EP3727350A1 - Dispositif pour le maintien de l'homeostasie metallique, et ses utilisations - Google Patents

Dispositif pour le maintien de l'homeostasie metallique, et ses utilisations

Info

Publication number
EP3727350A1
EP3727350A1 EP18842805.6A EP18842805A EP3727350A1 EP 3727350 A1 EP3727350 A1 EP 3727350A1 EP 18842805 A EP18842805 A EP 18842805A EP 3727350 A1 EP3727350 A1 EP 3727350A1
Authority
EP
European Patent Office
Prior art keywords
nanoparticles
metal
maintaining
chelating agent
homeostasis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18842805.6A
Other languages
German (de)
English (en)
Inventor
François LUX
Olivier Tillement
Yannick Cremillieux
Thomas BRICHART
Sébastien GROYER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite Claude Bernard Lyon 1 UCBL
Mexbrain SAS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite Claude Bernard Lyon 1 UCBL
Mexbrain SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite Claude Bernard Lyon 1 UCBL, Mexbrain SAS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3727350A1 publication Critical patent/EP3727350A1/fr
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6939Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being a polysaccharide, e.g. starch, chitosan, chitin, cellulose or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1654Dialysates therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the present invention relates to the field of medical devices, more particularly devices for extracting within an organism metals.
  • the use of these devices makes it possible, for example, to prevent and / or treat pathologies related to a deregulation of metal homeostasis in the body, for example neurological diseases.
  • Chelation therapy which aims to decrease the concentration of metal ions has been used for many years in cases of acute poisoning by metals.
  • a number of chelants are already accepted in humans, each of which is associated with a particular metal group (Crisponi et al., Coordination Chemistry Reviews, 2015).
  • Chelation therapy has also been shown to be an indispensable tool for the treatment of transfused patients with b-Thalassemia. In fact, patients who have been transfused many times suffer from the accumulation of iron in the body.
  • iron deposits are regulated by the intravenous or oral administration of iron chelating agents such as desferrioxamine, deferiprone or deferasirox (P.V. Bemhardt et al., Dalton Trans, 2007).
  • D-penicillamine and trientine (orally) chelation therapy is also currently used to extract copper cations and treat Wilson's disease, resulting from a genetic abnormality affecting a copper transporter: ATP7B.
  • This anomaly results in copper overload with increased copper circulating in the blood and leading to deposits in the organs, mainly the liver and the brain (M. L. Schilsky, Clin, Liver Dis, 2017).
  • Chelation therapy has good efficacy in pre-symptomatic but reduced treatment in liver and neurological disorders (Wiggelinkhuizen et al., Aliment Pharmacol., 2009), probably because of difficulty in achieving targeted area and low specificity.
  • iron In the brain, iron is predominantly localized in the substantia nigra pars compacta and in the basal ganglia with levels comparable to those of the liver. With age, iron tends to accumulate in certain areas of the brain where it is found to be predominantly associated with ferritin and neuromelanin.
  • the areas where iron levels are most likely to increase are subtsantia nigra, putamen, globus pallidus, caudate nucleus or cortex, each of these areas being associated with different neurodegenerative disorders (DJ Hare et al. Nat Rev.
  • Alzheimer's disease is also characterized by disruptions in the amounts of metals in the brain but associated with other brain regions and other proteins. It seems that in this case an increase in iron levels and a decrease in copper levels are observed (SF Graham et al., J. Alzheimers Dis., 2014). Huntington's disease is another neurodegenerative disorder that results in movement disorders, cognitive decline, and psychiatric problems. In this pathology, many markers of oxidative stress are observed in the brain that can be related to a deregulation of iron homeostasis (SJA van den Bogaard et al., International Review of Neurobiology, 2013).
  • deferiprone used for the treatment of transfusion-associated iron deposits for b-thalassemia
  • deferipronPD NCT01539837
  • the treatment lasted 6 months and was well tolerated by patients.
  • a decrease in iron level was observed in the dentate nucleus and the caudate nucleus.
  • Reduction of iron level in substantia nigra was observed in only 3 patients.
  • iron chelators such as desferrioxamine, clioquinol, MAO, Vk-28, M30 or M30A (N. Wang et al., Biomacromolecules, 2017) have thus attracted the attention of researchers in preclinical or even clinical trials for chelation treatment of neurodegenerative diseases. Nevertheless, the effectiveness of these molecules and other iron chelating agents is still limited by their short life time in the body, their possible high dose cytotoxicity, their difficulty in crossing the blood-brain barrier and then targeting the area. the most affected brain and their prior saturation with endogenous cations.
  • This study shows the potential of a targeted chelation therapy for a particular group of patients - patients with diabetes - to avoid a future accident because dio vascular.
  • the inventors of the present invention have thus developed a medical device comprising at least one chelating agent for extracting metal cations.
  • the invention thus relates to a device for maintaining metal homeostasis for therapeutic purposes, characterized in that it comprises means for extracting metal cations.
  • the "maintenance of metal homeostasis for therapeutic purposes” means the regulation of the content of certain metals in an organism, in particular for the purpose of extracting excess metal cations which may be responsible for pathological conditions. .
  • metal homeostasis refers to the homeostasis of metal cations (more particularly to the homeostasis of specific metal cations).
  • said means for extracting metal cations is chosen from:
  • an infusion fluid containing at least one chelating agent.
  • the term "chelating agent” refers to an organic group capable of complexing at least one metal cation.
  • the chelating agent is capable of complexing the metal cations that it is desired to extract, and the complexing constant log (Ko) of said chelating agent for at least one of said metal cations is greater than 10, in particular 11, 12, 13, 14, 15 and is preferably greater than or equal to 15.
  • the complex chelating agent at least one of the metal cations Copper (Cu), Iron (Fe), Zinc (Zn), Mercury (Hg) ), Cadmium (Cd), Lead (Pb), Aluminum (Al), Manganese (Mn), Arsenic (As), Mercury (Hg), Cobalt (Co), Nickel (Ni), Vanadium (V), Tungsten (W) ), Zirconium (Zr), Titanium (Ti), Chromium (Cr), Silver (Ag), Bismuth (Bi), Tin (Sn), Selenium (Se), Thallium (Th), Calcium (Ca), Magnesium (Mg) ), Scandium (Sc), Ytrium (Y), Lanthan (La), Cerium (Ce), Praseodym (Pr), Neodymium (Nd), Promethium (Pm), Samarium (Sm), Europium (Eu), Gadolinium (Gd) ), Terbium (Tb), Dysprosium (Cu),
  • the complex chelating agent at least one of the cations of metals Copper, Iron, Zinc, Mercury, Cadmium, Lead, Aluminum, Manganese, Magnesium, Calcium, and Gadolinium, in particular Manganese and Gadolinium. Even more advantageously, the complex chelating agent at least one of the cations of copper, iron and / or zinc metals.
  • the term "at least one chelating agent" refers to the presence of a single type of chelating agent, a mixture of different chelating agents or a mixture of several identical chelating agents.
  • the specificity of the chelating agent for said metals (metal cations) to be extracted is high compared to other cationic trace elements, in particular the difference between the complexation constants is preferably greater than 3, and more particularly the difference between the complexation constants with calcium and magnesium is preferably greater than 3, and even greater than 5.
  • said device also contains trace elements, chosen from calcium, magnesium, iron, copper, zinc and manganese, either directly within said polymer, implant or solid, or within the perfusion fluid. This allows for example to regulate the homeostasis of essential metals.
  • said means of said device makes it possible to extract the metal cations from a biological fluid, an organ or a tissue, especially when the content of said metal cations is less than 1 ppm, in particular 0 , 1 ppm, 0.01 ppm and is preferably less than 1 ppb.
  • at least more than half of the cations present can be extracted.
  • biological fluid refers to all the fluids with which the device of the invention can be brought into contact, such as blood, cerebrospinal fluid, synovial fluid, or liquid. peritoneal.
  • organ refers to all organs with which the device of the invention can be brought into contact or within which said device can be implanted or inserted, such as the brain, the liver, pancreas, intestines or lungs.
  • tissue refers to all tissues with which the device of the invention can be brought into contact or within which said device can be implanted or inserted, such as the peritoneum or the tumor tissue (if any tumor).
  • said device may be contacted, inserted or implanted by endoscopy, in particular within a tumor.
  • said means for extracting metal cations for example a material, and can extract a quantity of metal cations representing at least 1% of its mass, and preferably more than 10% of its mass.
  • the means for extracting metals is a dialysis system
  • the means for extracting metal cations is a dialysis system comprising:
  • a reservoir comprising an infusion fluid.
  • dialysis system refers to any system allowing the passage of metal cations through an artificial membrane.
  • said device is advantageously a microdialysis device.
  • microdialysis For several years, new technologies for local sampling of analytes or samples or local drug delivery (microdialysis) have developed. Microdialysis was developed in the late 1950s to recover and deliver different substances in an area of interest (CM Kho, Mol Neurobiol., 2016). Microdialysis makes it possible to collect or deliver only the samples capable of passing through a semipermeable membrane whose cutoff threshold is chosen according to the intended application. In the case of dialysis, it is often a dynamic phenomenon of diffusion, guided by the difference in concentration of diffusing species between each side of the membrane.
  • the microdialysis device makes it possible to circumvent the problems of conventional chelants and to locally extract a very high proportion of the targeted metal ions, thanks to the maintenance inside a dialysis membrane of the complexing chemical species of at least one target metal.
  • the complexing species are present in macromolecules or nanoparticles which have a mass greater than the cutoff threshold of the membrane so that the complexing species remain within the liquid (ie the perfusion fluid) included in the dialysis membrane.
  • the dialysis device containing the complexing species is then placed at the level of the zone of interest, for example at the level of the brain in the case of the treatment of neurodegenerative diseases.
  • the cations being smaller than the cutoff threshold of the membrane will be able to diffuse through the membrane to the solution comprising the chelants.
  • the strong complexation properties of the ligands used will allow the chelation of the target metals even if they are present in very small quantities. This chelation will therefore reduce the concentration of free target ions in the solution inside the membrane to maintain a strong concentration gradient in the target metal ion between the concentration outside and inside the membrane to extend the extraction and maintain a flow of cations.
  • an equivalent concentration of these ions may be placed in the dialysis membrane.
  • any microdialysis device known to those skilled in the art may be used according to the present invention, provided that it contains a porous dialysis membrane and a reservoir comprising an infusion fluid containing at least one chelating agent as mentioned hereinabove. above.
  • the cutoff threshold of the porous membrane is less than the mass of the chelating agent.
  • the devices that can be used in the context of the present invention are the medical devices developed by the company M Dialysis AB, Sweden, such as microdialysis catheters (references 8010509, P000049, 8010337, this list does not include being not exhaustive ).
  • the perfusion fluid is a colloidal suspension of nanoparticles whose average diameter is greater than the pores of said porous dialysis membrane, said nanoparticles comprising as active ingredient at least one chelating agent.
  • the cutoff threshold of the porous dialysis membrane is less than the mass of the chelating agent, that is to say the mass of the nanoparticle comprising at least one chelating agent.
  • the perfusion fluid is a colloidal suspension of polymers whose average diameter is greater than the pores of said dialysis membrane, said polymers being grafted to an active ingredient which is at least one chelating agent.
  • the cutoff threshold of the porous dialysis membrane is less than the mass of the chelating agent, that is to say the mass of the polymer on which is grafted at least one chelating agent.
  • the term "colloidal suspension” refers to a mixture of liquid and insoluble solid particles, which remain dispersed regularly, the particles being often sufficiently small (microscopic or nanoscopic) for the mixture to remain stable and homogeneous.
  • said average diameter is greater than the pores of said dialysis membrane by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 100%. %.
  • the term "mean diameter” refers to the harmonic mean of the diameters of the nanoparticles or polymers on which at least one chelating agent is grafted.
  • the size distribution of nanoparticles or polymers is for example measured using a commercial particle size analyzer, such as a Malvem Zeta Sizer Nano-S granulometer based on the PCS (Photon Correlation Spectroscopy) which is characterized by a diameter medium hydrodynamics. A method of measuring this parameter is also described in ISO 13321: l996.
  • the colloidal suspension contains more than 1% by mass of nanoparticles or polymers, especially plus 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, and preferably more than 10% by mass.
  • nanoparticles that can be used in a device, in particular a dialysis system or an implant, according to the present invention
  • said nanoparticle comprises as active ingredient at least one chelating agent capable of complexing the metal cations, said chelating agent having a complexation constant log (K Ci ) for at least one of said metal cations is greater than 10, and preferably greater than or equal to 15.
