EP3755152A1 - Procédé de fabrication de pâte sans ou pauvre en gluten - Google Patents

Procédé de fabrication de pâte sans ou pauvre en gluten

Info

Publication number
EP3755152A1
EP3755152A1 EP19711642.9A EP19711642A EP3755152A1 EP 3755152 A1 EP3755152 A1 EP 3755152A1 EP 19711642 A EP19711642 A EP 19711642A EP 3755152 A1 EP3755152 A1 EP 3755152A1
Authority
EP
European Patent Office
Prior art keywords
dough
gluten
kneading
low
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19711642.9A
Other languages
German (de)
English (en)
Inventor
Henry JOSEPH
Patricia LE BAIL
Alain Le Bail
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phytobokaz SARL
Original Assignee
Phytobokaz SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phytobokaz SARL filed Critical Phytobokaz SARL
Publication of EP3755152A1 publication Critical patent/EP3755152A1/fr
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D13/00Finished or partly finished bakery products
    • A21D13/06Products with modified nutritive value, e.g. with modified starch content
    • A21D13/064Products with modified nutritive value, e.g. with modified starch content with modified protein content
    • A21D13/066Gluten-free products
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D10/00Batters, dough or mixtures before baking
    • A21D10/02Ready-for-oven doughs
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D13/00Finished or partly finished bakery products
    • A21D13/06Products with modified nutritive value, e.g. with modified starch content
    • A21D13/064Products with modified nutritive value, e.g. with modified starch content with modified protein content
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D2/00Treatment of flour or dough by adding materials thereto before or during baking
    • A21D2/08Treatment of flour or dough by adding materials thereto before or during baking by adding organic substances
    • A21D2/14Organic oxygen compounds
    • A21D2/18Carbohydrates
    • A21D2/183Natural gums
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D8/00Methods for preparing or baking dough
    • A21D8/02Methods for preparing dough; Treating dough prior to baking
    • A21D8/025Treating dough with gases
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D8/00Methods for preparing or baking dough
    • A21D8/02Methods for preparing dough; Treating dough prior to baking
    • A21D8/04Methods for preparing dough; Treating dough prior to baking treating dough with microorganisms or enzymes
    • A21D8/047Methods for preparing dough; Treating dough prior to baking treating dough with microorganisms or enzymes with yeasts

