Arrangement can hinder the flow of air to varying degrees.
  • step S1 the defrost heater 10 is switched off after the evaporator 7 has completely defrosted.
  • step S2 the control unit 18 starts the compressor 19 to resume cooling the evaporator 7.
  • the fan 13 is also switched on in step S3.
  • the current intensity l absorbed by the fan 13 is recorded as a variable representative of the pressure loss ⁇ p (S4).
  • the measured value l 0 obtained is saved in step S5. Its amount will generally vary from one defrosting process to another since it depends on the distribution of the goods to be cooled in the chambers 3, 5.
  • a limit value l end of the current strength is then set, if this is exceeded it is assumed that so much frost has accumulated on the evaporator 7 that defrosting is necessary.
  • the limit value l end is calculated in step S6 as the sum of the previously stored initial value l 0 and a predetermined difference value D.
  • step 7 the current intensity l is recorded again and compared with the limit value l end in step S8. As long as the limit value l end has not yet been reached, the method branches to step S9 to check whether the door 20 of one of the storage chambers 3, 5 is open.
  • step S10 If the doors 20 are closed, it is next checked in step S10 whether the compressor 19 is switched off - because the cooling requirement in both storage compartments 3, 5 is satisfied. The fan 13 is then also switched off, so that no meaningful measurement of the current intensity I can be obtained. In this case, the checks in steps S9, S10 are repeated until either the need for cold in at least one of the storage areas 3, 5 leads to the compressor 19 and subsequently also the fan 13 being switched on again and the process to step 7 returns, or a user opens one of the doors 20.
  • the last measured value l t of the current intensity (which can be a value that has no longer been updated since the compressor 19 was switched off) is saved in step S11.
  • the fan 13 is switched off S12 in order to prevent moist ambient air, which enters the storage chamber 3 or 5 through the open door 20, from being pumped from there immediately to the evaporator 7 and contributing to the formation of frost there.
  • the processing unit then waits until the time t 2 in Fig. 4 the door 20 is closed again and then returned to step S3.
  • step S5 This new measured value is in turn saved in step S5, and the limit value l end is recalculated in step S6 on the basis of the difference value D updated in the previous step S13.
  • the fan 13 runs again and the layer of frost in the evaporator 7 continues to increase in thickness.
  • the current intensity can exceed the limit value that was valid in the time interval [0, t 1 ] without this triggering a start of the defrost heater 10.
  • the door 20 is opened again, which the control unit 18 recognizes in step S9, the most recent current measurement value obtained in the meantime is saved in step S11 and based on the stored value, the difference value D is updated again in step S13.
  • step S15 in which the heater 10 is switched on.
  • compressor 19 and fan 13 are switched off.
  • the difference value D is reset to a predetermined value D 0 corresponding to an evaporator 7 that is completely free of frost. If it is determined in step S17 that the defrosting process has been completed and there is a need for cold again in one of the storage chambers 3, 5, the method returns to step S2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Defrosting Systems (AREA)

Description

Die vorliegende Erfindung betrifft ein Kältegerät mit einer Abtauheizung, insbesondere ein Haushaltskältegerät in No-Frost-Bauweise, bei dem ein durch die Abtauheizung abzutauender Verdampfer in einer von einer Lagerkammer getrennten Verdampferkammer untergebracht ist und die Lagerkammer durch einen Luftstrom gekühlt wird, der von einem Ventilator zwischen der Verdampferkammer und der Lagerkammer umgewälzt wird.The present invention relates to a refrigeration appliance with a defrost heater, in particular a household refrigeration appliance in a no-frost design, in which an evaporator to be defrosted by the defrost heater is housed in an evaporator chamber that is separate from a storage chamber and the storage chamber is cooled by an air flow provided by a fan is circulated between the evaporator chamber and the storage chamber.

Feuchtigkeit, die vom in der Lagerkammer untergebrachten Kühlgut abgegeben wird oder die beim Öffnen einer Tür der Lagerkammer von außen in die Lagerkammer hineingelangt, schlägt sich im Laufe der Zeit auf dem Verdampfer als Reif nieder. Die im Laufe der Zeit zunehmende Dicke der Reifschicht behindert sowohl die Luftzirkulation als auch den Wärmeaustausch zwischen der im Kontakt mit dem Verdampfer zirkulierenden Luft und einem in den Verdampfer verdampfenden Kältemittel, so dass mit zunehmender Dicke der Reifschicht eine immer höhere Leistung des Ventilators erforderlich ist, um die Luftzirkulation zwischen Verdampferkammer und Lagerkammer aufrechtzuerhalten, und eine immer tiefere Verdampfertemperatur benötigt wird, um die zirkulierende Luft auf eine für das Lagerfach gewünschte Temperatur herunterzukühlen. Beides erhöht den Energieverbrauch des Kältegeräts.Moisture that is released by the refrigerated goods stored in the storage chamber or that enters the storage chamber from the outside when a door of the storage chamber is opened is deposited on the evaporator as frost over time. The increasing thickness of the frost layer over time hinders both the air circulation and the heat exchange between the air circulating in contact with the evaporator and a refrigerant evaporating into the evaporator, so that as the thickness of the frost layer increases, an ever higher performance of the fan is required, to maintain air circulation between the evaporator chamber and the storage chamber, and an ever lower evaporator temperature is required to cool the circulating air down to a desired temperature for the storage compartment. Both increase the energy consumption of the refrigerator.

Um einen energieeffizienten Betrieb des Kältegeräts zu ermöglichen, muss die Reifschicht daher von Zeit zu Zeit beseitigt werden. Eine einfache Lösung ist, die Abtauheizung jeweils in regelmäßigen Zeitabständen zu betreiben. Dies führt jedoch dazu, dass die Abtauheizung auch unnötigerweise eingeschaltet wird, wenn sich innerhalb des fest vorgegebenen Zeitintervalls nur wenig oder kein Reif gebildet hat. In einem solchen Fall beeinträchtigt der Energieaufwand für das Abtauen unnötigerweise die Energieeffizienz des Kältegeräts.In order to enable energy-efficient operation of the refrigeration device, the layer of frost must be removed from time to time. A simple solution is to operate the defrost heater at regular intervals. However, this results in the defrost heater being switched on unnecessarily if little or no frost has formed within the fixed time interval. In such a case, the energy required for defrosting unnecessarily affects the energy efficiency of the refrigerator.