  • sica-based nanoparticles means nanoparticles characterized by a silica mass percentage of at least 8%.
  • polysiloxane-based nanoparticles refers to nanoparticles characterized by a silicon mass percentage of at least 8%.
  • polysiloxane means an inorganic crosslinked polymer consisting of a chain of siloxanes.
  • R is an organic molecule bonded to silicon by a covalent bond Si-C n is an integer between 1 and 4.
  • polysiloxane especially includes the polymers resulting from condensation by the tetraethylorthosilicate (TEOS) sol gel method and aminopropyltriethoxysilane (APTES).
  • TEOS tetraethylorthosilicate
  • APTES aminopropyltriethoxysilane
  • said nanoparticle thus comprises: at. polysiloxanes, with a silicon mass ratio of at least 8% of the total mass of the nanoparticle, preferably between 8% and 50% of the total mass of the nanoparticle,
  • chelating agents preferably in a proportion of between 5 and 1000, and preferably between 5 and 100 per nanoparticle
  • metal elements for example in a proportion of between 5 and 100, and preferably between 5 and 20, by nanoparticle, said metal elements being complexed with chelating agents.
  • said nanoparticle is of formula (I) below:
  • N is between 20 and 50000, preferably between 50 and 1000.
  • O is between 0 and 2 n
  • Chi, Ch 2 and Ch 3 are chelating agents, identical or different, connected to the Si polysiloxanes by a covalent Si-C bond; a, b and c are integers between 0 and n and a + b + c is less than or equal to n, preferably a + b + c is between 5 and 100, for example between 5 and 20,
  • Gf are targeting grafts, identical or different from each other, each linked to Si by an Si-C bond and resulting from the grafting of a targeting molecule allowing the targeting of the nanoparticles to biological tissues of interest, for example to tumor tissue, f is an integer between 0 and n.
  • the nanoparticles that can be used according to the present invention do not comprise metallic elements.
  • said nanoparticle comprises only elements a. (polysiloxanes or silica) and b. (chelating agents).
  • the chelating agents complex the metal cations Cu, Fe, Zn, Hg, Cd, Pb, Mn, Al, Ca, Mg, Gd.
  • the chelating agents are obtained by grafting (covalent bond) on the nanoparticle of one of the following complexing molecules or its derivatives, such as polycarboxylic acids, polyamines and derivatives thereof, chosen from: DOTA (acid l, 4,7, lO-tetraazacyclododecane-N, N, N ", N '" - tetraacetic acid), DTPA (diethylene triamine penta acetic acid ), D03A-pyridine of formula (I) below:
  • EDTA (2,2 ', 2 ", 2"' - (ethane-1,2-diyldinitrilo) tetraacetic acid), EGTA (ethylene glycol-bis (2-aminoctylthio) -N, N, N ', N' - tetraacetic), BAPTA (1,2-bis (o-aminophenoxy) ethano-N, N, N ', N' -tetraacetic acid), NOTE (1,4,7-triazacyclononane-1,4,7-triacetic acid) , DOTAGA (2- (4,7,10-tris (carboxymethyl) -1,4,7,10,10-tetraazacyclododecanyl) pentanedioic acid), DFO (deferoxamine), amide derivatives such as DOT AM (1, 4,7,10-tetrakis (carbamoylmethyl) -1,4,7,10,10 tetraazacyclo
  • said above chelating agents are linked directly or indirectly by covalent bonding to the polysiloxane silicias of the nanoparticle.
  • directly binding refers to the presence of a molecular "linker” or “spacer” between the nanoparticle and the chelating agent, said linker or spacer being covalently bound to one of the constituents of the nanoparticle.
  • said nanoparticle is a polysiloxane-based nanoparticle with a mean diameter of between 3 and 50 nm, comprising the chelating agent obtained by grafting DOTA, DOTAGA or DTPA onto the nanoparticle.
  • said nanoparticle is a polysiloxane-based nanoparticle of an average size greater than 20 kDa and less than 1 MDa, comprising the chelating agent obtained by grafting DOTA, DOTAGA or DTPA onto the nanoparticle.
  • said colloidal suspension comprising said nanoparticles also contains trace elements, chosen from calcium, magnesium, iron, copper, zinc or manganese.
  • nanoparticles according to the present invention can be obtained according to the process described in the patent application FR1053389.
  • polymers may be used in place of the aforementioned nanoparticles.
  • said polymers are grafted to at least one chelating agent.
  • the term "polymer” refers to any macromolecule formed by the covalent linking of a very large number of repeating units which are derived from one or more monomers.
  • the polymers preferably used in the present invention are for example of the family of chitosan, polyacrylamides, polyamines or polycarboxylic.
  • they may be polymers containing amino functions such as chitosan.
  • said polymer is biocompatible.
  • the chelating agents or their derivatives grafted onto said polymers are polycarboxylic polyamino acids and their derivatives, especially chosen from: DOTA, DTP A, OD3A-pyridine of formula (I) above, EDTA, EGTA, BAPTA, NOTE, DOTAGA, DFO, DOTAM, NOTAM, DOTP, NOTP, TETA, TETAM and TETP or mixtures thereof.
  • said above chelating agents are linked directly or indirectly by covalent bonding to the polymer or to a polymer chain of more than 10 kDa and preferably more than 100 kDa.
  • the term "indirect” bond means the presence of a molecular "linker” or “spacer” between the polymer and the chelating agent, said linker or spacer being covalently bound to one of the constituents of said polymer. .
  • the chelating agents or their derivatives grafted onto said polymers will comprise dithiocarbamate functions.
  • said polymer grafted with a chelating agent is chosen from: chitosan grafted with DPTA-BA or chitosan grafted with DFO.
  • said colloidal suspension comprising said polymers also contains trace elements, chosen from calcium, magnesium, iron, copper, zinc or manganese.
  • Chelating molecules that can be used in a device according to the present invention
  • the perfusion fluid is a solution of chelating molecules.
  • Said chelating molecules may have a greater average diameter than the pores of said dialysis membrane, that is to say greater than the cutoff threshold of the membrane in order to be maintained within the liquid of the dialysis membrane, or they may have an average diameter less than the pores of said porous dialysis membrane, and in this case they may pass through the pores of the membrane before passing into the body and be naturally eliminated by the kidneys or liver.
  • said chelating molecules have a complexation constant log (K Ci ) for at least one of said metal cations greater than 10, and preferably greater than or equal to 15.
  • said solution of chelating molecules also contains trace elements, chosen from calcium, magnesium, iron, copper, zinc or manganese.
  • the means for extracting metal cations is an implant comprising at least one chelating agent.
  • the means for extracting metal cations is an implant on which is grafted at least one chelating agent.
  • an “implant” is any element intended to be introduced into an organism. They may be “polymers” or “any other solid” as described in this specification.
  • the polymers are as mentioned above, usable within an infusion fluid.
  • any other solid includes, without being restrictive, ceramic, metal, composite, solid or porous parts, optionally functionalized on the surface or non-functionalized on the surface, and which may have different shapes (such as only balls, tubes, plates, ).
  • said implant can be implanted, in particular temporarily and then extracted.
  • said implant may be implanted within the brain, liver, pancreas, ... of the subject to be prevented and / or treated.
  • Said implant can be resorbable and naturally be gradually eliminated by the body.
  • Said implant may also comprise at least one chelating agent which diffuses slowly in the body, for example a diffusion less than 100 mg in chelating molecules released per day, and preferably less than 10 mg / day and / or allowing a diffusion of less than 1 % of the total mass per day.
  • Said implant can be put in direct contact with the tissues or under the skin.
  • said implant may be in a reservoir with a dialysis fluid in contact with the subject to be treated.
  • the present invention relates to the use of a colloidal suspension as mentioned above, particularly usable in a device such as those mentioned above.
  • the invention thus relates to a colloidal suspension of nanoparticles comprising an active principle, for its use for therapeutic purposes, characterized in that it is contained in a device for maintaining metallic homeostasis comprising a porous dialysis membrane, and in that the average diameter of said nanoparticles is greater than the pores of the porous dialysis membrane of said device
  • said device is a microdialysis device.
  • the invention also relates to a colloidal suspension of polymers grafted to an active ingredient, for its use for therapeutic purposes, characterized in that it is contained in a device for maintaining the metal homeostasis comprising a porous dialysis membrane, and in that the average diameter is greater than the pores of said porous dialysis membrane, said polymers being grafted to an active ingredient.
  • said device is a microdialysis device.
  • the invention relates to a device for maintaining metal homeostasis according to any one of claims 1 to 13, characterized in that said device comprises means enabling it to be brought into contact, through a membrane. of dialysis, or its implantation within:
  • a biological fluid such as blood, cerebrospinal fluid, synovial fluid or peritoneal fluid, or
  • an organ such as the brain, liver, pancreas, intestines or lungs, or a tissue, such as the peritoneum or tumor tissue.
  • the invention relates to a colloidal suspension mentioned above for its use in the maintenance of metal homeostasis.
  • the invention relates to a colloidal suspension mentioned above for its use in the treatment of neurological diseases or cerebral degenerations, such as Parkinson's disease, Alzheimer's disease, NBIA (Neurodegeneration with Brain Accumulation, also known as neurodegeneration with iron overload), Wilson's disease, or Huntington's disease.
  • neurological diseases or cerebral degenerations such as Parkinson's disease, Alzheimer's disease, NBIA (Neurodegeneration with Brain Accumulation, also known as neurodegeneration with iron overload), Wilson's disease, or Huntington's disease.
  • the invention relates to a colloidal suspension mentioned above for its use in the treatment of autism.
  • the invention relates to a colloidal suspension mentioned above for use in the treatment of type II diabetes or cardiovascular diseases.
  • the invention relates to a colloidal suspension mentioned above for its use in the treatment of tumors.
  • the present invention relates to the use of a nanoparticle as mentioned above, especially usable in a device such as those mentioned above.
  • the invention thus relates to a polysiloxane-based nanoparticle having a diameter greater than 3 nm, preferably less than 50 nm, for its therapeutic use in a device for maintaining metallic homeostasis.
  • said nanoparticle comprising as active principle at least one chelating agent capable of complexing metal cations, and characterized in that its complexation constant log (Ko) for at least one of said metal cations is greater than 10, and preferably greater or equal to 15.
  • said device is a microdialysis device.
  • the invention relates to a nanoparticle mentioned above for its use in maintaining metal homeostasis.
  • the invention relates to a nanoparticle mentioned above for its use in the treatment of neurological diseases or cerebral degenerations, such as NBA-like diseases, Parkinson's disease, Alzheimer's disease, Wilson's disease or Huntington's disease.
  • neurological diseases or cerebral degenerations such as NBA-like diseases, Parkinson's disease, Alzheimer's disease, Wilson's disease or Huntington's disease.
  • the invention relates to a nanoparticle mentioned above for its use in the treatment of autism. According to another preferred embodiment, the invention relates to a nanoparticle mentioned above for its use in the treatment of type II diabetes or caro-vascular diseases.
  • the invention relates to a nanoparticle mentioned above for its use in the treatment of tumors.
  • the present invention relates to the use of a polymer as mentioned above, in particular usable in a device such as those mentioned above.
  • the invention thus relates to a polymer, for its use for therapeutic purposes in a device for maintaining metal homeostasis, said polymer being grafted to at least one chelating agent capable of complexing metal cations, and characterized in that its complexation constant log (Ko) for at least one of said metal cations is greater than 10, and preferably greater than or equal to 15.
  • said device is a microdialysis device.
  • the invention relates to a polymer mentioned above for its use in the maintenance of metal and / or protein homeostasis.
  • the invention relates to a polymer mentioned above for its use in the treatment of neurological diseases or cerebral degenerations, such as NBA-like diseases, Parkinson's disease, Alzheimer's disease, Wilson's disease or Huntington's disease.
  • neurological diseases or cerebral degenerations such as NBA-like diseases, Parkinson's disease, Alzheimer's disease, Wilson's disease or Huntington's disease.
  • the invention relates to a polymer mentioned above for its use in the treatment of autism.
  • the invention relates to a polymer mentioned above for its use in the treatment of type II diabetes or caro-vascular diseases.
  • the invention relates to a polymer mentioned above for its use in the treatment of tumors.
  • the present invention also relates to a method for extracting metal cations in a subject comprising administering an implant on which at least one chelating agent is grafted, or the use of an infusion fluid containing at least one chelating agent within a device such as those mentioned above.
  • said "subject” refers to a man or an animal to be prevented or treated.
  • Figure 1 shows the image obtained at the end of the infusion of the MnCl 2 solution. It is a coronal section at the level of the microdialysis membrane (black dot). The highlight surrounding the membrane is the presence of Mn 2+ (MRI positive contrast agent).
  • Figure 2 shows the image obtained at the end of the infusion with the suspension of nanoparticles. It is a coronal section at the level of the microdialysis membrane (black dot). The highlight surrounding the membrane is the presence of Mn 2+ (MRI positive contrast agent).
  • FIG. 3 represents the image corresponding to the difference of the two preceding images (represented in FIGS. 1 & 2) and highlighting the decrease in tissue concentration in Mn 2+ (highlighting at the level of the microdialysis probe).
