EP3742069B1 - Kühlvorrichtung und verwendung davon - Google Patents

Kühlvorrichtung und verwendung davon Download PDF

Info

Publication number
EP3742069B1
EP3742069B1 EP19175785.5A EP19175785A EP3742069B1 EP 3742069 B1 EP3742069 B1 EP 3742069B1 EP 19175785 A EP19175785 A EP 19175785A EP 3742069 B1 EP3742069 B1 EP 3742069B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
lubrication
flow
coolant
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19175785.5A
Other languages
English (en)
French (fr)
Other versions
EP3742069A1 (de
Inventor
Raphael MULLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Corp
Original Assignee
Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corp filed Critical Carrier Corp
Priority to EP19175785.5A priority Critical patent/EP3742069B1/de
Priority to US16/874,645 priority patent/US20200370803A1/en
Priority to CN202010423682.2A priority patent/CN111981716A/zh
Publication of EP3742069A1 publication Critical patent/EP3742069A1/de
Application granted granted Critical
Publication of EP3742069B1 publication Critical patent/EP3742069B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/047Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication

Definitions

  • the present invention concerns a refrigeration apparatus, a refrigeration system comprising such a refrigeration apparatus and the use of said refrigeration apparatus and said refrigeration system.
  • the invention relates to the domain of machines that implement a thermodynamic cycle to a refrigerant, for producing a refrigeration effect.
  • US 2017/0016651 A1 discloses an energy system capable of heating a refrigerant and lubricant oil in a screw compressor before start-up and cooling the lubricant oil while operating.
  • CN109416049A discloses a turbo refrigeration apparatus where the compressor is lubricated by means of refrigerant derived from a liquid refrigerant storage unit formed at the bottom of a condenser.
  • CN207035565U discloses an ultra-high temperature heat pump device with heat source recovery, utilizing the heat in a recovery subcooler and an oil cooler.
  • WO00/22359A1 discloses a centrifugal refrigeration chiller where refrigerant is supplied at the bearings of the compressor.
  • US5884498A1 discloses a turborefrigerator where saturated refrigerant, which is condensed in a condenser, is supercooled by a supercooler and then supplied to a bearing of a turbocompressor for lubrication.
  • an example refrigerating apparatus comprising a refrigerant passage including a screw compressor, a condenser, an expansion valve and an evaporator.
  • This known apparatus comprises a bypass flow passage, branching at a part of said refrigerant passage, between the condenser and the expansion valve, routing the refrigerant through throttle means, and communicating with a rotor cavity of the screw compressor.
  • the refrigerant contains a quantity of lubricant, so that lubrication of the rotor cavity is achieved by the same fluid that is also used as the refrigerant in the passage, and in the absence of oil.
  • the refrigerating apparatus For successfully lubricating the rotor cavity, one must ensure that a significant part of the refrigerant reaching the rotor cavity is in a liquid state. This is usually the case when the refrigerating apparatus is operating at high load, corresponding in particular to a high flow of refrigerant. When the refrigerating apparatus is operating at full load, the refrigerant emitted by the condenser is generally entirely in a liquid state, or in a diphasic state with little proportion of the refrigerant in gaseous state.
  • the apparatus may be operating at low load, including in particular a smaller flow of refrigerant.
  • the refrigerant circulating through the bypass flow passage is not entirely in liquid state and contains a non-negligible proportion of refrigerant in gaseous state, or even a high proportion of refrigerant in gaseous state. Since refrigerant in a gaseous state is not able to sufficiently lubricate the compressor, there is a risk of damaging or destroying the compressor due to a lack of lubrication during low load operation of the apparatus.
  • An aim of the invention is to propose a refrigeration apparatus where satisfactory lubrication of the compressor by means of the refrigerant is obtained even during low load operation of the refrigeration apparatus.
  • An object of the invention is to provide a refrigeration apparatus as defined by appended independent claim 1, inter alia comprising a main refrigerant circuit, including:
  • the main refrigerant circuit is configured for a loop circulation of a main refrigerant flow of a refrigerant, successively through the compressor, the condenser, the expansion valve, and the refrigerant passage.
  • the evaporator is configured for enabling an exchange of heat between the main refrigerant flow circulating through the refrigerant passage and a main coolant flow of a coolant circulating through the coolant passage.
  • the refrigeration apparatus further comprises a lubrication branch, comprising:
  • the refrigeration apparatus further comprises:
  • the subcooling heat exchanger comprises: a heat exchange tank, belonging to the lubrication branch and being configured so that the lubrication refrigerant flow circulates through the heat exchange tank; and a heat exchange passage, belonging to the subcooling branch, being positioned within the heat exchange tank and being configured so that the subcooling coolant flow circulates through the heat exchange passage.
  • the heat exchange tank comprises at least one liquid level sensor, detecting the presence of liquid refrigerant at a respective height within the heat exchange tank.
  • the lubrication refrigerant flow used for lubricating the compressor, is cooled by the subcooling coolant flow through the subcooling heat exchanger, prior to introduction of the lubrication refrigerant flow into the compressor.
  • the subcooling heat exchanger ensures that the lubrication refrigerant flow is in liquid form or ensures at least that the lubrication refrigerant flow contains enough refrigerant in liquid form for achieving sufficient lubrication of the compressor.
  • the subcooling coolant flow is derived from the main coolant flow at a stage where the coolant is at the lowest temperature, namely at the evaporator or close to the evaporator. Thus, the subcooling coolant flow is at a lower temperature than the lubrication refrigerant flow.