Um eine bedarfsangepasste und dadurch energieeffiziente Abtauung zu erreichen, sind diverse Sensoren vorgeschlagen worden. In US 5 522 232 A ist ein Reif-Sensor beschrieben, bei dem ein erster Temperatursensor in einer hermetisch dichten Kammer und ein zweiter Temperatursensor in einer mit ihrer Umgebung über Schlitze kommunizierenden Kammer untergebracht ist und die Temperaturdifferenz zwischen den Sensoren verschwindet, wenn die Schlitze durch Reif verschlossen werden.In order to achieve needs-based and therefore energy-efficient defrosting, various sensors have been proposed. In US 5,522,232 A a frost sensor is described, in which a first temperature sensor is in a hermetically sealed chamber and a second temperature sensor is in one with its surroundings via slots communicating chamber and the temperature difference between the sensors disappears when the slots are closed by frost.

Die US 2014150477 A1 offenbart ein Kältegerät, bei dem eine Reifbildung an einem Verdampfer durch das Beobachten eines Lüfter Verhaltens bezüglich Strom oder Drehzahl erfolgt.The US 2014150477 A1 discloses a refrigeration device in which frost formation on an evaporator occurs by observing fan behavior in terms of current or speed.

EP0 713 065 B1 beschreibt die Verwendung eines kapazitiven Sensors zur Erfassung von Eis auf einen Verdampfer. Es sind auch optische und akustische Methoden zur Reiferfassung bekannt. Allen diesen Methoden ist gemeinsam, dass zusätzliche, zum Teil aufwändige Sensoren für die Reiferfassung benötigt werden. EP0 713 065 B1 describes the use of a capacitive sensor to detect ice on an evaporator. Optical and acoustic methods for detecting ripeness are also known. What all of these methods have in common is that additional, sometimes complex sensors are required for ripeness detection.

Die DE 2922633 A1 beschreibt ein das Erkennen eines bereiften Verdampfers durch Ermitteln einer Druckänderung eines von einem Gebläse erzeugten Drucks.The DE 2922633 A1 describes detecting a frosted evaporator by detecting a pressure change in a pressure generated by a fan.

Die WO 2017131426 A1 offenbart ein Kältegerät mit einem Differenzdrucksensor zur Ermittlung eines bereiften Verdampfers.The WO 2017131426 A1 discloses a refrigeration device with a differential pressure sensor for determining a frosted evaporator.

Die US 3643457 A offenbart ein Kältegerät mit einem Luftgeschwindigkeitssensoren zur Ermittlung eines bereiften Verdampfers.The US 3643457 A discloses a refrigeration device with an air speed sensor for determining a frosted evaporator.

Aufgabe der vorliegenden Erfindung ist, ein Kältegerät und ein Betriebsverfahren dafür zu schaffen, die mit einfachen und kostengünstigen Mitteln eine bedarfsgerechte Steuerung der Abtauheizung ermöglichen.The object of the present invention is to create a refrigeration device and an operating method for it that enable demand-based control of the defrost heater using simple and cost-effective means.

Die Aufgabe wird gelöst durch ein Kältegerät gemäß Anspruch 1.The task is solved by a refrigeration device according to claim 1.

Die für den Druckabfall verantwortliche repräsentative Größe ist eine elektrische Größe des Ventilators. Elektrische Größen können erfasst werden, ohne dass dafür ein zusätzlicher Sensor in der Umgebung des Verdampfers benötigt wurde; die zur Ermittlung der repräsentativen Größe benötigten Messdaten können über geeignete Schaltungen an einem Motor desThe representative variable responsible for the pressure drop is an electrical variable of the fan. Electrical variables can be recorded without the need for an additional sensor in the area around the evaporator; The measurement data required to determine the representative size can be connected to a motor via suitable circuits

Ventilators und insbesondere an einer Stromversorgung des Ventilators abgegriffen werden.Fan and in particular on a power supply of the fan can be tapped.

Als repräsentative Größe kann insbesondere die elektrische Leistung des Ventilators herangezogen werden. Da die Betriebsspannung des Ventilators im einfachsten Fall fest und unveränderlich ist, ist eine Messung der vom Ventilator aufgenommenen Stromstärke gleichbedeutend mit einer Ermittlung der Leistung. In dem Fall, dass die Betriebsspannung des Ventilators veränderlich ist, kann in äquivalenter Weise der Quotient von elektrischer Leistung und Betriebsspannung als repräsentative Größe ermittelt werden.In particular, the electrical power of the fan can be used as a representative variable. Since the operating voltage of the fan is fixed and unchangeable in the simplest case, measuring the current drawn by the fan is equivalent to determining the power. In the event that the operating voltage of the fan is variable, the quotient of electrical power and operating voltage can be determined in an equivalent manner as a representative variable.

Falls der Ventilator ein Tachosignal liefert, kann auch die Drehzahl des Ventilators als mit der Leistung verknüpfte repräsentative Größe genutzt werden.If the fan supplies a tachometer signal, the speed of the fan can also be used as a representative variable linked to the performance.

Die Steuereinheit sollte eingerichtet sein, bei geschlossener Tür der Lagerkammer das Verhältnis die repräsentative Größe zu überwachen und bei offener Tür die Überwachung zu unterbrechen. Für eine solche Unterbrechung kann es mehrere Gründe geben, zum Beispiel kann der Betrieb des Ventilators an die Stellung der Tür gekoppelt sein, um durch Ausschalten des Ventilators bei offener Tür zu verhindern, dass warme, feuchte Luft, die bei offener Tür in die Lagerkammer gelangt und ihre Feuchtigkeit sofort am Verdampfer abscheiden kann. Wenn der Ventilator bei offener Tür ausgeschaltet ist, stehen keine für die Reifdicke aussagekräftigen Messwerte von Leistung und Drehzahl des Ventilators zur Verfügung.The control unit should be set up to monitor the ratio of the representative size when the storage chamber door is closed and to interrupt monitoring when the door is open. There can be several reasons for such an interruption, for example the operation of the fan can be linked to the position of the door in order to prevent warm, moist air from entering the storage chamber when the door is open by switching off the fan when the door is open and their moisture can be separated immediately on the evaporator. If the fan is switched off with the door open, no meaningful measurement values for the power and speed of the fan are available for the frost thickness.

Ein zweiter Grund ist, dass die Leistung des Ventilators nicht allein durch den Strömungswiderstand des Verdampfers bestimmt ist, sondern auch durch den der Lagerkammer. Deshalb kann sich aufgrund der Entnahme oder Hinzufügung von Kühlgut in der Lagerkammer bei offener Tür der Strömungswiderstand sprunghaft ändern, ohne dass dies auf eine Änderung der Reifmenge am Verdampfer zurückzuführen ist.A second reason is that the performance of the fan is not only determined by the flow resistance of the evaporator, but also by that of the storage chamber. Therefore, due to the removal or addition of refrigerated goods in the storage chamber when the door is open, the flow resistance can change suddenly without this being due to a change in the amount of frost on the evaporator.

