EP3717828B1 - Luminous module for motor vehicle, and lighting and/or signalling device provided with such a module - Google Patents

Luminous module for motor vehicle, and lighting and/or signalling device provided with such a module Download PDF

Info

Publication number
EP3717828B1
EP3717828B1 EP18836347.7A EP18836347A EP3717828B1 EP 3717828 B1 EP3717828 B1 EP 3717828B1 EP 18836347 A EP18836347 A EP 18836347A EP 3717828 B1 EP3717828 B1 EP 3717828B1
Authority
EP
European Patent Office
Prior art keywords
face
previous
light
impact surface
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18836347.7A
Other languages
German (de)
French (fr)
Other versions
EP3717828A1 (en
Inventor
Julien RIZZI
Fabrice EGAL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Vision SAS
Original Assignee
Valeo Vision SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Vision SAS filed Critical Valeo Vision SAS
Publication of EP3717828A1 publication Critical patent/EP3717828A1/en
Application granted granted Critical
Publication of EP3717828B1 publication Critical patent/EP3717828B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/285Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24 - F21S41/2805
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/67Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors
    • F21S41/675Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors by moving reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/26Elongated lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/321Optical layout thereof the reflector being a surface of revolution or a planar surface, e.g. truncated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/322Optical layout thereof the reflector using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/36Combinations of two or more separate reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/36Combinations of two or more separate reflectors
    • F21S41/365Combinations of two or more separate reflectors successively reflecting the light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/14Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/26Refractors, transparent cover plates, light guides or filters not provided in groups F21S43/235 - F21S43/255
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/30Fog lights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a lighting and/or signaling device for a motor vehicle.
  • a preferred application concerns the automotive industry, for vehicle equipment, in particular for the production of devices capable of emitting light beams, also called lighting and/or signaling functions, generally meeting regulations.
  • the invention can allow the production of a light beam, preferably highly resolved, of the pixelated type, in particular for signaling and/or participation in lighting functions at the front of a vehicle. It can be used to display pictograms or variable patterns on a projection surface of the outgoing light.
  • FIG. 1 gives an example of the implementation of a pixelated and digital imaging system in the form of a micro-mirror matrix 13 in a beam projection module.
  • a light source 11 generates light rays in the direction of an optical device 12 making it possible to generate a beam which will impact a reflection face 14 of a micro-mirror matrix 13.
  • the light is either returned to the projection device 15, or returned to a dead zone so as not to participate in active illumination.
  • the patent document WO 2017/143371 A1 discloses a headlight for a motor vehicle comprising a matrix of micro mirrors and provided with a pair of light sources with electroluminescent diodes each associated with a lens for focusing a light beam on the reflection surface of the matrix of micro mirrors.
  • This duplication of sources obviously increases the luminous flux leaving the projector.
  • it inevitably increases cost and bulk.
  • the present invention aims to remedy at least in part the drawbacks of current techniques and aims in particular to propose a simpler, more compact and more economical optical system.
  • the light rays are deflected during their journey from the source light towards the projection device at least in part thanks to the prism.
  • the function of the prism includes, upstream of the imaging system, a transmission of light rays coming from the source and, downstream of the imaging system, a total internal reflection making it possible to carry out an angular modification of the rays, advantageously strong , so as to return the rays leaving the prism towards the projection device.
  • the prism allows strong angular variations in beam direction between the beam upstream of the imaging system and the beam downstream of the latter.
  • the optical input device can advantageously be brought closer to the imaging system and/or its diameter increased (the increase in illumination is directly linked to the increase in the diameter of a lens). In doing so, the luminous efficiency of the beam impacting the imaging system is higher which makes it possible, despite the use of a light-emitting diode source, to obtain satisfactory illumination at the output.
  • the present invention also relates to a motor vehicle lighting and/or signaling device equipped with at least one light module.
  • This device may comprise at least one additional module comprising at least one of an additional module configured to produce a basic low beam beam and an additional module configured to produce a basic high beam beam.
  • the pixelated beam can be an effective complement to another beam, or even several.
  • the device comprises an additional module configured to produce a basic low beam beam and an additional module configured to produce a basic high beam beam and in which the pixelated output beam of the module partly overlaps both the high beam base beam and/or the low beam base beam.
  • the pixelated beam can thus be used both to perform a ground writing function in the portion overlapping with the dipped beam and to contribute to anti-glare high beam functions (Glare Free High Beam in English). ) or dynamic cornering light for the portion astride with the main beam.
  • the present disclosure also describes a vehicle equipped with at least one module and/or a device according to the present invention.
  • the module is such that the second face and the third face are carried by two planes perpendicular to each other.
  • it preferably comprises an optical device for projecting the output beam receiving at least partially the at least part of the returned rays.
  • the optical projection device has an optical axis perpendicular to the second face.
  • the optical projection device has an optical axis forming an obtuse angle with an average direction of the transmitted part. This This possibility is very useful for limiting bulk and gives great freedom in lens size for the input optical device.
  • the third face is parallel to the impact surface.
  • the third face includes an anti-reflective coating. This avoids the phenomena of ghost images that can be produced by strong reflections returning from the mirrors on the third face.
  • the prism is made of a material whose Abbe number is greater than or equal to 50. Good conditions for total internal reflection are guaranteed over the entire visible light range.
  • the prism is made of PMMA or Crown glass. These materials are particularly economical.
  • a window is placed between the impact surface and the third face.
  • a first face of the window is located opposite the impact surface and includes an anti-reflective coating. This avoids the phenomena of ghost images that can be produced by strong reflections returning from the mirrors on the window.
  • the anti-reflective coating is configured to reflect less than 4%, preferably less than 2% of light rays in the visible range.
  • the average direction of the transmitted part forms, with a normal to the third face, an angle between -20° and +20°.
  • the distance separating the impact surface and the third face is less than or equal to 2 mm, and preferably less than or equal to 1 mm.
  • the pixelated and digital imaging system includes an array of micro-mirrors.
  • the output beam is configured to project at least one pictogram pattern.
  • the module is configured to project a light beam at the front of a motor vehicle.
  • verticality In the characteristics set out below, the terms relating to verticality, horizontality and transversality, or their equivalents, are understood in relation to the position in which the lighting module is intended to be mounted in a vehicle .
  • the terms “vertical” and “horizontal” are used in this description to designate directions, following an orientation perpendicular to the plane of the horizon for the term “vertical”, and following an orientation parallel to the plane of the horizon for the term “horizontal”. They must be considered in the operating conditions of the device in a vehicle.
  • the use of these words does not mean that slight variations around the vertical and horizontal directions are excluded from the invention. For example, an inclination relative to these directions of the order of + or - 10° is considered here as a minor variation around the two preferred directions.
  • the device of the invention incorporates at least one module making it possible to generate a pixelated type beam, but also preferably ensures the projection of at least one other beam, via at least one other module.
  • the device of the invention can therefore be complex and combine several modules which can also possibly share components.
  • the term passing beam is understood to mean a beam used when there are crossed and/or followed vehicles and/or other elements (individuals, obstacles, etc.) on the roadway or nearby.
  • This beam has an average downward direction. It can possibly be characterized by an absence of light above a plane inclined by 1% downwards on the side of traffic in the other direction, and another plane inclined by 15 degrees compared to the previous one of the side of traffic in the same direction, these two plans defining a cutoff in compliance with European regulations. This upper downward cutoff aims to avoid dazzling other users present in the road scene extending in front of the vehicle or on the sides of the road.
  • the low beam formerly derived from a simple headlight, has undergone developments, the low beam function being able to be coupled with other lighting characteristics which are still considered as low beam functions within the meaning of the present invention.
  • the basic main beam has the function of illuminating the scene in front of the vehicle over a large area, but also over a significant distance, typically around 200 meters.
  • This light beam due to its lighting function, is mainly located above the horizon line. It may have a slightly ascending optical axis of illumination, for example.
  • the device can also be used to form other lighting functions via or beyond those described above.
  • one aspect of the invention relates to a module allowing the generation of an output beam of the pixelated type, that is to say processed by a pixelated and digital imaging system offering great flexibility, by the control of the imaging system, in terms of beam configurations actually projected.
  • pixelated and digital imaging system pixelated ray imaging system or their equivalents have the definition of a system emitting a light beam, said light beam being formed of a plurality of light sub-beams , each sub-light beam can be controlled independently of the other sub-light beams.
  • These systems can be for example micro-mirror matrices 23 as shown, liquid crystal devices, digital light processing technology (Digital Light Processing (DLP) in Anglo-Saxon terms).
  • Micro-mirror matrices are also called, in English terms, “Digital Micromirror Device” (DMD).
  • Each independently controllable sub-beam forms a pixelated ray.
  • the control of the micro-mirror matrices is carried out by control electronics.
  • Each micro-mirror preferably has two operating positions. A so-called active position corresponds to an orientation of the micro-mirrors allowing the reflection towards an output diopter of an incident light beam.
  • a so-called passive position corresponds to an orientation of the micro-mirrors allowing the reflection towards an absorbing surface of an incident light beam, that is to say towards a direction different from that of the output diopter.
  • MEMS mechanical micro-electronic systems known under the term MEMS, which also includes in the present application nano systems called NEMS.
  • a light source 21 is used to illuminate an impact surface 24 of the pixelated imaging system, for example the reflective face of the micro-mirrors of a micro-mirror matrix 23, and the rays treated by the pixelated imaging system are returned to be projected, generally via an output optical element such as a projector glass or a projection lens.
  • the present invention can use light sources of the light-emitting diode type, also commonly called LEDs. These may possibly be organic LED(s). In particular, these LEDs can be equipped with at least one chip capable of emitting light of advantageously adjustable intensity according to the lighting and/or signaling function to be performed.
  • the term light source here means a set of at least one elementary source such as an LED capable of producing a flow leading to generating at least one light beam at the output of the module of the invention.
  • the output face of the source is of rectangular section, which is typical for LED chips.
  • the light source 21 is configured to produce a luminous flux greater than 3000 Im and for example of the order of 4000 lm.
  • FIG 2 presents an exemplary embodiment of the present invention which allows relative placement of the light source and the optical input device improved relative to the state of the art.
  • a light source 21 which can be of the type previously indicated.
  • the light source 21 is configured to emit in a half-space from an emissive zone of rectangular shape. At least part of the rays emitted by the source 21 is optically processed by an optical device 22.
  • the latter may comprise one or more lenses of more or less complex shape.
  • the optical device 22 takes the form of a lens having an entry face 22a making it possible to admit the light rays coming from the source 21 and an exit face 22b ensuring projection towards the rest of the module.
  • the light rays first enter through a prism 26, via a first face 26a of the latter.
  • the angle formed between the first face 26a and the third face 26c is between 40 and 50°, preferably between 44 and 46°, more preferably it is 45°, within manufacturing tolerances. This avoids generating field curvature aberrations in the rays reflected by the impact surface 24 towards the internal side of the first face 26a and therefore reduces the cost of the projection system because it will not require a correction element. these aberrations.
  • the first face 26a forms an acute angle with the average direction of the transmitted part “a” of the light rays coming from the source 21. More preferably, the average direction and the normal to the first face 26a forms an angle between -20° and + 20°. We thus favor the quantity of flow retransmitted.°.
  • the third face 26c forms an acute angle with the average direction of the transmitted part “a” of the light rays coming from the source 21. More preferably, the average direction and the normal to the third face 26c forms an angle between -20° and + 20°. This greatly reduces the generation of parasitic rays during reflection on the impact surface 24 and promotes the emission of a pixelated beam with high contrast, which is desirable for an anti-glare function.
  • the prism 26 a transparent material and advantageously having a high Abbe number, preferably greater than or equal to 50. It may be Crown glass or even polymethacrylate. methyl (PMMA).
  • the light rays entering the prism 26, referenced “a” in figure 2 are directed towards a third face 26c of the prism 26 facing which the imaging system is located, which is in the example shown a matrix of micro-mirrors 23.
  • the impact surface 24 (corresponding to the exposed surface of the micro-mirrors) is parallel to the third face 26c, the latter being preferably planar.
  • the impact surface 24 is protected by a window 27, a first face 27a of which is located facing the impact surface 24.
  • a second face 27b of the window 27 is located opposite, and in contact or not, of the third face 26c.
  • the distance separating the impact surface 24 and the third face 26c is limited and can for example be less than 2 mm or even 1 mm, and preferably 0.5 mm.
  • the presence of the window 27 can be used to adjust this spacing without risk of damaging the impact surface 24.
  • the anti-reflective is chosen with a maximum reflection of 1% in the visible spectrum. In the context of use with a need for high contrast, we will favor a maximum reflection of 0.2%, more preferably 0.1% in the visible spectrum.
  • the impact surface 24 defined by all of the micro-mirrors is of rectangular shape. It preferably extends in a plane perpendicular to a plane carrying the second face 26b of the prism 26 and/or parallel to the optical axis of the projection device 25.
  • the rays are reflected, either so as to participate in the projected beam, or so as to be inactive. This is how the configuration of the pixelated beam can be controlled as desired.
  • the active rays “c” are directed so as to re-enter the prism 26 via the third face 26c. This ray path is configured so that the active rays “c” reach the first face 26a again. However, this time, the angle of the rays relative to the first face 26a is such that it produces a total internal reflection in the prism 26 so as to form reflected rays “d” which are directed towards the second face 26b of the prism 26.
  • the outgoing rays “e” are directed towards a projection device 25, which is or which typically comprises a projection lens. In the case illustrated, it is a planar convex lens, the entry face 25a of which is planar and the exit face 25b is convex.
  • the reference “f” represents an example of a projected ray.
  • the prism 26 is configured, in terms of angle and choice of materials, so that all of the light rays coming from the input device 22 are transmitted to the matrix of micro mirrors 23 and so that all of the light rays reflected by the latter is reflected by the first face 26a.
  • the area of the first face 26a through which the rays "a” enter the prism 26 and the area of the first face 26a through which the rays "c" again reach the first face 26a to be reflected can overlap.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Description