  • Figure 4 shows the image obtained at the end of the infusion with the MnCl 2 solution. It is a coronal section at the level of the microdialysis membrane (black dot). The highlight surrounding the membrane is the presence of Mn 2+ (MRI positive contrast agent).
  • Figure 5 shows the image obtained at the end of the infusion with saline. It is a coronal section at the level of the microdialysis membrane (black dot). The highlight surrounding the membrane is the presence of Mn 2+ (MRI positive contrast agent).
  • FIG. 6 represents the image corresponding to the difference of the two preceding images (represented in FIGS. 4 and 5) and highlighting the absence of a drop in tissue concentration in Mn 2+ (quasi-absence of highlighting at the level of the probe of microdialysis).
  • Figure 7 shows the MRI image of solutions 1, 2, 3, 4 and 5.
  • the animal is placed under gaseous anesthesia (2.5% isoflurane under 0 2 / N 2 (80:20)) using a heating mat used during the procedure and the phase wake up.
  • gaseous anesthesia 2.5% isoflurane under 0 2 / N 2 (80:20)
  • a heating mat used during the procedure and the phase wake up.
  • lidocaine Xylovet 21.33 mg / ml
  • lidocaine 4 mg / kg diluted in 0.9% NaCl with a volume injected of 10 m ⁇ / g.
  • the cranial box is disengaged in order to position a micro-drill (diameter ⁇ 1 mm) for the drilling of the cranial box.
  • the probe is placed under stereotaxis.
  • the dialysis cannula (diameter ⁇ 500 ⁇ m) is gently introduced into the brain at the desired position and depth.
  • a quick setting fixing resin is applied and screwed onto the skull of the animal.
  • the skin is then sewn to close the wound.
  • an analgesic (Buffycare) is administered subcutaneously.
  • the administration of the analgesic is repeated at intervals of 8 to 12 hours for 2 days following the installation of the microdialysis probe.
  • a subcutaneous injection of 0.9% NaCl (of the order of 0.5 ml for the mouse, 5 ml for the rat) is carried out at the beginning of the procedure.
  • an ophthalmic ointment (Liposic) is applied at the beginning of the procedure.
  • the spectroscopy and MRI imaging protocol is performed on D3.
  • the protocol is performed on animals under gas anesthesia (2.5% isoflurane under 0 2 / N 2 (80:20)) using a heating mat used during the procedure and the waking phase and with breath control during NMR acquisitions.
  • the microdialysis probe Prior to positioning the animal in MRI (Bruker Biospin 4.7 Tesla), the microdialysis probe (2 mm long membrane, 6 kDa cutoff, CMA Microdialysis AB, Kista, Sweden) is inserted into the cannula. microdialysis.
  • An IRM surface antenna Doty scientif ⁇ c, 8 mm in diameter, used in transmission and reception, is positioned on the skull of the animal at the vertical of the microdialysis probe.
  • MRI acquisitions Tl-weighted Flash sequence, 2 ms echo time, 150 ms repetition time, coronal slices, 1 mm slice thickness, 3 minute acquisition time) are performed continuously during the infusion of the
  • the microdialysis probe is perfused with a 1 mM MnCl 2 solution in physiological saline at a flow rate of 10 ml / min for 30 minutes.
  • the polysiloxane nanoparticles used consist of a polysiloxane matrix to which DOTAGA cyclic chelators are grafted. These nanoparticles have a hydrodynamic diameter of 1.5 ⁇ 6.3 nm. This size prevents their passage through the dialysis membrane, whose pore diameter is 2 to 3 nm.
  • FIG. 1 The image obtained at the end of the perfusion of the MnCl 2 solution is presented in FIG. 1, and the image obtained at the end of the infusion with the suspension of nanoparticles is presented in FIG. 2.
  • the microdialysis probe is perfused with a 1 mM MnCl 2 solution in physiological saline at a flow rate of 10 ml / min for 30 minutes.
  • the microdialysis probe is then perfused with saline at 10 ml / min for 30 minutes.
  • the image obtained at the end of the perfusion of the MnCl 2 solution is shown in FIG. 4, and the image obtained at the end of the infusion with the saline is presented in FIG. 5.
  • FIG. corresponding to the difference of the two previous images and highlighting the absence of a drop in tissue concentration in Mn2 + (quasi-absence of highlighting at the level of the microdialysis probe).
  • the animal is placed under gas anesthesia (2.5% isoflurane under 02 / N2 (80:20)) using a heating mat used during the procedure and the waking phase.
  • gas anesthesia 2.5% isoflurane under 02 / N2 (80:20)
  • lidocaine Xylovet 21.33 mg / ml
  • lidocaine 4 mg / kg diluted in 0.9% NaCl with a volume injected 10 ⁇ l / g.
  • the cranial box is disengaged in order to position a micro-drill (diameter ⁇ 1 mm) for the drilling of the cranial box.
  • the probe is placed under stereotaxis.
  • the dialysis cannula (diameter ⁇ 500 ⁇ m) is gently introduced into the brain at the desired position and depth. After positioning the cannula, a quick setting fixing resin is applied and screwed onto the skull of the animal. The skin is then sewn to close the wound. Before waking the animal, an analgesic (Buffycare) is administered subcutaneously. The administration of the analgesic is repeated at intervals of 8 to 12 hours for 2 days following the installation of the microdialysis probe. In order to limit the dehydration of the animal, a subcutaneous injection of 0.9% NaCl (of the order of 0.5 ml for the mouse, 5 ml for the rat) is carried out at the beginning of the procedure. To prevent dry eye, an ophthalmic ointment (Liposic) is applied at the beginning of the procedure.
  • Liposic ophthalmic ointment
  • the perfusion protocol for microdialysis is performed on D3.
  • the protocol is carried out on animals under gas anesthesia (2.5% isoflurane under 02 / N2 (80:20)) using a heating mat used during the procedure and the waking phase and with control of the respiratory rate.
  • the microdialysis probe (2 mm long, 6 kDa cutoff membrane, CM A Microdialysis AB, Kista, Sweden) is inserted into the microdialysis cannula and perfusion is performed at a flow rate of 10 m ⁇ / min.
  • the perfusion is carried out for 30 minutes with a perfusate consisting of physiological saline supplemented with 1 mM of GdCl3 (solution 1).
  • the dialysate is collected at the microdialysis outlet (solution 2).
  • the dialysate is collected at the microdialysis outlet (solution 4).
  • the nanoparticles used are identical to those of Example 1, that is to say that they have a hydrodynamic diameter of 1.5 ⁇ 6.3 nm. This size prevents their passage through the dialysis membrane, whose pore diameter is 2 to 3 nm.
  • the chitosan used has an average molecular weight of 200 kDa.
  • DTPA-BA Diethylenetriaminepentaacetic dianhydride
  • VIVAFLOW cassettes were purchased from Sartorius and used as is.
  • the infusion fluid was purchased from Phymep (Perfusion Fluid CNS Sterile, P000151) and used as is.
  • a mass of 0.5 g of chitosan was weighed and inserted into a 500 ml container. A volume of 250 ml of distilled water was added and the solution was stirred. Using a pH meter and a 50% acetic acid solution, the pH was set at 4.0 ⁇ 0.1. The solution was stirred for 24 h. At 24 h the pH was again set at 4.0 ⁇ 0.1. This process was repeated until complete dissolution of all of the chitosan. A mass of 5.36 g of DTPA-BA was weighed and inserted into the resulting solution. The solution was stirred for 48 h.
  • the solution was purified using a Vivaflow cassette with a cut-off of 100 kDa until a purification rate of at least 100,000 was achieved.
  • a Vivaflow cassette the solvent is replaced by the CNS perfusion fluid of equal concentration.
  • the chitosan used has an average molecular weight of 200 kDa.
  • P-NCS-B 2 -DFO N 1 -hydroxy-N 1- (5- (4- (hydroxy (5- (3- (4-isothiocyanatophenyl) thioureido) pentyl) amino) -4-oxobutanamido) pentyl) N4- (5- (N-hydroxyacetamido) pentyl) succinamide was purchased from Chematech Mdt and used as is.
  • VIVAFLOW cassettes were purchased from Sartorius and used as is.
  • the infusion fluid was purchased from Phymep (Perfusion Fluid CNS Sterile, P000151) and used as is.
  • a mass of 0.5 g of chitosan was weighed and inserted into a 500 ml container. A volume of 250 ml of distilled water was added and the solution was stirred. Using a pH meter and a 50% acetic acid solution, the pH was set at 4.0 ⁇ 0.1. The solution was stirred for 24 h. At 24 h the pH was again set at 4.0 ⁇ 0.1. This process was repeated until complete dissolution of all of the chitosan.
  • a mass of 500 mg of p-NCS-Bz-DFO was weighed and inserted into the resulting solution.
  • the solution was stirred for 48 h.
  • the solution was purified using a Vivaflow cassette with a cut-off of 100 kDa until a purification rate of at least 100,000 was achieved.
  • the solvent is replaced by the CNS perfusion fluid of equal concentration.
  • VIVAFLOW cassettes were purchased from Sartorius and used as is.
  • the infusion fluid was purchased from Phymep (Perfusion Fluid CNS Sterile, P000151) and used as is.
  • a volume of 50 ml of 20% by weight Metalsorb was measured and inserted into a 250 ml container.
  • a volume of 150 ml of water was added and the solution was put under stirring for 2 h.
  • the solution was purified using a Vivaflow cassette with a 100 kDa cut-off threshold until a purification rate of at least 100,000 was reached.
  • the The solvent is replaced by the CNS perfusion fluid of equal concentration.
  • the materials obtained in Examples 3, 4 and 5 above can be used advantageously as means for extracting metal cations according to the present invention.
  • the solutions can be used directly or by adapting the formulation to form an infusion fluid, or the polymers can be extracted and consolidated to form a macroscopic solid that can be implanted.
  • the polysiloxane particles comprising EDTA (ethylenediaminetetraacetic) Si @ EDTA type chelates are obtained by mixing three silane precursors: (i) TEOS (Tertraethyl orthosilicate - ((Si (OC 2 H 5 ) 4 , 98% - Sigma-Aldrich Chemicals , France)), (ii) the APTES (3 (aminopropyl) triethoxy silane - (H 2 N (CH 2 ) 3 -Si (OC 2 H 5 ) 3, 99% - Sigma-Aldrich Chemicals, France)) and (iii ) Si-EDTA (N- (Trimethoxysilylpropyl) ethylenediaminetriacetic acid, trisodium salt - (N- [3-Trimethoxysilylpropyl] ethylenediamine triacetic acid trisodium salt 45% in water, ABCR, Germany).) The 3 precursors are placed in the DEG (d
  • the mixture is stirred at room temperature for 30 minutes before adding a volume 3 times greater water and a new stirring phase of 17 hours at the same temperature.
  • the temperature is then raised to 80 ° C and stirring is continued for 6 hours (the pH is adjusted to 7.4 after two hours of heating).
  • the heating is then cut off and the solution is stirred for 17 hours.
  • the solution is then purified by tangential filtration.
  • the nanoparticles have a hydrodynamic diameter of 21 ⁇ 9 nm in Dynamic Light Scattering (DLS) evaluated using a Malvem Zeta Sizer Nano-S granulometer based on the PCS ( Figure 8).
  • DLS Dynamic Light Scattering
  • DTPA diethylenetriaminepentaaceticacid
  • a preliminary step is necessary to graft the chelate onto a silane.
  • the silane comprising DTPA is obtained by reacting a derivative of DTPA: DTPA-BA (diethylenetriaminepentaaceticacid dianhydride - CheMatech, Dijon, France) with the APTES in DEG with a ratio of 1 to 1 DTPA-BA / APTES. The solution is stirred for 24 hours. Then the TEOS is added with a ratio TEOS / APTES / DTPA-BA 3/1/1. After stirring for 1 hour in the DEG, water is added (10 times the volume of DEG used).
  • the solution is then stirred for 24 hours at room temperature and then heated to 50 ° C and stirred again for 24 hours. Finally, the solution is cooled to room temperature and left stirring for 72 hours.
  • the nanoparticles are then purified by tangential filtration and the pH is raised to 7.4.
  • the nanoparticles have a hydrodynamic diameter of 7 ⁇ 3 nm in DLS, evaluated using a Malvem Zeta Sizer Nano-S granulometer based on PCS, with a second population at 20 ⁇ 7 nm ( Figure 9).
  • the pH of the solution was adjusted to 7.4 and HEPES (4- (2-hydroxyethyl) -1-piperazine ethanesulfonic acid, Sigma-Aldrich Chemicals (France) was added as a buffer at a concentration of 1.2.
  • the total volume of the solution is 600 ml
  • the extraction by microdialysis lasted 40 min for flow rates of 2 and 5 ⁇ l / min
  • the sample at 1 ⁇ l / min was obtained in 100 minutes, these samples were analyzed by ICP / MS and the amounts of each metal were reported in Table 2.
  • Table 2 Concentration of the extracted metals in the perfusion fluid by comparing the water and polysiloxane nanoparticles - EDTA (15 mM) at different flow rates.
  • Example 7 The relative effectiveness of the nanoparticles obtained in Examples 7 and 8 was compared using the same metal blend as described in Example 9 at a flow rate for the microdialysis 2 pL.min 1 and a sample collection time 40 min with a microdialysis membrane having a cut-off of 20 kDa.
  • Table 3 summarizes the results obtained using 3 different infusion fluids: (i) water, (ii) polysiloxane-EDTA nanoparticles and (iii) polysiloxane-DTPA nanoparticles at a chelating agent concentration of 15 mM.
  • DTPA-based nanoparticles have a very high aluminum extraction capacity because of the very high affinity of the agent chelating for this species. The presence of aluminum appears to saturate the surface chelating agents reducing the efficiency of the fluid for other metals.
  • the polysiloxane - DTPA nanoparticles make it possible to obtain a very specific infusion fluid for the extraction of aluminum.
  • Table 3 Concentration of the extracted metals in the perfusion fluid by comparing the water and polysiloxane-EDTA nanoparticles and polysiloxane-DTPA (15 mM) at a flow rate of 2 ⁇ L.min 1 .
  • the microdialysis membrane (63 Microdialysis Catheter, M Dialysis AB, Sweden) used has a cut-off of 20 kDa and the flow rate was set at 2 ⁇ L ⁇ min-1 with a collection time of 40 min.
  • the analysis of the quantities of metals extracted was carried out by ICP / MS.
  • the perfusion fluid consisted of either reconstituted LCR or polysiloxane-EDTA nanoparticles whose synthesis is described in Example 7 dispersed in the reconstituted LCR.
  • the results of the extraction are given in Table 4. It may be noted that the perfusion fluid containing only CSF has a very low extraction power.
  • the addition of the nanoparticles in the perfusion fluid substantially increases the metal extraction whatever the metal. In these conditions, one thus gains a metal extraction factor of more than 5 for lead, more than 7 for copper, more than 25 for cadmium and more than 125 for aluminum.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Anesthesiology (AREA)
  • Neurosurgery (AREA)
  • Emergency Medicine (AREA)
  • Vascular Medicine (AREA)
  • Dermatology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • External Artificial Organs (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