Im einfachsten Fall, insbesondere dann, wenn die Tür lange Zeit nicht geöffnet wird, kann der Grenzwert die Summe aus der repräsentativen Größe unmittelbar nach einem Abtauen des Verdampfers und einer vorgegebenen Abweichung sein. Indem die repräsentative Größe unmittelbar nach dem Abtauen erfasst wird, kann einem a priori nicht bekannten Strömungswiderstand der Lagerkammer Rechnung getragen werden; sobald die repräsentative Größe um die vorgegebene Abweichung zugenommen hat, kann davon ausgegangen werden, dass die Reifschicht vom Verdampfer dick genug geworden ist, um ein Abtauen notwendig zu machen.In the simplest case, especially if the door is not opened for a long time, the limit value can be the sum of the representative size immediately after the evaporator has defrosted and a predetermined deviation. By recording the representative size immediately after defrosting, one can a priori unknown flow resistance of the storage chamber must be taken into account; As soon as the representative size has increased by the specified deviation, it can be assumed that the frost layer on the evaporator has become thick enough to make defrosting necessary.

Da ein Großteil der sich als Reif am Verdampfer niederschlagenden Feuchtigkeit durch Öffnen der Tür in die Lagerkammer gelangt, ist der Fall, dass der Grenzwert überschritten wird, ohne dass seit dem vorhergehenden Abtauen die Tür geöffnet worden ist, in der Praxis recht selten. Meist wird zwischen zwei Abtauvorgängen die Tür ein oder mehrere Male geöffnet. Um den sich dabei durch hinzukommendes oder entferntes Kühlgut ändernden Strömungswiderstand der Lagerkammer zu berücksichtigen, sollte die Steuereinheit eingerichtet sein nach einem Schließen der Tür den Grenzwert zu aktualisierenSince a large part of the moisture that forms as frost on the evaporator gets into the storage chamber when the door is opened, the case that the limit value is exceeded without the door having been opened since the previous defrosting is quite rare in practice. The door is usually opened one or more times between two defrosting processes. In order to take into account the changing flow resistance of the storage chamber due to the addition or removal of refrigerated goods, the control unit should be set up to update the limit value after the door is closed

Die Steuereinheit ist eingerichtet, die repräsentative Größe vor und nach dem Schließen der Tür zu erfassen und den Grenzwert anhand der Differenz dieser beiden erfassten Größen verändern. So kann verhindert werden, dass Veränderungen der repräsentativen Größe, die sich während des Offenstehens der Tür durch Entnahme oder Hinzufügung von Kühlgut ergeben, auf die Steuerung der Abtauheizung auswirken.The control unit is set up to record the representative size before and after the door is closed and to change the limit value based on the difference between these two recorded sizes. In this way, changes in the representative size that occur when the door is open due to the removal or addition of refrigerated goods can be prevented from affecting the control of the defrost heater.

Des weiteren sollte die Steuereinheit eingerichtet sein, auch vor einem Ausschalten eines Verdichters die repräsentative Größe zu erfassen, damit, wenn die Tür geöffnet wird, während der Verdichter ausgeschaltet ist, ein aussagekräftiger Messwert für die repräsentative Größe zur Verfügung steht.Furthermore, the control unit should be set up to record the representative variable before a compressor is switched off, so that if the door is opened while the compressor is switched off, a meaningful measured value for the representative variable is available.

Die Aufgabe wird ferner gelöst durch ein Verfahren gemäß Anspruch 7.The task is further solved by a method according to claim 7.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus den nachfolgenden Beschreibungen von Ausführungsbeispielen unter Bezugnahme auf die beigefügten Figuren. Es zeigen:

Fig. 1:
einen schematischen Schnitt in Tiefenrichtung durch ein erfindungsgemäßes Haushaltskältegerät;
Fig. 2:
den Zusammenhang zwischen Druckverlust und Lamellenabstand in einem Lammellenverdampfer;
Fig. 3:
Kennlinien eines Ventilators;
Fig. 4:
eine exemplarische zeitliche Entwicklung des Druckabfalls am Verdampfer des Kältegeräts aus Figur 1; und
Fig. 5:
ein Flussdiagramm eines von einer Steuereinheit des Kältegeräts der Figur 1 ausgeführten Arbeitsverfahrens.
Further features and advantages of the invention result from the following descriptions of exemplary embodiments with reference to the attached figures. Show it:
Fig. 1:
a schematic section in the depth direction through a household refrigeration appliance according to the invention;
Fig. 2:
the relationship between pressure loss and fin spacing in a fin evaporator;
Fig. 3:
Characteristic curves of a fan;
Fig. 4:
an exemplary temporal development of the pressure drop at the evaporator of the refrigeration device Figure 1 ; and
Fig. 5:
a flowchart of a control unit of the refrigeration device Figure 1 carried out work procedure.

Als Beispiel für ein erfindungsgemäßes Kältegerät zeigt Fig. 1 ein No-Frost-Kombinationsgerät in einem schematischen Schnitt in Tiefenrichtung. In einem Korpus 1 des Kältegeräts sind zwei Hohlräume durch einen vorzugsweise aus Kunststoff einteilig tiefgezogenen Innenbehälter 2 begrenzt. Einer der Hohlräume ist eine Lagerkammer, hier ein Normalkühlfach 3. Der andere Hohlraum ist durch eine vertikale Zwischenwand 4 in eine zweite Lagerkammer, hier ein Gefrierfach 5, und eine Verdampferkammer 6 unterteilt. Beide Lagerkammern 3, 5 sind jeweils durch eine Tür 20 verschlossen. Die im folgenden beschriebene Erfindung ist selbstverständlich auch anwendbar auf Kältegeräte mit einer einzigen oder mit mehr als zwei Lagerkammern.Shows as an example of a refrigeration device according to the invention Fig. 1 a No-Frost combination device in a schematic section in the depth direction. In a body 1 of the refrigeration appliance, two cavities are delimited by an inner container 2 which is preferably deep-drawn in one piece from plastic. One of the cavities is a storage chamber, here a normal refrigerator compartment 3. The other cavity is divided by a vertical partition 4 into a second storage chamber, here a freezer compartment 5, and an evaporator chamber 6. Both storage chambers 3, 5 are each closed by a door 20. The invention described below is of course also applicable to refrigeration appliances with a single or more than two storage chambers.