La présente invention est relative à un dispositif d'éclairage et/ou de signalisation de véhicule automobile.The present invention relates to a lighting and/or signaling device for a motor vehicle.

Une application préférée concerne l'industrie automobile, pour l'équipement de véhicules, en particulier pour la réalisation de dispositifs susceptibles d'émettre des faisceaux lumineux, encore appelés fonctions d'éclairage et/ou de signalisation, répondant en général à des réglementations. Par exemple, l'invention peut permettre la production d'un faisceau lumineux, de préférence hautement résolu, de type pixélisé, notamment pour une signalisation et/ou la participation à des fonctions d'éclairage à l'avant d'un véhicule. Elle peut servir à l'affichage de pictogrammes ou de motifs variables au niveau d'une surface de projection de la lumière sortante.A preferred application concerns the automotive industry, for vehicle equipment, in particular for the production of devices capable of emitting light beams, also called lighting and/or signaling functions, generally meeting regulations. For example, the invention can allow the production of a light beam, preferably highly resolved, of the pixelated type, in particular for signaling and/or participation in lighting functions at the front of a vehicle. It can be used to display pictograms or variable patterns on a projection surface of the outgoing light.

Les feux de signalisation et/ou d'éclairage de véhicules automobiles, sont des dispositifs lumineux qui comprennent une ou plusieurs sources de lumière et une glace qui ferme le feu. De façon simplifiée, la source lumineuse émet des rayons lumineux pour former un faisceau lumineux qui est dirigé vers la glace afin de produire une plage éclairante qui transmet la lumière à l'extérieur du véhicule. Ces fonctions doivent répondre à des réglementations en matière d'intensité lumineuse et d'angles de visibilité notamment. Les modules d'éclairage et de signalisation connus sont jusqu'à présent prévus pour émettre par exemple :

  • un faisceau de croisement, dirigé vers le bas, encore parfois appelé faisceau de code et utilisé en cas de présence d'autres véhicules sur la chaussée ;
  • un faisceau de route dépourvu de coupure, et caractérisé par un éclairement maximal dans l'axe du véhicule ;
  • un faisceau d'éclairage pour temps de brouillard, caractérisé par une coupure plate et une grande largeur d'éclairement ;
  • un faisceau de signalisation pour la circulation en ville, encore appelé lampe de ville.
Signaling and/or lighting lights for motor vehicles are light devices which include one or more light sources and a lens which closes the light. Simplified, the light source emits light rays to form a light beam which is directed towards the window in order to produce an illuminating area which transmits the light to the exterior of the vehicle. These functions must meet regulations regarding light intensity and visibility angles in particular. Known lighting and signaling modules have so far been designed to emit, for example:
  • a passing beam, directed downwards, also sometimes called a code beam and used in the event of the presence of other vehicles on the roadway;
  • a main beam without interruption, and characterized by maximum illumination in the axis of the vehicle;
  • a lighting beam for foggy weather, characterized by a flat cut-off and a large illumination width;
  • a signaling beam for city traffic, also called a city lamp.