La présente invention concerne le domaine des dispositifs médicaux, plus particulièrement les dispositifs permettant d'extraire au sein d'un organisme des métaux. L'utilisation de ces dispositifs permet par exemple de prévenir et/ou traiter des pathologies liées à une dérégulation de l'homéostasie des métaux dans l'organisme, par exemple les maladies neurologiques.

Description

DISPOSITIF POUR LE MAINTIEN DE L’HOMEOSTASIE METALLIQUE, ET SES
UTILISATIONS
DOMAINE TECHNIQUE
La présente invention concerne le domaine des dispositifs médicaux, plus particulièrement les dispositifs permettant d’extraire au sein d’un organisme des métaux. L’utilisation de ces dispositifs permet par exemple de prévenir et/ou traiter des pathologies liées à une dérégulation de l’homéostasie des métaux dans l’organisme, par exemple les maladies neurologiques.
CONTEXTE
L’effet potentiellement délétère des métaux dans l’organisme et notamment au niveau neurologique est mis en avant par un nombre d’études scientifiques de plus en plus significatif (C. Marchetti et al., Biometals, 2014). La thérapie de chélation qui vise à diminuer la concentration en ions métalliques est déjà utilisée depuis de nombreuses années dans les cas d’intoxications aigues par des métaux. Un certain nombre de chélatants sont déjà acceptés chez l’homme, chacun étant associé à un groupe de métaux particuliers (G. Crisponi et al., Coordination Chemistry Reviews, 2015). La thérapie de chélation s’est également avérée être un outil indispensable pour le traitement des patients transfusés souffrant de b-Thalassémie. En effet, les patients transfusés à de nombreuses reprises soufrent de l’accumulation du fer dans l’organisme. Ces dépôts de fer sont régulés par l’administration par voie intraveineuse ou orale de chélatants du fer tels que la desferrioxamine, la deferiprone ou encore le deferasirox (P. V. Bemhardt et al., Dalton Trans, 2007). La thérapie de chélation par D- penicillamine et Trientine (par voie orale) est également employée actuellement pour extraire des cations cuivre et traiter la maladie de Wilson, résultant d’une anomalie génétique touchant un transporteur du cuivre : ATP7B. Cette anomalie entraîne des surcharges de cuivre avec une augmentation du cuivre circulant dans le sang et entraînant des dépôts dans les organes, principalement le foie et le cerveau (M. L. Schilsky, Clin. Liver. Dis,, 2017). La thérapie de chélation présente une bonne efficacité dans le cas du traitement présymptomatique mais plus réduite dans le cas des atteintes hépatiques ou neurologiques (M. Wiggelinkhuizen et al., Aliment Pharmacol., 2009) sans doute en raison d’une difficulté à atteindre la zone ciblée et d’une faible spécificité.
Malheureusement, la thérapie par chélation est également utilisée à mauvais escient par voie intraveineuse pour soigner de nombreuses autres pathologies (autisme, claudication...) sans qu’une validation médicale n’ait été obtenue au préalable. Ces utilisations malavisées ont pu conduire à de lourds effets secondaires et même dans les cas les plus tragiques à la mort de patients en raison d’une trop grande dérégulation au sein du corps de l’homéostasie de métaux essentiels (G. Crisponi et al., Coordination Chemistry Reviews, 2015).
De plus en plus d’études scientifiques mettent en avant le rôle important que pourraient avoir les métaux et en particulier le fer, mais également le cuivre, le zinc, le manganèse et même l’aluminium dans de nombreuses atteintes neurologiques (E. J. McAllum et al., J. Mol. Neurosci., 2016). C’est naturellement le cas pour la neurodégénérescence avec surcharge en fer qui est une maladie rare associée à une anomalie génétique liée à une accumulation du fer dans certaines zones du cerveau et qui ne bénéficie à ce jour que de traitements palliatifs (S. Wiethoff et al., Handb. Clin. Neurol., 2017). Par ailleurs, de nombreuses études ont montré que le fer avait tendance à s’accumuler dans le cerveau avec l’âge (J. Acosta-Cabronero et al., Journal of Neuroscience, 2016). Le fer joue un rôle crucial pour de nombreuses fonctions du cerveau comme la respiration mitochondriale, la synthèse de myéline et de neurotransmetteurs et le métabolisme (A. A. Belaidi et al., Journal of Neurochemistry, 2016). Dans le cerveau, le fer est majoritairement localisé dans la substantia nigra pars compacta et dans les noyaux gris centraux avec des niveaux comparables à ceux du foie. Avec l’âge, le fer a tendance à s’accumuler dans certaines régions du cerveau où on le trouve majoritairement associé à la ferritine et à la neuromélanine. Les zones où les taux de fer sont les plus susceptibles d’augmenter sont la subtsantia nigra, le putamen, le globus pallidus, le noyau caudé ou le cortex, chacune de ces zones étant associé à des troubles neurodégénératifs différents (D. J. Hare et al., Nat. Rev. Neurol., 2015). Plusieurs maladies neurologiques telles qu’Alzheimer, Parkinson et la maladie d’Huntington s’accompagnent d’accroissement de la quantité de fer dans des zones spécifiques entraînant des dommages cellulaires ainsi que du stress oxydant (A. A. Belaidi et al., Journal of Neurochemistry, 2016). Pour la maladie de Parkinson, il a été observé une augmentation de la quantité de fer dans la substantia nigra, qui est la région du cerveau susceptible d’être touchée par la dégénération associée à la maladie de Parkinson. L’augmentation du taux de fer est spécifique de la substantia nigra et n’ apparaît pas dans les autres régions non touchées par la pathologie. Cette augmentation du taux de fer peut entraîner des dommages suivant la réaction de Lenton et il est établi que les dommages oxydatifs sont une des caractéristiques des maladies neurodégénératives (S. Ayton et al., Biomed. Res. Int., 2014). La maladie d’Alzheimer est également caractérisée par des perturbations des quantités de métaux dans le cerveau mais associées à d’autres régions du cerveau et d’autres protéines. Il semble en effet que dans ce cas une augmentation des taux de fer et une diminution des taux de cuivre soient observés (S. F. Graham et al., J. Alzheimers Dis., 2014). La maladie de Huntington est une autre maladie neurodégénérative se traduisant par des troubles du mouvement, un déclin cognitif et des problèmes d’ordre psychiatriques. Dans cette pathologie, de nombreux marqueurs du stress oxydant sont observés au niveau du cerveau qui peut être relié à une dérégulation de l’homéostasie du fer (S. J. A. van den Bogaard et al., International Review of Neurobiology, 2013). L’augmentation du niveau de fer au niveau de plusieurs régions du cerveau (putamen, noyau caudé et pallidum) a été ainsi validée par plusieurs études IRM dont celle de Bartzorkis and co-workers (G. Bartzorkis et al., Archives ofNeurology, 1999).
Ces nombreuses évidences du rôle de la dérégulation de l’homéostasie du fer dans de nombreux troubles neurodégénératifs ont poussé les scientifiques à étudier l’impact d’une thérapie de chélation sur ces pathologies (Tableau 1). Ainsi, la deferiprone (utilisée pour le traitement des dépôts de fer intervenant lors des transfusions pour la b-thalassémie) a été utilisée dans un essai clinique de phase II (DeferipronPD, NCT01539837) ayant inclus 22 patients (A. Martin-Bastida et al., Scientific Reports, 2017). Lors de cet essai clinique, le traitement a duré 6 mois et a été bien toléré par les patients. Une baisse du niveau de fer a été observée dans le noyau denté et le noyau caudé. La réduction du taux de fer dans la substantia nigra n’a été observée que chez 3 patients. Aucune modification du taux de fer dans le globus pallidus et le putamen n’a été observée. Lors de cet essai, une tendance à l’amélioration des scores moteurs et de la qualité de vie a été montrée mais elle ne s’est pas révélée statistiquement significative. Un autre essai utilisant la deferiprone a été mené (Fair-Park I) par une autre équipe qui a montré une diminution du taux de fer dans la substantia nigra et une amélioration des scores moteurs mais sans atteindre également une signifiance statistique (G. Grolez et al., BMC Neurology, 2015). En raison des résultats encourageants de l’essai Fair-Park I, un essai Fair-Park II a démarré en 2016 (Tableau 1). Au vu des résultats encourageants des essais pour Parkinson, la deferiprone a été proposée récemment pour un essai clinique sur la maladie d’Alzheimer (Tableau 1). Précédemment, un autre chélatant métallique : le clioquinol avait été testé afin d’étudier son impact sur la formation des fibres amyloïdes (Tableau 1). Ce médicament avait été interdit dans les années 70 en raison de son lien supposé avec la neuropathie myélo-optique (C. W. Ritchie et al., Arch. Neurol., 2003) et était réévalué au cours de cette étude. Lors de cette étude, la sûreté du produit a été estimée satisfaisante pour de futurs essais cliniques même si quelques effets adverses ont été reportés et des bénéfices cliniques ont été observés chez les patients les plus atteints par la maladie. A la suite de cet essai, un dérivé du clioquinol (PBT2) a été développé et mis en jeu dans un essai de phase Ha (L. Lannfelt et al., Lancet Neurol., 2008). Une bonne tolérance du traitement a été observée. Une baisse du taux de protéines Abeta a été observée dans le liquide caphalo -rachidien mais pas dans le plasma. Deux fonctions exécutives ont également été améliorées pour les patients ayant subi le traitement.
Plusieurs chélatants du fer tels de la desferrioxamine, le clioquinol, MAO, Vk-28, M30 ou M30A (N. Wang et al., Biomacromolecules, 2017) ont ainsi attiré l’attention des chercheurs lors des essais précliniques ou même cliniques pour le traitement par chélation des maladies neurodégénératives. Néanmoins, l’efficacité de ces molécules et d’autres chélatants du fer est toujours limitée par leur faible temps de vie dans l’organisme, leur éventuelle cytotoxicité à haute dose, leur difficulté à passer la barrière hémato-encéphalique puis à cibler la zone la plus touchée du cerveau et à leur saturation préalable par des cations endogènes.
En parallèle de ces études, un essai clinique avait été demandé par le NIH (National Institutes of Helath) en 2001 pour vérifier l’intérêt de l’EDTA pour le traitement des maladies cardiovasculaires en utilisant un protocole scientifique rigoureux. En effet, il avait été postulé dans les années 50 que l’EDTA pouvait chélater le calcium des plaques d’athérosclérose entraînant ainsi leur dégradation. En raison du manque de résultats cliniques, la plupart des cardiologues refusaient cette pratique. Néanmoins, des praticiens continuaient à l’utiliser et en 2007, une étude a montré que plus de 110000 patients par an aux USA subissaient ce traitement. En 2002, le NIH finança l’essai TACT (Trial to Assess Chélation Therapy, NCT 00044213)) qui enrôla 1708 patients âgés de 50 ans ou plus ayant subi au moins six mois plus tôt un infarctus du myocarde. L’essai montra une bonne tolérance du traitement par l’EDTA chez les patients enrôlés (D. B. Mark et al., Cire. Cardiovasc. Quai. Outcomes, 2014). Un effet modeste mais significatif a été observé pour les patients ayant subi le traitement par l’EDTA (P. Ouyang et al., Curr. Cardiol. Rep., 2015). Cet effet s’est néanmoins révélé beaucoup plus important pour un sous-groupe de patients souffrant de diabète (633 patients) (E. Escolar et al., Cire. Cardiovasc. Quai. Outcomes, 2014). Les patients diabétiques soumis à un traitement par l’EDTA ont ainsi montré une réduction relative du risque de 41% pour le critère d’évaluation cardiovasculaire combiné (p <0.001), une réduction du risque d’accident cérébral non mortel ou d’infarctus du myocarde non mortel de 40% (p = 0.017) et une réduction du risque de mort de 43 % (p = 0.011). Cette étude montre ainsi le potentiel d’une thérapie de chélation ciblée pour un groupe de patients particuliers -des patients souffrant de diabète- afin d’éviter un futur accident car dio vasculaire.
Actuellement, il est également mis en avant que de plus en plus de pathologies sont liées à une dérégulation de l’homéostasie des métaux dans le corps comme cela a été montré récemment pour les symptômes de dépendance à la cocaïne (K. D. Ersche et al., Transi. Psychiaîry, 2017) ou suspecté pour des syndromes comme l’autisme (D.A. Rossignol et al., Transi Psychiaîry, 2014). De nombreuses publications se sont concentrées sur le rôle du fer qui est visible en IRM, mais d’autres métaux endogènes tels que :
(i) le manganèse dans les syndromes neurologiques dits de manganisme (P. Chen et al., J. Neurochem., 2015),
(ii) le cuivre dans le cas de la maladie de Wilson ;
ou bien des métaux exogènes tels que :
(i) le mercure pour des atteintes neurotoxiques et cardiaques (J. Ohlander et al., Int. J. Occup. Environ. Health, 2016),
(ii) le cadmium, par exemple dans le cas d’intoxication (V. M. Andrade, Adv.
Neurobiol, 2017),
(iii) le plomb associé au saturnisme (G. Bjorklund et al., Arch. Toxicol., 2017), se sont également révélés à l’origine de troubles neurologiques sévères quand leur homéostasie est dérégulée que cela soit par un facteur extérieur ou une anomalie génétique.
A ce jour, il existe donc un besoin de développer de nouveaux moyens permettant d’extraire les métaux dans l’organisme, dans le but de prévenir et/ou traiter les pathologies liées à une dérégulation de l’homéostasie métallique, et qui présenteraient un ou plusieurs des avantages suivants :
- une extraction ciblée des métaux au sein de l’organisme, que ces derniers soient présents en forte ou faible quantité,
- une régulation de l’homéostasie de métaux essentiels,
- une absence de cytotoxicité,
- une absence de durée de vie limitée dans l’organisme,
une action facilitée au-delà de la barrière hémato-encéphalique, dans le cas du traitement de maladies neurologiques,
une application adaptée à la prévention et/ou au traitement de n’importe quelle pathologie liée à une dérégulation de l’homéostasie métallique.
Ces avantages et bien d’autres sont décrits dans la présente divulgation.
DESCRIPTION DETAILLEE
Dans ce contexte, les inventeurs de la présente invention ont ainsi développé un dispositif médical comprenant au moins un agent chélatant permettant l’extraction de cations métalliques. Dans un premier aspect, l’invention concerne ainsi un dispositif pour le maintien de l’homéostasie métallique à des fins thérapeutiques, caractérisé en ce qu’il comprend un moyen permettant l’extraction de cations métalliques.
Le « maintien de l’homéostasie métallique à des fins thérapeutiques » s’entend de la régulation de la teneur en certains métaux au sein d’un organisme, notamment dans le but d’extraire les cations métalliques en excès qui peuvent être responsables de pathologies.
Dans un mode de réalisation, le terme « homéostasie métallique » s’entend de l’homéostasie des cations métalliques (plus particulièrement de l’homéostasie des cations métalliques spécifiques).
Dans un mode de réalisation, ledit moyen permettant l’extraction de cations métalliques est choisi parmi :
- un implant sur lequel est greffé au moins un agent chélatant, ou
- un fluide de perfusion contenant au moins un agent chélatant.
Selon l’invention, le terme « agent chélatant » s’entend d’un groupement organique capable de complexer au moins un cation métallique. Selon un mode de réalisation préféré, l’agent chélatant est capable de complexer les cations métalliques que l’on désire extraire, et la constante de complexation log(Ko) dudit agent chélatant pour au moins un desdits cations métalliques est supérieure à 10, notamment 11, 12, 13, 14, 15 et est de préférence supérieure ou égale à 15. Avantageusement l’agent chélatant complexe au moins un des cations des métaux Cuivre (Cu), Fer (Fe), Zinc (Zn), Mercure (Hg), Cadmium (Cd), Plomb (Pb), Aluminium (Al), Manganèse (Mn), Arsenic (As), Mercure (Hg), Cobalt (Co), Nickel (Ni), Vanadium (V), Tungstène (W), Zirconium (Zr), Titane (Ti), Chrome (Cr), Argent (Ag), Bismuth (Bi), Etain (Sn), Sélénium (Se), Thallium (Th), Calcium (Ca), Magnésium (Mg), Scandium (Sc), Ytrium (Y), Lanthan (La), Cérium (Ce), Praséodym (Pr), Néodyme (Nd), Prométhium (Pm), Samarium (Sm), Europium (Eu), Gadolinium (Gd), Terbium (Tb), Dysprosium (Dy), Holmium (Ho), Erbium (Er), Thulium (Tm), Ytterbium (Yb), Lutécium (Lu), Actinium (Ac), Thorium (Th), Protactinium (Pa), Uranium (U), Neptunium (Np), Plutonium (Pu), Américium (Am), Curium (Cm), Berkélium, (Bk) Californium (Cf), Einsténium (Es), Fermium (Fm), Mendélévium (Md), Nobélium (No), et Lawrencium (Lr). Encore plus avantageusement, l’agent chélatant complexe au moins un des cations des métaux Cuivre, Fer, Zinc, Mercure, Cadmium, Plomb, Aluminium, Manganèse, Magnésium, Calcium, et Gadolinium, notamment Manganèse et Gadolinium. De façon encore plus avantageusement, l’agent chélatant complexe au moins un des cations des métaux Cuivre, Fer et/ou Zinc. Selon l’invention, le terme « au moins un agent chélatant » s’entend de la présence d’un seul type d’agent chélatant, d’un mélange d’agents chélatants différents ou d’un mélange de plusieurs agents chélatants identiques.