  • the invention also concerns a refrigeration system, comprising a refrigeration apparatus as defined above, and comprising a main coolant circuit, including the coolant passage and at least one client device to be cooled by the main coolant flow, the main coolant circuit being configured for loop circulation of the main coolant flow through the main coolant circuit, successively through the coolant passage and said at least one client device, the coolant of the main coolant flow preferably comprising water.
  • the invention also concerns a use of the refrigeration apparatus as defined above, or of the refrigeration system as defined above, the use, as defined by appended independent claim 14, including:
  • Figure 1 shows a refrigeration system, including a refrigeration apparatus.
  • the refrigeration apparatus comprises a main refrigerant circuit 1 forming a closed loop for looped circulation of a main refrigerant flow 90 of refrigerant therein.
  • the refrigerant endures a thermodynamic cycle imparted by the components of the main refrigerant circuit 1.
  • the refrigerant of the refrigeration apparatus is a fluid material chosen to ensure both functions of refrigerant and lubricant.
  • the refrigerant used in the apparatus is a hydrofluoroolefin (HFO), for example R 1234ze (1,3,3,3-tetrafluoroprop-1-ene).
  • HFO hydrofluoroolefin
  • the refrigeration system comprises a main coolant circuit 70, also designated as "coolant network", forming a closed loop for looped circulation of a main coolant flow 93 therein.
  • the main coolant circuit 70 is connected to the refrigeration apparatus.
  • the main coolant circuit 70 comprises one client device 72 and forms a single loop.
  • the client device 72 is a device which the refrigeration apparatus aims to cool, by retrieving heat from the coolant of the circuit 70 as explained below.
  • the client device is a fan coil unit for air conditioning of a building, or is an air handling unit.
  • the circuit 70 may comprise one or more circulators, not shown in the figures, for circulating the coolant through the circuit 70.
  • the main coolant circuit 70 may comprise several client devices 72 to be fed with coolant of the circuit 70.
  • the main coolant circuit 70 may form a loop with derivate branches for feeding the several client devices 72.
  • the coolant of the circuit 70 comprises water, or is constituted by water.
  • the coolant is preferably always in liquid form, at a temperature comprised for example between 7-12 °C.
  • the main refrigerant circuit 1 comprises a compressor 2, a condenser 4, an expansion valve 6 and a refrigerant passage 61.
  • the refrigeration apparatus comprises an evaporator 8, through which the refrigerant passage 61 extends at least partially.
  • the refrigerant passage 61 may belong to the evaporator 8 and may be entirely comprised within the evaporator 8.
  • the compressor 2 comprises a compressor inlet 12 and a compressor outlet 13.
  • the condenser 4 includes a condenser inlet 14, connected to the compressor outlet 13, and a condenser outlet 15.
  • the expansion valve 6 includes a valve inlet 16, connected to the condenser outlet 15 and a valve outlet 17.
  • the passage 61 includes a refrigerant inlet 18, connected to the valve outlet 17, and a refrigerant outlet 19, connected to the compressor inlet 12.
  • the inlet 18 is designated as "refrigerant passage inlet”.
  • the refrigerant of the flow 90 preferably enters the evaporator 8 by means of the inlet 18.
  • the outlet 19 is designated as "refrigerant passage outlet”.
  • the refrigerant of the flow 90 preferably exits the evaporator 8 by means of the outlet 19.
  • the flow 90 of the aforementioned refrigerant is circulated through the main circuit 1 in a closed loop, successively through the compressor 2, outlet 13, inlet 14, condenser 14, outlet 15, inlet 16, expansion valve 6, outlet 17, inlet 18, refrigerant passage 61, i.e. through the evaporator 8, then outlet 19, inlet 12, and through the compressor 2 again, and so on.
  • the refrigerant is compressed by compressor 2.
  • the direction of the flow 90 is illustrated by arrows.
  • the circulation of the flow 90 of refrigerant through the main circuit 1 is only imparted by the work of the compressor 2.
  • additional compressor or pumps may be implemented.
  • the main circuit 1 may comprise additional components than the compressor 2, condenser 4, expansion valve 6 and passage 61, for example, an additional expansion valve, or an additional branch for deriving a portion of the flow 90 from a part of the main refrigerant circuit to another part of the main refrigerant circuit, or an additional heat exchanger, that may have an economizer function.
  • the low temperature is approximately between 5-10°C
  • the high temperature is approximately between 35-40°C
  • the low pressure is approximately between 3-4 bar
  • the high pressure is approximately between 6-10 bar.
  • the main circuit 1 comprises a high-pressure part, consisting in the compressor outlet 13, the condenser 4 and the valve inlet 16, and a low pressure part, consisting in the valve outlet 17, the passage 61 and the compressor inlet 12.
  • the main circuit 1 comprises a so-called “supply part", which covers only a portion of the high pressure part, where the refrigerant is mostly in liquid state and high pressure, the supply part preferably consisting in the condenser 4, the valve inlet 16, and any part of the main circuit 1 between the condenser outlet 15 and the valve inlet 16, i.e. downstream from the outlet 15 and upstream from the inlet 16.
  • the supply part advantageously constitutes a part of the circuit 1 where the refrigerant of the flow 90 is in the most appropriate state to be used as lubricant.
  • the compressor 2 is a positive displacement-type compressor, also called volumetric compressor, such as piston compressor, scroll compressor, roots compressor or screw compressor. More preferably, the compressor 2 is a screw compressor, comprising two parallel meshing screw rotors, for imparting compression to the refrigerant.
  • the screw rotors are supported in rotation relative to a frame of the compressor 2 by at least four bearings of the compressor 2, each of the screw rotors being individually supported by two of the four bearings.
  • the compressor 2 is equipped with a motor, driving one of the screw rotors in rotation, the second screw rotor being also driven in rotation by meshing with the first screw rotor.
  • the compressor 2 is configured to be lubricated by the refrigerant, and not by a separate lubricant.
  • the compressor 2 may be qualified as an "oil-free compressor".
  • the entire refrigeration apparatus is oil-free.
  • the condenser 4 comprises or constitutes a heat exchanger, able to exchange heat between the refrigerant of the main circuit 1 and water, or ambient air, or any other suitable medium able to absorb heat from the main flow 90 of refrigerant circulating through the condenser 4.