Récemment, on a développé des technologies permettant de produire un faisceau pixélisé ou segmenté haute définition, avec une définition d'au moins 1000 segments, notamment par l'intermédiaire de dispositifs micro ou nano électromécaniques appelés respectivement MEMS ou NEMS. De par la grande flexibilité de forme et de motif de faisceaux qu'ils permettent et parce que leur prix a tendance à diminuer, ces systèmes tendent à être implantés pour des fonctions de plus en plus importantes, notamment dans des projecteurs à l'avant des véhicules. La figure 1 donne un exemple d'implantation d'un système d'imagerie pixelisée et digitale sous forme d'une matrice à micro miroirs 13 dans un module de projection d'un faisceau. Une source lumineuse 11 génère des rayons lumineux en direction d'un dispositif optique 12 permettant de générer un faisceau qui va impacter une face de réflexion 14 d'une matrice à micro miroirs 13. Selon l'inclinaison des miroirs, contrôlée, la lumière est soit renvoyée vers le dispositif de projection 15, soit renvoyée dans une zone morte de sorte à ne pas participer à une illumination active.Recently, technologies have been developed making it possible to produce a high definition pixelated or segmented beam, with a definition of at least 1000 segments, in particular via micro or nano electromechanical devices called MEMS or NEMS respectively. Due to the great flexibility of shape and pattern of beams that they allow and because their price tends to decrease, these systems tend to be installed for increasingly important functions, notably in headlights at the front of vehicles. There figure 1 gives an example of the implementation of a pixelated and digital imaging system in the form of a micro-mirror matrix 13 in a beam projection module. A light source 11 generates light rays in the direction of an optical device 12 making it possible to generate a beam which will impact a reflection face 14 of a micro-mirror matrix 13. Depending on the controlled inclination of the mirrors, the light is either returned to the projection device 15, or returned to a dead zone so as not to participate in active illumination.

Dans certains cas, cela suppose une illumination de sortie importante et notamment suffisante pour respecter des conditions réglementaires de flux lumineux. Atteindre une illumination importante est cependant difficile au regard de l'implantation illustrée à la figure 1. On comprend aisément que le grossissement de la lentille servant au dispositif d'entrée 12 ou son rapprochement de la matrice de micro miroirs 13 pose rapidement un problème d'interférence avec la lentille utilisée comme dispositif de projection 15. Dans l'exemple représenté, l'enveloppe de faisceau délimitée par les rayons a1, a2 est à la limite d'interférer avec le bord du dispositif de projection 15 ; de même, les rayons b1, b2 renvoyés par la matrice 13 sont transmis par le dispositif 15 en rayons c1, c2 à la limite d'interférer avec le dispositif d'entrée 12. Compte tenu de cette limitation, le document brevet WO 2017/143371 A1 divulgue un projecteur pour véhicule automobile comportant une matrice de micro miroirs et doté d'une paire de sources lumineuses à diodes électroluminescentes chacune associée à une lentille de focalisation d'un faisceau lumineux sur la surface de réflexion de la matrice de micro miroirs. Ce dédoublement de sources accroît évidemment le flux lumineux sortant du projecteur. Cependant, il augmente inévitablement le coût et l'encombrement.In certain cases, this requires significant output illumination and in particular sufficient to comply with regulatory luminous flux conditions. Achieving significant illumination is, however, difficult given the layout illustrated in figure 1 . It is easy to understand that the magnification of the lens used for the input device 12 or its proximity to the matrix of micro mirrors 13 quickly poses a problem of interference with the lens used as projection device 15. In the example shown, the the beam envelope delimited by the rays a1, a2 is at the limit of interfering with the edge of the projection device 15; likewise, the rays b1, b2 returned by the matrix 13 are transmitted by the device 15 in rays c1, c2 to the limit of interfering with the input device 12. Taking into account this limitation, the patent document WO 2017/143371 A1 discloses a headlight for a motor vehicle comprising a matrix of micro mirrors and provided with a pair of light sources with electroluminescent diodes each associated with a lens for focusing a light beam on the reflection surface of the matrix of micro mirrors. This duplication of sources obviously increases the luminous flux leaving the projector. However, it inevitably increases cost and bulk.

Dans d'autres documents de brevet relatifs à des dispositifs de vidéoprojecteur ou de feux de véhicule automobile, tel que GB2418996 , CN205388665U ou US2016241819 , il a été proposé de combiner deux prismes ou comme dans US2013188156 un prisme avec un élément optique disposé à proximité afin d'optimiser le flux lumineux et de réduire l'encombrement Toutefois ces solutions génèrent du chromatisme qui doit être corrigé via un système optique de projection complexe et coûteux (nombre de lentilles et type de lentilles). En outre, dans les combinaisons de prisme, afin de respecter les conditions de réflexion totale interne, il est nécessaire de faire appel à des matériaux qui sont coûteux pour réaliser les prismes. Le document US2016/019523 A1 divulgue un dispositif selon le préambule de la revendication 1.In other patent documents relating to video projector devices or motor vehicle lights, such as GB2418996 , CN205388665U Or US2016241819 , it has been proposed to combine two prisms or as in US2013188156 a prism with an optical element placed nearby in order to optimize the luminous flux and reduce bulk. However, these solutions generate chromatism which must be corrected via a complex and expensive optical projection system (number of lenses and type of lenses) . Furthermore, in prism combinations, in order to respect the conditions of total internal reflection, it is necessary to use materials which are expensive to produce the prisms. The document US2016/019523 A1 discloses a device according to the preamble of claim 1.

La présente invention vise à remédier au moins en partie aux inconvénients de techniques actuelles et vise notamment à proposer un système optique plus simple, plus compact et plus économique.The present invention aims to remedy at least in part the drawbacks of current techniques and aims in particular to propose a simpler, more compact and more economical optical system.

La présente invention concerne, suivant un aspect, un dispositif d'éclairage et/ou de signalisation de véhicule automobile caractérisé en ce qu'il est équipé d'au moins un module lumineux configuré pour produire un faisceau de sortie, comprenant une source lumineuse comprenant au moins une diode électroluminescente, un système d'imagerie pixélisée et digitale, et un dispositif optique d'entrée intercalé, suivant le trajet des rayons lumineux issus de la source lumineuse, entre le source lumineuse et le système d'imagerie pixélisée et digitale de sorte à transmettre au moins une partie, dite partie transmise, des rayons lumineux issus de la source lumineuse vers une surface d'impact du système d'imagerie pixélisée et digitale, caractérisé en ce que ledit module lumineux comporte un prisme, comprenant une première face, une deuxième face et une troisième face, et configuré pour :

  • transmettre entre la première face et la troisième face au moins une partie des rayons lumineux de la partie transmise vers la surface d'impact ;
  • former des rayons réfléchis par réflexion d'au moins une partie de rayons lumineux renvoyés par la surface d'impact, par réflexion totale interne sur la première face ;
  • renvoyer au moins une partie des rayons réfléchis vers une zone de projection via la deuxième face
et caractérisé ence qu'il comprend un module additionnel configuré pour produire un faisceau de base de feu de croisement et un module additionnel configuré pour produire un faisceau de base de feu de route et dans lequel le faisceau pixélisé de sortie dudit module lumineux chevauche en partie à la fois le faisceau de base de feu de route et/ou le faisceau de base de feu de croisement.The present invention relates, according to one aspect, to a motor vehicle lighting and/or signaling device characterized in that it is equipped with at least one light module configured to produce an output beam, comprising a light source comprising at least one light-emitting diode, a pixelated and digital imaging system, and an optical input device interposed, following the path of the light rays coming from the light source, between the light source and the pixelated and digital imaging system of so as to transmit at least one part, called the transmitted part, of the light rays coming from the light source towards an impact surface of the pixelated and digital imaging system, characterized in that said light module comprises a prism, comprising a first face , a second face and a third face, and configured for:
  • transmit between the first face and the third face at least part of the light rays from the transmitted part towards the impact surface;
  • forming reflected rays by reflection of at least a portion of light rays returned by the impact surface, by total internal reflection on the first face;
  • return at least part of the reflected rays towards a projection zone via the second face
and characterized in that it comprises an additional module configured to produce a basic low beam beam and an additional module configured to produce a basic high beam beam and in which the pixelated output beam of said light module partly overlaps both the high beam base beam and/or the low beam base beam.

Ainsi, les rayons lumineux sont déviés au cours de leur trajet depuis la source lumineuse vers le dispositif de projection au moins en partie grâce au prisme. La fonction du prisme comprend, en amont du système d'imagerie, une transmission de rayons lumineux en provenance de la source et, en aval du système d'imagerie, une réflexion totale interne permettant d'opérer une modification angulaire des rayons, avantageusement forte, de sorte à renvoyer les rayons sortant du prisme en direction du dispositif de projection. Le prisme autorise de fortes variations angulaires de direction de faisceaux entre le faisceau en amont du système d'imagerie et le faisceau en aval de ce dernier.Thus, the light rays are deflected during their journey from the source light towards the projection device at least in part thanks to the prism. The function of the prism includes, upstream of the imaging system, a transmission of light rays coming from the source and, downstream of the imaging system, a total internal reflection making it possible to carry out an angular modification of the rays, advantageously strong , so as to return the rays leaving the prism towards the projection device. The prism allows strong angular variations in beam direction between the beam upstream of the imaging system and the beam downstream of the latter.