Definitions

  • the present invention relates to the field of the preparation of food baking dough, without or low in gluten, in particular leavening dough.
  • Said cooking baking dough can be used in a bakery, for example baking pasta for the manufacture of bread without gluten or other pastries, cakes, pizzas.
  • gluten In food, gluten is recognized as an allergen. In addition, gluten intolerance can cause conditions in some patients, such as those with celiac disease. These may have digestive disorders related to gluten intolerance. In addition, the manufacture of gluten-free food is increasingly sought after in dietetics or for reasons of well-being and health.
  • the preparation of food baking dough, without or low in gluten has the drawback of greatly modifying the physical properties and the organoleptic qualities of the dough both before and after cooking.
  • the food products from pasta to cook without or low in gluten such as bread, cakes or pastries, can consequently also see their physical properties and modified organoleptic qualities.
  • gluten is a protein material consisting of two proteins, gliadin and glutenin. These give the flour its viscoelastic properties. Gliadins give the pasta its extensibility, viscosity and plasticity.
  • FR 3029 742 B1 a gluten-free culinary composition for the preparation of a food dough to be lifted.
  • Said gluten-free culinary composition comprising at least starch flour as gluten-free or low-gluten flour, salt, pea protein as a homogenizing agent, sugar and at least one thickening agent.
  • yeast, water and fat are added to said aforementioned gluten-free cooking composition and then mixed until a food dough is obtained.
  • patent FR 3,029,742 it is by modifying the intrinsic composition of said cooking composition gluten-free that we seek to find the physical properties and organoleptic qualities of the food dough. The latter will subsequently, after resting and cooking a gluten-free food product, the latter having qualities comparable to a food product obtained from a food composition with gluten.
  • a modification of the manufacturing parameters of gluten-free cooking dough also consists of a means of improving the final physicochemical properties that one wishes to obtain on the gluten-free food.
  • a food dough to lift without gluten prepared from the culinary compositions without or low in gluten; not having the same physicochemical characteristics as a pasta from a gluten-containing culinary composition, the solution for injecting an atmospheric gas with oxygen during kneading of the dough is not suitable.
  • One of the aims of the present invention is to have a gluten-free, bread-type food having a long shelf life without hardening and stale too quickly.
  • preservation improvement solutions have been proposed for conventional bread doughs using preservatives-type improvers such as carboxymethylcelluloses (CMCs).
  • CMCs carboxymethylcelluloses
  • This type of preservative involves making a food baking dough from a food composition using ingredients that can modify the taste of the final food obtained.
  • the presence of these preservatives in these products is considered chemical by consumers, and should be avoided as much as possible.
  • a first object of the present invention is to provide a method and a system for preparing food dough, without or low in gluten, whose physical properties are comparable to those of food dough, traditional bread dough type.
  • a second objective is to propose a process and a pressure variation system particularly adapted to a paste without or low in gluten.
  • a third objective is to provide gluten-free or low-gluten bread with long shelf life without the addition of CMC-type improvers.
  • a process for producing food dough, without or low in gluten, from a dough composition comprising gluten-free or low-gluten flour, water, yeasts, at least one homogenizing agent, and at least one thickening agent in which:
  • said dough composition is kneaded in a closed chamber, characterized in that
  • the method according to the invention makes it possible to increase the porosity of said food baking dough obtained from a substantially liquid dough composition reminding especially the texture of a chocolate mousse.
  • a dough composition that is easier to knead, for a dough which is easier to cook in comparison with, for example, a dough composition, which is substantially solid, making it possible to manufacture a food dough.
  • the inventors have realized that the baking dough obtained, with the method of the invention, could advantageously be baked quickly after kneading, which avoids a fermentation time and therefore to limit costs while increasing productivity.
  • the physicochemical properties of the baking dough obtained, in particular its porosity make it possible to overcome the resting time of fermentation usually required before baking.
  • the bread obtained has a shelf life of 4 to 6 days with a cohesive mie. without the need to add Chemical Enhancers CMC type.
  • This aspect denotes a significant improvement of the quality by the supply of a bread, without or low in gluten, having a long conservation in time without hardening and stale too quickly.
  • the enclosure is thermostated at 30 ° C;
  • the step of kneading under CO 2 is carried out for 10 to 50 minutes; and or
  • the dough composition comprises between 40 and 65% by weight of water and between 29 and 52% by weight of flour without or low in gluten; and or
  • the kneading is carried out so as to obtain a paste with a porosity of between 20 and 30%; and or
  • the pH of said dough is measured during kneading.
  • the CO 2 pressure is between 25 and 550 mbar;
  • the flour without or low in gluten comprises at least one flour of maranta, rice, quinoa, breadfruit, cassava, yam and / or buckwheat; and or
  • said homogenising agent comprises pea protein and / or tropical bean protein (lablab); and or
  • said thickening agent comprises xanthan gum, guar, carob, and / or carrageenans.
  • the invention also relates to a cooking paste without or low in gluten obtained at the end of a process according to the invention, the dough comprising flour without or low in gluten, a homogenizing agent, water , yeasts and at least one thickening agent, kneaded by injecting CO 2, characterized in that it has a porosity greater than 17% and comprises between 40 and 65% by weight of water for between 29 and 52% by weight of flour without or low in gluten.
  • Another object of the invention is to provide a gluten-free or low-gluten dough-making system comprising a pressurized chamber mixer associated with a CO 2 source, characterized by a porosity measurement means and a pH measurement.
  • the system comprises a baking dough according to the invention.
  • the invention furthermore relates to a process for the production of a gluten-free or low-gluten product, in particular bread without or low in gluten, in which after the steps of the method of manufacturing the dough according to the invention:
  • said cooking paste without or low in gluten, is cooked with a porosity greater than or equal to approximately 30%, for 30 to 60 minutes, at a temperature of between 170 and 240 ° C.
  • the dough is cooked directly after kneading.
  • FIG. 1A is a graph of the evolution of the porosity of a baking dough according to the invention (sample POD500) as a function of time coupled to a graph of evolution of the pH as a function of time during kneading;
  • FIG. 1B is a graph of the comparative evolution of the porosity of pasta to be cooked according to the invention in various configurations of injection of CO 2 and other pasta to be cooked by air injection;
  • FIG. 1C is a graph of the comparative evolution of the porosity of a baking dough according to the invention kneaded with 500mbar of CO2 (POD500), and other pasta cooks kneaded at 30mbar (PAC30) and SOOmbar d air (PACSOO), being fermented;
  • FIG. 2 is a graph of the evolution of the volume of bread baked in cm3 / g depending on the amount of starch in the leavening of the dough to cook;
  • FIG. 3B is a graph, in modeling according to the Avrami equation, of the comparative evolution of the texture of products, here breads, derived from pasta to be cooked according to the invention in different configurations by injection of CO 2;
  • FIG. 4 is a graph of the retrogradation of amylopectin as a function of the quantity of starch removed from the dough to be cooked
  • POD500 process of the invention with injection of CO2 at 500 mbar during kneading
  • o POD510 process of the invention with injection of CO 2 at 500 mbar during kneading and a dry matter reduction of 10%;
  • POD520 process of the invention with injection of CO2 at 500 mbar during kneading and a dry matter reduction of 20%
  • POD530 process of the invention with injection of CO2 at 500 mbar during kneading and a dry matter reduction of 30%
  • POD540 process of the invention with injection of CO2 at 500 mbar during kneading and 40% dry matter reduction.
  • dry matter reduction is intended to mean increasing the quantity of CO 2 injected during kneading in the implementation of the manufacturing process of POD510, POD520, POD530 and POD540, this in relation to the amount of G02 injected during kneading for the POD500 reference sample.
  • the increase in the amount of CO 2 during kneading makes it possible to reduce the percentage of dry matter of the dough to cook with respect to its total mass percentage.
  • the percentage of dry matter of 10, 20, 30 or 40% of the baking dough obtained at the end of the process is reduced, compared with the percentage of dry matter of the cooked dough for the POD500 sample.
  • the present invention relates to a method of manufacturing cooking dough without or low in gluten such as in particular a bread dough without or low in gluten, or a dough for baking or pastry.
  • the manufacturing method includes a step in which dough ingredients are mixed to form said dough.
  • dough ingredients are mixed to form said dough.
  • the mixture i.e., said dough composition
  • the mixture is kneaded at a pressure of between 25 and 550 mbar of CO 2 in a detailed manner below.
  • a vacuum pump is first applied to the kneader before the CO2 injection, so as to depressurize beforehand the closed chamber containing said dough composition before kneading.
  • the baking dough obtained at the end of the kneading step simultaneously with the CO 2 injection, can be cooked, in particular baked, to obtain the product to be consumed, for example gluten-free bread.
  • the dough composition used has a particular composition.
  • the ingredients include at least flour that is free from or low in gluten, especially starchy starch, water, yeasts, at least one homogenizing agent, and at least one thickening agent.
  • the homogenizing agent and the thickening agent are intended to give particular physicochemical mechanical properties to the dough, in particular to overcome the absence of gluten.
  • the composition comprises between 40 and 65% by weight of water and between 29 and 52% by weight of flour without or low in gluten.
  • These proportions associated with a kneading under pressure of CO2 make it possible to have a final product of the type of baking dough of a large volume for a lower level of flour without or low in gluten.
  • the dough composition comprises substantially as much water as flour without or low in gluten, by weight.
  • Flour without or low in gluten can be or include a maranta flour. It is particularly Maranta arundinacea L. We can also speak of flour or starch.
  • the flour without or low in gluten may be or include at least one rice flour, quinoa, breadfruit, cassava, yam and / or buckwheat. These flours make it possible to produce final food products that are gluten-free or low-gluten, that is to say products in which gluten is present in trace amounts. The absence or low level of gluten in this type of food product significantly limits allergies, allergies and intolerances among consumers, and responds to a demand for more dietary products.
  • the homogenizing agent makes it possible to improve the homogenization of the kneaded dough, in the absence of gluten, in particular for the internal part of the cooked product.
  • the homogenizing agent within said dough composition makes it possible to make the bread crumb, obtained after cooking the dough, more homogeneous. More particularly, it makes it possible to homogenize the size of the cells of the product obtained after cooking. In addition, it gives the crust a particular browning.
  • the homogenizing agent may be or comprise pea protein and / or tropical bean protein (of the Lablab genus in particular). These proteins have good protein yields per seed. Pea protein is an alternative to gluten with few diseases, unlike milk proteins or soy proteins that may contain phyto-oestrogens.
  • peas can be used.
  • varieties of tropical beans including varieties of the genus Lablab and the species niger.L, or Lablab Purpureus.L, Dolichos LablabL, Dolichos purpeus.L.
  • the homogenizing agent of pea protein type has the role of homogenizing the internal part of the cooked product free of gluten. The latter being obtained after baking the baking dough of the invention, itself obtained from the dough composition transformed into a baking dough following the implementation of the method of the invention.
  • the thickening agent is an ingredient which makes it possible to obtain elasticity of the dough, and softness on the cooked product obtained from the dough of the invention.
  • the thickening agent provides a developed crumb.
  • a gelling agent can be used.
  • the thickening agent may be or include xanthan gum.
  • Other thickening agents that can be used alternately or in combination are guar gum and / or locust bean gum. Xanthan gum is preferred because it gives good results in terms of dough texture and specific volume of bread to be achieved.
  • the kneading of the dough is done under pressure of carbon dioxide, in particular after depressurization of the kneader.
  • the step of kneading the dough composition to obtain said dough is carried out in a controlled environment under vacuum at startup and in which C02 is subsequently added at a pressure of between 25 and 550 mbar for 10 minutes. at 50 min. More particularly, the kneading step is carried out at a CO 2 pressure of between 25 and 550 mbar, until a cooking paste having a greater than 17% porosity and comprising between 40 and 65% by weight is obtained. water for between 29 and 52% by weight flour without or low in gluten.
  • the dough can be optionally raised, and then cooked to have bread without or low in gluten or another pastry or pastry.
  • the CO 2 injection step in the previously depressurized chamber, simultaneously with the kneading step, makes it possible to increase the porosity of the dough to be cooked.
  • These two steps performed simultaneously can have a very airy dough, already raised and inflated enough to immediately cook.
  • the intrinsic formulation of the dough composition and the simultaneous steps of the kneading and the CO 2 injection have the effect of obtaining a cooking pasta having physicochemical characteristics sufficient to be directly baked for cooking, refraining from a usual fermentation rest period.
