EP3396241B1 - Light module with imaging optics optimised for a pixelated spatial modulator, intended for a motor vehicle - Google Patents

Light module with imaging optics optimised for a pixelated spatial modulator, intended for a motor vehicle Download PDF

Info

Publication number
EP3396241B1
EP3396241B1 EP18168421.8A EP18168421A EP3396241B1 EP 3396241 B1 EP3396241 B1 EP 3396241B1 EP 18168421 A EP18168421 A EP 18168421A EP 3396241 B1 EP3396241 B1 EP 3396241B1
Authority
EP
European Patent Office
Prior art keywords
light
high definition
reflection
optical
imaging system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18168421.8A
Other languages
German (de)
French (fr)
Other versions
EP3396241A1 (en
Inventor
Pierre Albou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Vision SAS
Original Assignee
Valeo Vision SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Vision SAS filed Critical Valeo Vision SAS
Publication of EP3396241A1 publication Critical patent/EP3396241A1/en
Application granted granted Critical
Publication of EP3396241B1 publication Critical patent/EP3396241B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/67Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors
    • F21S41/675Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors by moving reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/265Composite lenses; Lenses with a patch-like shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/285Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24 - F21S41/2805
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/36Combinations of two or more separate reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/37Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors characterised by their material, surface treatment or coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/63Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on refractors, filters or transparent cover plates
    • F21S41/635Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on refractors, filters or transparent cover plates by moving refractors, filters or transparent cover plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/657Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by moving light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/68Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on screens
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/14Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/26Refractors, transparent cover plates, light guides or filters not provided in groups F21S43/235 - F21S43/255
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/30Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by reflectors
    • F21S43/31Optical layout thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/40Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the combination of reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/47Passive cooling, e.g. using fins, thermal conductive elements or openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/47Passive cooling, e.g. using fins, thermal conductive elements or openings
    • F21S45/48Passive cooling, e.g. using fins, thermal conductive elements or openings with means for conducting heat from the inside to the outside of the lighting devices, e.g. with fins on the outer surface of the lighting device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/02Controlling the distribution of the light emitted by adjustment of elements by movement of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/04Controlling the distribution of the light emitted by adjustment of elements by movement of reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/007Array of lenses or refractors for a cluster of light sources, e.g. for arrangement of multiple light sources in one plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0083Array of reflectors for a cluster of light sources, e.g. arrangement of multiple light sources in one plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/30Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by reflectors
    • F21S43/33Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by reflectors characterised by their material, surface treatment or coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2103/00Exterior vehicle lighting devices for signalling purposes
    • F21W2103/10Position lights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2103/00Exterior vehicle lighting devices for signalling purposes
    • F21W2103/15Side marker lights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2103/00Exterior vehicle lighting devices for signalling purposes
    • F21W2103/20Direction indicator lights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2103/00Exterior vehicle lighting devices for signalling purposes
    • F21W2103/55Daytime running lights [DRL]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the present invention relates to lighting for vehicles, in particular towards the front or towards the rear.
  • the invention relates more precisely, in the automotive field, to a light module provided with a pixelated spatial modulator, for example in the form of a micro-mirror matrix (or DMD from English "Digital Micromirror Device") whose micro-mirrors are controllable.
  • a pixelated spatial modulator for example in the form of a micro-mirror matrix (or DMD from English "Digital Micromirror Device") whose micro-mirrors are controllable.
  • a lighting device for a motor vehicle comprising a light source, a matrix of micro-mirrors or similar modulator device making it possible to decompose a light beam into pixels distributed along two dimensions.
  • the micro-mirror matrix is generally used to reflect the light rays coming from the light source towards an optic for shaping the light beam, intended to project the figure formed on the micro-mirror matrix, in the form of an outgoing beam of light.
  • This light beam makes it possible, for example, to illuminate the lane on which the motor vehicle comprising this lighting device is traveling, or fulfills a signaling function.
  • Projection lighting using a micro-mirror array or similar pixelated spatial modulator offers the ability to provide bright, adaptive lighting solutions for many applications.
  • DBL Dynamic Bending Light
  • the matrix grouping the micro-mirror devices decomposes the outgoing beam into pixels, which allows the projected light beam formed with a micro-mirror matrix to be adaptively shaped to suit a variety of needs.
  • the control circuit can advantageously be used to segment and/or adaptively shape the projected light beam, for example so as to avoid the eyes of oncoming drivers. Sensors and control circuits can be used to automate this “glare-free” function.
  • some of the micro-mirrors in one DMD array may be in an inactive position (due to a certain tilt) while other mirrors are oriented to the "on" position and reflect light towards the imaging system, for example a projection lens. In this way it is possible to shape the beam of light projected by the lens.
  • the light radiation directed towards the micro-mirrors of the DMD matrix is only very partially used and it is generally considered that the use of a micro-mirror matrix is not energy efficient.