Die Verdampferkammer 6 enthält einen Lamellenverdampfer 7 mit parallel zur Schnittebene der Fig. 1 angeordneten Lamellen. In einem unterhalb des Lamellenverdampfers 7 liegenden Freiraum 8 der Verdampferkammer 6 ist eine Abtauheizung 10 zum Abtauen des Lamellenverdampfers 7 untergebracht. In einem in Höhe des Gefrierfachs 5 vom Korpus 1 abgeteilten Maschinenraum ist ein Verdichter 19 zum Antreiben des Kältemittelflusses durch den Lamellenverdampfer 7 untergebracht.The evaporator chamber 6 contains a finned evaporator 7 with parallel to the cutting plane of the Fig. 1 arranged slats. A defrost heater 10 for defrosting the finned evaporator 7 is accommodated in a free space 8 of the evaporator chamber 6 located below the finned evaporator 7. A compressor 19 for driving the refrigerant flow through the finned evaporator 7 is housed in a machine room separated from the body 1 at the level of the freezer compartment 5.

Der Freiraum 8 bildet hier ein Einlassvolumen an einer stromaufwärtigen Seite des Lamellenverdampfers 7, das mit dem Gefrierfach 5 über einen Eintrittspalt 11 kommuniziert.The free space 8 here forms an inlet volume on an upstream side of the finned evaporator 7, which communicates with the freezer compartment 5 via an inlet gap 11.

Die vertikale Zwischenwand 4 enthält eine Verteilerkammer 12, die über eine Öffnung, an der ein Ventilator 13 angeordnet ist, mit einem zweiten, hier stromabwärtigen, Freiraum 14 der Verdampferkammer 6 oberhalb des Verdampfers 7 kommuniziert. Ein erster Auslass 15 der Verteilerkammer 12 mündet deckennah in das Gefrierfach 5. Ein anderer Auslass ist durch eine sich in einer Wand des Korpus 1 zum Normalkühlfach 3 erstreckende Leitung 16 gebildet. In dieser Leitung 16 kann eine durch einen Thermostaten angesteuerte Klappe vorgesehen sein, die es erlaubt, die Kaltluftzufuhr zum Normalkühlfach 3 zu unterbinden, wenn nur im Gefrierfach 5 Kühlbedarf besteht. Falls im Normalkühlfach 5 Kühlbedarf besteht und die Klappe deshalb offen ist, verteilt sich die vom Ventilator 13 umgewälzte Kaltluft auf beide Lagerkammern 3, 5.The vertical intermediate wall 4 contains a distribution chamber 12, which communicates with a second, here downstream, free space 14 of the evaporator chamber 6 above the evaporator 7 via an opening at which a fan 13 is arranged. A first outlet 15 of the distribution chamber 12 opens into the freezer compartment 5 close to the ceiling. Another outlet is formed by a line 16 extending in a wall of the body 1 to the normal refrigerator compartment 3. A flap controlled by a thermostat can be provided in this line 16, which allows the cold air supply to the normal refrigerator compartment 3 to be stopped if there is only a need for cooling in the freezer compartment 5. If there is a need for cooling in the normal refrigerator compartment 5 and the flap is therefore open, the cold air circulated by the fan 13 is distributed to both storage chambers 3, 5.

Alternativ kommt auch ein Aufbau in Betracht, bei dem ein Ventilator im Verdampfer abgekühlte Luft in das Gefrierfach pumpt, Luft aus dem Gefrierfach über einen Spalt oder anderweitigen Durchgang in das Normalkühlfach gelangt und Luft aus dem Normalkühlfach in den Verdampfer eingesaugt wird.Alternatively, a structure can also be considered in which a fan in the evaporator pumps cooled air into the freezer compartment, air from the freezer compartment enters the normal refrigerator compartment via a gap or other passage, and air is sucked in from the normal refrigerator compartment into the evaporator.

Feuchtigkeit, die von der Luft beim Zirkulieren durch die Lagerkammern 3, 5 aufgenommen wird, schlägt sich an den Lamellen des Verdampfers 7 nieder und reduziert so die freie Spaltbreite zwischen den Lamellen. Diese Spaltbreite hat einen starken Einfluss auf den Druckverlust der zirkulierenden Luft. Der Druckverlust Δp am Verdampfer 7 kann anhand folgender Formel abgeschätzt werden: Δp = 12 μL d 3 n + 1 H V ˙

Figure imgb0001
wobei L die Länge des Verdampfers 7 in Flussrichtung der Luftströmung, H die quer zur Flussrichtung in der Ebene einer der Lamellen gemessene Höhe des Verdampfers, d die freie Spaltbreite zwischen zwei Lamellen, n die Zahl der Lamellen, µ die dynamische Viskosität der Luft und den Volumenstrom bezeichnet. Der Druckverlust Δp ist umgekehrt proportional zur dritten Potenz der freien Spaltbreite d und reagiert damit empfindlich auf die Dicke der Reifschicht auf den Lamellen.Moisture, which is absorbed by the air as it circulates through the storage chambers 3, 5, is deposited on the fins of the evaporator 7 and thus reduces the free gap width between the fins. This gap width has a strong influence on the pressure loss of the circulating air. The pressure loss Δp at the evaporator 7 can be estimated using the following formula: Δp = 12 μL d 3 n + 1 H v ˙
Figure imgb0001
where L is the length of the evaporator 7 in the flow direction of the air flow, H is the height of the evaporator measured transversely to the flow direction in the plane of one of the fins, d is the free gap width between two fins, n is the number of fins, µ is the dynamic viscosity of the air and denotes the volume flow. The pressure loss Δp is inversely proportional to the cube of the free gap width d and is therefore sensitive to the thickness of the frost layer on the slats.

Um den Druckverlust Δp zu messen, kann ein Differenzdrucksensor 21 mit den beiden Freiräumen 8, 14 verbunden sein. Da der Druck in den Lagerkammern 3, 5 (zumindest unter stationären Betriebsbedingungen, wenn ein Schließen der Türen 20 lange genug zurückliegt) nicht wesentlich vom Atmosphärendruck abweicht, kann alternativ auch ein Absolutdrucksensor an einem der beiden Freiräume 8, 14 vorgesehen sein. Ein Drucksensor wird nicht benötigt, wenn der Druckverlust Δp, wie nachfolgend beschrieben, anhand von elektrischen Betriebsgrößen des Ventilators 13 abgeschätzt wird.In order to measure the pressure loss Δp, a differential pressure sensor 21 can be connected to the two free spaces 8, 14. Since the pressure in the storage chambers 3, 5 (at least under stationary operating conditions, when the doors 20 have been closed long enough ago) does not differ significantly from atmospheric pressure, an absolute pressure sensor can alternatively also be provided on one of the two free spaces 8, 14. A pressure sensor is not required if the pressure loss Δp is estimated based on electrical operating variables of the fan 13, as described below.