  • Porosity (without Unit) is then defined as the amount of pores present in the volume of this foam, calculated by the formula:
  • the volume fraction and the quality of connection of the cells determine not only the structure and the appearance of the crumb, but also the specific volume of the bread.
  • the specific volume is the most usual size to characterize the aeration of a bread.
  • the specific volume represents the inverse density and is expressed in m3 kg-1 where "V" (m 3 ) is bread volume and "m" (kg), bread mass
  • the porosity can be determined using a porosity sensor having a probe in the kneader.
  • a sample of dough may be disposed in a collapsible enclosure such as a plastic bag to determine the change in volume after flattening.
  • Porosity can be measured outside the mess. In this case, at atmospheric pressure, the porosity increases rapidly.
  • the C02 would be, according to the first estimates, dissolved in the dough. Calibration can be considered to determine the amount of CO 2 dissolved in the dough during kneading.
  • the method according to the invention associated with the dough composition makes it possible to significantly increase the porosity in comparison with samples with a similar air pressure.
  • the paste obtained is substantially liquid, in particular recalling the texture of a chocolate mousse.
  • the prior art proposed to put the yeasts in the presence of a fermentation reaction reagent (0 2 ). It would appear that placing the yeast in the presence of the fermentation reaction product (CO 2) for about 10 to 30 minutes makes them much more active so that they then produce a lot of CO 2 and significantly increase the porosity.
  • CO 2 fermentation reaction product
  • the inventors have found that the resulting dough could advantageously be baked quickly after kneading, which avoids a fermentation time and thus to reduce costs while increasing productivity.
  • the inventors have surprisingly found that the bread obtained has a shelf life of 4 to 6 days with a cohesive crumb without the need to add agents.
  • Chemical improvers of the CMC type denotes a significant improvement in quality by providing a bread without or low in gluten, especially monofarine gluten-free bread, having a long shelf life without hardening and stale too quickly.
  • the method comprises a step of monitoring the porosity of the dough.
  • this makes it possible to determine, in a first manner, with precision, what is the stage of kneading, and when it can be considered finished.
  • Porosity is therefore a good indicator of the follow-up of the kneading.
  • the target porosity is obtained after a kneading time in a reproducible manner.
  • the injected carbon dioxide pressure is greater than 30mbar, for example from 50 to 600 mbar. Tests at 500 mbar give very good results. Tests show that the higher the pressure, the higher the porosity.
  • the kneading is carried out until a pH of less than 5.5 is obtained.
  • the pH stabilizes between 5 and 5.4.
  • the process comprises a step of monitoring the pH of the dough.
  • this makes it possible to determine in a second way precisely what is the stage of kneading, and when it can be considered finished.
  • the pH is therefore a good indicator of the follow-up of the kneading.
  • PH can be monitored by taking samples of dough to measure pH.
  • a pH measuring device including a pH probe in the kneader.
  • the invention furthermore relates to the baking dough obtained, and the product obtained, for example gluten-free bread.
  • Example 1 A sample according to the prior art can be prepared on the basis of the quantities described in patent FR 3,029,742 B1, that is to say comprising:
  • Example 1 corresponds to a median of the values set forth in patent FR 3,029,742 B1 by the same inventor.
  • This composition is added between 300 and 640 g of water.
  • This sample comprises in particular between 3.5 and 6.5 times more water by weight relative to the amount of starch.
  • control sample according to the invention On the basis of a sample according to Example 1, a so-called control sample according to the invention is also prepared but with 49.07% of dictamide starch, 43.64% of water by weight.
  • Example 2 corresponds to a standard of dough composition, here for making bread without gluten.
  • Examples 3 to 6 correspond to compositions according to Example 2 but with respectively 10, 20, 30 and 40% less dry matter, we can also speak respectively of samples 10, 20, 30 and 40.
  • the reference of Examples 3 to 6 is taken on the amount of starchy starch which has been decreased by the corresponding percentage, and then quantities of the other dry ingredients have been reported in the same way.
  • this kneader is associated with a CO 2 injection source, in order to introduce it into the kneader during kneading.
  • a CO 2 injection source can be a C02 bottle associated with a regulator.
  • the bottle mainly comprises G02, for example more than 60%. The tests were done with a 99% C02 bottle.
  • the enclosure is first depressurized, then CO2 is introduced into the enclosure.
  • the CO 2 pressure is preferably a pressure of 25 to 550 mbar. This pressure induces during the return to atmospheric pressure an increase in the porosity of the dough which causes it to swell. Indeed, in the chamber the pressure being lower than the atmospheric pressure outside the chamber of the kneader, leaving the dough from the enclosure of the kneader, to restore the balance of pressure, air compound of CO2, N2 and 02 will go into the dough and inflate it. More particularly, the entry of oxygen into the baking dough upon return to an atmosphere outside the enclosure will cause sufficient swelling of the dough to allow direct cooking.
  • the water contents of the samples 10, 20, 30 and 40 were determined by the so-called AOAC method (1999).
  • an empty container and lid are dried in the oven at 105 ° C for 3 hours and transferred to a desiccator to cool.
  • the empty container and lid are then weighed.
  • about 3 g of sample are weighed in the container and distributed with a spatula. Drying and desiccation are repeated with, for the case of desiccation, the container partially covered by the lid.
  • the dried container and sample are then reweighed.
  • Table 1 Pasta water contents according to Examples 3 to 5 by the AOAC method:
  • the samples described above can therefore be defined by their water content according to the AOAC method, namely a content of between 50 and 65%.
  • FIGS. 1A and 1B illustrate the evolution of the porosity of samples according to the invention with a pressure of SOOmbar of CO 2 injected during the manufacturing process of the baking dough (POD500), samples (POD 520) and only samples with an atmospheric pressure of 30 mbar (PAC30) and an air pressure of 500 mbar (PAC500).
  • a yeast-free sample in said initial paste composition (POD520Lev-) is also tested.
  • the kneading of the dough composition at atmospheric pressure and with air pressure at 500 mbar generates a significantly lower porosity than that obtained at a pressure of C0 2 which increases rapidly.
  • the sample of yeast-free cooking dough has a low porosity, which shows, on the one hand, that yeasts have their importance in increasing the porosity.
  • CO 2 alone does not allow a significant increase in porosity.
  • CO2 acts synergistically with yeasts from the time of kneading, to increase the porosity which exceeds 30%.
  • FIG. 1C This aspect is confirmed by the evolution of the porosity during fermentation (optional), in particular illustrated in FIG. 1C.
  • the porosity of the POD5QO sample remains significantly greater than that of the PAC500 and PAC30.
  • This figure illustrates the fact that there is little effect of the kneading pressure on the fermentation profile.
  • the process can be optimized by monitoring the porosity.
  • it can be considered that when the porosity is above 17%, more particularly above 25% or even 30%, the kneading of the dough composition is successful.
  • the baking dough then has sufficient porosity to be cooked.
  • FIG. 1C illustrates the fact that in order to obtain a desired porosity of baking dough, ready to be baked, the process according to the invention makes it possible to reduce the preparation time significantly compared to the PAC500 and PAC30 samples where the mixing of the dough composition was made with air injection. In the tests, this time could be reduced by 30%. In other words, for the same initial dough composition, adequate porosity of the dough could be obtained more rapidly by simultaneously injecting CO 2 during kneading than by injecting air during kneading.
  • the method of manufacturing the The baking dough of the invention combining an intrinsic composition of specific baking dough and a kneading step simultaneously with the injection of CO2 under pressure, is recommended.
  • Figure 1D illustrates the pH evolution during kneading (time in minutes) for samples of POD520LEV-, PAC500, PAC30, POD500 and POD520.
  • the sample POD520LEV- has a pH that goes from a value greater than 6 to a value of 5.5 after 40 minutes.
  • the pH of the other samples are much lower and reach a value between 5.25 - 5.30.
  • This figure demonstrates that in the absence of yeast, the dough is significantly less acidic.
  • the pH of 5.25 ⁇ 0.02 seems to be a signature of the activity of yeasts and their production of CO2, especially in the amount of yeast added (here 0.89%) compared to flour .
  • the CO2 produced by the yeasts lowers the pH by about 0.3 units, particularly in the contents of the example. This confirms the fact that the pH is a good indicator of monitoring the kneading quality of the dough according to the invention. In particular, it can be considered that when the pH is at a value below 5.5, more particularly below 5.3 or even 5.25, kneading is successful.
  • the dough can be baked to obtain the food product without or low in gluten, for example bread without gluten.
  • said cooking dough, without or low in gluten is cooked with a porosity greater than or equal to about 30% by volume relative to the total volume of said dough, for 30 to 60 minutes, at a temperature between 170 and 240 ° C.
  • the dough is baked directly after kneading because it has reached sufficient porosity, and still swells during cooking.
  • this aspect makes it possible to greatly improve the productivity of the production of products derived from the dough according to the invention. Indeed, with the implementation of the method of the invention, it eliminates, in the production of the food product without or low in gluten, the rest time for fermentation. It is possible to chain, in an industrial process, the kneading step with the cooking step, resulting in a time saving that increases the production yield over a given period.
  • FIG. 2 illustrates the evolution of the volume of the baked bread as a function of the amount of starch removed (samples 10, 20, 30 and 40). Volumes are expressed in cm3 / g. As can be seen in FIG. 2, samples 10, 20 and 30 have the largest volumes despite the fact that dry matter has been removed from the initial dough composition. On average, sample 20 has the largest volume.
  • the invention also relates to a composition of cooking dough without or low in gluten comprising 54 to 60% water, preferably about 57% water and between 29 and 47% by weight of flour depleted gluten , starchy type of starch.
  • Traditional breads made from wheat have a volume ranging from 3 to 5 cm3 / g for some American breads.
  • the retrograded amylopectin is indeed very sensitive to the mobility of water and is directly related to the firming of the bread. Indeed, during the cooking time, water, which was previously bound to other molecules, will be trapped by recrystallized amylopectin, this phenomenon of "retrogradation of amylopectin” increases the stiffness of the bread. This phenomenon is less with the method of the invention.
  • improving agents of the CMC type are generally provided in commercial gluten-free flours in order to overcome the phenomenon of stiffness of the bread as a consequence of the "retrogradation of amylopectin" which may occur during the cooking and then the preservation of the bread.
  • FIG. 3A illustrates the evolution of the texture of a cooked food product obtained with various pasta from the process of the invention.
  • the textured is determined by Avrami modeling.
  • the method determines a force to apply to obtain 40% deformation of the product.
  • the POD500 sample retains a much more flexible texture than the PAC500 and PAC30 samples for 10 days.
  • the method of manufacturing a food product, without or low in gluten, according to the invention which combines the use of a specific dough composition with the use of a kneading step simultaneously with a CO 2 injection in a previously depressurized enclosure, allows onc to obtain samples that retain their flexibility for 10 days, this compared to samples whose kneading was simultaneous to an air injection.
  • the texture of the POD500 sample after 7 days of storage is comparable to the texture of the PAC500 sample after 1 day of storage.
  • the texture of the POD500 sample is comparable to that of the PAC500 sample after one day, and better than that of the PAC30 sample after one day.
  • FIG. 3B similarly illustrates, in modeling according to Avrami, the comparative evolution of the texture of products, here breads, resulting from samples POD510, POD520, POD530 and POD540.
  • the POD510 sample has a slightly improved texture compared to the POD5QO sample, the others are significantly better. Even after 10 days, the texture of the POD520, POD530 and POD540 samples remains much better than those of the PAC500 and PAC30 samples after one day.
  • Table 2 Values of the evolution of the textures of the samples in modeling according to Ayrami:
  • Texture evolution and aging monitoring can also be determined by determination of free water and bound water contents (not shown).
  • a PAC30 sample the evolution of free water (AH in J / g of dry matter) oscillates between 0.60 and 0.63, while that of the linked water oscillates between 0.35 and 0.65. and 0.45 for 10 days.
  • a PAC500 sample the evolution of the free water oscillates between 0, 60 and 0.67, while that of the bound water oscillates between 0.23 and 0.43 for 10 days.
  • POD500 sample the evolution of free water oscillating between 0.57 and 0.62 during 4 days drops sharply to 0.47 at the seventh day.
  • the method of manufacturing baking dough according to the invention further improves the physicochemical properties of a food product without or low in gluten so that they can be assimilated to the food product with gluten.
  • the method of manufacturing a baking dough according to the invention makes it possible to increase the productivity yield of a food product, derived from said baking dough, by being able to overcome the resting step. necessary for the fermentation process before cooking.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Bakery Products And Manufacturing Methods Therefor (AREA)