  • illumination sources with a DMD matrix, including when the illumination sources are of a simple/inexpensive type such as light-emitting diodes (LEDs) or similar elements.
  • LEDs light-emitting diodes
  • US2016347237A1 And US2015377442A1 also disclose an imaging system comprising, in a first imaging part, a lens adjusting to a dimension characteristic of the format of a spatial modulator, adapted to concentrate radiation from the light source.
  • the invention proposes a light module for a motor vehicle according to claim 1.
  • the imaging system thus comprises, in a first imaging part, an adjustment lens to a dimension characteristic of the determined format, adapted to concentrate radiation from the light source (the adjustment effect is for example such that the raw radiation coming from the light source is converted, after passing through the lens, into a first radiation which is within the limits of the perimeter of the reflection zone of the spatial modulator when it reaches it).
  • the imaging system is thus designed to format an intermediate image on the one hand (on the upstream side of the spatial modulator), and to format the image to be projected on the other hand (on the downstream side of the spatial modulator) .
  • a spectacular increase in optical efficiency can be obtained by shaping upstream of the high definition pixelated spatial modulator. It is permitted to remove a collimator since it involves illuminating by forming an intermediate image.
  • the flux efficiency is improved by the concentration of the beam emitted from the light source with optionally an anamorphic compression of the illumination beam routed to the reflection zone or active zone of the high definition pixelated spatial modulator. This makes it possible to adjust the intermediate image of the source formed on the reflection zone, as close as possible to the external dimensions of this zone. In practice, the external rays of the beam on the upstream side can then be incident along the perimeter of the reflection zone, without extending beyond this perimeter.
  • the high-definition pixelated spatial modulator is defined by a matrix of micro-mirrors having a reflection zone whose largest dimension is greater than the largest dimension of the light source.
  • the part of the imaging system upstream of the spatial modulator can perform an anamorphosis.
  • a technical advantage of this type of solution possibly with anamorphic compression of the image of the light source in one direction, is that it is possible to make the intermediate image coincide with the structure of the spatial modulator while allowing this same image to be enlarged to fill the input diopter of the projection optics, on the downstream side of the spatial modulator.
  • the output image can be very homogeneous. Furthermore, it is permitted to avoid unnecessarily heating the periphery of the reflection area, which is generally sensitive to heat.
  • the light source is part of a unit for emitting light rays provided with at least one reflective surface distinct from the spatial modulator and making it possible to orient the light source in a direction of distance of the light by relative to a reflection zone of the spatial modulator (in this case, we understand that the emission axis of the source is not more or less directed towards the matrix).
  • a projection screen is provided in the light module, for example parallel to a reflection zone of the spatial modulator.
  • the term “parallel” can be interpreted here with a certain tolerance, typically plus or minus 1 to 5°.
  • a second part of the imaging system can be adapted to create the desired image on the projection screen, from an intermediate image of the light source formed on the reflection zone.
  • the intermediate image is itself obtained by using a first part of the imaging system and extends exclusively within a perimeter of the reflection zone, so as not to unnecessarily heat the periphery of the this area of reflection.
  • Another object of the invention is to propose a headlight for a motor vehicle, comprising a headlight housing and at least one light module according to the invention in order to perform a lighting and/or signaling function.
  • this type of projector can advantageously present homogeneous lighting from a source, for example a light source with one or more light-emitting diodes, by targeting in an adjusted manner the active reflection surface of the DMD without overflowing, without optics of collimation.
  • a source for example a light source with one or more light-emitting diodes
  • these can be grouped on a common support or possibly distributed over several supports.
  • FIG. 1 represents a first embodiment of an optical module 1 for a motor vehicle, which can be integrated for example in a front light or a rear light.
  • the optical module 1 forms a light emitting device configured to implement one or more photometric functions.
  • the light module 1 comprises, as illustrated, a light source 2, a micro-mirror matrix 6 (or DMD, for English “Digital Micromirror Device”), a control unit 16, for example in the form of a controller, making it possible to control micro-mirrors 12 of the micro-mirror matrix 6 and projection optics 18 (or shaping optics) which belongs to an IMS imaging system.
  • the control unit 16 can optionally be relocated, for example to allow several light modules 1 to be controlled.
  • the micro-mirrors 12 are distributed in a plane, so that the matrix 6 defines an optical axis A which substantially coincides with a central axis of the projection optics 18.
  • the projection optics 18 is provided here between the reflection zone of the micro-mirror matrix 6 and a projection screen E1.
  • the drawings show a micro-mirror array 6, we understands that the light rays emitted by the light source 2 can be directed, by means of suitable optics, towards any type of high definition pixelated spatial modulator 3, which makes it possible to decompose the received radiation R1 into pixels.