Das Diagramm der Fig. 2 veranschaulicht den Druckverlust Δp, gegen den der Ventilator 13 anarbeitet, als Funktion der Spaltbreite d. Für einen soeben abgetauten, eisfreien Verdampfer 7 ist eine freie Spaltbreite d von 5 mm zwischen den Lamellen und für die Zirkulation durch die Lagerkammern 3, 5 ein von der Spaltbreite unabhängiger Beitrag zum Druckverlust Δp von 15 Nm/m2 angenommen. Eine durchgezogene Kurve zeigt die Entwicklung des absoluten Druckverlusts Δp bei durch Reifwachstum abnehmender Spaltbreite d; eine gestrichelte Kurve zeigt die prozentuale Änderung des Druckverlusts Δp im Vergleich zum Zustand bei d = 5 mm. Eine Halbierung der Spaltbreite d führt zu einer deutlich messbaren Änderung des Druckverlusts Δp.The diagram of the Fig. 2 illustrates the pressure loss Δp against which the fan 13 works as a function of the gap width d. For a just defrosted, ice-free evaporator 7, a free gap width d of 5 mm between the fins is assumed and for the circulation through the storage chambers 3, 5 a contribution to the pressure loss Δp of 15 Nm/m 2 is assumed, which is independent of the gap width. A solid curve shows the development of the absolute pressure loss Δp as the gap width d decreases due to frost growth; a dashed curve shows the percentage change in the pressure loss Δp compared to the condition at d = 5 mm. Halving the gap width d leads to a clearly measurable change in the pressure loss Δp.

Der Elektromotor des Ventilators 13 kann auf die Änderung des Druckverlusts Δp je nach Bauart oder Arbeitspunkt unterschiedlich reagieren, zum Beispiel durch langsameren Lauf oder durch erhöhte Leistungsaufnahme. Fig. 3 zeigt exemplarische Kennlinien für die Leistung P, den Wirkungsgrad n und den Druckverlust Δp des Ventilators 13 als Funktion des Volumenstroms . Der Arbeitspunkt des Ventilators 13 sollte in der Umgebung eines Maximums der Effizienz n, dargestellt als durchgezogene Kurve, liegen. In diesem im Diagramm der Fig. 3 durch Schraffur hervorgehobenen Bereich sind sowohl der Druckverlust Δp, dargestellt als gestrichelte Kurve, als auch die Leistung P, dargestellt als strichpunktierte Kurve, eindeutige Funktionen des Volumenstroms , so dass aus einer gemessenen Leistung P des Ventilators 13 eindeutig auf den Druckverlust Δp am Verdampfer 7 und damit auf die Stärke der Reifschicht geschlossen werden kann. Bei fester Betriebsspannung des Ventilators 13 genügt daher die Kenntnis der vom Ventilator 13 aufgenommenen Stromstärke, um die Dicke der Reifschicht an den Lamellen des Verdampfers 7 abschätzen zu können.The electric motor of the fan 13 can react differently to the change in pressure loss Δp depending on the design or operating point, for example by running more slowly or by increasing power consumption. Fig. 3 shows exemplary characteristics for the power P, the efficiency n and the pressure loss Δp of the fan 13 as a function of the volume flow . The operating point of the fan 13 should be in the vicinity of a maximum of efficiency n, shown as a solid curve. In this in the diagram of the Fig. 3 In the area highlighted by hatching, both the pressure loss Δp, shown as a dashed curve, and the power P, shown as a dash-dotted curve, are clear functions of the volume flow , so that a measured power P of the fan 13 clearly indicates the pressure loss Δp on the evaporator 7 and thus the thickness of the frost layer can be concluded. If the operating voltage of the fan 13 is fixed, knowledge of the current drawn by the fan 13 is sufficient to be able to estimate the thickness of the layer of frost on the fins of the evaporator 7.

Die praktische Anwendung dieses Gedankens wird anhand der Figuren 4 und 5 erläutert. Figur 4 zeigt schematisch eine zeitliche Entwicklung des Druckabfalls am Verdampfer 7 des Kältegeräts aus Figur 1; Fig. 5 zeigt ein Flussdiagramm eines von einer Steuereinheit 18 des Kältegeräts aus Fig. 1 ausgeführten Arbeitsverfahrens.The practical application of this idea is based on the Figures 4 and 5 explained. Figure 4 shows schematically a development of the pressure drop over time at the evaporator 7 of the refrigeration device Figure 1 ; Fig. 5 shows a flowchart from a control unit 18 of the refrigeration device Fig. 1 carried out work procedure.

Die freie Spaltbreite im Verdampfer 7 ist jeweils dann maximal, wenn durch den Betrieb der Abtauheizung 10 aller an den Lamellen des Verdampfers 7 haftende Reif beseitigt ist. In diesem Fall ist der Druckverlust Δp, gegen den der Ventilator 13 anarbeiten muss, im Wesentlichen bestimmt durch einen Strömungswiderstand der Lagerkammern 3, 5. Dieser ist jedoch a priori nicht bekannt, da in den Lagerkammern 3, 5 platziertes Kühlgut je nach seiner Menge und Anordnung die Strömung der Luft unterschiedlich stark behindern kann.The free gap width in the evaporator 7 is maximum when all frost adhering to the fins of the evaporator 7 has been removed by the operation of the defrost heater 10. In this case, the pressure loss Δp, against which the fan 13 has to work, is essentially determined by a flow resistance of the storage chambers 3, 5. However, this is not known a priori, since refrigerated goods placed in the storage chambers 3, 5 depend on their quantity and Arrangement can hinder the flow of air to varying degrees.

Die Beschreibung des Verfahrens setzt daher in Fig. 5 damit ein, dass in Schritt S1 die Abtauheizung 10 nach vollständigem Abtauen des Verdampfers 7 ausgeschaltet wird. Dieser Zeitpunkt entspricht dem Zeitpunkt t = 0 im Diagramm der Figur 4.The description of the process therefore begins in Fig. 5 This means that in step S1 the defrost heater 10 is switched off after the evaporator 7 has completely defrosted. This point in time corresponds to the point in time t = 0 in the diagram Figure 4 .

In Schritt S2 setzt die Steuereinheit 18 den Verdichter 19 in Gang, um die Kühlung des Verdampfers 7 wieder aufzunehmen. Gleichzeitig wird, vorzugsweise etwas verzögert nach Einsetzen der Kühlung des Verdampfers 7, in Schritt S3 auch der Ventilator 13 eingeschaltet. Wenn dieser nach einigen Sekunden eine stationäre Drehzahl erreicht hat, wird als für den Druckverlust Δp repräsentative Größe die vom Ventilator 13 aufgenommene Stromstärke l erfasst (S4). Der dabei erhaltene Messwert l0 wird in Schritt S5 gespeichert. Sein Betrag wird im Allgemeinen von einem Abtauvorgang zum anderen variieren, da er von der Verteilung des Kühlguts in den Kammern 3, 5 abhängt.In step S2, the control unit 18 starts the compressor 19 to resume cooling the evaporator 7. At the same time, preferably somewhat delayed after the start of cooling of the evaporator 7, the fan 13 is also switched on in step S3. When this has reached a stationary speed after a few seconds, the current intensity l absorbed by the fan 13 is recorded as a variable representative of the pressure loss Δp (S4). The measured value l 0 obtained is saved in step S5. Its amount will generally vary from one defrosting process to another since it depends on the distribution of the goods to be cooled in the chambers 3, 5.