  • the circuit 70 comprises a coolant passage 71, extending at least partially through the evaporator 8.
  • the circuit 70 is thermally linked to the refrigeration apparatus at the evaporator 8 of the refrigeration apparatus.
  • the coolant passage 71 may belong to the evaporator 8 and may be entirely comprised within the evaporator 8.
  • the coolant passage 71 comprises a coolant inlet 75 and a coolant outlet 76.
  • the inlet 75 is designated as "coolant passage inlet”.
  • the coolant of the flow 93 preferably enters the evaporator 8 through the inlet 75.
  • the outlet 76 is designated as "coolant passage outlet”.
  • the coolant of the flow 93 preferably exits the evaporator 8 by means of the outlet 76.
  • the devices 72 are fed with the flow 93 of coolant emitted at the outlet 76, and the flow 93 of coolant that has passed through the devices 72 is admitted at the inlet 75.
  • the temperature of flow 93 is at the highest, while at the outlet 76, the temperature of the flow 93 is at the lowest, since the coolant was cooled in the evaporator 8.
  • the temperature of the coolant is at approximately 12°C at the inlet 75 and at approximately 7°C at the outlet 76.
  • the evaporator 8 comprises or constitutes a heat exchanger, configured for enabling heat exchange between the flow 90 of refrigerant circulating though the passage 61 and the flow 93 of coolant circulating through the passage 71.
  • the refrigerant of the flow 90 cools the coolant of the flow 93 by exchange of heat with the flow 93 within the evaporator 8.
  • Flows 90 and 93 are not brought into contact or mixed together. Instead, the flows 90 and 93 are circulated close to each other with separation by a thin heat-conductive wall of the evaporator 8, provided along passages 61 and 71, promoting heat exchange between the flows 90 and 93.
  • the flow 90 retrieves heat from the flow 93 for cooling of said flow 93.
  • the flow 90 is heated by the flow 93 within the evaporator 8.
  • the refrigeration apparatus comprises a lubrication refrigerant branch 20 distinct from the main refrigerant circuit 1 and from the main coolant circuit 70, and connected to the main refrigerant circuit 1.
  • the lubrication branch 20 is a passage for a flow 91 of refrigerant originating from the main refrigerant flow 90 of the main circuit 1.
  • the flow 91 is designated as "lubrication refrigerant flow”.
  • the lubrication flow 91 is a flow of refrigerant, formed by a portion of the main flow 90.
  • the branch 20 comprises an inlet 21, designated as “lubrication inlet” and an outlet 22, designated as “lubrication outlet”.
  • the inlet 21 is connected to the main refrigerant circuit 1 at a bottom part 29 of the condenser 4, which belongs to the supply part of the main circuit 1.
  • the inlet 21 could be connected for example between the condenser 4 and the expansion valve 6, preferably at the condenser outlet 15.
  • any portion of the supply part of the main circuit 1 may be chosen, since, in the supply part of the main circuit 1, at least a part of the refrigerant is in liquid phase.
  • the inlet 21 derives the refrigerant flow 91 from the main refrigerant flow 90 that has already circulated through the condenser inlet 14, that has already exchanged heat with the water, ambient air or similar medium through the condenser 4, and that has not yet circulated through the condenser outlet 15. More preferably, the inlet 21 derives the flow 91 at the bottom part 29 of the condenser 4 where liquid-state refrigerant from the flow 90 is received by gravity.
  • the inlet 21 derives the flow 91 from the main flow 90 that circulates through the condenser outlet 15, where there is a good chance that most or all of the refrigerant of the flow 90 is in liquid form.
  • the flow 91 is introduced into the branch 20 by the inlet 21.
  • the outlet 22 is connected to the compressor 2, for feeding the compressor with the lubrication refrigerant flow 91, for lubrication of said compressor 2 by means of the flow 91.
  • the outlet 22 is connected at inlets of the compressor 2 that differ from the inlet 12, for feeding mechanical parts of the compressor 2 that require lubrication.
  • the outlet 22 is connected to inlets of the compressor 2 that feed the bearings and/or the compression cavities formed by the screw rotors, so that they are lubricated by the liquid refrigerant of the flow 91 fed by the branch 20.
  • the branch 20 comprises one or more valves 23, such as solenoid valves and/or throttle valves, for adjusting the flow rate of the flow 91 admitted within the branch 20 and introduced into the compressor 2.
  • valves 23 such as solenoid valves and/or throttle valves
  • the flow 91 of refrigerant derived at the inlet 21 is usually liquid.
  • the refrigerant of the flow 91 may be diphasic at the inlet 21.
  • the refrigerant apparatus comprises a subcooling heat exchanger 31 and a subcooling coolant branch 40 for cooling the refrigerant of the flow 91.
  • the subcooling coolant branch 40 is distinct from the main refrigerant circuit 1, from the main coolant circuit 70 and from the branch 20.
  • the subcooling coolant branch 40 is connected to the main coolant circuit 70.
  • the branch 40 is a passage for a flow 92 of coolant, originating from the main coolant flow 93 of the main coolant circuit 70.
  • the flow 92 is designated as "subcooling coolant flow”.
  • the subcooling coolant flow 92 is a flow of coolant, formed by a portion of the main coolant flow 93.
  • the subcooling coolant branch 40 comprises an inlet 41, designated as “subcooling inlet”, and an outlet 42, designated as “subcooling outlet”.
  • the inlet 41 is connected to the coolant passage 71 of the main coolant circuit 70, preferably at an exterior part of the evaporator 8 or within the evaporator 8.
  • the inlet 41 derives the flow 92 from the flow 93 of coolant which has not yet exchanged heat with the flow 90 of refrigerant within the evaporator 8 but which has already cooled all the client devices 72 of the circuit 70.
  • the flow 92 is introduced into the branch 40 by the inlet 41.
  • the inlet 41 is connected to the inlet 75 at an exterior location of the evaporator 8.
  • the outlet 42 is connected to the coolant passage 71 of the main coolant circuit 70, preferably at an exterior part of the evaporator 8 or within the evaporator 8.
  • the outlet 42 reintroduces the derived coolant flow 92 into the coolant flow 93 the main coolant circuit 70, after said coolant flow 93 has exchanged heat with the refrigerant flow 90 in the evaporator 8 and before the coolant flow 93 has cooled any client device 72 from the circuit 70.