Avantageusement la spécificité de l’agent chélatant pour lesdits métaux (cations métalliques) à extraire est élevée par rapport aux autres oligoéléments cationiques, en particulier l’écart entre les constantes de complexation est de préférence supérieur à 3, et plus particulièrement l’écart entre les constantes de complexation avec le calcium et le magnésium est de préférence supérieur à 3, et même supérieur à 5.
Selon un mode de réalisation préféré, ledit dispositif contient également des oligoéléments, choisis parmi le Calcium, Magnésium, Fer, Cuivre, Zinc et Manganèse, soit directement au sein dudit polymère, implant ou solide, soit au sein du fluide de perfusion. Ceci permet par exemple de réguler l’homéostasie des métaux essentiels.
Selon un mode de réalisation préféré, ledit moyen dudit dispositif, permet d’extraire les cations métalliques d’un fluide biologique, d’un organe ou d’un tissu, notamment lorsque la teneur desdits cations métalliques est inférieure à 1 ppm, notamment 0,1 ppm, 0,0lppm et est de préférence inférieure à 1 ppb. Avantageusement, au moins plus de la moitié des cations présents peuvent être extraits.
Selon l’invention, le terme « fluide biologique » s’entend de tous les fluides avec lesquels le dispositif de l’invention peut être mis en contact, tels que le sang, le liquide cérébro-spinal, le liquide synovial, ou le liquide péritonéal.
Selon l’invention, le terme « organe » s’entend de tous les organes avec lesquels le dispositif de l’invention peut être mis en contact ou à l’intérieur duquel ledit dispositif peut être implanté ou inséré, tels que le cerveau, le foie, le pancréas, les intestins ou les poumons.
Selon l’invention, le terme « tissu » s’entend de tous les tissus avec lesquels le dispositif de l’invention peut être mis en contact ou à l’intérieur duquel ledit dispositif peut être implanté ou inséré, tels que le péritoine ou le tissu tumoral (le cas échéant d’une tumeur). Par exemple, ledit dispositif peut être mis en contact, inséré ou implanté par endoscopie, notamment au sein d’une tumeur.
Selon un mode de réalisation préféré, ledit moyen permettant l’extraction des cations métalliques, est par exemple un matériau, et permet d’extraire une quantité de cations métalliques représentant au moins 1% de sa masse, et de préférence plus de 10% de sa masse.
Le moyen permettant l’extraction de métaux est un système de dialyse Avantageusement, et selon un mode de réalisation préféré, le moyen permettant l’extraction de cations métalliques est un système de dialyse comprenant :
a. une membrane de dialyse poreuse, et
b. un réservoir comprenant un fluide de perfusion.
Selon l’invention, le terme « système de dialyse » s’entend de tout système permettant le passage de cations métalliques à travers une membrane artificielle.
Selon ce mode de réalisation spécifique, ledit dispositif est avantageusement un dispositif de microdialyse. Depuis plusieurs années, de nouvelles technologies de prélèvement local d’analytes ou d’échantillon ou de délivrance locale de médicaments (microdialyse) se sont développées. La microdialyse a été développée à la fin des années 1950 pour récupérer et délivrer différentes substances dans une zone d’intérêt (C. M. Kho, Mol. Neurobiol., 2016). La microdialyse permet de ne collecter ou de ne délivrer que les échantillons capables de passer à travers une membrane semi-perméable dont le seuil de coupure est choisi suivant l’application visée. Dans le cas de la dialyse, il s’agit souvent d’un phénomène dynamique de diffusion, guidé par l’écart de concentration des espèces diffusantes entre chaque côté de la membrane. Dans le cas des espèces de faibles concentration, la force motrice est souvent vite limitée ou saturée, et le piégeage de l’espèce concernée limitée par la concentration d’équilibre. Avantageusement, le dispositif de microdialyse selon la présente invention permet de contourner les problèmes des chélatants classiques et d’extraire localement une très forte proportion des ions métalliques ciblés, grâce au maintien à l’intérieur d’une membrane de dialyse des espèces chimiques complexantes d’au moins un métal cible. Les espèces complexantes sont présentes au sein de macromolécules ou de nanoparticules qui possèdent une masse supérieure au seuil de coupure de la membrane afin que les espèces complexantes restent au sein du liquide (i.e. le fluide de perfusion) compris dans la membrane de dialyse. Le dispositif de dialyse contenant les espèces complexantes est alors placé au niveau de la zone d’intérêt, par exemple au niveau du cerveau dans le cas du traitement de maladies neurodégénératives. Les cations étant plus petits que le seuil de coupure de la membrane vont pouvoir diffuser à travers la membrane jusqu’à la solution comprenant les chélatants. Les fortes propriétés de complexation des ligands utilisés vont permettre la chélation des métaux cibles même s’ils sont présents en très faibles quantités. Cette chélation va donc diminuer la concentration des ions libres cibles dans la solution à l’intérieur de la membrane permettant de maintenir un fort gradient de concentration en l’ion métallique cible entre la concentration à l’extérieur et à l’intérieur de la membrane permettant de prolonger l’extraction et de maintenir un flux de cations. Afin de ne pas perturber l’homéostasie des autres cations métalliques, une concentration équivalente en ces ions pourra être placée dans la membrane de dialyse.
Tout dispositif de microdialyse connu de l’homme du métier pourra être utilisé selon la présente invention, à la condition qu’il contienne une membrane de dialyse poreuse et un réservoir comprenant un fluide de perfusion contenant au moins un agent chélatant tel que mentionné ci-dessus. Dans cet aspect, le seuil de coupure de la membrane poreuse est inférieur à la masse de l’agent chélatant. A titre d’exemple, les dispositifs pouvant être utilisés dans le cadre de la présente invention sont les dispositifs médicaux développés par la société M Dialysis AB, Sweden, tels que les cathéters de microdialyse (références 8010509, P000049, 8010337, cette liste n’étant pas exhaustive...).
Selon ce mode préféré, le fluide de perfusion est une suspension colloïdale de nanoparticules dont le diamètre moyen est supérieur aux pores de ladite membrane de dialyse poreuse, lesdites nanoparticules comprenant à titre de principe actif au moins un agent chélatant. Dans un aspect, le seuil de coupure de la membrane de dialyse poreuse est inférieur à la masse de l’agent chélatant, c’est-à-dire à la masse de la nanoparticule comprenant au moins un agent chélatant.
Alternativement, le fluide de perfusion est une suspension colloïdale de polymères dont le diamètre moyen est supérieur aux pores de ladite membrane de dialyse, lesdits polymères étant greffés à un principe actif qui est au moins un agent chélatant. Dans cet aspect, le seuil de coupure de la membrane de dialyse poreuse est inférieur à la masse de l’agent chélatant, c’est-à-dire à la masse du polymère sur lequel est greffé au moins un agent chélatant.
Selon l’invention, le terme « suspension colloïdale » s’entend d’un mélange de liquide et de particules solides, insolubles, qui restent dispersées régulièrement, les particules étant souvent suffisamment petites (microscopiques ou nanoscopiques) pour que le mélange reste stable et homogène.
Selon un mode de réalisation, ledit diamètre moyen est supérieur aux pores de ladite membrane de dialyse d’au moins 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% ou 100%.
Selon l’invention, le terme « diamètre moyen » s’entend de la moyenne harmonique des diamètres des nanoparticules ou des polymères sur lesquels sont greffés au moins un agent chélatant. La distribution de taille de nanoparticules ou des polymères est par exemple mesurée à l’aide d’un granulomètre commercial, tel qu’un granulomètre Malvem Zêta Sizer Nano-S basé sur la PCS (Photon Corrélation Spectroscopy) qui se caractérise par un diamètre hydrodynamique moyen. Une méthode de mesure de ce paramètre est également décrite dans la norme ISO 13321 : l996.
Dans un mode de réalisation, la suspension colloïdale contient plus de 1% massique de nanoparticules ou de polymères, notamment plus 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, et de préférence plus de 10% massique.
Les nanoparticules utilisables dans un dispositif, notamment un système de dialyse ou un implant, selon la présente invention
Les nanoparticules utilisables dans la présente invention comprennent deux caractéristiques essentielles:
elles sont à base de polysiloxane ou de silice,
elles ont un diamètre moyen supérieur à 3 nm, et de préférence inférieur à 50 nm.
Dans un mode de réalisation ladite nanoparticule comprend à titre de principe actif au moins un agent chélatant capable de complexer les cations métalliques, ledit agent chélatant ayant une constante de complexation log(KCi) pour au moins un desdits cations métalliques est supérieure à 10, et de préférence supérieure ou égale à 15.
Selon l’invention, le terme « nanoparticules à base de silice », s’entend des nanoparticules caractérisées par un pourcentage massique en silice d’au moins 8%.
Selon l’invention, le terme « nanoparticules à base de polysiloxane », s’entend des nanoparticules caractérisées par un pourcentage massique en silicium d’au moins 8%.
Selon l’invention, le terme « polysiloxane », s’entend d’un polymère réticulé inorganique consistant en un enchaînement de siloxanes.
Les unités structurales du polysiloxane, identiques ou différentes, sont de formule suivante :
Si(OSi)nR4-n
dans laquelle :
R est une molécule organique liée au silicium par une liaison covalente Si-C n est un entier compris entre 1 et 4.
A titre d’exemple préféré, le terme « polysiloxane » englobe notamment les polymères issus de la condensation par procédé sol gel de tetraéthylorthosilicate (TEOS) et de aminopropyltriethoxysilane (APTES) .
Avantageusement, ladite nanoparticule comprend ainsi : a. des polysiloxanes, avec un rapport massique en silicium d’au moins 8% de la masse totale de la nanoparticule, de préférence entre 8% et 50% de la masse totale de la nanoparticule,
b. des agents chélatants, de préférence dans une proportion comprise entre 5 et 1000, et de préférence entre 5 et 100 par nanoparticule,
c. le cas échéant, des éléments métalliques, par exemple dans une proportion comprise entre 5 et 100, et de préférence entre 5 et 20 par nanoparticule, lesdits éléments métalliques étant complexés aux agents chélatants.
Encore plus avantageusement, ladite nanoparticule est de formule (I) suivante :
Sin [0]m [OH]0 [Ch ]a [Ch2]b [Ch3]c [My+]d [Dz+]e [Gf|f (I)
dans laquelle:
• n est compris entre 20 et 50000 préférentiellement entre 50 et 1000.
• m est supérieur à n et inférieur à 4 n
• o est compris entre 0 et 2 n
• Chi, Ch2 et Ch3 sont des agents chélatants, identiques ou différents, reliés aux Si des polysiloxanes par une liaison covalente Si-C ; a, b et c sont des entiers compris entre 0 et n et a + b + c est inférieur ou égal à n, de préférence a + b + c est compris entre 5 et 100, par exemple entre 5 et 20,
• My+ et Dz+ sont des cations métalliques, identiques ou différents entre eux avec y et z=l à 6 ; d et e sont des entiers compris entre 0 et a + b + c, et d + e est inférieur ou égal à a + b + c,
• Gf sont des greffons de ciblage, identiques ou différents entre eux, reliés chacun au Si par une liaison Si-C et issus du greffage d’une molécule de ciblage permettant le ciblage des nanoparticules vers des tissues biologiques d’intérêt, par exemple vers des tissus tumoraux, f est un entier compris entre 0 et n.
Dans un mode de réalisation, les nanoparticules utilisables selon la présente invention ne comprennent pas d’éléments métalliques. En d’autres termes, dans la définition ci-dessus, ladite nanoparticule comprend uniquement les éléments a. (des polysiloxanes ou la silice) et b. (les agents chélatants).
Dans un mode de réalisation, les agents chélatants complexent les cations des métaux Cu, Fe, Zn, Hg, Cd, Pb, Mn, Al, Ca, Mg, Gd.
Dans un mode de réalisation, les agents chélatants sont obtenus par greffage (liaison covalente) sur la nanoparticule de l’une des molécules complexantes suivantes ou ses dérivés, telles que les acides polycarboxyliques polyaminés et leurs dérivés, notamment choisis parmi : DOTA (acide l,4,7,lO-tétraazacyclododécane-N,N,,N”,N’”-tétraacétique), DTPA (acide diéthylène triamine penta-acétique), D03A-pyridine de formule (I) ci-dessous:
EDTA (acide 2,2',2",2"'-(ethane-l,2-diyldinitrilo)tétraacétique), EGTA (acid éthylène glycol- bis(2-aminocthylcthcr)-N, N, N', N '-tétraacétique), BAPTA (acide l,2-bis(o- aminophcnoxy)cthanc-N, N, N', N '-tétraacétique), NOTA (acide l,4,7-triazacyclononane-l,4,7- triacétique), DOTAGA ((acide 2-(4,7,l0-tris(carboxymethyl)-l,4,7,l0-tétraazacyclododecan- l-yl)pentanedioic), DFO (deferoxamine), les dérivés amides comme par exemple le DOT AM (l,4,7,l0-tetrakis(carbamoylmethyl)-l,4,7,l0 tetraazacyclododecane) ou le NOTAM (1,4,7- tetrakis(carbamoylmethyl)-l,4,7-triazacyclononane), ainsi que les dérivés mixtes acides carboxiliques/amides, les dérivés phosphoniques comme par exemple le DOTP (1,4,7,10- tetraazacyclododecanel,4,7,l0-tetrakis(methylene phosphonate)) ou le NOTP (1,4,7- tetrakis(methylene phosphonate)- 1, 4, 7-triazacyclononane), les dérivés du cyclame comme TETA (1,4, 8,1 l-tetraazacyclotetradecane-N,N',N",N’"- tetraacetic acid), TETAM (1,4,8,11- tctraazacyclotctradccanc-N,N',N",N'"- tetrakis(carbamoylmethyl)), TETP (1,4,8,11- tctraazacyclotctradccanc-N,N',N",N'"- tetrakis(methylene phosphonate)) ou leurs mélanges.
De préférence, lesdits agents chélatants ci-dessus sont liés directement ou indirectement par liaison covalente aux siliciums des polysiloxanes de la nanoparticule. Le terme liaison « indirecte », s’entend de la présence d’un « linker » moléculaire ou « espaceur » entre la nanoparticule et l’agent chélatant, ledit linker ou espaceur étant lié de manière covalente à l’un des constituants de la nanoparticule.
Selon un mode de réalisation préféré, ladite nanoparticule est une nanoparticule à base de polysiloxane d’un diamètre moyen compris entre 3 et 50 nm, comprenant l’agent chélatant obtenu par greffage de DOTA, DOTAGA ou du DTPA sur la nanoparticule.
Selon un mode de réalisation préféré, ladite nanoparticule est une nanoparticule à base de polysiloxane d’une taille moyenne supérieure à 20 kDa et inférieure à 1 MDa, comprenant l’agent chélatant obtenu par greffage de DOTA, DOTAGA ou du DTPA sur la nanoparticule. Selon un mode de réalisation préféré, ladite suspension colloïdale comprenant lesdites nanoparticules, contient également des oligoéléments, choisis parmi le Calcium, Magnésium, Fer, Cuivre, Zinc, ou Manganèse.
Les nanoparticules selon la présente invention peuvent être obtenues selon le procédé décrit dans la demande de brevet FR1053389.
Les polymères utilisables dans un dispositif selon la présente invention
Dans un autre mode de réalisation de l’invention, des polymères peuvent être utilisés à la place des nanoparticules susmentionnées. Dans un tel cas, lesdits polymères sont greffés à au moins un agent chélatant.
Selon l’invention, le terme « polymère » s’entend de toute macromolécule formée de l’enchaînement covalent d’un très grand nombre d’unité de répétition qui dérivent d’un ou de plusieurs monomères. Les polymères préférentiellement utilisés dans la présente invention sont par exemple de la famille des chitosanes, des polyacrylamides, polyamines ou polycarboxyliques. Par exemple, il peut s’agit de polymères contenant des fonctions aminés tels que le chitosane. Selon un mode de réalisation préféré, ledit polymère est biocompatible.
Dans un mode de réalisation, les agents chélatants ou leurs dérivés greffés sur lesdits polymères sont des acides polycarboxyliques polyaminés et leurs dérivés, notamment choisis parmi : DOTA, DTP A, D03A-pyridine de formule (I) ci-dessus, EDTA, EGTA, BAPTA, NOTA, DOTAGA, DFO, DOTAM, NOTAM, DOTP, NOTP, TETA, TETAM et TETP ou leurs mélanges.
De préférence, lesdits agents chélatants ci-dessus sont liés directement ou indirectement par liaison covalente au polymère ou à une chaîne de polymères de plus de 10 kDa et de préférence de plus de 100 kDa. Le terme liaison « indirecte », s’entend de la présence d’un « linker » moléculaire ou « espaceur » entre le polymère et l’agent chélatant, ledit linker ou espaceur étant lié de manière covalente à l’un des constituants dudit polymère.