Anschließend wird ein Grenzwert lend der Stromstärke festgelegt, bei deren Überschreitung davon ausgegangen wird, dass auf dem Verdampfer 7 wieder so viel Reif angesammelt ist, dass ein Abtauen nötig ist. Um sicherzustellen, dass auch bei unterschiedlicher Beladung der Lagerkammern 3, 5 mit Kühlgut bei gleicher Dicke der Reifschicht abgetaut wird, wird der Grenzwert lend in Schritt S6 als Summe des zuvor gespeicherten Anfangswerts l0 und eines vorgegebenen Differenzwerts D berechnet.A limit value l end of the current strength is then set, if this is exceeded it is assumed that so much frost has accumulated on the evaporator 7 that defrosting is necessary. In order to ensure that defrosting takes place with the same thickness of the frost layer even when the storage chambers 3, 5 are loaded differently with refrigerated goods, the limit value l end is calculated in step S6 as the sum of the previously stored initial value l 0 and a predetermined difference value D.

In Schritt 7 wird die Stromstärke l erneut erfasst und in Schritt S8 mit dem Grenzwert lend verglichen. So lange der Grenzwert lend noch nicht erreicht ist, verzweigt das Verfahren zu Schritt S9, um zu prüfen, ob die Tür 20 einer der Lagerkammern 3, 5 offen ist.In step 7, the current intensity l is recorded again and compared with the limit value l end in step S8. As long as the limit value l end has not yet been reached, the method branches to step S9 to check whether the door 20 of one of the storage chambers 3, 5 is open.

Wenn die Türen 20 geschlossen sind, wird als nächstes in Schritt S10 geprüft, ob der Verdichter 19 - weil der Kühlbedarf in beiden Lagerfächern 3, 5 befriedigt ist - ausgeschaltet ist. Dann wird in der Folge auch der Ventilator 13 ausgeschaltet, so dass kein aussagekräftiger Messwert der Stromstärke I mehr zu gewinnen ist. In diesem Fall werden die Überprüfungen der Schritte S9, S10 so lange wiederholt, bis entweder Kältebedarf in wenigstens einem der Lagerächer 3, 5 dazu führt, dass der Verdichter 19 und in der Folge auch der Ventilator 13 wieder angeschaltet werden und das Verfahren zu Schritt 7 zurückkehrt, oder ein Benutzer eine der Türen 20 öffnet.If the doors 20 are closed, it is next checked in step S10 whether the compressor 19 is switched off - because the cooling requirement in both storage compartments 3, 5 is satisfied. The fan 13 is then also switched off, so that no meaningful measurement of the current intensity I can be obtained. In this case, the checks in steps S9, S10 are repeated until either the need for cold in at least one of the storage areas 3, 5 leads to the compressor 19 and subsequently also the fan 13 being switched on again and the process to step 7 returns, or a user opens one of the doors 20.

Im letzteren Fall wird der zuletzt gewonnene Messwert lt der Stromstärke (bei dem es sich um einen seit Ausschalten des Verdichters 19 nicht mehr aktualisierten Wert handeln kann) in Schritt S11 gespeichert. Der Ventilator 13 wird ausgeschaltet S12, um zu verhindern, dass feuchte Umgebungsluft, die durch die offene Tür 20 in die Lagerkammer 3 oder 5 gelangt, von dort sofort zum Verdampfer 7 weitergepumpt wird und dort zur Reifbildung beiträgt. Diese Phase entspricht zum Beispiel dem Zeitpunkt t1 im Diagramm von Fig. 4. Da seit dem Zeitpunkt t = 0 sich wieder Reif auf den Lamellen des Verdampfers 7 niedergeschlagen hat, ist die vom Ventilator 13 aufgenommene Stromstärke von l0 auf l1 angewachsen. Die verbleibende Differenz zum Grenzwert der Stromstärke lend wird berechnet (S13) und als neuer Differenzwert D gespeichert. Anschließend wartet die Verarbeitungseinheit, bis die zum Zeitpunkt t2 in Fig. 4 die Tür 20 wieder geschlossen wird, um dann zu Schritt S3 zurückzukehren.In the latter case, the last measured value l t of the current intensity (which can be a value that has no longer been updated since the compressor 19 was switched off) is saved in step S11. The fan 13 is switched off S12 in order to prevent moist ambient air, which enters the storage chamber 3 or 5 through the open door 20, from being pumped from there immediately to the evaporator 7 and contributing to the formation of frost there. This phase corresponds, for example, to time t 1 in the diagram of Fig. 4 . Since frost has deposited again on the fins of the evaporator 7 since time t = 0, the current drawn by the fan 13 has increased from l 0 to l 1 . The remaining difference to the limit value of the current intensity l end is calculated (S13) and saved as a new difference value D. The processing unit then waits until the time t 2 in Fig. 4 the door 20 is closed again and then returned to step S3.

In der Zeitspanne [t1, t2], in der die Tür 20 offen gestanden ist, hat der Benutzer frisches Kühlgut in die Kammern 3, 5 eingeladen, wodurch sich der Druckverlust Δp deutlich erhöht, so dass, wenn der Schritt S5 wiederholt wird, eine deutlich höhere Stromstärke l2 als vor dem Öffnen der Tür gemessen wird.During the time period [t 1 , t 2 ] in which the door 20 was open, the user has invited fresh refrigerated goods into the chambers 3, 5, whereby the pressure loss Δp increases significantly, so that when step S5 is repeated , a significantly higher current l 2 than was measured before the door was opened.

Dieser neue Messwert wird wiederum in Schritt S5 gespeichert, und unter Zugrundelegung des im vorhergehenden Schritt S13 aktualisierten Differenzwerts D wird in Schritt S6 der Grenzwert lend neu berechnet.This new measured value is in turn saved in step S5, and the limit value l end is recalculated in step S6 on the basis of the difference value D updated in the previous step S13.