On peut ainsi aisément régler la position et l'angle du dispositif optique situé en entrée, sans être gêné par des considérations d'encombrement relativement au dispositif optique de projection, contrairement à l'état de la technique illustré à la figure 1. On peut avantageusement rapprocher le dispositif optique d'entrée du système d'imagerie et/ou accroître son diamètre (l'augmentation de l'illumination est directement liée à l'augmentation du diamètre d'une lentille). Ce faisant, l'efficacité lumineuse du faisceau impactant le système d'imagerie est plus élevée ce qui permet, malgré l'utilisation d'une source à diodes électroluminescentes, d'obtenir en sortie une illumination satisfaisante.We can thus easily adjust the position and the angle of the optical device located at the input, without being hindered by considerations of space relative to the optical projection device, contrary to the state of the art illustrated in figure 1 . The optical input device can advantageously be brought closer to the imaging system and/or its diameter increased (the increase in illumination is directly linked to the increase in the diameter of a lens). In doing so, the luminous efficiency of the beam impacting the imaging system is higher which makes it possible, despite the use of a light-emitting diode source, to obtain satisfactory illumination at the output.

Selon un autre aspect, la présente invention concerne également un dispositif d'éclairage et/ou de signalisation de véhicule automobile équipé d'au moins un module lumineux. Ce dispositif peut comprendre au moins un module additionnel comprenant au moins l'un parmi un module additionnel configuré pour produire un faisceau de base de feu de croisement et un module additionnel configuré pour produire un faisceau de base de feu de route.According to another aspect, the present invention also relates to a motor vehicle lighting and/or signaling device equipped with at least one light module. This device may comprise at least one additional module comprising at least one of an additional module configured to produce a basic low beam beam and an additional module configured to produce a basic high beam beam.

Avantageusement, le faisceau pixélisé peut être un complément efficace à un autre faisceau, voire plusieurs. Selon l'invention, le dispositif comprend un module additionnel configuré pour produire un faisceau de base de feu de croisement et un module additionnel configuré pour produire un faisceau de base de feu de route et dans lequel le faisceau pixélisé de sortie du module chevauche en partie à la fois le faisceau de base de feu de route et/ou le faisceau de base de feu de croisement. Le faisceau pixélisé peut ainsi être utilisé à la fois pour réaliser une fonction d'écriture au sol dans la portion à cheval avec le faisceau de croisement et pour contribuer à des fonctions de feu de route anti-éblouissant (Glare Free High Beam en langue anglaise) ou de feu de virage dynamique pour la portion à cheval avec le feu de route.Advantageously, the pixelated beam can be an effective complement to another beam, or even several. According to the invention, the device comprises an additional module configured to produce a basic low beam beam and an additional module configured to produce a basic high beam beam and in which the pixelated output beam of the module partly overlaps both the high beam base beam and/or the low beam base beam. The pixelated beam can thus be used both to perform a ground writing function in the portion overlapping with the dipped beam and to contribute to anti-glare high beam functions (Glare Free High Beam in English). ) or dynamic cornering light for the portion astride with the main beam.

La présente divulgation décrit également un véhicule équipé d'au moins un module et/ou un dispositif selon la présente invention.The present disclosure also describes a vehicle equipped with at least one module and/or a device according to the present invention.

Selon un mode de réalisation particulièrement avantageux, le module est tel que la deuxième face et la troisième face sont portées par deux plans perpendiculaires entre eux.According to a particularly advantageous embodiment, the module is such that the second face and the third face are carried by two planes perpendicular to each other.

En outre, il comporte de préférence un dispositif optique de projection du faisceau de sortie recevant au moins partiellement la au moins une partie des rayons renvoyés.In addition, it preferably comprises an optical device for projecting the output beam receiving at least partially the at least part of the returned rays.

Avantageusement, le dispositif optique de projection présente un axe optique perpendiculaire à la deuxième face.Advantageously, the optical projection device has an optical axis perpendicular to the second face.

Optionnellement, le dispositif optique de projection présente un axe optique formant un angle obtus avec une direction moyenne de la partie transmise. Cette possibilité est fort utile pour limiter l'encombrement et donne une grande liberté de taille de lentille pour le dispositif optique d'entrée.Optionally, the optical projection device has an optical axis forming an obtuse angle with an average direction of the transmitted part. This This possibility is very useful for limiting bulk and gives great freedom in lens size for the input optical device.

Suivant un cas non limitatif, la troisième face est parallèle à la surface d'impact. Avantageusement et de préférence, la troisième face comporte un revêtement antireflet. On évite ainsi les phénomènes d'images fantômes que peuvent produire de fortes réflexions en retour des miroirs sur la troisième face.In a non-limiting case, the third face is parallel to the impact surface. Advantageously and preferably, the third face includes an anti-reflective coating. This avoids the phenomena of ghost images that can be produced by strong reflections returning from the mirrors on the third face.

Dans un mode de réalisation, le prisme est en un matériau dont le nombre d'Abbe est supérieur ou égal à 50. On garantit de bonnes conditions de réflexion totale interne sur l'ensemble du domaine lumineux du visible.In one embodiment, the prism is made of a material whose Abbe number is greater than or equal to 50. Good conditions for total internal reflection are guaranteed over the entire visible light range.

Avantageusement, le prisme est en PMMA ou en verre Crown. Ces matériaux sont particulièrement économiques.Advantageously, the prism is made of PMMA or Crown glass. These materials are particularly economical.

Optionnellement, une vitre est disposée entre la surface d'impact et la troisième face.Optionally, a window is placed between the impact surface and the third face.

Suivant un exemple, une première face de la vitre est située en regard de la surface d'impact et comprend un revêtement antireflet. On évite ainsi les phénomènes d'images fantômes que peuvent produire de fortes réflexions en retour des miroirs sur la vitre.According to an example, a first face of the window is located opposite the impact surface and includes an anti-reflective coating. This avoids the phenomena of ghost images that can be produced by strong reflections returning from the mirrors on the window.

Avantageusement, le revêtement antireflet est configuré pour réfléchir moins de 4 %, de préférence moins de 2 % des rayons lumineux dans le domaine du visible.Advantageously, the anti-reflective coating is configured to reflect less than 4%, preferably less than 2% of light rays in the visible range.

Préférentiellement, la direction moyenne de la partie transmise forme, avec une normale à la troisième face, un angle compris entre -20° et + 20°.Preferably, the average direction of the transmitted part forms, with a normal to the third face, an angle between -20° and +20°.

Préférentiellement, la distance séparant la surface d'impact et la troisième face est inférieure ou égale à 2 mm, et de préférence inférieure ou égale à 1 mm.Preferably, the distance separating the impact surface and the third face is less than or equal to 2 mm, and preferably less than or equal to 1 mm.

Dans un mode de réalisation, le système d'imagerie pixélisée et digitale comprend une matrice de micro-miroirs.In one embodiment, the pixelated and digital imaging system includes an array of micro-mirrors.

Eventuellement, le faisceau de sortie est configuré pour projeter au moins un motif de pictogramme.Optionally, the output beam is configured to project at least one pictogram pattern.

Dans un mode de réalisation préféré, le module est configuré pour projeter un faisceau lumineux à l'avant d'un véhicule automobile.In a preferred embodiment, the module is configured to project a light beam at the front of a motor vehicle.

D'autres caractéristiques et avantages de la présente invention seront mieux compris à l'aide de la description exemplaire et des dessins parmi lesquels :

  • la figure 1 montre une schématisation d'une projection d'un faisceau pixélisé selon l'état de la technique ;
  • la figure 2 représente un exemple de réalisation de l'invention.
Other characteristics and advantages of the present invention will be better understood with the help of the exemplary description and the drawings including:
  • there figure 1 shows a schematization of a projection of a pixelated beam according to the state of the art;
  • there figure 2 represents an example of embodiment of the invention.

Sauf indication spécifique du contraire, des caractéristiques techniques décrites en détail pour un mode de réalisation donné peuvent être combinées à des caractéristiques techniques décrites dans le contexte d'autres modes de réalisation décrits à titre exemplaire et non limitatif.Unless specifically indicated otherwise, technical characteristics described in detail for a given embodiment may be combined with technical characteristics described in the context of other embodiments described by way of example and not limitation.

Dans les caractéristiques exposées ci-après, les termes relatifs à la verticalité, l'horizontalité et à la transversalité, ou leurs équivalents, s'entendent par rapport à la position dans laquelle le module d'éclairage est destiné à être monté dans un véhicule. Les termes « vertical » et « horizontal » sont utilisés dans la présente description pour désigner des directions, suivant une orientation perpendiculaire au plan de l'horizon pour le terme « vertical », et suivant une orientation parallèle au plan de l'horizon pour le terme « horizontal ». Elles sont à considérer dans les conditions de fonctionnement du dispositif dans un véhicule. L'emploi de ces mots ne signifie pas que de légères variations autour des directions verticale et horizontale soient exclues de l'invention. Par exemple, une inclinaison relativement à ces directions de l'ordre de + ou - 10° est ici considérée comme une variation mineure autour des deux directions privilégiées.In the characteristics set out below, the terms relating to verticality, horizontality and transversality, or their equivalents, are understood in relation to the position in which the lighting module is intended to be mounted in a vehicle . The terms “vertical” and “horizontal” are used in this description to designate directions, following an orientation perpendicular to the plane of the horizon for the term “vertical”, and following an orientation parallel to the plane of the horizon for the term “horizontal”. They must be considered in the operating conditions of the device in a vehicle. The use of these words does not mean that slight variations around the vertical and horizontal directions are excluded from the invention. For example, an inclination relative to these directions of the order of + or - 10° is considered here as a minor variation around the two preferred directions.