Abstract

L'invention concerne un procédé de fabrication de pâte à cuire alimentaire, sans ou pauvre en gluten, à partir d'une composition de pâte, ladite composition de pâte comprenant en poids par rapport à son pourcentage massique total : entré 88,5 et 95% de fécule de dictame, entre 0,1 et 0,5% de sel, entre 40 et 65% d'eau, des levures, entre 3 et 5% de sucre, entre 1,5 et 4% de protéine de pois, et entre 0,2 et 3,6 % d'au moins un agent épaississant, dans lequel : - on pétrit ladite composition de pâte, dans une enceinte fermée, préalablement dépressurisée; - on injecte à une pression comprise entre 25 et 550 mbar, pendant 10 à 50 minutes du dioxyde de carbone CO2, dans ladite enceinte, simultanément à l'étape de pétrissage, de sorte à obtenir une pâte à cuire, sans ou pauvre en gluten.

Description

PROCEDE DE FABRICATION DE PATE SANS OU PAUVRE EN GLUTEN
La présente invention concerne le domaine de la préparation de pâte à cuire alimentaire, sans ou pauvre en gluten, en particulier des pâtes à lever. Lesdites pâte à cuire alimentaire sont utilisables en boulangerie, ce sont par exemple des pâtes à cuire permettant la fabrication de pain sans gluten ou autres viennoiseries, gâteaux, pizzas.
En alimentation, le gluten est reconnu comme un allergène. En outre, l'intolérance au gluten peut provoquer des affections chez certains patients, tels que ceux atteints de la maladie coeliaque. Ces derniers peuvent avoir des troubles digestifs liés à l'intolérance au gluten. De plus, la fabrication d’aliment sans gluten est de plus en plus recherchée en diététique ou pour des raisons de bien-être et de santé.
La préparation de pâte à cuire alimentaire, sans ou pauvre en gluten, présente l'inconvénient de modifier grandement les propriétés physiques et les qualités organoleptiques de la pâte aussi bien avant qu’après sa cuisson. En d’autres termes, les produits alimentaires issus des pâtes à cuire sans ou pauvre en gluten, tels que le pain, les gâteaux ou les viennoiseries, peuvent en conséquence également voir leur propriétés physiques et qualités organoleptiques modifiées. En effet, le gluten est une matière protidique constituée de deux protéines, la gliadine et la gluténine. Ces dernières donnent à la farine ses propriétés viscoélastiques. Les gliadines confèrent à la pâte alimentaire son extensibilité, sa viscosité et sa plasticité.
Il importe donc dans la préparation d’une pâte à cuire alimentaire, sans ou pauvre en gluten, de pouvoir restituer au moins partiellement les propriétés physiques de la pâte à cuire alimentaire, tout en conservant ses qualités organoleptiques.
L'inventeur a déjà proposé dans le brevet FR 3029 742 B1 , une composition culinaire exempte de gluten pour la préparation d'une pâte alimentaire à lever. Ladite composition culinaire exempte de gluten comprenant au moins de la fécule de dictame en tant que farine sans ou pauvre en gluten, du sel, de la protéine de pois en tant qu’agent homogénéisant, du sucre et au moins un agent épaississant. Pour préparer la pâte à cuire alimentaire, on ajoute à ladite composition culinaire exempte de gluten susmentionnée de la levure, de l'eau et de la matière grasse, puis on mélange jusqu’à obtention d'une pâte à cuire alimentaire. Ainsi, dans le brevet FR 3 029 742 c’est en jouant sur la composition intrinsèque de ladite composition culinaire exempte de gluten que l’on cherche à retrouver les propriétés physiques et les qualités organoleptiques de la pâte à cuire alimentaire. Cette dernière donnera, par la suite, après repos et cuisson un produit alimentaire sans gluten, ce dernier présentant des qualités comparables à un produit alimentaire obtenu à partir d’une composition alimentaire avec gluten.
En d’autres termes, dans l’art antérieur la pâte à cuire obtenue devait être classiquement laissée à reposer pour fermentation pendant une durée comprise entre 25 minutes à une heure à une température comprise entre 25 et 35°C, ceci avant d'être enfournée pour sa cuisson. Dans la préparation de pâte à cuire sans gluten, le brevet FR 3 029 742, pour jouer sur les qualités physicochimiques et les propriétés physiques de l’aliment sans gluten final obtenu à partir de la pâte à cuire sans gluten, propose de modifier la composition culinaire intrinsèque de base.
Toutefois, une modification des paramètres de fabrication de la pâte à cuire sans gluten consiste également en un moyen d'amélioration des propriétés physicochimiques finales que l’on souhaite obtenir sur l’aliment sans gluten.
Dans un objectif d'amélioration de la qualité physicochimique et organoleptique du pain classique contenant du gluten, il est connu de réaliser un pétrissage sous dépression puis une injection d’un gaz à pression atmosphérique ou sub-atmosphérique, comprenant généralement de l’oxygène. Toutefois, des solutions de pétrissage sous pression, adaptées à des pâtes à cuire donnant un pain sans ou pauvre en gluten, avec leurs propriétés spécifiques n'ont pas été proposées.
En effet, une pâte alimentaire à lever exempte de gluten ; préparée à partir des compositions culinaires sans ou pauvre en gluten ; ne possédant pas les mêmes caractéristiques physico- chimiques qu’une pâte alimentaire issue d'une composition culinaire avec gluten, la solution d’injection d’un gaz atmosphérique avec de l’oxygène lors du pétrissage de la pâte n’est pas adaptée.
Il convient donc de trouver une solution adaptée à la préparation d’une pâte à cuire alimentaire, destinée à fabriquer un aliment sans gluten, qui possède les propriétés organoleptiques et physicochimiques similaires à ceux d’un aliment avec gluten. Un des buts de la présente invention est d'avoir un aliment sans gluten, de type pain ayant une longue conservation dans le temps sans durcir et rassir trop rapidement.
Dans ce but, des solutions d'amélioration de conservation ont été proposées pour des pâtes à pain classiques en utilisant des agents améliorants de type conservateurs tels que des carboxyméthylcelluloses (CMC).
Ce type d'agent conservateur implique de réaliser une pâte à cuire alimentaire à partir d’une composition culinaire utilisant des ingrédients pouvant modifier le goût de l’aliment final obtenu. La présence de ces agents conservateurs, dans ces produits, est considérée comme chimique par les consommateurs, et est donc à éviter au maximum.
Un premier objectif de la présente invention est de proposer un procédé et un système de préparation de pâte à cuire alimentaire, sans ou pauvre en gluten, dont les propriétés physiques restent comparables à celles des pâtes à cuire alimentaire, de type pâte à pain classique.
Un deuxième objectif est de proposer un procédé et un système à variation de pression particulièrement adaptés à une pâte sans ou pauvre en gluten.
Un troisième objectif est de proposer un pain sans ou pauvre en gluten ayant une longue conservation sans ajout d'agents améliorants de type CMC.
Pour ce faire est proposé un procédé de fabrication de pâte à cuire alimentaire, sans ou pauvre en gluten, à partir d'une composition de pâte comprenant de la farine sans ou pauvre en gluten, de l'eau, des levures, au moins un agent homogénéisant, et au moins un agent épaississant dans lequel :
- on pétrit ladite composition de pâte dans une enceinte fermée caractérisé en ce que
- on injecte du C02 dans ladite enceinte simultanément à l’étape de pétrissage, de sorte à obtenir une pâte à cuire sans ou pauvre en gluten avec une porosité supérieure à 17%.
Avantageusement, le procédé selon l’invention permet d'augmenter la porosité de ladite pâte à cuire alimentaire obtenue à partir d’une composition de pâte sensiblement liquide rappelant en particulier la texture d'une mousse au chocolat. Ces aspects permettent d'avoir une composition de pâte plus facile à pétrir, pour une pâte plus facile à cuire en comparaison, par exemple, à une composition de pâte, sensiblement solide, permettant la fabrication d'une pâte à cuire alimentaire.
De plus, de manière étonnante, les inventeurs se sont aperçus que la pâte à cuire obtenue, avec le procédé de l’invention, pouvait avantageusement être enfournée rapidement après le pétrissage, ce qui permet d'éviter un temps de fermentation et donc de limiter les coûts tout en augmentant la productivité.
En effet, tenant compte de la formulation intrinsèque de la composition de pâte exempte de gluten, et, des étapes particulières du procédé de fabrication de la pâte à cuire correspondante ; les propriétés physicochimiques de la pâte à cuire obtenue, notamment sa porosité, permettent de s’affranchir du temps de repos de fermentation nécessaire habituellement avant cuisson.
En outre, avec le procédé de l’invention, dans le cas de la fabrication d”une pâte à cuire alimentaire destinée à la préparation d’un pain, le pain obtenu présente une durée de conservation de 4 à 6 jours avec une mie cohésive sans avoir besoin d'ajouter d'agents améliorants Chimiques de type CMC.
Cet aspect dénote une amélioration significative de la qualité par la fourniture d'un pain, sans ou pauvre en gluten, ayant une longue conservation dans le temps sans durcir et rassir trop rapidement.
Selon d’autres aspects pris isolément ou combinés selon toutes les combinaisons techniquement réalisables :
- l’enceinte est thermostatée à 30°C; et/ou
- l'étape de pétrissage sous C02 est réalisée pendant 10 à 50 minutes; et/ou
- la composition de pâte comprend entre 40 et 65% en poids d'eau et entre 29 et 52% en poids de farine sans ou pauvre en gluten; et/ou
- le pétrissage est réalisé de sorte à obtenir une pâte d’une porosité comprise entre 20 et 30% ; et/ou
- on suit la porosité de la pâte ; et/ou - on arrête de pétrir lorsque le pH de ladite pâte est stabilisé entre 5 et 5,4 et/ou lorsque la porosité de ladite pâte est comprise entre 28 et 32% ; et/ou
- on mesure le pH de ladite pâte en cours de pétrissage; et/ou
- la pression de C02 est comprise entre 25 et 550 mbar; et/ou
- la farine sans ou pauvre en gluten comprend au moins une farine de maranta, de riz, de quinoa, de fruit à pain, de manioc, d'igname et/ou de sarrazin; et/ou
- ledit agent homogénéisant comprend de la protéine de pois et/ou de la protéine d’haricot tropical (lablab) ; et/ou
- ledit agent épaississant comprend de la gomme de xanthane, de guar, de caroube, et/ou des carraghénanes.
L'invention porte en outre sur une pâte à cuire sans ou pauvre en gluten obtenue à l'issue d'un procédé selon l'invention, la pâte comprenant de la farine sans ou pauvre en gluten, un agent homogénéisant, de l'eau, des levures et au moins un agent épaississant, pétris en injectant du C02, caractérisée en ce qu'elle a une porosité supérieure à 17% et comprend entre 40 et 65% en poids d'eau pour entre 29 et 52% en poids de farine sans ou pauvre en gluten.
Un autre objet de l'invention concerne un système de fabrication de pâte à cuire sans ou pauvre en gluten comprenant un pétrin à enceinte pouvant être mise sous pression associé à une source de C02, caractérisé par un moyen de mesure de porosité et un moyen de mesure de pH.