Ab dem Zeitpunkt t2 des Schließens der Tür läuft der Ventilator 13 wieder, und die Reifschicht im Verdampfer 7 nimmt weiter an Dicke zu. Wie in Fig. 4 gezeigt, kann die Stromstärke den Grenzwert, der im Zeitintervall [0, t1] Gültigkeit hatte, überschritten werden, ohne dass dies einen Start der Abtauheizung 10 auslöst. Zum Zeitpunkt t3 wird die Tür 20 erneut geöffnet, was die Steuereinheit 18 in Schritt S9 erkennt, der jeweils jüngste zwischenzeitlich gewonnene Strommesswert wird in Schritt S11 gespeichert und anhand des gespeicherten Wertes wird der Differenzwert D im Schritt S13 erneut aktualisiert.From the time t 2 when the door is closed, the fan 13 runs again and the layer of frost in the evaporator 7 continues to increase in thickness. As in Fig. 4 shown, the current intensity can exceed the limit value that was valid in the time interval [0, t 1 ] without this triggering a start of the defrost heater 10. At time t 3 , the door 20 is opened again, which the control unit 18 recognizes in step S9, the most recent current measurement value obtained in the meantime is saved in step S11 and based on the stored value, the difference value D is updated again in step S13.

Zum Zeitpunkt t4 wird die Tür erneut 20 geschlossen, so dass das Verfahren zu Schritt S3 zurückkehrt. Die Lagerkammern 3, 5 sind diesmal weitgehend leer geräumt, so dass darin enthaltenes Kühlgut kaum mehr zum Druckverlust Δp beiträgt und die nun gemessene Stromstärke l4 deutlich niedriger ist als vor der Türöffnung. Der Grenzwert lend wird ein weiteres Mal in Schritt S6 aktualisiert. Da das wenige noch enthaltene Kühlgut nur wenig Feuchtigkeit abgibt, ist auch der Zuwachs des Reifs im Verdampfer 7 vermindert, was sich in einem gegenüber dem Zeitintervall [t2, t3] verlangsamtem Anstieg der Stromstärke l ab t4 widerspiegelt.At time t 4 the door is closed again 20 so that the process returns to step S3. This time, the storage chambers 3, 5 have been largely emptied, so that the refrigerated goods contained therein hardly contribute to the pressure loss Δp and the current intensity l 4 now measured is significantly lower than before the door was opened. The limit value l end is updated again in step S6. Since the few refrigerated goods still contained only release a small amount of moisture, the increase in frost in the evaporator 7 is also reduced, which is reflected in a slower increase in the current intensity l from t 4 compared to the time interval [t 2 , t 3 ].

Zum Zeitpunkt t5 wird die Überschreitung des aktuellen Grenzwerts lend festgestellt. Das Verfahren verzweigt nun zu Schritt S15, in dem die Heizung 10 eingeschaltet wird. Gleichzeitig werden, sofern nicht bereits vorher geschehen, Verdichter 19 und Ventilator 13 ausgeschaltet. Der Differenzwert D wird auf einen vorgegebenen, einem völlig von Reif befreiten Verdampfer 7 entsprechenden Wert D0 zurückgesetzt. Wenn in Schritt S17 festgestellt wird, dass der Abtauvorgang abgeschlossen ist und wieder Kältebedarf in einer der Lagerkammern 3, 5 besteht, kehrt das Verfahren zurück zu Schritt S2.At time t 5 it is determined that the current limit value l end has been exceeded. The method now branches to step S15, in which the heater 10 is switched on. At the same time, unless this has already happened before, compressor 19 and fan 13 are switched off. The difference value D is reset to a predetermined value D 0 corresponding to an evaporator 7 that is completely free of frost. If it is determined in step S17 that the defrosting process has been completed and there is a need for cold again in one of the storage chambers 3, 5, the method returns to step S2.

Mit dem oben beschriebenen Verfahren kann sichergestellt werden, dass trotz wechselnder Beladung der Lagerkammern 3, 5 eine Abtauung jeweils bedarfsgerecht bei einer vorgegebenen Dicke der Reifschicht im Verdampfer 7 ausgelöst wird, ohne dass dafür der Einbau von Sensoren in den Lagerkammern 3, 5 oder der Verdampferkammer 6 erforderlich ist.With the method described above it can be ensured that, despite changing loading of the storage chambers 3, 5, defrosting is triggered as required at a given thickness of the frost layer in the evaporator 7, without the installation of sensors in the storage chambers 3, 5 or the evaporator chamber 6 is required.

BEZUGSZEICHENREFERENCE MARKS

11
KorpusCorpus
22
Innenbehälterinner container
33
NormalkühlfachNormal refrigerator compartment
44
Zwischenwandpartition wall
55
Gefrierfachfreezer
66
VerdampferkammerEvaporator chamber
77
(Lamellen-)Verdampfer(finned) evaporator
88th
Freiraumfree space
99
UnterkanteBottom edge
1010
AbtauheizungDefrost heater
1111
EintrittsspaltEntry gap
1212
Verteilerkammerdistribution chamber
1313
Ventilatorfan
1414
Freiraumfree space
1515
Auslassoutlet
1616
LeitungLine
1717
Klappeflap
1818
SteuereinheitControl unit
1919
Verdichtercompressor
2020
Türdoor
2121
DifferenzdrucksensorDifferential pressure sensor

Claims (7)