Le dispositif de l'invention incorpore pour le moins un module permettant de générer un faisceau de type pixélisé, mais assure aussi de préférence la projection d'au moins un autre faisceau, par l'intermédiaire d'au moins un autre module. Le dispositif de l'invention peut donc être complexe et associer plusieurs modules qui peuvent en outre éventuellement partager des composants.The device of the invention incorporates at least one module making it possible to generate a pixelated type beam, but also preferably ensures the projection of at least one other beam, via at least one other module. The device of the invention can therefore be complex and combine several modules which can also possibly share components.

Dans le cadre de l'invention, on entend par faisceau de croisement, un faisceau employé lors de la présence de véhicules croisés et/ou suivis et/ou d'autres éléments (individus, obstacles...) sur la chaussée ou à proximité. Ce faisceau présente une direction moyenne descendante. Il peut être éventuellement caractérisé par une absence de lumière au-dessus d'un plan incliné de 1% vers le bas du côté de la circulation dans l'autre sens, et d'un autre plan incliné de 15 degrés par rapport au précédent du côté de la circulation dans le même sens, ces deux plans définissant une coupure conforme à la réglementation européenne. Cette coupure supérieure descendante a pour but d'éviter d'éblouir les autres usagers présents dans la scène de route s'étendant devant le véhicule ou sur les bas-côtés de la route. Le faisceau de croisement, autrefois issu d'un projecteur simple, a connu des évolutions, la fonction de croisement pouvant être couplée avec d'autres caractéristiques d'éclairage qui sont encore considérés comme des fonctions de feu de croisement au sens de la présente invention.In the context of the invention, the term passing beam is understood to mean a beam used when there are crossed and/or followed vehicles and/or other elements (individuals, obstacles, etc.) on the roadway or nearby. . This beam has an average downward direction. It can possibly be characterized by an absence of light above a plane inclined by 1% downwards on the side of traffic in the other direction, and another plane inclined by 15 degrees compared to the previous one of the side of traffic in the same direction, these two plans defining a cutoff in compliance with European regulations. This upper downward cutoff aims to avoid dazzling other users present in the road scene extending in front of the vehicle or on the sides of the road. The low beam, formerly derived from a simple headlight, has undergone developments, the low beam function being able to be coupled with other lighting characteristics which are still considered as low beam functions within the meaning of the present invention.

Cela comprend notamment les fonctions suivantes :

  • faisceau AFS (abréviation pour « Advanced Frontlighting System » en anglais), qui propose notamment d'autres types de faisceaux. Il s'agit notamment de la fonction dite BL (Bending Light en anglais pour éclairage de virage), qui peut se décomposer en une fonction dite DBL (Dynamic Bending Light en anglais pour éclairage mobile de virage) et une fonction dite FBL (Fixed Bending Light en anglais pour éclairage fixe de virage) ;
  • faisceau dit Town Light en anglais, pour éclairage de ville. Cette fonction assure l'élargissement d'un faisceau de type feu de croisement tout en diminuant légèrement sa portée ;
  • faisceau dit Motorway Light en anglais, pour éclairage d'autoroute, réalise quant à elle la fonction autoroute. Cette fonction assure une augmentation de la portée d'un feu de croisement en concentrant le flux lumineux du feu de croisement au niveau de l'axe optique du dispositif projecteur considéré ;
  • faisceau dit Overhead Light en anglais, pour feu de portique. Cette fonction assure une modification d'un faisceau de feu de croisement typique de telle sorte que des portiques de signalisation situés au-dessus de la route soient éclairés de façon satisfaisante au moyen des feux de croisement ;
  • faisceau dit AWL (Adverse Weather Light en anglais, pour feu de mauvais temps).
This includes the following functions:
  • AFS beam (abbreviation for “Advanced Frontlighting System” in English), which notably offers other types of beams. These include the so-called BL (Bending Light) function, which can be broken down into a so-called DBL (Dynamic Bending Light) function and a so-called FBL (Fixed Bending) function. Light in English for fixed cornering lighting);
  • beam called Town Light in English, for city lighting. This function ensures the widening of a low beam type beam while slightly reducing its range;
  • beam called Motorway Light in English, for highway lighting, performs the highway function. This function ensures an increase in the range of a low beam by concentrating the luminous flux of the low beam at the optical axis of the headlamp device in question;
  • beam called Overhead Light in English, for gantry light. This function ensures a modification of a typical low beam beam such that signal gantries located above the road are satisfactorily illuminated by means of the low beam;
  • beam called AWL (Adverse Weather Light in English, for bad weather light).

Le faisceau de route de base a pour fonction d'éclairer sur une large étendue la scène face au véhicule, mais également sur une distance conséquente, typiquement environ 200 mètres. Ce faisceau lumineux, de par sa fonction d'éclairage, se situe principalement au-dessus de la ligne d'horizon. Il peut présenter un axe optique d'éclairement légèrement ascendant par exemple.The basic main beam has the function of illuminating the scene in front of the vehicle over a large area, but also over a significant distance, typically around 200 meters. This light beam, due to its lighting function, is mainly located above the horizon line. It may have a slightly ascending optical axis of illumination, for example.

Le dispositif peut aussi servir à former d'autres fonctions d'éclairage via ou endehors de celles décrites précédemment.The device can also be used to form other lighting functions via or beyond those described above.

Comme indiqué précédemment, un aspect de l'invention concerne un module permettant la génération d'un faisceau de sortie du type pixélisé, c'est-à-dire traité par un système d'imagerie pixélisée et digitale offrant une grande flexibilité, par la commande du système d'imagerie, en termes de configurations de faisceaux effectivement projetés. Les termes « système d'imagerie pixélisée et digitale », « système d'imagerie à rayons pixélisés » ou leurs équivalents ont pour définition un système émetteur d'un faisceau lumineux, ledit faisceau lumineux étant formé d'une pluralité de sous-faisceaux lumineux, chaque sous-faisceau lumineux pouvant être piloté indépendamment des autres sous-faisceaux lumineux. Ces systèmes peuvent être par exemple des matrices à micro-miroirs 23 comme représenté, des dispositifs à cristaux liquides, une technologie de traitement numérique de la lumière (Digital Light Processing (DLP) en termes Anglo-Saxon). Les matrices à micro-miroirs sont aussi appelées, en termes anglo-saxon, « Digital Micromirror Device » (DMD).As indicated previously, one aspect of the invention relates to a module allowing the generation of an output beam of the pixelated type, that is to say processed by a pixelated and digital imaging system offering great flexibility, by the control of the imaging system, in terms of beam configurations actually projected. The terms "pixelated and digital imaging system", "pixelated ray imaging system" or their equivalents have the definition of a system emitting a light beam, said light beam being formed of a plurality of light sub-beams , each sub-light beam can be controlled independently of the other sub-light beams. These systems can be for example micro-mirror matrices 23 as shown, liquid crystal devices, digital light processing technology (Digital Light Processing (DLP) in Anglo-Saxon terms). Micro-mirror matrices are also called, in English terms, “Digital Micromirror Device” (DMD).

Chaque sous-faisceau pilotable indépendamment forme un rayon pixélisé. Le pilotage des matrices de micro-miroirs est effectué par une électronique de pilotage. Chaque micro-miroir dispose de manière préférentielle de deux positions de fonctionnement. Une position dite active correspond à une orientation des micro-miroirs permettant la réflexion vers un dioptre de sortie d'un faisceau lumineux incident. Une position dite passive correspond à une orientation des micro-miroirs permettant la réflexion vers une surface absorbante d'un faisceau lumineux incident, c'est à dire vers une direction différente de celle du dioptre de sortie. D'une manière générale, ce type de système d'imagerie est implémenté dans des systèmes micro-électroniques mécaniques connus sous le vocable MEMS, qui inclut aussi dans la présente demande les nano systèmes dits NEMS.Each independently controllable sub-beam forms a pixelated ray. The control of the micro-mirror matrices is carried out by control electronics. Each micro-mirror preferably has two operating positions. A so-called active position corresponds to an orientation of the micro-mirrors allowing the reflection towards an output diopter of an incident light beam. A so-called passive position corresponds to an orientation of the micro-mirrors allowing the reflection towards an absorbing surface of an incident light beam, that is to say towards a direction different from that of the output diopter. Generally speaking, this type of imaging system is implemented in mechanical micro-electronic systems known under the term MEMS, which also includes in the present application nano systems called NEMS.