Dans un mode de réalisation, les agents chélatants ou leurs dérivés greffés sur lesdits polymères comprendront des fonctions dithiocarbamates.
Selon un mode de réalisation préféré, ledit polymère greffé à un agent chélatant est choisi parmi : le chitosane greffé à du DPTA-BA ou le chitosane greffé à du DFO.
Selon un mode de réalisation préféré, ladite suspension colloïdale comprenant lesdits polymères contient également des oligoéléments, choisis parmi le Calcium, Magnésium, Fer, Cuivre, Zinc, ou Manganèse. Les molécules chélatantes utilisables dans un dispositif selon la présente invention
Alternativement, le fluide de perfusion est une solution de molécules chélatantes. Lesdites molécules chélatantes peuvent avoir un diamètre moyen supérieur aux pores de ladite membrane de dialyse, c’est-à-dire supérieur au seuil de coupure de la membrane afin d’être maintenu au sein du liquide de la membrane de dialyse, ou bien elles peuvent avoir un diamètre moyen inférieur aux pores de ladite membrane de dialyse poreuse, et dans ce cas elles peuvent passer à travers les pores de la membrane avant de passer dans l’organisme et être naturellement éliminés par les reins ou le foie.
Dans ce mode de réalisation, lesdites molécules chélatantes ont une constante de complexation log(KCi) pour au moins un desdits cations métalliques supérieure à 10, et de préférence supérieure, ou égale à 15.
Dans ce mode de réalisation, ladite solution de molécules chélatantes contient également des oligoéléments, choisis parmi le Calcium, Magnésium, Fer, Cuivre, Zinc ou Manganèse.
Les implants sur lesquels sont greffés un agent chélatant utilisables dans un dispositif selon la présente invention
Alternativement, le moyen permettant l’extraction de cations métalliques est un implant comprenant au moins un agent chélatant. Selon un mode de réalisation, le moyen permettant l’extraction de cations métalliques est un implant sur lequel est greffé au moins un agent chélatant.
Selon l’invention, un « implant » s’entend de tout élément destiné à être introduit dans un organisme. Il peut s’agir de « polymères » ou de « tout autre solide » tels que décrit dans la présente description.
Dans ce mode de réalisation, les polymères sont tels que ceux susmentionnés, utilisables au sein d’un fluide de perfusion.
Selon l’invention, le terme « tout autre solide » s’entend, sans être restrictif, des pièces céramiques, métalliques, composites, massives ou poreuses, optionnellement fonctionnalisées en surface ou non fonctionnalisés en surface, et qui peuvent avoir différentes formes (telles que des billes, tubes, plaques, ...).
Dans ce mode de réalisation, ledit implant peut être implanté, notamment temporairement puis extrait. Préférentiellement, ledit implant peut être implanté au sein du cerveau, du foie, du pancréas,... du sujet à prévenir et/ou traiter. Ledit implant peut être résorbable et de façon naturelle être éliminé progressivement par l’organisme. Ledit implant peut également comprendre au moins un agent chélatant qui diffuse lentement dans l’organisme, par exemple une diffusion inférieure à 100 mg en molécules chélatantes libérées par jour, et de préférence moins de 10 mg/jour et/ou permettant une diffusion de moins de 1% de la masse totale par jour. Ledit implant peut être mis en contact direct avec les tissus ou sous la peau. Alternativement, ledit implant peut être dans un réservoir avec un fluide de dialyse en contact avec le sujet à traiter.
Dans un deuxième aspect, la présente invention concerne l’utilisation d’une suspension colloïdale telle que mentionnée ci-dessus, notamment utilisable dans un dispositif tel ceux susmentionnés.
Dans un mode de réalisation, l’invention concerne ainsi une suspension colloïdale de nanoparticules comprenant un principe actif, pour son utilisation à des fins thérapeutiques, caractérisée en ce qu’elle est contenue dans un dispositif pour le maintien de l’homéostasie métallique comprenant une membrane de dialyse poreuse, et en ce que le diamètre moyen desdites nanoparticules est supérieur aux pores de la membrane de dialyse poreuse dudit dispositif Avantageusement, ledit dispositif est un dispositif de microdialyse.
Dans un mode de réalisation, l’invention concerne aussi une suspension colloïdale de polymères greffés à un principe actif, pour son utilisation à des fins thérapeutiques, caractérisée en ce qu’elle est contenue dans un dispositif pour le maintien de l’homéostasie métallique comprenant une membrane de dialyse poreuse, et en ce que le diamètre moyen est supérieur aux pores de ladite membrane de dialyse poreuse, lesdits polymères étant greffé à un principe actif. Avantageusement, ledit dispositif est un dispositif de microdialyse.
Dans un mode de réalisation, l’invention concerne un dispositif pour le maintien de l’homéostasie métallique selon l’une quelconque des revendications 1 à 13, caractérisé en ce que ledit dispositif comporte des moyens permettant sa mise en contact, à travers une membrane de dialyse, ou son implantation au sein :
d’un fluide biologique, tel que le sang, le liquide cérébro-spinal, le liquide synovial ou le liquide péritonéal, ou
d’un organe, tel que le cerveau, le foie, le pancréas, les intestins ou les poumons, ou d’un tissu, tel que le péritoine ou le tissu tumoral.
Selon un mode de réalisation préféré, l’invention concerne une suspension colloïdale mentionnée ci-dessus pour son utilisation dans le maintien de l’homéostasie métallique. Selon un autre mode de réalisation préféré, l’invention concerne une suspension colloïdale mentionnée ci-dessus pour son utilisation dans le traitement des maladies neurologiques ou des dégénérescences cérébrales, telles que la maladie de Parkinson, la maladie d’Alzheimer, les maladies de type NBIA (Neurodegeneration with Brain Iran Accumulation, également nommée neurodégénérescence avec surcharge cérébrale en fer), la maladie de Wilson, ou la maladie de Huntington.
Selon un autre mode de réalisation préféré, l’invention concerne une suspension colloïdale mentionnée ci-dessus pour son utilisation dans le traitement de l’autisme.
Selon un autre mode de réalisation préféré, l’invention concerne une suspension colloïdale mentionnée ci-dessus pour son utilisation dans le traitement du diabète de type II ou des maladies cardiovasculaires.
Selon un autre mode de réalisation préféré, l’invention concerne une suspension colloïdale mentionnée ci-dessus pour son utilisation dans le traitement de tumeur.
Dans un troisième aspect, la présente invention concerne G utilisation d’une nanoparticule telle que mentionnée ci-dessus, notamment utilisable dans un dispositif tel que ceux susmentionnés.
Dans un mode de réalisation, l’invention concerne ainsi une nanoparticule à base de polysiloxane ayant un diamètre supérieure à 3 nm, de préférence inférieure à 50 nm, pour son utilisation à des fins thérapeutiques dans un dispositif pour le maintien de l’homéostasie métallique, ladite nanoparticule comprenant à titre de principe actif au moins un agent chélatant capable de complexer les cations métalliques, et caractérisé en ce que sa constante de complexation log(Ko) pour au moins un desdits cations métalliques est supérieure à 10, et de préférence supérieure ou égale à 15. Avantageusement, ledit dispositif est un dispositif de microdialyse.
Selon un mode de réalisation préféré, l’invention concerne une nanoparticule susmentionnée pour son utilisation dans le maintien de l’homéostasie métallique.
Selon un autre mode de réalisation préféré, l’invention concerne une nanoparticule susmentionnée pour son utilisation dans le traitement de maladies neurologiques ou de dégénérescences cérébrales, telles que les maladies de type NB IA, la maladie de Parkinson, la maladie d’Alzheimer, la maladie de Wilson ou la maladie de Huntington.
Selon un autre mode de réalisation préféré, l’invention concerne une nanoparticule susmentionné pour son utilisation dans le traitement de l’autisme. Selon un autre mode de réalisation préféré, l’invention concerne une nanoparticule susmentionnée pour son utilisation dans le traitement du diabète de type II ou des maladies car dio vasculaires .
Selon un autre mode de réalisation préféré, l’invention concerne une nanoparticule susmentionnée pour son utilisation dans le traitement de tumeur.
Dans un quatrième aspect, la présente invention concerne l’utilisation d’un polymère tel que mentionné ci-dessus, notamment utilisable dans un dispositif tel que ceux susmentionnés.
Dans un mode de réalisation, l’invention concerne ainsi un polymère, pour son utilisation à des fins thérapeutiques dans un dispositif pour le maintien de l’homéostasie métallique, ledit polymère étant greffé à au moins un agent chélatant capable de complexer les cations métalliques, et caractérisé en ce que sa constante de complexation log(Ko) pour au moins un desdits cations métalliques est supérieure à 10, et de préférence supérieure ou égale à 15. Avantageusement, ledit dispositif est un dispositif de microdialyse.
Selon un mode de réalisation préféré, l’invention concerne un polymère susmentionné pour son utilisation dans le maintien de l’homéostasie métallique et/ou protéique.
Selon un autre mode de réalisation préféré, l’invention concerne un polymère susmentionné pour son utilisation dans le traitement de maladies neurologiques ou de dégénérescences cérébrales, telles que les maladies de type NB IA, la maladie de Parkinson, la maladie d’Alzheimer, la maladie de Wilson ou la maladie de Huntington.
Selon un autre mode de réalisation préféré, l’invention concerne un polymère susmentionné pour son utilisation dans le traitement de l’autisme.
Selon un autre mode de réalisation préféré, l’invention concerne un polymère susmentionné pour son utilisation dans le traitement du diabète de type II ou des maladies car dio vasculaires .
Selon un autre mode de réalisation préféré, l’invention concerne un polymère susmentionné pour son utilisation dans le traitement de tumeur.
La présente invention concerne également une méthode pour extraire des cations métalliques chez un sujet comprenant l’administration d’un implant sur lequel est greffé au moins un agent chélatant, ou bien l’utilisation d’un fluide de perfusion contenant au moins un agent chélatant au sein d’un dispositif tel que ceux susmentionnés. Selon l’invention, ledit « sujet » s’entend d’un homme ou d’un animal à prévenir ou à traiter.
L'invention sera mieux illustrée par les exemples et les figures suivantes. Les exemples ci-après visent à éclaircir l’objet de l’invention et illustrer des modes de réalisation avantageux, mais en aucun cas ne visent à restreindre la portée de l’invention.
FIGURES
La Figure 1 représente l’image obtenue à la fin de la perfusion de la solution de MnCl2. Il s’agit d’une coupe coronale au niveau de la membrane de microdialyse (point noir). La surbrillance entourant la membrane correspond à la présence de Mn2+ (agent de contraste IRM positif).
La Figure 2 représente l’image obtenue à la fin de la perfusion avec la suspension de nanoparticules. Il s’agit d’une coupe coronale au niveau de la membrane de microdialyse (point noir). La surbrillance entourant la membrane correspond à la présence de Mn2+ (agent de contraste IRM positif).
La Figure 3 représente l’image correspondant à la différence des deux images précédentes (représentées en Figures 1 & 2) et mettant en évidence la baisse de concentration tissulaire en Mn2+ (surbrillance au niveau de la sonde de microdialyse).
La Figure 4 représente l’image obtenue à la fin de la perfusion par la solution de MnCl2. Il s’agit d’une coupe coronale au niveau de la membrane de microdialyse (point noir). La surbrillance entourant la membrane correspond à la présence de Mn2+ (agent de contraste IRM positif).
La Figure 5 représente l’image obtenue à la fin de la perfusion avec le sérum physiologique. Il s’agit d’une coupe coronale au niveau de la membrane de microdialyse (point noir). La surbrillance entourant la membrane correspond à la présence de Mn2+ (agent de contraste IRM positif).
La Figure 6 représente l’image correspondant à la différence des deux images précédentes (représentées en Figures 4 & 5) et mettant en évidence l’absence de baisse de concentration tissulaire en Mn2+ (quasi absence de surbrillance au niveau de la sonde de microdialyse).
La Figure 7 représente l’image IRM des solutions 1, 2, 3, 4 et 5.
La Figure 8 : Diamètre hydrodynamique des nanoparticules obtenues dans l’exemple 7. La Figure 9 : Diamètre hydrodynamique des nanoparticules obtenues dans l’exemple
8.
EXEMPLE
Exemple 1 : Extraction des ions manganèse du cerveau de rongeurs
L’étude a été réalisée sur des rats Wistar mâles (poids : 250 g).
A JO, pour la pose de la canule de microdialyse, l’animal est placé sous anesthésie gazeuse (2.5 % isoflurane sous 02/N2 (80:20)) avec utilisation d’un tapis chauffant utilisé durant la procédure et la phase de réveil. Préalablement à l’incision de la peau pour dégager la boîte crânienne, une anesthésie locale avec injection sous-cutanée de lidocaïne (Xylovet 21,33 mg/ml) est réalisée (4 mg/kg dilué dans du NaCl 0.9% avec un volume injecté de 10 mΐ/g). Après incision de la peau, la boîte crânienne est dégagée afin de positionner un micro-foret (diamètre < 1 mm) pour le perçage de la boîte crânienne. La pose de la sonde se fait sous stéréotaxie. La canule de dialyse (diamètre < 500 pm) est introduite délicatement dans le cerveau à la position et profondeur souhaitée. Après positionnement de la canule, une résine de fixation à prise rapide est appliquée et vissée sur le crâne de l’animal. La peau est ensuite recousue pour refermer la plaie. Avant le réveil de l’animal, un antalgique (Buprécare) est administré en sous-cutané. L’administration de l’antalgique est répétée à intervalle de 8 à 12 heures durant 2 jours suivant la pose de la sonde de microdialyse. Afin de limiter la déshydratation de l’animal, une injection sous-cutanée de NaCl 0,9% (de l’ordre de 0.5 ml pour la souris, 5 ml pour le rat) est réalisée au début de la procédure. Pour prévenir la sécheresse oculaire, un onguent ophtalmologique (Liposic) est appliqué au début de la procédure.
Le protocole de spectroscopie et d’imagerie IRM est réalisé à J3. Le protocole est réalisé sur les animaux sous anesthésie gazeuse (2.5% isoflurane sous 02/N2 (80:20)) avec utilisation d’un tapis chauffant utilisé durant la procédure et la phase de réveil et avec contrôle de la respiration durant les acquisitions RMN. Avant positionnement de l’animal dans l’IRM (Bruker Biospin 4,7 Tesla), la sonde de microdialyse (membrane de 2 mm de long, cutoff de 6 kDa, CMA Microdialysis AB, Kista, Suède) est insérée dans la canule de microdialyse. Une antenne de surface IRM (Doty scientifïc, 8 mm de diamètre, utilisée en émission et réception, est positionnée sur le crâne de l’animal à la verticale de la sonde de microdialyse. Les acquisitions IRM (Séquence Flash pondérée en Tl, Temps d’écho 2 ms, temps de répétition 150 ms, coupes coronales, épaisseur de coupe 1 mm, temps d’acquisition 3 minutes) sont réalisées en continu durant la perfusion de la sonde de microdialyse.
Résultats
Exemple 1A :
La sonde de microdialyse est perfusée avec une solution de MnCl2 à 1 mM dans du sérum physiologique à un débit de 10 m l/m in pendant 30 minutes. La sonde de microdialyse est ensuite perfusée avec une suspension de nanoparticules de polysiloxane comportant des DOTAGA libres à leur surface (28,1 mg dilué dans 1 ml de sérum physiologique + 100 mΐ de NaOH et HCl pour équilibrer à pH 7 = soit 28,1 mg dans volume total de 1100 mΐ) à un débit de 10 m l/m in pendant 30 minutes. Les nanoparticules de polysiloxane utilisées sont constituées d’une matrice de polysiloxane à laquelle sont greffés des chélatants cycliques de DOTAGA. Ces nanoparticules présentent un diamètre hydrodynamique de l l.5±6.3 nm. Cette taille permet d’éviter leur passage par la membrane de dialyse, dont le diamètre des pores est de 2 à 3 nm.
L’image obtenue à la fin de la perfusion de la solution de MnCl2 est présentée en Figure 1, et l’image obtenue à la fin de la perfusion avec la suspension de nanoparticules est présentée en Figure 2. La Figure 3 représente l’image correspondant à la différence des deux images précédentes et mettant en évidence la baisse de concentration tissulaire en Mn2+ (surbrillance au niveau de la sonde de microdialyse).
Exemple 1B :