De préférence, le système comprend une pâte à cuire selon l'invention.
L'invention concerne, en outre, un procédé de fabrication d'un produit sans ou pauvre en gluten, en particulier du pain sans ou pauvre en gluten, dans lequel après les étapes du procédé de fabrication de la pâte selon l'invention :
- on cuit ladite pâte à cuire, sans ou pauvre en gluten, avec une porosité supérieure ou égale à environ 30%, pendant 30 à 60 minutes, à une température comprise entre 170 et 240°C.
Selon une variante, la pâte est cuite directement après le pétrissage.
L'invention sera davantage détaillée par la description de modes de réalisation non limitatifs, et sur la base des figures annexées dans lesquelles : - la figure 1A est un graphe de l'évolution de la porosité d'une pâte à cuire selon l'invention (échantillon POD500) en fonction du temps couplé à un graphe de évolution du pH en fonction du temps au cours du pétrissage ;
- la figure 1 B est un graphe de l'évolution comparative de la porosité de pâtes à cuire selon l'invention dans différentes configurations d’injection de C02 et d'autres pâtes à cuire en injection d’air ;
- la figure 1C est un graphe de l'évolution comparative de la porosité d'une pâte à cuire selon l’invention pétrie à 500mbar de C02 (POD500), et d'autres pâtes à cuire pétries à 30mbar (PAC30) et SOOmbar d'air (PACSOO), en cours de fermentation ;
- la figure 2 est un graphe de l'évolution du volume du pain cuit en cm3/g en fonction de la quantité d'amidon en levée de la pâte à cuire ; et
- la figure 3A est un graphe, en modélisation selon l'équation d'Avrami indice n=l, de révolution dé la texture de produits, ici des pains, issus de pâtes à cuire selon les échantillons POD500, PAC500 et PAG30 en fonction du temps ;
- la figure 3B est un graphe, en modélisation selon l'équation d’Avrami, de l'évolution comparative de la texture de produits, ici des pains, issus de pâtes à cuire selon l'invention dans différentes configurations en injection de C02 ;
- la figure 4 est un graphe de la rétrogradation de l'amylôpectine en fonction de la quantité d'amidon enlevée de la pâte à cuire,
Pour plus de clarté dans les figures, ci-dessous la signification des codes de références des figures pour les pâtes à cuire alimentaire obtenues en mettant en oeuvre le procédé de fabrication selon l’invention ou un procédé légèrement modifié :
• PAC30 : procédé de l’invention modifiée où on injecte de l’air à 30 mbar en remplacement du C02 pendant le pétrissage ;
• PAC500 : procédé de l’invention modifiée où on injècte de l’air à 500 mbar en remplacement du C02 pendant le pétrissage ;
• POD500 : procédé de l’invention avec injection de C02 à 500 mbar lors du pétrissage ;
o POD510 : procédé de l’invention avec injection de C02 à 500 mbar lors du pétrissage et une réduction de matière sèche de 10% ;
• POD520 : procédé de l’invention avec injection de C02 à 500 mbar lors du pétrissage et une réduction de matière sèche de 20% ; • POD530 : procédé de l’invention avec injection de C02 à 500 mbar lors du pétrissage et une réduction de matière sèche de 30% ;
• POD540 : procédé de l’invention avec injection de C02 à 500 mbar lors du pétrissage et une réduction de matière sèche de 40%.
On entend par le terme « réduction de matière sèche », le fait d’augmenter la quantité de C02 injectée lors du pétrissage dans la mise en oeuvre du procédé de fabrication de POD510, POD520, POD530 et POD540, ceci par rapport à la quantité de G02 injectée lors du pétrissage pour l’échantillon de référence POD500.
En effet, l’augmentation de la quantité de C02 lors du pétrissage permet de diminuer le pourcentage de matière sèche de la pâte à cuire par rapport à son pourcentage massique total. Ainsi, en modifiant la quantité de 002 injectée lors du pétrissage, on diminue le pourcentage de matière sèche de 10, 20, 30 ou 40 %, de la pâte à cuire obtenue en fin de procédé, en comparaison au pourcentage de matière sèche de la pâte à cuire obtenue pour l’échantillon POD500.
La présente invention concerne un procédé de fabrication de pâte à cuire sans ou pauvre en gluten telle que notamment une pâte à pain sans ou pauvre en gluten, ou une pâte pour pâtisserie ou viennoiserie.
Le procédé de fabrication comprend une étape dans laquelle des ingrédients de pâte à cuire sont mélangés pour former ladite pâte. On pourra également parler de « composition de pâte » pour décrire le produit obtenu suite au mélange des ingrédients formant, après pétrissage et injection de 002, ladite pâte à cuire.
En particulier, le mélange, c’est-à-dire ladite composition de pâte, est pétri sous une pression comprise entre 25 et 550 mbar de C02 d'une manière détaillée plus bas. Plus particulièrement, une pompe à vide est d'abord appliquée sur le pétrin avant l'injection de CO2, de sorte à dépressuriser au préalable l’enceinte fermée renfermant ladite composition de pâte avant pétrissage. La pâte à cuire, obtenue à l’issue de l'étape de pétrissage simultanément à l’injection de C02, peut être cuite, en particulier enfournée, pour obtenir le produit à consommer, par exemple du pain sans gluten.
La composition de pâte utilisée a une composition particulière. Les ingrédients comprennent au moins de la farine sans ou pauvre en gluten, notamment de type fécule de dictame, de l'eau, des levures, au moins un agent homogénéisant, et au moins un agent épaississant. L'agent homogénéisant et l'agent épaississant sont prévus pour donner des propriétés mécaniques physicochimiques particulières à la pâte à cuire, en particulier pour pallier l'absence de gluten.
Selon un aspect de l'invention, la composition comprend entre 40 et 65% en poids d'eau et entre 29 et 52% en poids de farine sans ou pauvre en gluten. Ces proportions associées à un pétrissage sous pression de C02 permettent d'avoir un produit final de type pâte à cuire d'un volume important pour un plus faible taux de farine sans ou pauvre en gluten.
De préférence, la composition de pâte à cuire comprend sensiblement autant d'eau que de farine sans ou pauvre en gluten, en poids.
La farine sans ou pauvre en gluten peut être ou comprendre une farine de maranta. Il s'agit en particulier de Maranta arundinacea L. On peut parler également de farine ou de fécule. Alternativement ou en combinaison, la farine sans ou pauvre en gluten peut être ou comprendre au moins une farine de riz, de quinoa, de fruit à pain, de manioc, d'igname et/ou de sarrazin. Ces farines permettent de réaliser des produits alimentaires finaux sans gluten, ou, pauvre en gluten, c’est-à-dire des produits où le gluten est présent à l'état de traces. L'absence ou le faible taux de gluten dans ce type de produit alimentaire limite significativement les affections, allergies, intolérances chez les consommateurs, et répond à une demande de produits plus diététiques.
L'agent homogénéisant permet d'améliorer l'homogénéisation de la pâte pétrie, en l'absence de gluten, en particulier pour la partie interne du produit cuit. Dans le cas du pain ou d'autre viennoiserie ou pâtisserie, l'agent homogénéisant au sein de ladite composition de pâte permet de rendre la mie du pain, obtenue après cuisson de la pâte à cuire, plus homogène. Plus particulièrement, il permet d'homogénéiser la taille des alvéoles du produit obtenu après cuisson. En outre, il donne à la croûte un brunissement particulier. L’agent homogénéisant peut être ou comprendre de la protéine de pois et/ou de la protéine d’haricot tropical (du genre Lablab notamment). Ces protéines ont de bons rendements de protéine par graine. La protéine de pois est une alternative au gluten avec peu d'affections contrairement aux protéines de lait ou aux protéines de soja pouvant contenir des phyto-œstrogènes. Elle limite les risques d'intolérance. Plusieurs variétés de pois peuvent être utilisées. Par ailleurs, plusieurs variétés d’haricot tropical peuvent être utilisées, notamment les variétés du genre Lablab et de l’espèce niger.L, ou encore Lablab Purpureus.L, Dolichos LablabL, Dolichos purpeus.L.
La variété Lablab purpureus L est préférée car elle donne de bons résultats. Avantageusement, l’agent homogénéisant de type protéine de pois a pour rôle d’homogénéiser la partie interne du produit cuit exempte de gluten. Ce dernier étant obtenu après cuisson de la pâte à cuire de l’invention, elle-même obtenue à partir de la composition de pâte transformée en pâte à cuire suite à la mise en oeuvre du procédé de l’invention.
L'agent épaississant est un ingrédient qui permet d'obtenir une élasticité de la pâte, et du moelleux sur le produit cuit obtenu à partir de la pâte à cuire de l’invention. Dans le cas du pain ou d’autre viennoiserie ou pâtisserie, l'agent épaississant permet d'obtenir une mie développée. Un gélifiant peut être utilisé. Par exemple, l'agent épaississant peut être ou comprendre de la gomme de xanthane. D'autres agents épaississants utilisables alternativement ou en combinaison sont la gomme de guar, et/ou la gomme de caroube. La gomme de xanthane est préférée car elle donne de bons résultats en termes de texture de pâte et de volume spécifique de pain à atteindre.
Selon l'invention, le pétrissage de la pâte est fait sous pression de dioxyde de carbone, en particulier après dépressurisation du pétrin. Ainsi, l’étape de pétrissage de la composition de pâte pour obtenir ladite pâte à cuire est réalisée dans un environnement contrôlé, sous vide au démarrage et dans lequel on ajoute par la suite du C02 à une pression comprise entre 25 et 550 mbar pendant 10 à 50 min. Plus particulièrement, l’étape de pétrissage se fait à une pression de C02 comprise entre 25 et 550 mbar, jusqu'à obtention d'une pâte à cuire d'une porosité supérieure à 17% et comprenant entre 40 et 65% en poids d'eau pour entre 29 et 52% en poids de farine sans ou pauvre en gluten. A la fin du pétrissage, la pâte peut être optionnellement levée, et ensuite cuite pour avoir du pain sans ou pauvre en gluten ou une autre pâtisserie ou viennoiserie.
L’étape d’injection du C02, dans l’enceinte préalablement dépressurisé, simultanément à l’étape de pétrissage, permet d’augmenter la porosité de la pâte à cuire. Ces deux étapes réalisées en simultanée permettent d'avoir une pâte très aérée, déjà levée et suffisamment gonflée pour réaliser immédiatement la cuisson. A la fois, la formulation intrinsèque de la composition de pâte et les étapes simultanées du pétrissage et de l’injection de C02 ont pour effet d’obtenir une pâte alimentaire à cuire présentant des caractéristiques physicochimiques suffisantes pour être directement enfournée pour la cuisson, en s’abstenant d’uri temps de repos de fermentation habituel.
Ces aspects permettent d’avoir une pâte plus facile à pétrir en comparaison par exemple à une pâte à pain sensiblement solide.
Concernant spécifiquement la porosité, le pain est assimilé à une mousse solide dont la plus importante caractéristique structurale selon Gibson et Ashby est sa densité relative. Elle permet de faire le lien entre densité et propriétés mécaniques d'une structuré poreuse (Zghal, Scanlon, & Sapirstein, 2002). Elle se calcule comme suit : p = p* / ps où p* est la densité de la mousse (kg.m-3) ; et ps étant la densité (kg.m-3) de la fraction solide dont la mousse est constituée.