De façon connue en soi, on utilise une source lumineuse 21 pour illuminer une surface d'impact 24 du système d'imagerie pixélisée, par exemple la face réfléchissante des micro-miroirs d'une matrice de micro-miroirs 23, et les rayons traités par le système d'imagerie pixélisée sont renvoyés pour être projetés, généralement par l'intermédiaire d'un élément optique de sortie tel qu'une glace de projecteur ou une lentille de projection. D'une manière générale, la présente invention peut utiliser des sources lumineuses du type diodes électroluminescentes encore communément appelées LEDs. Il peut éventuellement s'agir de LED(s) organique(s). Notamment, ces LEDs peuvent être dotées d'au moins une puce apte à émettre une lumière d'intensité avantageusement ajustable selon la fonction d'éclairage et/ou de signalisation à réaliser. Par ailleurs, le terme source lumineuse s'entend ici d'un ensemble d'au moins une source élémentaire telle une LED apte à produire un flux conduisant à générer en sortie du module de l'invention au moins un faisceau lumineux. Dans un mode avantageux, la face de sortie de la source est de section rectangulaire, ce qui est typique pour des puces à LEDs. À titre non limitatif, la source lumineuse 21 est configurée pour produire un flux lumineux supérieur à 3000 Im et par exemple de l'ordre de 4000 lm.In a manner known per se, a light source 21 is used to illuminate an impact surface 24 of the pixelated imaging system, for example the reflective face of the micro-mirrors of a micro-mirror matrix 23, and the rays treated by the pixelated imaging system are returned to be projected, generally via an output optical element such as a projector glass or a projection lens. Generally speaking, the present invention can use light sources of the light-emitting diode type, also commonly called LEDs. These may possibly be organic LED(s). In particular, these LEDs can be equipped with at least one chip capable of emitting light of advantageously adjustable intensity according to the lighting and/or signaling function to be performed. Furthermore, the term light source here means a set of at least one elementary source such as an LED capable of producing a flow leading to generating at least one light beam at the output of the module of the invention. In an advantageous mode, the output face of the source is of rectangular section, which is typical for LED chips. HAS non-limitatively, the light source 21 is configured to produce a luminous flux greater than 3000 Im and for example of the order of 4000 lm.

On comprend tout l'intérêt des faisceaux pixélisés dans le domaine automobile et la démultiplication des fonctionnalités qu'ils permettent. Néanmoins, leur intégration dans les véhicules de façon concomitante avec les systèmes de projection d'autres faisceaux est encore largement inexplorée et induit de fortes contraintes d'encombrement.We understand the interest of pixelated beams in the automotive field and the multiplication of functionalities that they allow. However, their integration into vehicles concomitantly with other beam projection systems is still largely unexplored and leads to strong space constraints.

La figure 2 présente un exemple de réalisation de la présente invention qui permet un placement relatif de la source lumineuse et du dispositif optique d'entrée améliorée relativement à l'état la technique.There figure 2 presents an exemplary embodiment of the present invention which allows relative placement of the light source and the optical input device improved relative to the state of the art.

D'amont en aval suivant le trajet des rayons lumineux, on note la présence d'une source lumineuse 21, qui peut être du type précédemment indiqué. De préférence, la source lumineuse 21 est configurée pour émettre dans un demi-espace à partir d'une zone émissive de forme rectangulaire. Au moins une partie des rayons émis par la source 21 est traitée optiquement par un dispositif optique 22. Ce dernier peut comprendre une ou plusieurs lentilles de forme plus ou moins complexes.From upstream to downstream following the path of the light rays, we note the presence of a light source 21, which can be of the type previously indicated. Preferably, the light source 21 is configured to emit in a half-space from an emissive zone of rectangular shape. At least part of the rays emitted by the source 21 is optically processed by an optical device 22. The latter may comprise one or more lenses of more or less complex shape.

A la figure 2, le dispositif optique 22 prend la forme d'une lentille présentant une face d'entrée 22a permettant d'admettre les rayons lumineux issus de la source 21 et une face de sortie 22b assurant la projection en direction du reste du module. En sortie du dispositif optique 17, au moins une partie référencée « a » appelée partie transmise des rayons traités est destinée à impacter la surface du système d'imagerie pixélisée et digitale, ici une matrice de micro-miroirs 23. Cependant, selon l'invention, les rayons lumineux entrent d'abord par un prisme 26, par l'intermédiaire d'une première face 26a de ce dernier.To the figure 2 , the optical device 22 takes the form of a lens having an entry face 22a making it possible to admit the light rays coming from the source 21 and an exit face 22b ensuring projection towards the rest of the module. At the output of the optical device 17, at least one part referenced "a" called the transmitted part of the processed rays is intended to impact the surface of the pixelated and digital imaging system, here a matrix of micro-mirrors 23. However, according to the invention, the light rays first enter through a prism 26, via a first face 26a of the latter.

De préférence, l'angle formé entre la première face 26a et la troisième face 26c est compris entre 40 et 50°, préférentiellement entre 44 et 46°, plus préférentiellement il est de 45°, aux tolérances de fabrication près. Cela évite de générer des aberrations de courbure de champ dans les rayons réfléchis par la surface d'impact 24 vers le côté interne de la première face 26a et donc réduit le coût du système de projection car il ne nécessitera pas d'élément de correction de ces aberrations.Preferably, the angle formed between the first face 26a and the third face 26c is between 40 and 50°, preferably between 44 and 46°, more preferably it is 45°, within manufacturing tolerances. This avoids generating field curvature aberrations in the rays reflected by the impact surface 24 towards the internal side of the first face 26a and therefore reduces the cost of the projection system because it will not require a correction element. these aberrations.

Dans une configuration du module dédiée à une fonction d'écriture au sol ; de préférence, la première face 26a forme un angle aigu avec la direction moyenne de la partie transmise « a » des rayons lumineux venant de la source 21. Plus préférentiellement, la direction moyenne et la normale à la première face 26a forme un angle compris entre -20° et + 20°. On favorise ainsi la quantité de flux retransmise.°.In a configuration of the module dedicated to a ground writing function; preferably, the first face 26a forms an acute angle with the average direction of the transmitted part “a” of the light rays coming from the source 21. More preferably, the average direction and the normal to the first face 26a forms an angle between -20° and + 20°. We thus favor the quantity of flow retransmitted.°.

Dans une configuration du module comportant une fonction de feu de route anti-éblouissant; de préférence, la troisième face 26c forme un angle aigu avec la direction moyenne de la partie transmise « a » des rayons lumineux venant de la source 21. Plus préférentiellement, la direction moyenne et la normale à la troisième face 26c forme un angle compris entre -20° et + 20°. On réduit ainsi très fortement la génération de rayons parasites lors de la réflexion sur la surface d'impact 24 et on favorise l'émission d'un faisceau pixélisé à fort contraste, ce qui est souhaitable pour un fonction anti-éblouissement.In a configuration of the module including an anti-glare high beam function; preferably, the third face 26c forms an acute angle with the average direction of the transmitted part “a” of the light rays coming from the source 21. More preferably, the average direction and the normal to the third face 26c forms an angle between -20° and + 20°. This greatly reduces the generation of parasitic rays during reflection on the impact surface 24 and promotes the emission of a pixelated beam with high contrast, which is desirable for an anti-glare function.

D'une manière générale, il est souhaitable d'utiliser pour le prisme 26 un matériau transparent et présentant avantageusement un nombre d'Abbe élevé, de préférence supérieur ou égal à 50. Il peut s'agir de verre Crown ou encore de polyméthacrylate de méthyle (PMMA).Generally speaking, it is desirable to use for the prism 26 a transparent material and advantageously having a high Abbe number, preferably greater than or equal to 50. It may be Crown glass or even polymethacrylate. methyl (PMMA).

Afin d'optimiser le module pixélisé pour une utilisation à la fois pour des fonctions d'écriture au sol et de fonction de feu de route anti-éblouissement, on privilégiera un matériau du prisme avec un nombre d'Abbe supérieur ou égal à 50, un angle entre la première face 26a et la troisième face 26c idéalement de 45° et une illumination du prisme par la source 21 telle que la direction moyenne et la normale à la troisième face 26c forme un angle compris entre -20° et + 20°, idéalement confondue avec la normale.In order to optimize the pixelated module for use both for writing functions on the ground and for anti-glare high beam functions, we will favor a prism material with an Abbe number greater than or equal to 50, an angle between the first face 26a and the third face 26c ideally of 45° and illumination of the prism by the source 21 such that the average direction and the normal to the third face 26c forms an angle between -20° and + 20° , ideally confused with normal.