  • the outlet 42 is connected to the outlet 76 at an exterior location of the evaporator 8.
  • the outlet 42 is connected to the circuit 70 downstream relative to the inlet 41.
  • the main coolant flow 93 is circulated through the circuit 70, for example by means of a non-shown circulator, connecting the inlet 41 upstream relative to the outlet 42 enables that the subcooling coolant flow 92 is also circulated, without further circulator, since the upstream pressure is higher than the downstream pressure in the passage 71 of the main coolant circuit 70.
  • the inlet 41 may be connected at the outlet 76 and the outlet 42 may be connected at the inlet 75.
  • a circulator or any other circulation means may be implemented for imparting a circulation of the flow 92 through the branch 40.
  • the outlet 42 is connected at a part of passage 71 different from the part of the passage 71 where the inlet 41 is connected.
  • the subcooling heat exchanger 31 is configured for enabling or promoting an exchange of heat between the flows 91 and 92, so that the refrigerant of the flow 91 is sub-cooled by exchange of heat with the coolant of the flow 92, within the subcooling heat exchanger 31.
  • the flows 91 and 92 are not brought into contact or mixed together. Instead, the flows 91 and 92 are circulated close to each other with separation by a thin heat-conductive wall of the heat exchanger 31, promoting heat exchange between the flows 91 and 92.
  • the flow 91 is cooled by the flow 92, and the flow 92 is heated by the flow 91.
  • the apparatus ensures that the refrigerant of the lubrication flow 91 is in liquid-state, or has a high proportion of liquid refrigerant, when entering the compressor 2 at the outlet 22. Even when the apparatus operates at low load, i.e. low flow rate of the main refrigerant flow 90, appropriate lubrication of the compressor 2 is ensured.
  • the branch 40 may be provided with a suitable valve, such as a throttle valve or solenoid valve, not shown in the figures, for adjusting or disabling the circulation of the flow 92 depending on the current load of the refrigeration apparatus.
  • a suitable valve such as a throttle valve or solenoid valve, not shown in the figures, for adjusting or disabling the circulation of the flow 92 depending on the current load of the refrigeration apparatus.
  • the circulation of the flow 92 may be interrupted or reduced when the apparatus operates at high load for improving thermal efficiency of the refrigeration apparatus.
  • the circulation of the flow 92 may be enabled or increased when the apparatus operates a low load for improving lubrication of the compressor 2.
  • the subcooling heat exchanger 31 is positioned outside of the evaporator 8, preferably outside of the main refrigerant circuit 1 and preferably outside of the main coolant circuit 70.
  • implementing the heat exchanger 31 in an existing refrigeration system is made easier, since the refrigeration system, including the evaporator 8, does not need to be modified significantly, but only requires appropriate connections with the heat exchanger 31.
  • the subcooling heat exchanger 31 comprises a heat exchange tank 32 and a heat exchange passage 33.
  • the tank 32 belongs to the branch 20, whereas the heat exchange passage 33 belongs to the branch 40. In other non-shown embodiments not corresponding to the invention, this may be the opposite. More generally, one branch of the refrigeration apparatus, chosen among the lubrication refrigerant branch and the subcooling coolant branch, comprises the tank 32, while the other branch comprises the heat exchange passage 33.
  • a quantity of refrigerant for lubrication from the flow 91 is received by the tank 32, allowing easy measuring of the proportion of liquid refrigerant received in the tank 32.
  • the liquid refrigerant of the flow 91 received in the tank 32 may constitute a supply of liquid refrigerant that may be used at specific operation stages where little liquid refrigerant is available, for example during starting of the refrigeration apparatus.
  • the flow 91 circulates through the tank 32, when circulating in the branch 20 from the inlet 21 to the outlet 22.
  • the branch 20 preferably comprises an inlet duct 24, connecting the lubrication inlet 21 to the heat exchange tank 32, for circulation of the lubrication flow 91 from the lubrication inlet 21 to the heat exchange tank 32.
  • the duct 24 crosses through a bottom wall of the tank 32 and comprises an open inlet end 25, positioned within the heat exchange tank 32, for admission of the lubrication flow 91 into the heat exchange tank 32 at the vicinity of a top wall of the tank 32.
  • the branch 20 also preferably comprises an outlet duct 26, connecting the heat exchange tank 32 to the lubrication outlet 22, for circulation of the lubrication flow 91 from the heat exchange tank 32 to the lubrication outlet 22.
  • the duct 26 crosses through the bottom wall of the tank 32 and comprises an open outlet end 27, positioned within the heat exchange tank 32 at the vicinity of the bottom wall of the tank 32, or at the bottom wall of the tank 32.
  • the outlet end 27 is at a lower height than the inlet end 25.
  • the refrigerant of the flow 91 temporarily rests in the tank 32 where heat is exchanged with the coolant flow 92 received in the passage 33.
  • the refrigerant of the flow 91 is either fully liquid, in particular during high load operation of the apparatus, or diphasic, in particular during low load operation of the apparatus.
  • diphasic the liquid refrigerant sits at the bottom of the tank 32 while the gaseous refrigerant is located at the top.
  • the inlet end 25 is located above the outlet end 27, agitation of the refrigerant of the tank 32 is reduced, avoiding reintroduction of gaseous refrigerant into the liquid refrigerant of the tank 32 if the admitted refrigerant is partially gaseous.
  • the outlet end 27 being located at the vicinity of the bottom wall of the tank, the risk of admitting gas bubbles into the outlet end 27 is reduced, even if a level 94 of liquid refrigerant in the tank 32 is low.
  • the heat exchange tank 32 comprises at least one liquid level sensor, preferably two liquid level sensors 35 and 36, each configured for detecting the presence of liquid refrigerant within the heat exchange tank 32, at a respective height.
  • the sensor 35 is configured to detect the presence of liquid refrigerant in the tank at the same height than, or slightly above, the outlet end 27. Thus, the sensor 35 may be used for detecting when the amount of available liquid refrigerant in the tank 32 is too low for correct lubrication of the compressor 2 in steady-state of the refrigerating apparatus, for example during low load operation of the refrigerating apparatus.