La sonde de microdialyse est perfusée avec une solution de MnCl2 à 1 mM dans du sérum physiologique à un débit de 10 m l/m in pendant 30 minutes. La sonde de microdialyse est ensuite perfusée avec du sérum physiologique à 10 m l/m in pendant 30 minutes. L’image obtenue à la fin de la perfusion de la solution de MnCl2 est présentée en Figure 4, et l’image obtenue à la fin de la perfusion avec le sérum physiologique est présentée en Figure 5. La Figure 6 représente l’image correspondant à la différence des deux images précédentes et mettant en évidence l’absence de baisse de concentration tissulaire en Mn2+ (quasi absence de surbrillance au niveau de la sonde de microdialyse).
Conclusions L’IRM permet d’objectiver les variations de concentration tissulaire en cation Mn2+ (agent de contraste IRM paramagnétique). La présence de nanoparticules chélatantes dans le perfusât se traduit par une baisse notable de l’intensité dans les coupes IRM attribuable à une baisse de la concentration tissulaire locale en Mn2+. Cette baisse d’intensité n’est pas observée en l’absence de nanoparticules chélatantes.
Exemple 2 : Extraction de Gadolinium intra-tissulaire par perfusion de solution de nanoparticules
L’étude a été réalisée sur des rats Wistar mâles (poids : 250 g).
A J0, pour la pose de la canule de microdialyse, l’animal est placé sous anesthésie gazeuse (2.5 % isoflurane sous 02/N2 (80:20)) avec utilisation d’un tapis chauffant utilisé durant la procédure et la phase de réveil. Préalablement à l’incision de la peau pour dégager la boîte crânienne, une anesthésie locale avec injection sous-cutanée de lidocaïne (Xylovet 21,33 mg/ml) est réalisée (4 mg/kg dilué dans du NaCl 0.9% avec un volume injecté de 10j.i1/g). Après incision de la peau, la boîte crânienne est dégagée afin de positionner un micro-foret (diamètre < 1 mm) pour le perçage de la boîte crânienne. La pose de la sonde se fait sous stéréotaxie. La canule de dialyse (diamètre < 500 pm) est introduite délicatement dans le cerveau à la position et profondeur souhaitée. Après positionnement de la canule, une résine de fixation à prise rapide est appliquée et vissée sur le crâne de l’animal. La peau est ensuite recousue pour refermer la plaie. Avant le réveil de l’animal, un antalgique (Buprécare) est administré en sous-cutané. L’administration de l’antalgique est répétée à intervalle de 8 à 12 heures durant 2 jours suivant la pose de la sonde de microdialyse. Afin de limiter la déshydratation de l’animal, une injection sous-cutanée de NaCl 0,9% (de l’ordre de 0.5 ml pour la souris, 5 ml pour le rat) est réalisée au début de la procédure. Pour prévenir la sécheresse oculaire, un onguent ophtalmologique (Liposic) est appliqué au début de la procédure.
Le protocole de perfusion de la microdialyse est réalisé à J3. Le protocole est réalisé sur les animaux sous anesthésie gazeuse (2.5 % isoflurane sous 02/N2 (80:20)) avec utilisation d’un tapis chauffant utilisé durant la procédure et la phase de réveil et avec contrôle de la fréquence respiratoire. La sonde de microdialyse (membrane de 2 mm de long, cutoff de 6 kDa, CM A Microdialysis AB, Kista, Suède) est insérée dans la canule de microdialyse et la perfusion se fait sous un débit de 10 mΐ/min. La perfusion est réalisée durant 30 minutes avec un perfusât constitué de sérum physiologique additionné de lmM de GdCl3 (solution 1). Le dialysat est collecté en sortie de microdialyse (solution 2).
La sonde de microdialyse est ensuite perfusée avec une suspension de nanoparticules VL29-5 (28,1 mg dilué dans 1 ml de sérum physiologique + 100 ul de NaOH et HCl pour équilibrer à pH 7 = soit 28,1 mg dans volume total de 1100 ul) pendant 30 minutes (solution 3). Le dialysat est collecté en sortie de microdialyse (solution 4). Les nanoparticules utilisées sont identiques à celles de l’exemple 1, c’est-à-dire qu’elles présentent un diamètre hydrodynamique de l l.5±6.3 nm. Cette taille permet d’éviter leur passage par la membrane de dialyse, dont le diamètre des pores est de 2 à 3 nm.
Ces 4 solutions (ainsi qu’une solution 5 de liquide physiologique) sont imagés dans une IRM 4.7 Tesla avec une séquence écho de gradient pondéré en Tl (temps de répétition 40 ms, temps d’écho 2.6 ms, angle de basculement 80°).
Les images des 5 tubes sont présentées dans la Figure 7.
Résultats
Les résultats de la Figure 7 mettent ainsi en avant l’augmentation d’intensité de la solution 4 par rapport à celle de la solution 5 qui met clairement en évidence la captation et la chélation de Gd tissulaire lors du passage de la solution de nanoparticules dans la sonde de microdialyse.
Exemple 3 : Synthèse de chitosane-DTPA-BA
Le chitosane utilisé a un poids moléculaire moyen de 200 kDa. Le DTPA-BA (Diethylenetriaminepentaacetic dianhydride) a été fourni par Chematech, Dijon, France et utilisé tel quel. Les cassettes VIVAFLOW ont été achetées chez Sartorius et utilisées tel quel. Le fluide de perfusion a été acheté chez Phymep (Perfusion Fluid CNS Stérile, référence P000151) et utilisé tel quel.
Une masse de 0,5 g de chitosane a été pesée et insérée dans un récipient de 500 ml. Un volume de 250 ml d’eau distillée a été ajouté et la solution a été mise sous agitation. A l’aide d’un pH-mètre et d’une solution d’acide acétique à 50 %, le pH a été fixé à 4,0 ± 0,1. La solution a été agitée pendant 24 h. A 24 h le pH a été à nouveau fixé à 4,0 ± 0,1. Ce procédé a été répété jusqu’à dissolution complète de l’ensemble du chitosane. Une masse de 5,36 g de DTPA-BA a été pesée et insérée dans la solution obtenue. La solution a été mise sous agitation pendant 48 h. A 48 h la solution a été purifiée à l’aide d’une cassette Vivaflow avec un seuil de coupure de 100 kDa jusqu’à atteindre un taux de purification égal à au moins 100 000. Toujours à l’aide d’une cassette Vivaflow le solvant est remplacé par le fluide de perfusion CNS à concentration égale.
Exemple 4 : Synthèse de chitosane-DFO
Le chitosane utilisé a un poids moléculaire moyen de 200 kDa. Le p-NCS-Bz-DFO (N 1 -hydroxy-N 1 -(5-(4-(hydroxy(5-(3-(4-isothiocyanatophenyl)thioureido)pentyl)amino)-4- oxobutanamido)pentyl)-N4-(5-(N-hydroxyacetamido)pentyl)succinamide) a été acheté chez Chematech Mdt et utilisé tel quel. Les cassettes VIVAFLOW ont été achetées chez Sartorius et utilisées tel quel. Le fluide de perfusion a été acheté chez Phymep (Perfusion Fluid CNS Stérile, référence P000151) et utilisé tel quel.
Une masse de 0,5 g de chitosane a été pesée et insérée dans un récipient de 500 ml. Un volume de 250 ml d’eau distillée a été ajouté et la solution a été mise sous agitation. A l’aide d’un pH-mètre et d’une solution d’acide acétique à 50 %, le pH a été fixé à 4,0 ± 0,1. La solution a été agitée pendant 24 h. A 24 h le pH a été à nouveau fixé à 4,0 ± 0,1. Ce procédé a été répété jusqu’à dissolution complète de l’ensemble du chitosane.
Une masse de 500 mg de p-NCS-Bz-DFO a été pesée et insérée dans la solution obtenue. La solution a été mise sous agitation pendant 48 h. A 48 h la solution a été purifiée à l’aide d’une cassette Vivaflow avec un seuil de coupure de 100 kDa jusqu’à atteindre un taux de purification égal à au moins 100 000. Toujours à l’aide d’une cassette Vivaflow le solvant est remplacé par le fluide de perfusion CNS à concentration égale.
Exemple 5 : Purification et mise en condition de MetalSorb
Le polymère polyacrylamide contenant des fonctions dithiocarbamates, Metalsorb FZ, a été fourni SNF, France et utilisé tel quel. Les cassettes VIVAFLOW ont été achetées chez Sartorius et utilisées tel quel. Le fluide de perfusion a été acheté chez Phymep (Perfusion Fluid CNS Stérile, référence P000151) et utilisé tel quel.
Un volume de 50 ml de Metalsorb à 20 % massique a été mesuré et inséré dans un récipient de 250 ml. Un volume de 150 ml d’eau a été ajouté et la solution a été mise sous agitation pendant 2 h. À 2 h, la solution a été purifée à l’aide d’une cassette Vivaflow avec seuil de coupure de 100 kDa jusqu’à atteindre un taux de purification égal à au moins 100 000. Toujours à Paide d’une cassette Vivaflow, le solvant est replacé par le fluide de perfusion CNS à concentration égale.
Exemple 6 : Utilisation des matériaux obtenus dans les exemples 3, 4 et 5
Les matériaux obtenus dans les exemples 3, 4 et 5 ci-dessus peuvent être utilisés avantageusement comme moyen permettant l’extraction de cations métalliques selon la présente invention. Les solutions peuvent être utilisées directement ou en adaptant la formulation pour former un fluide de perfusion, ou les polymères peuvent être extraits et consolidés pour former un solide macroscopique qui peut être implanté.
Exemple 7 : Synthèse de nanoparticules de polysiloxane - EDTA
Les particules de polysiloxane comprenant des chélates de type EDTA (Ethylènediaminetétraactéique) Si@EDTA sont obtenues par mélange de trois précurseurs silane : (i) le TEOS (Tertraethyl orthosilicate - ((Si(OC2H5)4, 98% - Sigma-Aldrich Chemicals, France)), (ii) l’APTES (3 (aminopropyl)triethoxy silane - (H2N(CH2)3-Si(OC2H5)3, 99%- Sigma-Aldrich Chemicals, France)) et (iii) le Si-EDTA (N- (Trimethoxysilylpropyl)ethylenediaminetriacetic acid, trisodium salt - (N-[3- Trimethoxysilylpropyljethylenediamine triacetic acid trisodium salt à 45% dans l’eau, ABCR, Germany)). Les 3 précurseurs sont placés dans le DEG (diethylene glycol -DEG, 99% -SDS Carlo Erba (France))) avec un ratio molaire 2 :1 :3 (TEOS/APTES/Si-EDTA). Le mélange est maintenu sous agitation à température ambiante pendant 30 minutes avant ajout d’un volume 3 fois supérieur d’eau et une nouvelle phase d’agitation de 17 heures à la même température. La température est ensuite montée à 80°C et l’agitation est maintenue pendant 6 heures (le pH est ajusté à une valeur de 7,4 après deux heures de chauffage). Le chauffage est ensuite coupé et la solution est maintenue sous agitation pendant 17 heures. La solution est ensuite purifiée par filtration tangentielle. Les nanoparticules présentent un diamètre hydrodynamique de 21 ± 9 nm en diffusion dynamique de la lumière (en anglais, « dynamic light scattering » ou DLS) évaluée à l’aide d’un granulomètre Malvem Zêta Sizer Nano-S basé sur la PCS (Figure 8). Exemple 8 : Synthèse de nanoparticules de polysiloxane - DTPA
Pour les nanoparticules comprenant des chélates de type DTPA (diethylenetriaminepentaaceticacid) une étape préliminaire est nécessaire pour greffer le chélate sur un silane. Le silane comprenant le DTPA est obtenu en faisant réagir un dérivé du DTPA : le DTPA-BA (diethylenetriaminepentaaceticacid dianhydride - CheMatech, Dijon, France) avec l’APTES dans le DEG avec un ratio 1 pour 1 DTPA-BA/ APTES. La solution est laissée sous agitation pendant 24 heures. Ensuite le TEOS est ajouté avec un ratio TEOS/APTES/DTPA-BA 3/1/1. Après 1 heure sous agitation dans le DEG, de l’eau est ajoutée (10 fois le volume de DEG utilisé). La solution est ensuite agitée pendant 24 heures à température ambiante puis chauffée à 50°C et agitée à nouveau pendant 24 heures. Enfin, la solution est refroidie à température ambiante et laissée sous agitation pendant 72 heures. Les nanoparticules sont ensuite purifiées par filtration tangentielle et le pH est remonté à 7.4. Les nanoparticules présentent un diamètre hydrodynamique de 7 ± 3 nm en DLS, évaluée à l’aide d’un granulomètre Malvem Zêta Sizer Nano-S basé sur la PCS, avec une seconde population à 20 ± 7 nm (Figure 9).
Exemple 9 : Comparaison des débits de microdialyse sur l’extraction métallique
Le pouvoir d’extraction d’un fluide de perfusion comprenant un agent chélatant dans un dispositif de microdialyse sur une solution aqueuse comprenant plusieurs cations métalliques a été évalué dans le présent exemple.
Plusieurs débits (1, 2 et 5 pL.min-l) ont été testés en utilisant le même fluide de perfusion (nanoparticules polysiloxane - EDTA dont la synthèse est décrite dans l’exemple 8 à une concentration en EDTA de 15 mM dispersées dans l’eau). La membrane de microdialyse (63 Microdialysis Cathéter, M Dialysis AB, Suède) présentait un seuil de coupure de 20 kDa. La solution utilisée pour tester le pouvoir chélatant du fluide de perfusion était une solution aqueuse comprenant des ions Al(III), Cd(II), Zn(II), Cu(II) et Pb (II) chacun à une concentration de 100 ppb. Le pH de la solution a été ajusté à 7,4 et de l’HEPES (4-(2- hydroxyethyl)-l-piperazineethanesulfonic acid, Sigma- Aldrich Chemicals (France) a été ajouté comme tampon à une concentration de 1,2 g.L-l. Le volume total de la solution est de 600 mL. L’extraction par microdialyse a duré 40 min pour les débits de 2 et 5 pL.min-l . L’échantillon à 1 pL.min-l a été obtenu en 100 minutes. Ces échantillons ont été analysés par ICP/MS et les quantités de chaque métal ont été reportées dans le tableau 2. Cette expérience a été reproduite 4 fois et montre une meilleure extraction pour chacun des métaux en utilisant le fluide de perfusion à base de nanoparticules chélatantes en comparaison avec une utilisation de la microdialyse conventionnelle pour laquelle le fluide de perfusion contient initialement uniquement de l’eau (H20) dans toutes les conditions testées. Une captation métallique à des concentrations supérieures à leur « concentration de diffusion » dans le milieu à purifier a été observée dans le cas d’une utilisation d’un fluide de perfusion comprenant un agent chélatant. La chélation est particulièrement efficace pour l’aluminium en raison de sa plus petite taille qui permet une diffusion plus rapide à travers la membrane. Un débit de 2 pL.min-l semble un bon compromis entre extraction efficace et quantité d’échantillon prélevée et a été retenu pour les exemples 10 et 11.
Tableau 2 : Concentration des métaux extraits dans le fluide de perfusion en comparant l’eau et les nanoparticules polysiloxane - EDTA (15 mM) à différents débits.
Exemple 10 : Comparaison des fluides de perfusion à base de nanoparticules polysiloxane - DTPA et polysiloxane - EDTA
L’efficacité relative des nanoparticules obtenues dans les exemples 7 et 8 a été comparée en utilisant le même mélange métallique que celui décrit dans l’exemple 9 avec un débit pour la microdialyse de 2 pL.min 1 et un temps de collecte d’échantillon de 40 min avec une membrane de microdialyse présentant un seuil de coupure de 20 kDa. Le tableau 3 récapitule les résultats obtenus en utilisant 3 fluides de perfusion différents : (i) l’eau, (ii) les nanoparticules polysiloxane - EDTA et (iii) les nanoparticules polysiloxane - DTPA à une concentration en agent chélatant de 15 mM. Les nanoparticules à base de DTPA présentent une très forte capacité d’extraction de l’aluminium en raison de la très forte affinité de l’agent chélatant pour cette espèce. La présence de l’aluminium semble saturer les agents chélatants de surface réduisant l’efficacité du fluide pour les autres métaux. Les nanoparticules polysiloxane - DTPA permettent d’obtenir un fluide de perfusion très spécifique pour l’extraction de l’aluminium.
Tableau 3 : Concentration des métaux extraits dans le fluide de perfusion en comparant l’eau et les nanoparticules polysiloxane-EDTA et polysiloxane-DTPA (15 mM) à un débit de 2 pL.min 1.
Exemple 11 : Utilisation des nanoparticules polysiloxane - EDTA comme fluide de perfusion pour le liquide céphalo-rachidien (LCR)
Afin de modéliser le LCR, une solution composée de NaCl (147 mM), de KC1 (2,7 mM), de CaCl2 (1,2 mM) et de MgCl2 (0,85 mM) a été synthétisée. L’extraction métallique a été effectuée avec cette solution afin de vérifier que le pouvoir d’extraction n’était pas diminué par les différents ions pouvant interférer. Une solution similaire à celle de l’exemple 9 a été constituée (i.e. 600 mL de LCR reconstitué contenant 100 ppb de chacun des ions
Al(III), Cd(II), Zn(II), Cu(II) et Pb (II)). La membrane de microdialyse (63 Microdialysis Cathéter, M Dialysis AB, Suède) utilisée présente un seuil de coupure de 20 kDA et le débit a été fixé à 2 pL.min-l avec un temps de collecte de 40 min. L’analyse des quantités de métaux extraites a été réalisée par ICP/MS. Le fluide de perfusion était constitué soit de LCR reconstitué soit des nanoparticules polysiloxane - EDTA dont la synthèse est décrite dans l’exemple 7 dispersées dans le LCR reconstitué. Les résultats de l’extraction sont donnés dans le tableau 4. On peut noter que le fluide de perfusion contenant uniquement le LCR a un pouvoir d’extraction très faible. L’ajout des nanoparticules dans le fluide de perfusion augmente très sensiblement l’extraction métallique quel que soit le métal. Dans ces conditions, on gagne ainsi un facteur d’extraction métallique de plus de 5 pour le plomb, de plus de 7 pour le cuivre, de plus de 25 pour le cadmium et de plus de 125 pour l’aluminium.
Fluide de Débit Al (ppb) Cu (ppb) Cd (ppb) i Pb (ppb) i perfusion (pL.min 1)
LCR 2 5 8 4 21 i Polvsiloxane 2 643 63 1 12 1 16
. - EDTA . . . .
Tableau 4 : Concentration des métaux extraits dans une solution de LCR en comparant comme fluide de perfusion le LCR et les nanoparticules polysiloxane-EDTA (10 mM) à un débit de 2 pL.min 1.