Les rayons lumineux entrant dans le prisme 26, référencés « a » en figure 2, sont dirigés vers une troisième face 26c du prisme 26 au regard de laquelle est situé le système d'imagerie, qui est dans l'exemple représenté une matrice de micro-miroirs 23. Avantageusement, la surface d'impact 24 (correspondant à la surface exposée des micro-miroirs) est parallèle à la troisième face 26c, cette dernière étant de préférence plane. Avantageusement, la surface d'impact 24 est protégée par une vitre 27 dont une première face 27a est située en regard de la surface d'impact 24. Une deuxième face 27b de la vitre 27 est située en regard, et au contact ou non, de la troisième face 26c. Avantageusement, la distance séparant la surface d'impact 24 et la troisième face 26c est limitée et peut par exemple être inférieure à 2 mm voire à 1 mm, et de préférence de 0,5 mm. La présence de la vitre 27 peut servir à régler cet écartement sans risque d'endommager la surface d'impact 24.The light rays entering the prism 26, referenced “a” in figure 2 , are directed towards a third face 26c of the prism 26 facing which the imaging system is located, which is in the example shown a matrix of micro-mirrors 23. Advantageously, the impact surface 24 (corresponding to the exposed surface of the micro-mirrors) is parallel to the third face 26c, the latter being preferably planar. Advantageously, the impact surface 24 is protected by a window 27, a first face 27a of which is located facing the impact surface 24. A second face 27b of the window 27 is located opposite, and in contact or not, of the third face 26c. Advantageously, the distance separating the impact surface 24 and the third face 26c is limited and can for example be less than 2 mm or even 1 mm, and preferably 0.5 mm. The presence of the window 27 can be used to adjust this spacing without risk of damaging the impact surface 24.

Dans le mode de réalisation illustré, on cherche par ailleurs à éliminer, ou pour le moins à limiter, les effets parasites que pourrait produire une réflexion sur la troisième face 26c du prisme 26 ou la première face 27a de la vitre des rayons ayant atteint la surface d'impact 24 et ayant été réfléchis. À cet effet, il est avantageux de munir au moins la troisième face 26c du prisme 26, avantageusement également la vitre 27, d'un revêtement antireflet 28 qui pourra être de conception courante et notamment être configuré pour produire une réflexion au maximum de 4 %, voire au maximum de 2 % dans le spectre du visible. Préférentiellement l'antireflet est choisi avec une réflexion maximale de 1% dans le spectre du visible. Dans le cadre d'une utilisation avec une nécessité d'un contraste élevé, on privilégiera une réflexion maximale de 0,2 %, plus préférentiellement de 0,1% dans le spectre du visible.In the illustrated embodiment, we also seek to eliminate, or at least limit, the parasitic effects that could be produced by a reflection on the third face 26c of the prism 26 or the first face 27a of the window of the rays having reached the impact surface 24 and having been reflected. To this end, it is advantageous to provide at least the third face 26c of the prism 26, advantageously also the window 27, with an anti-reflective coating 28 which may be of standard design and in particular be configured to produce a maximum reflection of 4%. , or even a maximum of 2% in the visible spectrum. Preferably the anti-reflective is chosen with a maximum reflection of 1% in the visible spectrum. In the context of use with a need for high contrast, we will favor a maximum reflection of 0.2%, more preferably 0.1% in the visible spectrum.

De préférence, la surface d'impact 24 définie par l'ensemble des micro-miroirs est de forme rectangulaire. Elle s'étend de préférence dans un plan perpendiculaire à un plan portant la deuxième face 26b du prisme 26 et/ou parallèle à l'axe optique du dispositif de projection 25.Preferably, the impact surface 24 defined by all of the micro-mirrors is of rectangular shape. It preferably extends in a plane perpendicular to a plane carrying the second face 26b of the prism 26 and/or parallel to the optical axis of the projection device 25.

Selon l'orientation des miroirs, les rayons sont réfléchis, soit de manière à participer au faisceau projeté, soit de manière à être inactifs. C'est ainsi que la configuration du faisceau pixélisé peut être contrôlée à volonté. Dans le cas représenté, les rayons actifs « c » sont dirigés de sorte à entrer à nouveau dans le prisme 26 par la troisième face 26c. Ce chemin des rayons est configuré pour que les rayons actifs « c » atteignent à nouveau la première face 26a. Cependant, cette fois, l'angle des rayons relativement à la première face 26a est tel que ce produit une réflexion totale interne au prisme 26 de sorte à former des rayons réfléchis « d » qui sont dirigés vers la deuxième face 26b du prisme 26.Depending on the orientation of the mirrors, the rays are reflected, either so as to participate in the projected beam, or so as to be inactive. This is how the configuration of the pixelated beam can be controlled as desired. In the case shown, the active rays “c” are directed so as to re-enter the prism 26 via the third face 26c. This ray path is configured so that the active rays “c” reach the first face 26a again. However, this time, the angle of the rays relative to the first face 26a is such that it produces a total internal reflection in the prism 26 so as to form reflected rays “d” which are directed towards the second face 26b of the prism 26.

Les rayons sortants « e » sont dirigés vers un dispositif de projection 25, qui est ou qui comprend typiquement une lentille de projection. Dans le cas illustré, il s'agit d'une lentille plan convexe, dont la face d'entrée 25a est plane et la face de sortie 25b est convexe. La référence « f » représente un exemple de rayon projeté.The outgoing rays “e” are directed towards a projection device 25, which is or which typically comprises a projection lens. In the case illustrated, it is a planar convex lens, the entry face 25a of which is planar and the exit face 25b is convex. The reference “f” represents an example of a projected ray.

Avantageusement, le prisme 26 est configuré, en termes d'angle et de choix de matériaux, pour que la totalité des rayons lumineux issus du dispositif d'entrée 22 soit transmise à la matrice de micro miroirs 23 et pour que la totalité des rayons lumineux réfléchis par cette dernière soit réfléchie par la première face 26a. On notera que la zone de la première face 26a par laquelle les rayons « a » entrent dans le prisme 26 et la zone de la première face 26a par laquelle les rayons « c » atteignent à nouveau la première face 26a pour être réfléchis, peuvent se chevaucher.Advantageously, the prism 26 is configured, in terms of angle and choice of materials, so that all of the light rays coming from the input device 22 are transmitted to the matrix of micro mirrors 23 and so that all of the light rays reflected by the latter is reflected by the first face 26a. Note that the area of the first face 26a through which the rays "a" enter the prism 26 and the area of the first face 26a through which the rays "c" again reach the first face 26a to be reflected, can overlap.

REFERENCESREFERENCES

11.11.
Source lumineuseLight source
12.12.
Dispositif optiqueOptical device
13.13.
Matrice de micro-miroirsMicro-mirror array
14.14.
Face de réflexionReflection Face
15.15.
Dispositif optique de projectionOptical projection device
21.21.
Source lumineuseLight source
22.22.
Dispositif optique d'entrée
22a. Face d'entrée
22b. Face de sortie
Optical input device
22a. Entrance face
22b. Exit face
23.23.
Matrice de micro-miroirsMicro-mirror array
24.24.
Surface d'impactImpact surface
25.25.
Dispositif optique de projection
25a. Face d'entrée
25b. Face de sortie
Optical projection device
25a. Entrance face
25b. Exit face
26.26.
Prisme
26a. Première face
26b. Deuxième face
26c. Troisième face
Prism
26a. First side
26b. Second side
26c. Third side
27.27.
Vitre
27a. Première face
27b. Deuxième face
Window
27a. First side
27b. Second side
28.28.
Revêtement antirefletsAnti-reflective coating
29.29.
Axe optiqueOptical axis

Claims (16)