  • the sensor 36 is configured to detect the presence of liquid refrigerant in the tank 32 at a higher height than the sensor 35, between the height of the end 25 and the height of the end 27.
  • the sensor 36 may be used for detecting when the amount of available liquid refrigerant in the tank 32 is above or below an acceptable level for starting the refrigerating apparatus, which may require that a high amount of liquid refrigerant is available in the tank 32 for lubrication of the compressor 2.
  • the level 94 of liquid refrigerant received within the tank 32 is at a height comprised between sensors 35 and 36, so that only sensor 35 detects the presence of liquid refrigerant.
  • the tank 32 comprises a number of liquid level sensors different than two, each detecting the presence of liquid refrigerant in the tank 32 at a respective height.
  • the heat exchange passage 33 is positioned within the heat exchange tank 32, so as to be surrounded by the refrigerant of the flow 91.
  • the passage 33 is configured so that the coolant flow 92 circulating through the branch 40 circulates through the passage 33, when circulating from the inlet 41 to the outlet 42.
  • the passage 33 is a coil duct, promoting heat exchange.
  • the coil duct is preferably made of a material with high heat conductivity such as copper or the like.
  • the coil duct has the advantage that it does not induce too much pressure drop for the flow 92 flowing through.
  • any other suitable shape may be implemented for the passage 33, promoting heat exchange without inducing too much pressure drop of the flow 92 and too much agitation for the flow 91 sitting in the tank 32.
  • the heat exchange passage 33 comprises a coolant inlet 43, connected to the subcooling inlet 41 by an inlet duct of the branch 40.
  • the heat exchange passage 33 comprises a coolant outlet 44, connected to the subcooling outlet 42 by an outlet duct of the branch 40.
  • the inlet 43 and the outlet 44 are preferably positioned at a peripheral wall of the heat exchange tank 32.
  • the peripheral wall is preferably vertical, and connects the top wall to the bottom wall of the tank 32.
  • the inlet 43 is preferably at a different height, such as a lower height, than the outlet 44, as shown in figure 2 .
  • the coil duct of the passage 33, connecting the inlet 43 to the outlet 44, is preferably vertical overall.
  • the inlet 43 is preferably connected to the tank 31 at the bottom of the tank 31, or at least at the vicinity of the outlet 27, so that the flow 92 entering the heat exchange passage 33 is close to the outlet 27.
  • the heat exchanger 32 is preferably a counterflow heat exchanger.
  • the heat exchange tank 32 and in particular the open outlet end 27, is positioned at a higher height than the compressor 2, so that the compressor is fed with the lubrication refrigerant flow 91 under the effect of gravity.
  • the need for a circulator for circulating the flow 91 is reduced.
  • the evaporator 8 is a flooded heat exchanger, such as a flooded tube heat exchanger.
  • the refrigerant passage 61 comprises a tank, designated as "evaporator tank", receiving the refrigerant from the flow 90 of the main refrigerant circuit 1.
  • the tank 61 is of generally cylindrical shape, as this is the case in figure 2 .
  • the inlet 18 is preferably connected at the bottom of the tank 61 for admission of the flow 90 into the tank 61 by the bottom thereof.
  • the outlet 19 is preferably connected at the top of the tank 61 for discharging of the flow 90 into the tank 61 by the top thereof.
  • the refrigerant of the flow 90 received within the tank 61 is advantageously in diphasic form, so that the liquid part of the received refrigerant sits at the bottom of the tank 61, whereas the gaseous part of the received refrigerant evaporates towards the top of the tank 61, when receiving heat from the coolant flow 93 circulating through the coolant passage 71.
  • the coolant passage 71 comprises a heat exchange duct, as depicted in figure 2 , crossing through the evaporator tank 61 so as to be surrounded by the refrigerant received in the tank 61.
  • the coolant flow 93 flows through the heat exchange duct 71 so that heat is exchanged between said coolant flow 93 and the refrigerant flow 90 received within the tank 61.
  • one end of the exchange duct 71 is connected to the inlet 75 whereas the other end of the exchange duct 71 is connected to the outlet 76.
  • the heat exchange duct 71 is preferably made of a heat conductive material, such as copper or the like, so as to promote exchange of heat between the flows 90 and 93.
  • the heat exchange duct 71 may be in the form of a coil duct.
  • the coolant passage 71 may comprise several heat exchange ducts, each connected to the inlet 75 and 76, each crossing through the tank 61 so as to be surrounded with the refrigerant of the main circuit 1 received within the tank 61, and each circulated by a portion of the flow 93.
  • valves 23, when both closed, may also be used for temporarily storing refrigerant within the branch 20, in particular within the tank 32 of the heat exchanger 31, especially for periods of time when the refrigeration apparatus is stopped, allowing that liquid-state refrigerant is available in the tank 31 before re-starting.
  • one valve 23 is positioned upstream from the tank 32 and the other valve 23 is positioned downstream of from tank 32.
  • the subcooling inlet and the subcooling outlet is positioned within the evaporator tank 61, preferably the subcooling inlet.
  • the subcooling coolant flow 92 is derived from the part of the coolant passage 71 extending within the evaporator tank 61, namely the heat exchange duct.
  • the derived subcooling coolant flow 92 is at a lower temperature, which may be useful at starting of the refrigeration apparatus.
  • two subcooling inlets may be provided for deriving the flow 92, one connected to the inlet 75 and the other connected to the heat exchange duct 71.
  • the branch 40 may be provided with appropriate valves for selecting by means of which of the subcooling inlets the flow 92 is derived, depending on the operation stage of the refrigeration apparatus.
  • the refrigerant passage of the evaporator constitutes the heat exchange duct whereas the coolant passage of the evaporator constitutes the evaporator tank.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Lubricants (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Claims (14)