La porosité (sans Unité) est alors définie comme étant la quantité de pores présents dans le volume de cette mousse, calculé par la formule :
Porosité = (1- p*) / ps.
Ainsi la fraction volumique et la qualité de connexion des cellules déterminent non seulement la structure et l'apparence de la mie, mais également le volume spécifique du pain. Le volume spécifique est la grandeur la plus habituelle pour caractériser l'aération d'un pain. Le volume spécifique représente l'inverse de la densité et est exprimé en m3 kg-1 où « V » (m3) est le volume du pain et « m » (kg), la masse du pain La porosité peut être déterminée en utilisant un capteur de porosité ayant une sonde dans le pétrin. Alternativement, un échantillon de pâte peut être disposé dans une enceinte pliable telle qu'une poche plastique pour en déterminer la variation de volume après aplatissement.
La porosité peut être mesurée en dehors du pétrin. Dans ce cas, à pression atmosphérique, la porosité augmente rapidement. Pendant le pétrissage, le C02 serait, selon les premières estimations, dissout dans la pâte. On peut envisager de réaliser une calibration pour déterminer la quantité de C02 dissoute dans la pâte pendant le pétrissage.
Avantageusement, le procédé selon l'invention associé à la composition de pâte permet d’en augmenter significativement la porosité en comparaison à des échantillons à pression similaire d’air. En outre la pâte obtenue est sensiblement liquide rappelant en particulier la texture d'une mousse au chocolat. Jusqu'à présent, l’art antérieur proposait de mettre les levures en présence d'un réactif de réaction de fermentation (02). Il semblerait que mettre les levures en présence du produit de réaction de fermentation (C02) pendant environ 10 à 30 minutes les rendent beaucoup plus actives de sorte qu'elles produisent ensuite beaucoup de C02 et augmentent Significativement la porosité.
De plus, de manière étonnante, les inventeurs se sont aperçus que la pâte obtenue pouvait avantageusement être enfournée rapidement après le pétrissage, ce qui permet d'éviter un temps de fermentation et donc de limiter les coûts tout en augmentant la productivité.
En outre, dans le cas d'une pâte à pain, les inventeurs se sont aperçus, de manière étonnante, que le pain obtenu présente une durée de conservation de 4 à 6 jours avec une mie cohésive sans avoir besoin d'ajouter d'agents améliorants chimiques de type CMC. Ainsi, cet aspect dénote une amélioration significative de la qualité par la fourniture d'un pain sans ou pauvre en gluten, en particulier du pain sans gluten monofarine, ayant une longue conservation dans le temps sans durcir et rassir trop rapidement.
Les pains et composition à plusieurs farines du commerce incorporent généralement, outre plusieurs sources de farines, des améliorants chimiques pour augmenter la durée de vie du pain sans rassir rapidement. L'invention permet d'une part d'avoir un pain monofarine pour valoriser une source de farine et ainsi limiter les coûts et temps de production, et d'autre part d'avoir une efficacité Significative dans la conservation du pain sans améliorants de type chimique. Selon une variante, le procédé comprend une étape de suivi de la porosité de la pâte. Avantageusement, cela permet de déterminer, d’une première manière, avec précision, quel est le stade du pétrissage, et quand il peut être considéré comme terminé.
La porosité est donc un bon indicateur de suivi du pétrissage. Alternativement, on peut envisager que pour une composition, une pression de C02 et un pétrissage déterminé, la porosité cible est obtenue après un temps de pétrissage de manière reproductible.
De préférence, la pression de dioxyde de carbone injectée est supérieure à 30mbar, par exemple de 50 à 600 mbar. Des tests à 500 mbar donnent de très bons résultats. Les tests montrent que plus la pression est élevée, plus la porosité est élevée.
De préférence, le pétrissage est réalisé jusqu' à obtention d'un pH inférieur à 5,5. En particulier, le pH se stabilise entre 5 et 5,4.
Ainsi, selon une variante, le procédé comprend une étape de suivi du pH de la pâte. Avantageusement, cela permet de déterminer d'une deuxième manière avec précision quel est le stade du pétrissage, et quand il peut être considéré comme terminé. Le pH est donc un bon indicateur de suivi du pétrissage. Le pH peut être suivi en prélevant des échantillons de pâte pour en mesurer le pH. Alternativement, on peut envisager d’utiliser un dispositif de mesure de pH, notamment une sonde de pH dans le pétrin. Alternativement, on peut envisager que pour une composition, une pression de C02 et un pétrissage déterminé, le pH cible est obtenu après un temps de pétrissage de manière reproductible.
De manière étonnante, les inventeurs se sont aperçus que l'injection de C02 à 500 mbar permet de réduire le temps de pétrissage. Cela implique des avantages en termes de productivité. Des tests ont permis de déterminer un temps de pétrissage optimal à 30 minutes avec 500 mbar de CO2(POD500), contre 60 minutes avec un échantillon à pression atmosphérique, à savoir 30 mbar (PAC30).
L'invention porte en outre sur la pâte à cuire obtenue, et le produit obtenu, par exemple du pain sans gluten.
L'invention sera maintenant détaillée sur la base d'exemples non limitatifs illustrant les différents aspects innovants.
Exemple 1 : Un échantillon selon l'art antérieur peut être préparé sur la base des quantités décrites dans le brevet FR 3 029 742 B1 , c'est- à-dire comprenant :
- entre 88,5 et 95 % de fécule de dictame,
- entre 0,1 et 0,5 % de sel,
- entre 1 ,5 et 4 %de la protéine de pois,
- entre 3 et 5 %de sucre, et
- entre 0,2 et 3,6 % d’agent épaississant.
L'exemple 1 correspond à une médiane des valeurs exposées dans le brevet FR 3 029 742 B1 du même inventeur.
A cette composition est ajoutée entre 300 et 640 g d'eau. Cet échantillon comprend en particulier entre 3,5 et 6,5 fois plus d'eau en poids par rapport à la quantité de fécule.
Exemple 2 :
Sur la base d'un échantillon selon l'exemple 1 , un échantillon dit témoin selon l'invention est également préparé mais avec 49,07% de fécule de dictame, 43,64% d'eau en poids.
L'exemple 2 correspond à un standard de composition de pâte à cuire, ici pour la réalisation de pain sans gluten.
Exemples 3 à 6 ;
Les exemples 3 à 6 correspondent à des compositions selon l'exemple 2 mais avec respectivement 10, 20, 30 et 40% en moins de matière sèche, on pourra également parler respectivement d'échantillons 10, 20, 30 et 40. La référence des exemples 3 à 6 est prise sur la quantité de fécule de dictame que l’on a diminué du pourcentage correspondant, et on a ensuite reporté des quantités des autres ingrédients secs de la même manière.
Les ingrédients de la pâte sont disposés dans un pétrin à enceinte pouvant être mis sous pression tel qu'un pétrin du commerce. Selon l'invention, ce pétrin est associé à une source d’injection de C02, afin d’en introduire dans le pétrin pendant le pétrissage. Là source peut être une bouteille de C02 associée à un détendeur. La bouteille comprend majoritairement du G02, par exemple plus de 60%. Les tests ont été faits avec une bouteille à 99% de C02.
En particulier, l'enceinte est d'abord dépressurisée, puis du C02 est introduit dans l'enceinte. La pression de C02 est de préférence une pression comprise en 25 et 550 mbar. Cette pression induit lors du retour à pression atmosphérique une augmentation de la porosité de la pâte qui la fait gonfler. En effet, dans l’enceinte la pression étant inferieure à la pression atmosphérique en dehors de l’enceinte du pétrin, en sortant la pâte à cuire de l’enceinte du pétrin, pour rétablir l’équilibre des pressions, de l’air composé de C02, N2 et 02 Va entrer dans la pâte et la faire gonfler. Plus particulièrement, l’entrée d’oxygène dans la pâte à cuire lors du retour dans une atmosphère hors de l'enceinte va provoquer un gonflement suffisant de la pâte pour permettre directement sa cuisson.
En particulier, les teneurs en eau des échantillons 10, 20, 30 et 40 ont été déterminées par la méthode dite AOAC (1999).
En substance, dans cette méthode, un récipient et un couvercle vides sont séchés dans le four à 105°C pendant 3 h et transférés dans un dessicCateur pour refroidir. Le récipient et le couvercle vides sont ensuite pesés. Puis, environ 3 g d'échantillon sont pesés dans le récipient et répartis avec une spatule. Le séchage et la dessiccation sont réitérés avec, pour le cas de la dessiccation, le récipient partiellement couvert par le couvercle. Le récipient et l’échantillon séchés sont ensuite repesés.
(W 1 - W 2) + 100
Avec W1 le poids en gramme de l'échantillon ayant le séchage ; et W2 ledit poids après séchage. Tableau 1 : Teneurs en eau de pâtes selon les exemples 3 à 5 par la méthode AOAC :
Les échantillons décrits ci-dessus peuvent donc être définis par leur teneur en eau selon la méthode AOAC, à savoir une teneur comprise entre 50 et 65%.
Les figures 1A et 1 B illustrent l'évolution de la porosité d'échantillons selon l'invention avec une pression de SOOmbar de C02 injectée lors du procédé de fabrication de la pâte à cuire (POD500), des échantillons 20 (POD 520) ainsi que des échantillons avec une pression atmosphérique, soit 30 mbar, (PAC30) et une pression d'air de 500 mbar (PAC500). Un échantillon de type 20 sans levure dans ladite composition de pâte initial (POD520Lev-) est également testé.
Comme on peut le voir sur les figures 1A et 1B, le pétrissage de la composition de pâte à pression atmosphérique et à pression d'air à 500 mbar génère une porosité significativement moindre que celle obtenue à pression dé C02 qui augmente rapidement. L'échantillon de pâte à cuire sans levure a une porosité basse ce qui démontre d'une part que les levures ont leur importance dans l'augmentation de la porosité. D'autre part, il n'y a pas d'effet de pression dé gaz. Le C02 seul ne permet pas une augmentation significative de la porosité. Au contraire le C02 agit en synergie avec les levures dès le pétrissage, pour augmenter la porosité qui dépasse les 30%.
Cet aspect se confirme par l'évolution de la porosité pendant la fermentation (optionnelle), en particulier illustré par la figure 1C. Comme on peut le voir sur cette figure, la porosité de l'échantillon POD5QO reste significativement supérieure à celles des échantillons PAC500 et PAC30. Cette figure illustre le fait qu'il y a peu d'effet de la pression du pétrissage sur le profil de fermentation.
Ainsi, le procédé peut être optimisé par un suivi de la porosité. En particulier, on peut considérer que lorsque la porosité est au-dessus de 17%, plus particulièrement au-dessus de 25% voire 30%, le pétrissage de la composition de pâte est abouti. La pâte à cuire présente alors une porosité suffisante pour être cuite.