  1. Motor-vehicle lighting and/or signalling device equipped with at least one luminous module configured to produce an output beam, comprising a light source (21) comprising at least one light-emitting diode, a pixelated digital imaging system, and an optical input device (22) inserted, along the path of the light rays coming from the light source (21), between the light source (21) and the pixelated digital imaging system so that it transmits at least a portion, known as the transmitted portion, of the light rays coming from the light source (21) towards an impact surface (24) of the pixelated digital imaging system, characterized in that said luminous module includes a prism (26), comprising a first face (26a), a second face (26b) and a third face (26c), and configured to:
    - transmit between the first face (26a) and the third face (26c) at least one portion of the light rays of the transmitted portion towards the impact surface (24);
    - form reflected rays by reflecting at least one portion of the light rays returned by the impact surface (24), by total internal reflection on the first face (26a);
    - return at least one portion of the reflected rays towards a projection zone via the second face (26b)
    and characterized in that it comprises an additional module configured to produce a basic low beam and an additional module configured to produce a basic high beam and in which the pixelated output beam of said luminous module partially overlaps both the basic high beam and/or the basic low beam.
  2. Device according to the previous claim, wherein the second face (26b) and the third face (26c) are held by two planes perpendicular to each other.
  3. Device according to one of the previous claims, also including an optical device (15) for projecting the output beam at least partially receiving the at least one portion of the returned rays.
  4. Device according to the previous claim, wherein the optical projection device (15) has an optical axis (29) perpendicular to the second face (26b).
  5. Device according to one of the two previous claims, wherein the optical projection device (15) has an optical axis (29) forming an obtuse angle with a mean direction of the transmitted portion.
  6. Device according to one of the previous claims, wherein the third face (26c) is parallel to the impact surface (24).
  7. Device according to one of the previous claims, wherein the prism (26) is made from a material the Abbe number of which is greater than or equal to 50.
  8. Device according to one of the previous claims, wherein the prism (26) is made from PMMA or crown glass.
  9. Device according to one of the previous claims, including a glass sheet (27) arranged between the impact surface (24) and the third face (26c).
  10. Device according to the previous claim, wherein a first face (27a) of the glass sheet situated facing the impact surface (24) comprises an anti-reflective coating (28) .
  11. Device according to the previous claim, wherein the anti-reflective coating (28) is configured to reflect less than 40, preferably less than 2% of the light rays in the visible range.
  12. Device according to one of the previous claims, wherein the mean direction of the transmitted portion forms an angle of between -20° and +20° with a normal to the first face.
  13. Device according to one of the previous claims, wherein the distance separating the impact surface (24) and the third face (26c) is less than or equal to 2 mm, and preferably less than or equal to 1 mm.
  14. Device according to one of the previous claims, wherein the pixelated digital imaging system comprises a micromirror array (23).
  15. Device according to one of the previous claims, wherein the output beam is configured to project at least one pictogram pattern.
  16. Device according to one of the previous claims, configured to project a light beam in front of a motor vehicle.
EP18836347.7A 2017-11-30 2018-11-30 Luminous module for motor vehicle, and lighting and/or signalling device provided with such a module Active EP3717828B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1761493A FR3074260B1 (en) 2017-11-30 2017-11-30 LIGHTING MODULE FOR MOTOR VEHICLES, AND LIGHTING AND / OR SIGNALING DEVICE EQUIPPED WITH SUCH A MODULE
PCT/EP2018/025303 WO2019105588A1 (en) 2017-11-30 2018-11-30 Luminous module for motor vehicle, and lighting and/or signalling device provided with such a module

Publications (2)

Publication Number Publication Date
EP3717828A1 EP3717828A1 (en) 2020-10-07
EP3717828B1 true EP3717828B1 (en) 2023-09-20

Family

ID=61187486

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18836347.7A Active EP3717828B1 (en) 2017-11-30 2018-11-30 Luminous module for motor vehicle, and lighting and/or signalling device provided with such a module

Country Status (5)

Country Link
US (1) US20200408377A1 (en)
EP (1) EP3717828B1 (en)
CN (1) CN111406181B (en)
FR (1) FR3074260B1 (en)
WO (1) WO2019105588A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112709973B (en) * 2020-12-31 2021-11-30 深圳市必拓电子股份有限公司 Method for generating composite light by exciting fluorescence with laser and light path structure thereof

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101826A (en) * 2002-09-09 2004-04-02 Fuji Photo Optical Co Ltd Optical system for projector, and projector device using same
US7246923B2 (en) * 2004-02-11 2007-07-24 3M Innovative Properties Company Reshaping light source modules and illumination systems using the same
TWI294986B (en) * 2004-10-08 2008-03-21 Premier Image Technology Corp An optical engine and an image projector having the optical engine
US7832878B2 (en) * 2006-03-06 2010-11-16 Innovations In Optics, Inc. Light emitting diode projection system
DE102007027952A1 (en) * 2007-06-18 2008-12-24 Zumtobel Lighting Gmbh Lighting device with two usable light paths
JP2011524065A (en) * 2008-05-05 2011-08-25 スリーエム イノベイティブ プロパティズ カンパニー Light source module
DE102008022795B4 (en) * 2008-05-08 2020-01-09 Osram Opto Semiconductors Gmbh Motor vehicle headlight
US8033697B2 (en) * 2009-02-18 2011-10-11 National Kaohsiung First University Of Science And Technology Automotive headlight system and adaptive automotive headlight system with instant control and compensation
KR101188202B1 (en) * 2010-06-25 2012-10-09 스크램테크놀러지스아시아 유한회사 Optical System for Projection Display Apparatus
JP5579555B2 (en) * 2010-09-24 2014-08-27 Hoya株式会社 Imaging optical system and imaging apparatus
CN205388665U (en) * 2011-11-25 2016-07-20 利达光电股份有限公司 Illuminating optical system module
DE102013215374A1 (en) * 2013-08-05 2015-02-05 Osram Opto Semiconductors Gmbh lighting arrangement
CN105745485B (en) * 2013-11-18 2019-04-02 麦克赛尔株式会社 Solid-state light source device and using it lamps apparatus for vehicle, image display and solid-state light source device driving method
TW201546397A (en) * 2014-06-03 2015-12-16 Coretronic Corp Illumination apparatus used in vehicle
JP6422361B2 (en) * 2015-02-13 2018-11-14 スタンレー電気株式会社 Vehicle headlamp unit, vehicle headlamp system
TW201629576A (en) * 2015-02-12 2016-08-16 佳世達科技股份有限公司 Projector
AT516848B1 (en) * 2015-04-27 2016-09-15 Zizala Lichtsysteme Gmbh Method for driving a light scanner in a headlight for vehicles and headlights
CN105570790B (en) * 2015-11-25 2019-02-01 全普光电科技(上海)有限公司 Laser headlight
AT518286B1 (en) * 2016-02-24 2017-11-15 Zkw Group Gmbh Headlights for vehicles
TWI591417B (en) * 2016-04-08 2017-07-11 佳世達科技股份有限公司 Projector
US10578776B2 (en) * 2017-05-15 2020-03-03 Christie Digital Systems Usa, Inc. Total internal reflection prism for use with digital micromirror devices

Also Published As

Publication number Publication date
CN111406181A (en) 2020-07-10
FR3074260A1 (en) 2019-05-31
FR3074260B1 (en) 2020-11-20
CN111406181B (en) 2022-08-23
US20200408377A1 (en) 2020-12-31
EP3717828A1 (en) 2020-10-07
WO2019105588A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
EP3521691B1 (en) Light module for a motor vehicle, and lighting and/or signalling device comprising such a module
EP3396241B1 (en) Light module with imaging optics optimised for a pixelated spatial modulator, intended for a motor vehicle
EP2690352B1 (en) Adaptive lighting system for an automobile
EP3350506B1 (en) Light-beam-projecting device of a vehicle and vehicle headlamp comprising it
WO2016005409A1 (en) Lighting module for a motor vehicle
EP1528312A1 (en) Lighting module for vehicle headlamp
FR3040935A1 (en) LIGHTING SYSTEM FOR MOTOR VEHICLES
EP3803198B1 (en) Lighting module for automotive vehicle
EP3604904B1 (en) Light module comprising an array of light sources and a bifocal optical system
EP3611425A1 (en) Light module for a motor vehicle suitable for generating a light beam with at least one row of lighting units
FR3043168A1 (en) DEVICE FOR PROJECTING THE LIGHT BEAM OF A MOTOR VEHICLE CONFIGURED TO PROJECT A PIXELIZED IMAGE
EP3453946A1 (en) Light module for a motor vehicle, and lighting and/or signalling device comprising such a module
EP3717828B1 (en) Luminous module for motor vehicle, and lighting and/or signalling device provided with such a module
FR3055691B1 (en) DIFFRACTIVE SCREEN LIGHTING MODULE FOR MOTOR VEHICLE
EP1835325A2 (en) Infrared lighting module for a vehicle headlight and headlight equipped with such a module
EP2853804B1 (en) Lighting and/or signalling module with a plurality of rotary optical systems
EP3857115A1 (en) Light module for motor vehicle, and lighting and/or signaling device provided with such a module
FR3042844A1 (en) LIGHTING SYSTEM FOR MOTOR VEHICLES
WO2022157339A1 (en) Motor vehicle illumination system provided with a lighting module able to emit a pixellated light beam
FR3041112A1 (en) MODULE FOR PROJECTING A LIGHT BEAM OF AUTOMOTIVE LIGHTING, AND PROJECTOR PROVIDED WITH SUCH A MODULE
WO2023031344A1 (en) Lighting device for a motor vehicle
FR3054020B1 (en) DIGITAL SCREEN LIGHT BEAM PROJECTION DEVICE AND PROJECTOR PROVIDED WITH SUCH A DEVICE
FR3012573A1 (en) OPTICAL MODULE FOR A VEHICLE PROJECTOR COMPRISING A LASER SOURCE
FR3086032A1 (en) LIGHTING SYSTEM FOR VEHICLE
FR3048061A1 (en) LIGHTING SYSTEM FOR MOTOR VEHICLE PROJECTOR COMPRISING LIGHTING MODULE WITH LIMITED ENCLOSURE

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200421

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210813

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20230413

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018058013

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231221

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231221

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231124

Year of fee payment: 6

Ref country code: DE

Payment date: 20231107

Year of fee payment: 6

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1613632

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240120

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240122

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018058013

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20231130