  1. Refrigeration appliance, in particular household refrigeration appliance, having an evaporator (7), a ventilator (13) for driving a flow of air through the evaporator (7), a storage chamber (3, 5) cooled by the flow of air, a defrost heater (10) for defrosting the evaporator (7) and a control unit (18) for controlling the operation of the defrost heater (10), wherein the control unit (18) is designed to compare a variable (I) which is representative of a drop in pressure on the evaporator with a limit value (Iend) and to start the defrost heater (10) when the limit value is exceeded, characterised in that the representative variable is an electrical variable of the ventilator (13), and the limit value is the sum of the representative variable immediately after defrosting the evaporator (7) and a predetermined deviation (D), and the control unit (18) is designed to detect the representative variable before and after closing a door (20) of the storage chamber (3, 5) and to change the limit value using the difference between these two detected variables in order to take into account a changing flow resistance of the storage chamber (3, 5).
  2. Refrigeration appliance according to claim 1, characterised in that the representative variable is derived from the output and operating voltage of the ventilator (13).
  3. Refrigeration appliance according to claim 1, characterised in that the representative variable is the electrical output or operating current strength (I) of the ventilator (13) with a given operating voltage.
  4. Refrigeration appliance according to one of the preceding claims, characterised in that the representative variable is derived from the rotational speed of the ventilator (13).
  5. Refrigeration appliance according to one of the preceding claims, characterised in that the control unit (18) is designed to monitor the representative variable (I) when the door (20) of the storage chamber (3, 5) is closed and to interrupt the monitoring when the door (20) is open.
  6. Refrigeration appliance according to one of the preceding claims, characterised in that the control unit (18) is designed to detect the representative variable (I) before switching off a compressor (19).
  7. Method for operating a refrigeration appliance, which comprises an evaporator (7), a ventilator (13) for driving a flow of air through the evaporator (7), a storage chamber (3, 5) cooled by the flow of air and a defrost heater (10) for defrosting the evaporator (7), having the steps:
    a) detecting a variable (I) (S4) which is representative of a drop in pressure (Δp) on the evaporator (7), wherein the representative variable is an electrical variable of the ventilator (13),
    b) defining (S6) a limit value (Iend) (S6), wherein the limit value is the sum of the representative variable immediately after defrosting the evaporator (7) and a predetermined deviation (D),
    c) detecting the representative variable (I) before and after closing a door (20) of the storage chamber (3, 5) (S7) S4),
    d) changing the limit value on the basis of the difference between these two detected variables (S6), in order to take into account a changing flow resistance of the storage chamber (3, 5),
    e) detecting the variable (I) (S4) which is representative of a drop in pressure (Δp) on the evaporator (7),
    f) comparing the detected variable with the limit value (Iend) (S8) and
    g) starting the defrost heater (10) when the limit value (Iend) (S 15) is exceeded.
EP19706582.4A 2018-02-28 2019-02-20 Refrigeration device and method for operating a refrigeration device Active EP3759405B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018202971.7A DE102018202971A1 (en) 2018-02-28 2018-02-28 Refrigerating appliance with defrost heating
PCT/EP2019/054145 WO2019166291A1 (en) 2018-02-28 2019-02-20 Refrigeration appliance comprising a defrost heater

Publications (2)

Publication Number Publication Date
EP3759405A1 EP3759405A1 (en) 2021-01-06
EP3759405B1 true EP3759405B1 (en) 2023-11-22

Family

ID=65516620

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19706582.4A Active EP3759405B1 (en) 2018-02-28 2019-02-20 Refrigeration device and method for operating a refrigeration device

Country Status (4)

Country Link
EP (1) EP3759405B1 (en)
CN (1) CN111788442B (en)
DE (1) DE102018202971A1 (en)
WO (1) WO2019166291A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020215658A1 (en) 2020-12-10 2022-06-15 Glen Dimplex Deutschland Gmbh Device and method for detecting a deposit on a heat exchanger surface
CN114234520B (en) * 2021-12-21 2023-12-29 海信冰箱有限公司 Refrigerator and defrosting control method thereof
DE102022206632A1 (en) 2022-06-30 2024-01-04 Robert Bosch Gesellschaft mit beschränkter Haftung Method for operating a cogeneration machine and a cogeneration machine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3643457A (en) * 1970-11-20 1972-02-22 Westinghouse Electric Corp Frost detector for refrigeration system
DE2922633A1 (en) * 1979-06-02 1980-12-04 Stiebel Eltron Gmbh & Co Kg Deicer for heat pump evaporator - includes pressure sensors in narrow gap between plates to operate switch when ice forms
JPH0886557A (en) 1994-09-19 1996-04-02 Ishizuka Denshi Kk Frost detector
EP0713065B1 (en) 1994-11-17 2001-01-10 Whirlpool Europe B.V. Compact-dimension device for sensing frost on a refrigerator evaporator
DE10315523A1 (en) * 2003-04-04 2004-10-14 BSH Bosch und Siemens Hausgeräte GmbH Refrigerator with adaptive automatic defrost and defrosting process for it
CN100538202C (en) * 2005-07-29 2009-09-09 大金工业株式会社 Refrigerating plant
US9341405B2 (en) * 2012-11-30 2016-05-17 Lennox Industries Inc. Defrost control using fan data
JP5590195B1 (en) * 2013-07-11 2014-09-17 株式会社富士通ゼネラル Air conditioner
CN108885049B (en) * 2016-01-29 2021-07-06 Lg电子株式会社 Refrigerator with a door
CN105737475B (en) * 2016-03-18 2019-01-18 青岛海尔股份有限公司 A kind of refrigerator and its control method
CN106440636B (en) * 2016-09-21 2018-10-23 合肥华凌股份有限公司 A kind of refrigerator air door freezes detection control method, system, device and refrigerator

Also Published As

Publication number Publication date
DE102018202971A1 (en) 2019-08-29
CN111788442B (en) 2022-10-14
CN111788442A (en) 2020-10-16
EP3759405A1 (en) 2021-01-06
WO2019166291A1 (en) 2019-09-06

Similar Documents

Publication Publication Date Title
EP3759405B1 (en) Refrigeration device and method for operating a refrigeration device
DE3324590C2 (en)
EP1636530B1 (en) Refrigeration device comprising controlled de-humidification
DE69528112T2 (en) Method for controlling a cooling device and a device for performing the method
EP2769155B1 (en) Refrigeration appliance comprising an evaporation tray and a heating device for promoting evaporation
DE10315524A1 (en) Refrigeration device and operating method therefor
WO2003098134A1 (en) Freezer comprising a defrost function and operating method therefor
EP1508008B1 (en) Freezer comprising a defrosting indicator
DE69304761T2 (en) Method and device for evaluating ice formation on a refrigerator evaporator, in particular of the type with forced air circulation
EP2705312A1 (en) Single-circuit refrigeration device
DE19647642A1 (en) Method for operating a cooling device
EP3699519A1 (en) Refrigeration device with two temperature zones and method of operation for same
DE69518302T2 (en) Method for determining a temperature value for use in controlling the temperature of a refrigerator
DE60013374T2 (en) Automatic refrigeration unit with defrost control
DE202006020207U1 (en) ice sensor
EP3894766B1 (en) Refrigeration appliance and method for initialising a defrosting operation in a refrigeration appliance
EP4400787A1 (en) Determining a defrosting time of an evaporator of a domestic refrigeration appliance
DE102011078320B4 (en) Refrigeration device with evaporation tray and auxiliary device for promoting evaporation
WO2022037880A1 (en) Method for defrosting an evaporator of a refrigerator
WO2013000765A1 (en) Refrigeration device with evaporation pan and auxiliary device for promoting evaporation
WO2013000773A2 (en) Refrigeration device with evaporation pan and auxiliary device for promoting evaporation
WO2013000759A2 (en) Refrigeration device with evaporation pan and auxiliary device for promoting evaporation
EP1470375B1 (en) Air-temperature regulated refrigerator
DE10126817A1 (en) The refrigerator
DE102015203159A1 (en) The refrigerator

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200928

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230206

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230630

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019009969

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240322

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240223

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240222

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240229

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240222

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122