Claims

REVENDICATIONS
1. Dispositif pour le maintien de l’homéostasie métallique à des fins thérapeutiques, caractérisé en ce qu’il comprend un moyen permettant l’extraction de cations métalliques, ledit moyen étant notamment choisi parmi :
- un implant comprenant au moins un agent chélatant, ou
- un fluide de perfusion contenant au moins un agent chélatant, ledit fluide de perfusion étant contenu dans un système de dialyse.
2. Dispositif pour le maintien de l’homéostasie métallique selon la revendication 1, caractérisé en ce que l’agent chélatant est capable de complexer les cations métalliques, et caractérisé en ce que la constante de complexation log(Ko) dudit agent chélatant pour au moins un desdits cations métalliques est supérieure à 10, et de préférence supérieure ou égale à 15, et notamment lesdits cations sont choisis parmi les cations des métaux Cu, Fe, Zn, Hg, Cd, Pb, Mn, Mg, Ca, Gd et Al, et plus particulièrement Cu, Fe et Zn.
3. Dispositif pour le maintien de l’homéostasie métallique selon la revendication 1 ou 2, caractérisé en ce qu’il contient des oligoéléments, choisis parmi le Calcium, Magnésium, Fer, Cuivre, Zinc, ou Manganèse.
4. Dispositif pour le maintien de l’homéostasie métallique selon l’une quelconque des revendications 1 à 3, caractérisé en ce que ledit moyen permet d’extraire les cations métalliques d’un fluide biologique, d’un organe ou d’un tissu, notamment lorsque la teneur desdits cations métalliques est inférieure à 1 ppm, notamment 0,1 ppm, 0,0lppm et est de préférence inférieure à 1 ppb.
5. Dispositif pour le maintien de l’homéostasie métallique selon l’une quelconque des revendications 1 à 4, caractérisé en ce que ledit moyen permet d’extraire une quantité de cations métalliques représentant au moins 1% de sa masse, et de préférence plus de 10% de sa masse.
6. Dispositif pour le maintien de l’homéostasie métallique selon l’une quelconque des revendications 1 à 5, caractérisé en ce qu’il comprend un système de dialyse comprenant : a. une membrane de dialyse poreuse, et
b. un réservoir comprenant un fluide de perfusion,
et en ce que le fluide de perfusion est choisi parmi :
- une suspension colloïdale de nanoparticules dont le diamètre moyen est supérieur aux pores de ladite membrane de dialyse poreuse, lesdites nanoparticules comprenant à titre de principe actif au moins un agent chélatant, ou
- une suspension colloïdale de polymères dont le diamètre moyen est supérieur aux pores de ladite membrane de dialyse poreuse, lesdits polymères étant greffés à un principe actif qui est au moins un agent chélatant,
- une solution de molécules chélatantes.
7. Dispositif pour le maintien de l’homéostasie métallique selon la revendication 6, caractérisé en ce que la suspension colloïdale contient plus de 1 % massique de nanoparticules ou de polymères, et de préférence plus de 10% massique.
8. Dispositif pour le maintien de l’homéostasie métallique selon l’une quelconque des revendications 6 à 7, caractérisé en ce que lesdites nanoparticules sont des nanoparticules à base de polysiloxane ayant un diamètre moyen supérieur à 3 nm, et de préférence inférieur à 50 nm.
9. Dispositif pour le maintien de l’homéostasie métallique selon l’une quelconque des revendications 6 à 8, caractérisé en ce que lesdites nanoparticules comprennent :
a. des polysiloxanes, avec un rapport massique en silicium d’au moins 8% de la masse totale de la nanoparticule, de préférence entre 8% et 50% de la masse totale de la nanoparticule,
b. des agents chélatants, de préférence dans une proportion comprise entre 5 et 1000, et de préférence entre 5 et 100 par nanoparticule, c. le cas échéant, des éléments métalliques, par exemple dans une proportion comprise entre 5 et 100, et de préférence entre 5 et 20 par nanoparticule, lesdits éléments métalliques étant complexés aux agents chélatants.
10. Dispositif pour le maintien de l’homéostasie métallique selon l’une quelconque des revendications 6 à 9, caractérisé en ce que lesdites nanoparticules sont de formule (I) suivante : Sin [0]m [OH]0 [Cln]a [Ch2]b [Ch3]c [My+]d [Dz+]e [Gf]f (I) dans laquelle:
• n est compris entre 20 et 50000 préférentiellement entre 50 et 1000.
• m est supérieur à n et inférieur à 4 n
• o est compris entre 0 et 2 n
• Chi, Ch2 et Ch3 sont des agents chélatants, identiques ou différents, reliés aux Si des polysiloxanes par une liaison covalente Si-C ; a, b et c sont des entiers compris entre 0 et n et a + b + c est inférieur ou égal à n, de préférence a + b + c est compris entre 5 et 100, par exemple entre 5 et 20,
• My+ et Dz+ sont des cations métalliques, identiques ou différents entre eux avec y et z=l à 6 ; d et e sont des entiers compris entre 0 et a + b + c, et d + e est inférieur ou égal à a + b + c,
• Gf sont des greffons de ciblage, identiques ou différents entre eux, reliés chacun au Si par une liaison Si-C et issus du greffage d’une molécule de ciblage permettant le ciblage des nanoparticules vers des tissues biologiques d’intérêt, par exemple vers des tissus tumoraux, f est un entier compris entre 0 et n.
11. Dispositif pour le maintien de l’homéostasie métallique selon l’une quelconque des revendications 6 à 10, caractérisé en ce que les agents chélatants sont obtenus par greffage sur les nanoparticules ou sur le polymère de l’une des molécules complex antes suivantes ou ses dérivés : DOTA, DTPA, EDTA, EGTA, BAPTA, NOTA, DOTAGA, DFO, DOTAM, NOTAM, DOTP, NOTP, TETA, TET AM, TETP et DTP AB A, ou leurs mélanges.
12. Dispositif pour le maintien de l’homéostasie métallique selon l’une quelconque des revendications 6 à 11 , caractérisé en ce que lesdites nanoparticules sont des nanoparticules à base de polysiloxane d’un diamètre moyen compris entre 3 et 50 nm, comprenant l’agent chélatant obtenu par greffage de DOTA, DOTAGA ou du DTPA sur les nanoparticules.
13. Dispositif pour le maintien de l’homéostasie métallique selon l’une quelconque des revendications 6 à 12, caractérisé en ce que lesdites nanoparticules sont des nanoparticules à base de polysiloxane d’une taille moyenne supérieure à 20 kDa et inférieure à 1 MDa, comprenant l’agent chélatant obtenu par greffage de DOTA, DOTAGA ou du DTPA sur les nanoparticules.
14. Dispositif pour le maintien de l’homéostasie métallique selon l’une quelconque des revendications 1 à 13, caractérisé en ce que ledit dispositif comporte des moyens permettant sa mise en contact à travers une membrane de dialyse ou son implantation au sein :
d’un fluide biologique, tel que le sang, le liquide cérébro-spinal, le liquide synovial ou le liquide péritonéal, ou
d’un organe, tel que le cerveau, le foie, le pancréas, les intestins ou les poumons, ou d’un tissu, tel que le péritoine ou le tissu tumoral.
15. Suspension colloïdale de nanoparticules comprenant un principe actif ou de polymères greffés à un principe actif, pour son utilisation à des fins thérapeutiques, caractérisée en ce qu’elle est contenue dans un dispositif pour le maintien de l’homéostasie métallique comprenant une membrane de dialyse poreuse, et en ce que le diamètre moyen desdites nanoparticules ou desdits polymères greffés est supérieur aux pores de la membrane de dialyse poreuse dudit dispositif.
16. Nanoparticule à base de polysiloxane ayant un diamètre supérieure à 3 nm, de préférence inférieure à 50 nm, pour son utilisation à des fins thérapeutiques dans un dispositif pour le maintien de l’homéostasie métallique, ladite nanoparticule comprenant à titre de principe actif au moins un agent chélatant capable de complexer lesdits cations métalliques, et caractérisé en ce que sa constante de complexation log(Ko) pour au moins un desdits cations métalliques est supérieure à 10, et de préférence supérieure ou égale à 15.
17. Polymère, pour son utilisation à des fins thérapeutiques dans un dispositif pour le maintien de l’homéostasie métallique, ledit polymère étant greffé à au moins un agent chélatant capable de complexer lesdits cations métalliques, et caractérisé en ce que sa constante de complexation log(Ko) pour au moins un desdits cations métalliques est supérieure à 10, et de préférence supérieure ou égale à 15.
18. Nanoparticule ou suspension colloïdale ou polymère pour son utilisation selon la revendication 15 ou 16 ou 17, pour son utilisation :
- dans le maintien de l’homéostasie métallique, ou
- dans le traitement de maladies neurologiques ou de dégénérescences cérébrales, telles que la maladie de Parkinson, la maladie d’Alzheimer, les maladies de type NBIA, la maladie de Wilson, ou la maladie de Huntington, ou - dans le traitement de l’autisme, ou
- dans le traitement du diabète de type II ou des maladies cardiovasculaires, ou
- dans le traitement de tumeur.
EP18842805.6A 2017-12-22 2018-12-21 Dispositif pour le maintien de l'homeostasie metallique, et ses utilisations Pending EP3727350A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1763090A FR3075649A1 (fr) 2017-12-22 2017-12-22 Dispositif pour le maintien de l'homeostasie metallique, et ses utilisations
PCT/FR2018/053528 WO2019122790A1 (fr) 2017-12-22 2018-12-21 Dispositif pour le maintien de l'homeostasie metallique, et ses utilisations

Publications (1)

Publication Number Publication Date
EP3727350A1 true EP3727350A1 (fr) 2020-10-28

Family

ID=63294249

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18842805.6A Pending EP3727350A1 (fr) 2017-12-22 2018-12-21 Dispositif pour le maintien de l'homeostasie metallique, et ses utilisations

Country Status (6)

Country Link
US (1) US20210205213A1 (fr)
EP (1) EP3727350A1 (fr)
JP (2) JP7446238B2 (fr)
CN (2) CN115845169A (fr)
FR (1) FR3075649A1 (fr)
WO (1) WO2019122790A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3109734A1 (fr) * 2020-05-04 2021-11-05 Mexbrain Système de dialyse pour le traitement du sepsis
FR3112960B1 (fr) * 2020-07-29 2023-03-10 Mexbrain Dispositif de dialyse implantable pour l’extraction de molécules circulantes du liquide cérébrospinal et/ou du liquide interstitiel
FR3112943A1 (fr) 2020-07-29 2022-02-04 Mexbrain Polysaccharide comportant un groupement chélatant soluble à pH physiologique et utilisation de celui-ci **
FR3116197A1 (fr) * 2020-11-19 2022-05-20 Nh Theraguix Procédé de traitement de tumeurs par captation du cuivre et/ou du fer
FR3125705B1 (fr) * 2021-07-30 2023-12-15 Mexbrain Composition pour la captation de plomb et/ou de cadmium dans un fluide de dialyse
CN114539553B (zh) * 2022-04-26 2022-09-06 深圳湾实验室 广谱抗氧化丝素蛋白及其制备方法和应用
WO2024008656A1 (fr) 2022-07-04 2024-01-11 Mexbrain Utilisation médicale d'un chitosane fonctionnalisé
WO2024038137A1 (fr) 2022-08-18 2024-02-22 Mexbrain Utilisation médicale de polymère fonctionnalisé

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE510379A (fr) 1951-04-04
JPS544490A (en) * 1977-06-11 1979-01-13 Toshimitsu Niwa Device for removing copper ion contained in humor
DE3270740D1 (en) * 1981-06-29 1986-05-28 Clara Ambrus Apparatus for removing heavy metal ions from blood
US5217998A (en) * 1985-07-02 1993-06-08 Biomedical Frontiers, Inc. Composition for the stabilization of deferoxamine to chelate free ions in physiological fluid
DE4230513C1 (de) * 1992-09-11 1994-03-31 Fresenius Ag Vorrichtung zur Entfernung von Aluminiumionen aus Blut und Lösung zur Verwendung in der Vorrichtung
US6030358A (en) 1997-08-08 2000-02-29 Odland; Rick Matthew Microcatheter and method for site specific therapy
AU2004255216B2 (en) * 2003-07-01 2010-08-19 Immunomedics, Inc. Multivalent carriers of bi-specific antibodies
FR2959502B1 (fr) * 2010-04-30 2012-09-07 Nanoh Nanoparticules ultrafines a matrice polyorganosiloxane fonctionnalisee et incluant des complexes metalliques ; leur procede d'obtention et leurs applications en imagerie medicale et/ou therapie
FR2989280B1 (fr) * 2012-04-13 2017-02-24 Univ Claude Bernard Lyon Nanoparticules ultrafines comme agent de contraste multimodal
WO2014155144A1 (fr) * 2013-03-28 2014-10-02 Bbs Nanotechnology Llc Nanocomposition stable comprenant du docétaxel, procédé pour sa préparation, son utilisation et compositions pharmaceutiques la contenant
WO2014207490A1 (fr) * 2013-06-28 2014-12-31 Bbs Nanotechnology Ltd. Agents de contraste de spect/mr(t1), spect/mr(t2) et spect/ct spécifiques d'une tumeur
CN103977772B (zh) * 2014-05-16 2016-01-13 大连理工大学 环糊精修饰磁性纳米吸附剂的制备方法及其在血液透析吸附系统中的应用
US11583621B2 (en) 2015-05-27 2023-02-21 Triomed Ab Cartridge and apparatus for performing adsorption dialysis
CN104984736A (zh) * 2015-06-23 2015-10-21 中南大学 一种血液重金属吸附剂及其制备方法和血液灌流器
EP3192530A1 (fr) * 2016-01-15 2017-07-19 Institut National De La Sante Et De La Recherche Medicale (Inserm) Nanoparticules ultrafines comme agent d'imagerie pour el diagnostic d'une dysfonction rénale

Also Published As

Publication number Publication date
US20210205213A1 (en) 2021-07-08
JP2021507801A (ja) 2021-02-25
CN111936122A (zh) 2020-11-13
FR3075649A1 (fr) 2019-06-28
JP2024009057A (ja) 2024-01-19
CN115845169A (zh) 2023-03-28
JP7446238B2 (ja) 2024-03-08
WO2019122790A1 (fr) 2019-06-27

Similar Documents

Publication Publication Date Title
EP3727350A1 (fr) Dispositif pour le maintien de l&#39;homeostasie metallique, et ses utilisations
CA2702919C (fr) Utilisation de nanoparticules a base de lanthanides comme agents radiosensibilisants
Peng et al. Carbon dots: promising biomaterials for bone-specific imaging and drug delivery
EP2563408B1 (fr) Nanoparticules ultrafines a matrice polyorganosiloxane fonctionnalisee et incluant des complexes metalliques; leur procede d&#39;obtention et leurs applications en imagerie medicale
Zhou et al. Implications for blood-brain-barrier permeability, in vitro oxidative stress and neurotoxicity potential induced by mesoporous silica nanoparticles: Effects of surface modification
US20210221690A1 (en) Nanoparticle compositions and methods of making and using the same
WO2022023677A1 (fr) Polysaccharide comportant un groupement chélatant soluble à ph physiologique et utilisation de celui-ci
WO2019073182A1 (fr) Nanovecteurs et utilisations
WO2020152426A1 (fr) Dispositif d&#39;extraction conjointe d&#39;un cation métallique et d&#39;une molécule cible
EP4376831A1 (fr) Composition pour la captation de plomb et/ou de cadmium dans un fluide de dialyse
EP4247435A1 (fr) Procédé de préparation de nanoparticules
EP4013511A1 (fr) Nanoparticules pour le traitement du cancer par rayonnement de radiofréquence
EP3192530A1 (fr) Nanoparticules ultrafines comme agent d&#39;imagerie pour el diagnostic d&#39;une dysfonction rénale
EP4247428A1 (fr) Procédé de traitement de tumeurs par captation du cuivre et/ou du fer
WO2022023679A1 (fr) Dispositif de dialyse implantable pour l&#39;extraction de molécules circulantes du liquide cérébrospinal et/ou du liquide interstitiel

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200721

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: LUX, FRANCOIS

Inventor name: TILLEMENT, OLIVIER

Inventor name: CREMILLIEUX, YANNICK

Inventor name: BRICHART, THOMAS

Inventor name: GROYER, SEBASTIEN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210416

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE -CNRS-

Owner name: UNIVERSITE CLAUDE BERNARD - LYON 1

Owner name: MEXBRAIN