  1. Kältemaschine, die einen Hauptkältemittelkreislauf (1) umfasst, welcher Folgendes beinhaltet:
    - einen Kompressor (2), der einen Kompressoreinlass (12) und einen Kompressorauslass (13) beinhaltet,
    - einen Verflüssiger (4), der einen Verflüssigereinlass (14), welcher an den Kompressorauslass (13) angeschlossen ist, und einen Verflüssigerauslass (15) beinhaltet,
    - ein Expansionsventil (6), das einen Ventileinlass (16), welcher an den Verflüssigerauslass (15) angeschlossen ist, und einen Ventilauslass (17) umfasst, und
    - eine Kältemittelleitung (61), die sich zumindest teilweise innerhalb eines Verdampfers (8) der Kältemaschine erstreckt, wobei die Kältemittelleitung (61) einen Kältemittelleitungseinlass (18), welcher an den Ventilauslass (17) angeschlossen ist, und einen Kältemittelleitungsauslass (19) beinhaltet, welcher an den Kompressoreinlass (12) angeschlossen ist, wobei die Kältemaschine weiterhin eine Kühlmittelleitung (71) beinhaltet, die sich zumindest teilweise innerhalb des Verdampfers (8) erstreckt und einen Kühlmittelleitungseinlass (75) und einen Kühlmittelleitungsauslass (76) beinhaltet,
    wobei der Hauptkältemittelkreislauf (1) für einen schleifenartigen Umlauf eines Hauptkältemittelflusses (90) eines Kältemittels ausgelegt ist, nacheinander durch den Kompressor (2), den Verflüssiger (4), das Expansionsventil (6) und die Kältemittelleitung (61),
    wobei der Verdampfer (8) dafür ausgelegt ist, eine Wärmeübertragung zwischen dem Hauptkältemittelfluss (90), welcher durch die Kältemittelleitung (61) strömt, und einem Hauptkühlmittelfluss (93) eines Kühlmittels zu ermöglichen, welcher durch die Kühlmittelleitung (71) strömt,
    wobei die Kältemaschine darüber hinaus eine Schmierungszweigleitung (20) umfasst, die Folgendes umfasst:
    - einen Schmierungseinlass (21), der an einen Zufuhrabschnitt (4, 16) des Hauptkreislaufs (1) angeschlossen ist, wobei der Zufuhrabschnitt (4, 16) aus dem Verflüssiger (4), dem Ventileinlass (16) und einem jedwedem Abschnitt des Hauptkreislaufs (1) zwischen dem Verflüssigerauslass (15) und dem Ventileinlass (16) besteht, wobei der Schmierungseinlass (21) dafür ausgelegt ist, einen schmierend wirkenden Kältemittelfluss (91) vom Hauptkältemittelfluss (90) abzuzweigen, welcher durch den Zufuhrabschnitt (4, 16) strömt; und
    - einen Schmierungsauslass (22), welcher derart an den Kompresser (2) angeschlossen ist, dass er den schmierend wirkenden Kältemittelfluss (91) in den Kompressor (2) einspeist, um den Kompressor (2) mit dem Kältemittel des schmierend wirkenden Kältemittelflusses (91) zu schmieren,
    wobei die Kältemaschine weiterhin Folgendes umfasst:
    - eine Hilfskühlungszweigleitung (40), die Folgendes umfasst:
    o einen Hilfskühlungseinlass (41), welcher derart an die Kühlmittelleitung (71) angeschlossen ist, dass ein Hilfskühlungskühlmittelfluss (92) vom Hauptkühlmittelfluss (93) abgezweigt wird, und
    o einen Hilfskühlungsauslass (42), welcher an die Kühlmittelleitung (71) angeschlossen ist, um den Hilfskühlungskühlmittelfluss (92) in den Hauptkühlmittelfluss (93) zurückzuführen; und
    - einen Hilfskühlungswärmeübertrager (31), wobei dieser dafür ausgelegt ist, eine Wärmeübertragung zwischen dem Hilfskühlungskühlmittelfluss (92), welcher durch die Hilfskühlungszweigleitung (40) strömt, und dem schmierend wirkenden Kältemittelfluss (91) zu ermöglichen, welcher durch die Schmierungszweigleitung (20) strömt, sodass die schmierend wirkende Kältemittelfluss (91) in dem Hilfskühlungswärmeübertrager (31) durch den Hilfskühlungskühlmittelfluss (92) gekühlt werden kann,
    wobei der Hilfskühlungswärmeübertrager (31) Folgendes umfasst:
    - einen Wärmeübertragungstank (32), der Bestandteil der Schmierungszweigleitung (20) ist und derart ausgelegt ist, dass der schmierend wirkende Kältemittelfluss (91) durch den Wärmeübertragungstank (32) strömt, und
    - wobei eine Wärmeübertragungsleitung (33), die Bestandteil der Hilfskühlungszweigleitung (40) ist, innerhalb des Wärmeübertragungstank (32) angeordnet ist und derart ausgelegt ist, dass der Hilfskühlungskühlmittelfluss (92) durch die Wärmeübertragungsleitung (33) strömt,
    dadurch gekennzeichnet, dass der Wärmeübertragungstank (32) mindestens einen Flüssigkeitsspiegelsensor (35, 36) umfasst, welcher das Vorliegen von flüssigem Kältemittel in einer betreffenden Höhe innerhalb des Wärmeübertragungstanks (32) detektiert.
  2. Kältemaschine gemäß Anspruch 1, wobei:
    - der Hilfskühlungseinlass (41) an einen Kühlmittelleitungseinlass (75) der Kühlmittelleitung (71) angeschlossen ist, sodass der Hilfskühlungskühlmittelfluss (92) von dem Hauptkühlmittelstrom (93) abgezweigt wird, welcher durch den Kühlmittelleitungseinlass (75) strömt, und
    - der Hilfskühlungsauslass (42) an einen Kühlmittelleitungsauslass (76) der Kühlmittelleitung (71) angeschlossen ist, um den Hilfskühlungskühlmittelfluss (92) in den Hauptkühlmittelfluss (93) zurückzuführen, welcher durch den Kühlmittelleitungsauslass (76) strömt.
  3. Kältemaschine gemäß einem beliebigen der vorhergehenden Ansprüche, wobei:
    - die Kältemittelleitung (61) einen Verdampfertank des Verdampfers (8) umfasst, wobei der Verdampfertank an den Kältemittelleitungseinlass (18) angeschlossen ist, um den Hauptkältemittelfluss (90) in den Verdampfertank einzuleiten, sowie an den Kältemittelleitungsauslass (19), um den Hauptkältemittelfluss (90) aus dem Verdampfertank abzuführen; und
    - die Kühlmittelleitung (71) mindestens ein Wärmeübertragungsrohr des Verdampfers (8) umfasst, wobei das Wärmeübertragungsrohr sich derart innerhalb des Verdampfertanks erstreckt, dass es von dem Hauptkältemittelfluss umgeben ist, welcher in dem Verdampfertank aufgenommen wird, wobei das Wärmeübertragungsrohr an den Kühlmittelleitungseinlass (75) angeschlossen ist, um den Hauptkühlmittelfluss (93) in das Wärmeübertragungsrohr einzuleiten, sowie an den Kühlmittelleitungsauslass (76), um den Hauptkühlmittelfluss (93) aus dem Wärmeübertragungsrohr abzuführen.
  4. Kältemaschine gemäß einem beliebigen der vorhergehenden Ansprüche, wobei der Hilfskühlungswärmeübertrager (31) außerhalb des Verdampfers (8) angeordnet ist.
  5. Kältemaschine gemäß einem beliebigen der vorhergehenden Ansprüche, wobei die Schmierungszweigleitung (20) Folgendes umfasst:
    - ein Einlassrohr (24), welches den Schmierungseinlass (21) mit dem Wärmeübertragungstank (32) verbindet, damit der schmierend wirkende Kältemittelfluss (91) vom Schmierungseinlass (21) zum Wärmeübertragungstank (32) strömt, und welches ein offenes Einlassende (25) umfasst, das innerhalb des Wärmeübertragungstanks (32) angeordnet ist, um den schmierend wirkenden Kältemittelfluss (91) dem Wärmeübertragungstank (32) zuzuführen; und
    - ein Auslassrohr (26), welches den Wärmeübertragungstank (32) mit dem Schmierungsauslass (22) verbindet, damit der schmierend wirkende Kältemittelfluss (91) vom Wärmeübertragungstank (32) zum Schmierungsauslass (22) strömt, und welches ein offenes Auslassende (27) umfasst, das innerhalb des Wärmeübertragungstanks (32) in einer geringeren Höhe als das offene Einlassende (25) angeordnet ist.
  6. Kältemaschine gemäß Anspruch 5, wobei der mindestens eine Flüssigkeitsspiegelsensor (35, 36) einen ersten Sensor (35) umfasst, der dafür ausgelegt ist, das Vorliegen von flüssigem Kältemittel in dem Wärmeübertragungstank (32) in derselben Höhe wie das offene Auslassende (27), oder leicht oberhalb desselben, zu detektieren.
  7. Kältemaschine gemäß Anspruch 6, wobei der mindestens eine Flüssigkeitsspiegelsensor (35, 36) einen zweiten Sensor (36) umfasst, der dafür ausgelegt ist, das Vorliegen von flüssigem Kältemittel (32) in einer größeren Höhe als der erste Sensor (35) zu detektieren, zwischen der Höhe des offenen Einlassendes (25) und der Höhe des offenen Auslassendes (27).
  8. Kältemaschine gemäß einem beliebigen der vorhergehenden Ansprüche, wobei der Wärmeübertragungstank (32) in einer größeren Höhe als der Schmierungsauslass (22) angeordnet ist, sodass der schmierend wirkende Kältemittelfluss (91) schwerkraftbedingt in den Kompressor (2) eingespeist wird.
  9. Kältemaschine gemäß einem beliebigen der vorhergehenden Ansprüche, wobei es sich bei der Wärmeübertragungsleitung (33) um ein spiralförmiges Rohr handelt.
  10. Kältemaschine gemäß einem beliebigen der vorhergehenden Ansprüche, wobei der Schmierungseinlass (21) an einen unteren Abschnitt (29) des Verflüssigers (4) angeschlossen wird, damit er an den Zufuhrabschnitt (4, 16) angeschlossen ist.
  11. Kältemaschine gemäß einem beliebigen der vorhergehenden Ansprüche, wobei es sich bei dem Kompressor (2) um einem Kompressor handelt, der nach dem Verdrängerprinzip arbeitet.
  12. Kältemaschine gemäß einem beliebigen der vorhergehenden Ansprüche, wobei:
    - es sich bei dem Kompressor (2) um einen Schraubenkompressor handelt, der zwei ineinandergreifende Drehschrauben und Lager umfasst, wobei die Drehschrauben von den Lagern gehalten werden, und
    - der Schmierungsauslass (22) derart an den Kompressor (2) angeschlossen ist, dass die Lager und die Drehschrauben mit dem schmierend wirkenden Kältemittelfluss (91) versorgt werden, um die Lager und Drehschrauben zu schmieren.
  13. Kühlsystem, das eine Kältemaschine gemäß einem beliebigen der vorhergehenden Ansprüche umfasst, wobei es einen Hauptkühlmittelkreislauf (70) umfasst, welcher die Kühlmittelleitung (71) sowie mindestens eine zu bedienende Vorrichtung (72) umfasst, das durch den Hauptkühlmittelfluss (93) gekühlt werden soll, wobei der Hauptkühlmittelkreislauf (70) dafür ausgelegt ist, dass der Hauptkühlmittelfluss (93) schleifenartig den Hauptkühlmittelkreislauf (70) durchläuft, nacheinander durch die Kühlmittelleitung (71) und die mindestens eine zu bedienende Vorrichtung (72), wobei das Kühlmittel des Hauptkühlmittelflusses (93) vorzugsweise Wasser umfasst.
  14. Verwendung der Kältemaschine gemäß einem beliebigen der Ansprüche 1 bis 12 oder des Kühlsystems gemäß Anspruch 13, wobei die Verwendung Folgendes beinhaltet:
    - Umlauf des Hauptkältemittelflusses (90) in einer geschlossenen Schleife, nacheinander durch den Kompressoreinlass (12), den Kompressor (2), den Kompressorauslass (13), den Verflüssigereinlass (14), den Verflüssiger (4), den Verflüssigerauslass (15), den Ventileinlass (16), das Expansionsventil (6), den Ventilauslass (17), den Kältemittelleitungseinlass (18), die Kältemittelleitung (61) und den Kältemittelleitungsauslass (19);
    - Abzweigen des schmierend wirkenden Kältemittelflusses (91) vom Hauptkältemittelfluss (90), welcher durch den Zufuhrabschnitt (4, 16) strömt, über den Schmierungseinlass (21),
    - Leiten des schmierend wirkenden Kältemittelflusses (91) durch die Schmierungszweigleitung (20), wobei er nacheinander durch den Schmierungseinlass (21), den Hilfskühlungswärmeübertrager (31) und den Schmierungsauslass (22) gelangt,
    - Abzweigen des Hilfskühlungskühlmittelflusses (92) vom Hauptkühlmittelfluss (93), welcher durch die Kühlmittelleitung (71) strömt, über den Hilfskühlungseinlass (41),
    - Leiten des Hilfskühlungskühlmittelflusses (92) durch die Hilfskühlungszweigleitung (40), wobei er nacheinander durch den Hilfskühlungseinlass (41), den Hilfskühlungswärmetauscher (31) und den Hilfskühlungsauslass (42) gelangt,
    - Übertragung von Wärme zwischen dem Hilfskühlungskühlmittelfluss (92) und dem schmierend wirkenden Kältemittelfluss (91) im Hilfskühlungswärmeübertrager (31), sodass der schmierend wirkende Kältemittelfluss (91) durch den Hilfskühlungskühlmittelfluss (92) gekühlt wird,
    - Einspeisen, über den Schmierungsauslass (22), des schmierend wirkenden Kältemittelflusses (91), welcher im Hilfskühlungswärmeübertrager (31) durch den Hilfskühlungskühlmittelfluss (92) gekühlt wurde, in den Kompressor (2), um den Kompressor (2) zu schmieren, und
    - Zurückleiten, über den Hilfskühlungsauslass (42), des Hilfskühlungskühlmittelflusses (92), welcher im Hilfskühlungswärmeübertrager (31) den schmierend wirkenden Kältemittelfluss (91) gekühlt hat, in den Hauptkühlmittelfluss (93), welcher durch die Kühlmittelleitung (71) strömt.
EP19175785.5A 2019-05-21 2019-05-21 Kühlvorrichtung und verwendung davon Active EP3742069B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19175785.5A EP3742069B1 (de) 2019-05-21 2019-05-21 Kühlvorrichtung und verwendung davon
US16/874,645 US20200370803A1 (en) 2019-05-21 2020-05-14 Refrigeration apparatus and use thereof
CN202010423682.2A CN111981716A (zh) 2019-05-21 2020-05-19 制冷设备及其使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19175785.5A EP3742069B1 (de) 2019-05-21 2019-05-21 Kühlvorrichtung und verwendung davon