La figure 1C illustre le fait que pour arriver à une porosité souhaitée de pâte à cuire, prête à être enfournée, le procédé selon l'invention permet de réduire le temps de préparation de manière significative en comparaison aux échantillons PAC500 et PAC30 où le pétrissage de la composition de pâte a été réalisé avec injection d’air. Dans les essais, ce temps a pu être réduit de 30%. En d’autres termes, pour une même composition initiale de pâte, une porosité adéquate de la pâte à cuire a pu être obtenue plus rapidement en injectant simultanément du C02 pendant le pétrissage, qu’en injectant de l’air pendant le pétrissage.
Ainsi, pour obtenir une pâte à cuire avec une porosité adéquate, c’est-à-dire permettant d'obtenir après cuisson, un produit alimentaire présentant des qualités organoleptiques et physicochimiques similaires à un produit contenant du gluten, le procédé de fabrication de la pâte à cuire de l’invention, combinant une composition intrinsèque de pâte à cuire spécifique et une étape de pétrissage en simultané à l’injection de C02 sous pression, est recommandé.
Outré le suivi de la porosité, le procédé peut être réalisé en suivant l'évolution du pH. La figure 1 D illustre l’évolution du pH au cours du pétrissage (temps en minutes) pour des échantillons de POD520LEV-, PAC500, PAC30, POD5ÛO et POD520. L'échantillon POD520LEV- a un pH qui passe d’une valeur supérieure à 6 à une valeur de 5,5 au bout de 40 minutes. Les pH des autres échantillons sont bien moindres et arrivent à une valeur comprise entre 5,25 - 5,30. Cette figure démontre qu'en l'absence de levure, la pâte est significativement moins acide.
En outre, le pH de 5,25 ± 0,02 semble être une signature de l’activité des levures et de leur production de C02, en particulier dans la quantité de levure ajoutée (ici 0,89%) par rapport à la farine. Le C02 produit par les levures abaisse le pH d'environ 0,3 unités en particulier dans les teneurs de l'exemple. Ceci confirme le fait que le pH est un bon indicateur de suivi de la qualité de pétrissage de la pâte selon l'invention. En particulier, on peut considérer que lorsque le pH est à une valeur en dessous de 5,5, plus particulièrement en dessous de 5,3 voire 5,25, le pétrissage est abouti.
Une fois la pâte levée, optionnellement après la fermentation, elle peut être enfournée pour obtenir le produit alimentaire sans ou pauvre en gluten, par exemple du pain sans gluten. En particulier, on cuit ladite pâte à cuire, sans ou pauvre en gluten, avec une porosité supérieure ou égale à environ 30% en volume par rapport au volume totale de ladite pâte à cuire, pendant 30 à 60 minutes, à une température comprise entre 170 et 240°C. De préférence, la pâte à cuire est enfournée directement après le pétrissage car elle a atteint une porosité suffisante, et enfle encore pendant la cuisson. Avantageusement, cet aspect permet d'améliorer grandement la productivité de la production de produits issus de la pâte selon l'invention. En effet, avec la mise en œuvre du procédé de l'invention, on élimine, dans la production du produit alimentaire sans ou pauvre en gluten, le temps de repos pour la fermentation. Il est possible d’enchainer, dans un processus industriel, l’étape de pétrissage avec l’étape de cuisson, d’où un gain de temps qui augmente le rendement de production sur une période déterminée.
De manière étonnante, les inventeurs se sont aperçus qu'en dépit des teneurs diminuées en farine, c’est-à-dire en fécule de dictame, par rapport à l'eau, en comparaison aux pâtes à pain classiques, les pâtes à cuire selon l'invention permettent d’obtenir des volumes de pains après cuisson significativement grands. La figure 2 illustre l'évolution du volume du pain cuit en fonction de la quantité d'amidon enlevée (échantillons 10, 20, 30 et 40). Les volumes sont exprimés en cm3/g. Comme on peut le voir sur la figure 2, les échantillons 10, 20 et 30 ont les volumes les plus importants en dépit du fait que de la matière sèche a été enlevée dans la composition de pâte initial. En moyenne, l'échantillon 20 a le volume le plus important. Ainsi, l'invention porte en outre sur une composition de pâte à cuire sans ou pauvre en gluten comprenant 54 à 60% d'eau, de préférence environ 57% d'eau et entre 29 et 47% en poids de farine appauvrie eh gluten, de type fécule de dictame. Les pains de mie classiques à base de blé ont un volume allant de 3 à 5 cm3/g pour certains pains de mie américains.
Les pains sans gluten, selon le procédé du brevet FR 3 029 742 B1 , ont un volume proche de ceux de la présente invention, soit environ 3,2 cm3 /g. Le gain dans la présente invention serait davantage dans la limitation de la mobilité de l'eau, qui est ralentie, ainsi que par la réduction de la teneur en amylopectine rétrogradée au cours du temps.
Cet aspect sera discuté plus bas.
L'amylopectine rétrogradée est en effet très sensible à la mobilité de l'eau et elle est directement liée au raffermissement du pain. En effet, au cours du temps de cuisson, l'eau, qui étaient auparavant liée à d’autres molécules, va se faire piéger par l’amylopectine recristallisée, ce phénomène de « rétrogradation de l’amylopectine » augmente la rigidité du pain. Ce phénomène est moindre avec le procédé de l’invention.
Une fois la pâte à cuire cuite, les inventeurs se sont aperçus qu'elle avait une étonnante tenue dans le temps alors même que sa composition n'incluait pas d'améliorant de type CMC. Pourtant les agents améliorants de type CMC sont généralement prévus dans les farines sans gluten du commerce pour pallier au phénomène de rigidité du pain comme conséquence à la « rétrogradation de l’amylopectine » pouvant intervenir au cours de la cuisson puis de la conservation du pain.
La figure 3A illustre l'évolution de la texture d'un produit alimentaire cuit obtenu avec différentes pâtes à cuire issues du procédé de l’invention. La texturé est déterminée par une modélisation selon Avrami.
En substance, la méthode détermine une force à appliquer pour obtenir 40% de déformation du produit. Moins la force Fmax est importante, moins le pain a une texture ferme. Comme on peut le voir sur la figure 3A, l'échantillon POD500 garde une texture beaucoup plus souple que celles des échantillons PAC500 et PAC30 pendant 10 jours.
Le procédé de fabrication d’un produit alimentaire, sans ou pauvre en gluten, selon l’invention qui combine l’utilisation d'une composition de pâte spécifique avec l’utilisation d'une étape de pétrissage simultanément à une injection de C02 dans une enceinte préalablement dépressurisée, permet d’onc d’obtenir des échantillons qui conservent leur souplesse pendant 10 jours, ceci par rapport à des échantillons dont le pétrissage a été simultané à une injection d’air. Selon la figure 3A, la texture de l’échantillon POD500 après 7 jours de conservation est comparable à la texture de l'échantillon PAC500 après 1 journée de conservation.
Ainsi, :
- pour une composition de pâte équivalente,
- un procédé de fabrication du produit alimentaire équivalents de type pain,
- mais un procédé de fabrication de pâte à cuire différent sur la nature du gaz injecté lors du pétrissage, on obtient une conservation des propriétés de texture du pain complètement différentes au cours du temps.
En effet, avec l’injection de C02 en remplacement de l’injection d’air, a pression équivalente, lors du pétrissage, un pain POD500 pétri avec injection de C02 va conserver sa texture initiale 7 X plus longtemps qu’un pain PAC500 pétri avec injection d’air.
Après 7 jours, la texture de l’échantillon POD500 est comparable à celle de l’échantillon PAC500 après un jour, et meilleure que celle de l’échantillon PAC30 après un jour.
Les mêmes tests ont été faits avec les différents échantillons. La figure 3B illustre de même, en modélisation selon Avrami, l'évolution comparative de la texture de produits, ici des pains, issus des échantillons POD510, POD520, POD530 et POD540.
L’échantillon POD510 présente une texture légèrement améliorée par rapport à l’échantillon POD5QO, les autres sont significativement meilleurs. Même après 10 jours, la texture des échantillons POD520, POD530 et POD540 reste bien meilleure que celles des échantillon PAC500 et PAC30 après un jour.
Tableau 2 : Valeurs de l’évolution des textures des échantillons en modélisation selon Ayrami :
Selon les premières constatations, la détérioration de la texture est liée à des phénomènes de cristallisation de l'amylopectine qui conduisent au rassissement. Cela a été confirmé par une étude de la rétrogradation de l'amylopectine dans les différents échantillons. La figure 4 illustre cette rétrogradation en aH d'amylopectine rétrogradée (à savoir en J/g d'amidon). Comme on peut le voir sur la figure 4, les échantillons 10, 20, 30 et 40 ont très peu de rétrogradation de l'amylopectine par rapport à l'échantillon témoin (0), ce qui explique leur texture conservée.
L'évolution de la texture et le suivi du vieillissement peuvent aussi être déterminés par une détermination des teneurs en eau libre et en eau liée (non illustrées). Dans le cas d’un échantillon PAC30, l'évolution de l'eau libre (AH en J/g de matière sèche) oscille entre 0,60 et 0,63, tandis que celle de l'eau liée oscille entré 0,35 et 0,45 pendant 10 jours. Dans le cas d'un échantillon PAC500, l’évolution de l'eau libre oscille entre 0 ,60 et 0,67, tandis que celle de l'eau liée oscille entre 0,23 et 0,43 pendant 10 jours. Au contraire, Dans le cas d'un échantillon POD500, l'évolution de l'eau libre oscillant entre 0,57 et 0,62 pendant 4 jours descend brusquement à 0,47 au septième jour. Par ailleurs, celle de l'eau liée oscillant entre 0,40 et 0,49 pendant 4 jours remonte brusquement à 0,70 au septième jour. Ceci s'explique par le fait que l’eau libre est piégée dans les doubles hélices d'amylopectine au cours de leur recristallisation et devient donc liée à la matière.
Ainsi, le procédé de fabrication de pâte à cuire selon l’invention permet d’améliorer encore davantage les propriétés physicochimiques d’un produit alimentaire sans ou pauvre en gluten afin qu’elles puissent être assimilables au produit alimentaire avec gluten.
En outre, le procédé de fabrication d’une pâte à cuire selon l’invention permet d’augmenter Se rendement de productivité d’un produit alimentaire, issu de ladite pâte à cuire en permettant de pouvoir s’affranchir de l’étape de repos nécessaire au processus de fermentation avant cuisson.
Réaliser le pétrissage de la composition de pâte, simultanément à une injection de C02, dans un pétrin fermé, préalablement dépressurisé, ceci associé à l’usage d’une formulation spécifique de la composition de pâte, permet d’obtenir une pâte à cuire alimentaire, sans ou pauvre en gluten, possédant des propriétés physico-chimiques adéquates, qui même en s'affranchissant du repos de fermentation, permet d'obtenir après cuisson, un produit alimentaire :
- de bonne conservation - de bonne texture
- de volume comparable à ceux d’un produit classique contenant du gluten.