Publications (2)

Publication Number Publication Date
EP3742069A1 EP3742069A1 (de) 2020-11-25
EP3742069B1 true EP3742069B1 (de) 2024-03-20

Family

ID=66630159

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19175785.5A Active EP3742069B1 (de) 2019-05-21 2019-05-21 Kühlvorrichtung und verwendung davon

Country Status (3)

Country Link
US (1) US20200370803A1 (de)
EP (1) EP3742069B1 (de)
CN (1) CN111981716A (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5884498A (en) * 1996-10-25 1999-03-23 Mitsubishi Heavy Industries, Ltd. Turborefrigerator

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103573U (ja) * 1991-02-08 1992-09-07 カルソニツク株式会社 冷媒回収装置の油分離器
JPH10220885A (ja) * 1997-01-31 1998-08-21 Mitsubishi Heavy Ind Ltd 冷凍機
US6176092B1 (en) * 1998-10-09 2001-01-23 American Standard Inc. Oil-free liquid chiller
JP4330369B2 (ja) 2002-09-17 2009-09-16 株式会社神戸製鋼所 スクリュ冷凍装置
DE102004060596A1 (de) * 2004-12-02 2006-06-22 Bitzer Kühlmaschinenbau Gmbh Schraubenverdichter
US20060225459A1 (en) * 2005-04-08 2006-10-12 Visteon Global Technologies, Inc. Accumulator for an air conditioning system
JP4787070B2 (ja) * 2006-05-30 2011-10-05 サンデン株式会社 冷凍サイクル
DE602007013119D1 (de) * 2007-09-28 2011-04-21 Carrier Corp Kältemittelkreislauf und verfahren zum umgang mit öl darin
KR101668363B1 (ko) * 2015-07-15 2016-10-21 한국에너지기술연구원 에너지 시스템
CN205156435U (zh) * 2015-11-19 2016-04-13 珠海格力电器股份有限公司 一种油冷却系统、制冷系统及制冷机组
JP6672056B2 (ja) * 2016-04-22 2020-03-25 三菱重工サーマルシステムズ株式会社 ターボ圧縮機、これを備えたターボ冷凍装置
CN207035565U (zh) * 2017-05-19 2018-02-23 江苏必领能源科技有限公司 带热源回收的超高温热泵装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5884498A (en) * 1996-10-25 1999-03-23 Mitsubishi Heavy Industries, Ltd. Turborefrigerator

Also Published As

Publication number Publication date
CN111981716A (zh) 2020-11-24
US20200370803A1 (en) 2020-11-26
EP3742069A1 (de) 2020-11-25

Similar Documents

Publication Publication Date Title
BR102019011251A2 (pt) Sistema de refrigeração usando co2 para resfriamento do sistema de refrigeração magnética
US9291166B2 (en) Motor cooling system
US10480831B2 (en) Compressor bearing cooling
US20160040915A1 (en) Compressor Bearing Cooling
WO2011142414A1 (ja) ヒートポンプ式蒸気発生装置
CN104823360B (zh) 电动机转子和气隙冷却
JP2012042205A (ja) ヒートポンプ式蒸気発生装置
EP2901091B1 (de) Kühlschrank und verfahren zur steuerung des kühlschranks
KR101542121B1 (ko) 공기조화기
CN104896779A (zh) 涡轮制冷机
CN107780988A (zh) 用于运行体积膨胀机的设备和方法
EP3742069B1 (de) Kühlvorrichtung und verwendung davon
US20220307739A1 (en) Lubrication system for a compressor
US20200080756A1 (en) Refrigeration machine
CN105339743A (zh) 涡轮冷冻机
JP2003065618A (ja) 熱搬送装置
EP3742077B1 (de) Kühlvorrichtung und verwendung davon
US11454432B2 (en) Refrigeration apparatus with refrigerant lubricant subcooling heat exchanger and use thereof
CN112268387A (zh) 热泵系统
CN113994150A (zh) 具有多个压缩机的冷却器系统
CN204494884U (zh) 热源单元以及制冷循环装置
KR20170110925A (ko) 냉동사이클의 냉동능력향상을 위한 냉매순환방법
JP2000257987A (ja) 蒸発器及びこれを有する冷凍機
JP2009168370A (ja) 空気調和装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210622

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220912

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231009

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019048497

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D