Claims

REVENDICATIONS
1. Procédé de fabrication de pâte à cuire alimentaire, sans ou pauvre en gluten, à partir d'une composition de pâte, ladite composition de pâte comprenant en poids par rapport à son pourcentage massique total : entre 88,5 et 95% de fécule de dictame, entre 0,1 et 0,5% de sel, entre 40 et 65% d’eau, des levures, entre 3 et 5% de sucre, entre 1 ,5 et 4% de protéine de pois, et entre 0,2 et 3,6 % d’au moins un agent épaississant, dans lequel :
- on pétrit ladite composition de pâte, dans une enceinte fermée, préalablement dépressurisée ;
- on injecte à une pression comprise entre 25 et 550 mbar, pendant 10 à 50 minutes du dioxyde de carbone CO2, dans ladite enceinte, simultanément à l'étape de pétrissage, de sorte à obtenir une pâte à cuire, sans ou pauvre en gluten.
2. Procédé selon la revendication précédente, caractérisé en ce que ledit au moins un agent épaississant consiste en de la gomme de xanthane, seul ou en combinaison avec de la gomme de guar et/ou de la gomme de caroube.
3. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'enceinte est thermostatée à 30°C.
4. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on arrête de pétrir, lorsque le pH de ladite pâte à cuire est stabilisé entre 5 et 5,4, et/ou, lorsque la porosité de ladite pâte à cuire est comprise entre comprise entre 28 et 32%. Procédé de fabrication d'un produit alimentaire, sans ou pauvre en gluten, dans lequel, après les étapes du procédé de fabrication de la pâte à cuire, selon l'une des revendications
1 à 4 :
- on cuit directement ladite pâte à cuire sans ou pauvre en gluten pendant 30 à 60 minutes à une température comprise entre 170 et 240°C.
EP19711642.9A 2018-02-22 2019-02-22 Procédé de fabrication de pâte sans ou pauvre en gluten Pending EP3755152A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1851564A FR3077958B1 (fr) 2018-02-22 2018-02-22 Procede et systeme de fabrication de pate sans ou pauvre en gluten
PCT/FR2019/000021 WO2019162579A1 (fr) 2018-02-22 2019-02-22 Procédé de fabrication de pâte sans ou pauvre en gluten

Publications (1)

Publication Number Publication Date
EP3755152A1 true EP3755152A1 (fr) 2020-12-30

Family

ID=62167530

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19711642.9A Pending EP3755152A1 (fr) 2018-02-22 2019-02-22 Procédé de fabrication de pâte sans ou pauvre en gluten

Country Status (4)

Country Link
US (1) US11889841B2 (fr)
EP (1) EP3755152A1 (fr)
FR (1) FR3077958B1 (fr)
WO (1) WO2019162579A1 (fr)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100314383B1 (ko) * 1999-05-20 2001-11-17 김상근 찹쌀분말을 이용한 유과의 제조방법 및 장치
FR2831023B1 (fr) 2001-10-19 2004-06-18 Vmi Procede de petrissage sous vide avec introduction d'oxygene et dispositif pour la mise en oeuvre dudit procede
FR2842991B1 (fr) 2002-07-31 2006-02-03 Flecher Rene Le Procede de fabrication d'un gateau ou preparation culinaire de longue conservation a temperature ambiante et pret a la consommation
FR3029742B1 (fr) * 2014-12-10 2017-01-13 Tropinov Composition culinaire exempte de gluten
DE102016111518A1 (de) * 2015-11-12 2017-05-18 ETH Zürich Aufgeschäumtes teigbasiertes Lebensmittelprodukt sowie Vorrichtung und Verfahren zur Herstellung des aufgeschäumten teigbasierten Lebensmittelprodukts

Also Published As

Publication number Publication date
FR3077958B1 (fr) 2022-05-27
US20210219560A1 (en) 2021-07-22
US11889841B2 (en) 2024-02-06
WO2019162579A1 (fr) 2019-08-29
FR3077958A1 (fr) 2019-08-23

Similar Documents

Publication Publication Date Title
CA2555419C (fr) Procede de fabrication d'un produit de cuisson a base de gluten
EP1965653B1 (fr) Améliorant de panification et son utilisation
WO2005104856A1 (fr) Ameliorant de panification
WO2001047379A1 (fr) Procede et dispositif de fabrication d'un produit alimentaire a texture interne alveolee - application au pain sans gluten
EP2818047B1 (fr) Amelioration des panifications a fort taux de levure
EP3755152A1 (fr) Procédé de fabrication de pâte sans ou pauvre en gluten
CA3077356A1 (fr) Ameliorant de panification comprenant des microorganismes
KR20170055802A (ko) 쌀가루와 전분을 포함하는 글루텐 무첨가 빵과 그 조성물 및 제조방법
EP2509448B1 (fr) NOUVEL AGENT SUBSTITUT DE NaCl
EP3982737B1 (fr) Bloc de levain vivant découpable
RU2317708C1 (ru) Способ производства хлебобулочных изделий
EP0688503B1 (fr) Produit de boulangerie de type panettone
FR3029742A1 (fr) Composition culinaire exempte de gluten
WO2010092550A1 (fr) Composition pour beignet et procédé de fabrication
TWI696423B (zh) 包括阿洛酮糖之酵母圈餅及其製備
WO2023072783A1 (fr) Levain vivant stabilisé prêt à l'emploi
FR2949043A1 (fr) Pate boulangere fermentee tolerante a l'appret
FR2906970A1 (fr) Procede de fabrication d'un produit alimentaire boulanger
FR3060259A1 (fr) Pate levee de type pate a brioche presentant une activite fermentaire accrue, et son procede de preparation
FR2544589A1 (fr) Procede perfectionne de fabrication d'un pain au levain
FR2906969A1 (fr) Procede de fabrication d'un produit alimentaire, notamment boulanger

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200901

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LE BAIL, PATRICIA

Inventor name: JOSEPH, HENRY

Inventor name: LE BAIL, ALAIN

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20231016