  • a matrix of pixels provided with active surfaces in the focal plane of the projection optics in the form of pixels, of the "LCoS" type (from the English “Liquid Crystal on Silicon”), can be used.
  • An LCoS matrix device may indeed be suitable.
  • a first radiation R1 can be received on a surface subdivided very finely to define pixels with high definition, with typically 1280 by 720 pixels or more, knowing that a lower resolution would also be acceptable in many cases, in particular 640 by 480, and whose configurations can be modulated.
  • the change of state is preferably permitted for each pixel, in a manner known per se.
  • the light source 2 may consist of a light-emitting element such as a light-emitting diode (or LED) or an LED matrix. In the case of a group of electroluminescent elements, these are preferably packed together in the same area which can be compared to a single lighting source.
  • a laser diode where appropriate coupled with a collimator system and possibly a wavelength conversion device, can also make it possible to form raw radiation R0.
  • the light source 2 here allows the raw radiation R0 to be formed.
  • This raw radiation R0 is directed, directly or indirectly, towards a first part IP1 of the IMS imaging system.
  • This first part IP1 can be defined by a lens 4 designed and arranged in order to define a modified image of the light source 2.
  • the lens 4 can have a useful perimeter greater than or equal to the perimeter P6 of the reflection zone of the microphone matrix -mirrors 6 or reflection zone of a high definition spatial modulator 3 equivalent to this type of matrix. More particularly, the lens 4 is typically an optic operating at maximum aperture, for which some aberrations do not pose a problem, which results here in a high diameter.
  • the micro-mirror matrix 6 can optionally be covered with a layer CP for protecting the micro-mirrors 12 which is transparent.
  • the pivot axis of each of the micro-mirrors 12 can allow, by way of non-limiting example, a rotation of plus or minus 10° or plus or minus 12° relative to a nominal position without rotation.
  • the radiation R1 obtained at the exit of the lens 4 converges towards a virtual point located further than the matrix of micro-mirrors 6.
  • the radiation R2, resulting from the reflection on this matrix 6 can be focused to infinity or towards a point external to module 1 and far away.
  • the energy of the radiation R2 can be entirely received by the projection optics 18, forming the second part IP2 of the IMS imaging system.
  • the active micro-mirrors 12 are oriented in a comparable or identical manner.
  • the first part IP1 of the IMS imaging system is dimensioned and designed/assembled in the light module 1, so that the general plane of the reflection zone is inclined relative to the optical axis Z ( Figure 3 ) of the lighting system.
  • the lens 4 defines the output of an lighting system for illuminating the array of micro-mirrors 6.
  • the micro-matrix mirrors 6 can be more inclined to prevent the projection optics 18 from creating a shadow in the lighting beam resulting from the reflection by the matrix of micro-mirrors 6.
  • the light source 2 and the lens 4 can be entirely offset laterally, so as not to interfere with the radiation R2 which is reflected from the reflection zone of the micro-mirror matrix 6.
  • the lens 4 and another optical element 21 are adjacent or close to each other, and/or positioned in such a way that the optical element 21 and the envelope of the light rays upstream of the modulator 3 is as close as possible to each other.
  • the lens 4 can extend in a close position, less than 5 mm for example, such that the lens 4 is adjacent to this other optical element 21 on which the second radiation R2 is directed directly resulting from the reflection on the micro-mirror matrix 6.
  • a vertical virtual axis can for example both cross or be tangent to the respective input surfaces of the first part IP1 and the second part IP2. More generally, the lens 4 can be arranged close to the optical element 21, typically being closer to this optical element 21 than to the micro-mirror matrix 6.
  • the first part IP1 can alternatively be formed by an anamorphic lighting system.
  • the light source 2 can form a surface of 1.7 ⁇ 1.7 mm 2 , while the reflection zone of the micro-mirror matrix 6 (DMD type) extends rectangularly over a larger surface area (e.g. 12 ⁇ 6 mm 2 ).
  • the light source 2 which is typically formed by a group of diodes, has a compact appearance, without exceeding for example 9 or 10 mm 2 , preferably without exceeding 3 or 4 mm 2 , or possibly almost punctual, with an emission surface of the order of 0.1 mm 2 .
  • the anamorphic system illuminates the micro-mirror matrix 6 by using two crossed cylindrical lenses 41, 42 having aspherical entrance faces of revolution, typically for (partial) correction of aberrations.
  • the lens 41 closest to the light source 2 has its power in the direction of the strongest magnification, here horizontally when the horizontal dimension of the reflection zone is greater than its vertical dimension.
  • the first imaging part IP1 arranged upstream of the spatial modulator 3 has a mirror with an anamorphosis effect, for example a mirror with a concave reflection surface.
  • the light source 2 can optionally form part of a light ray emission unit 20 provided with at least one reflective surface (not shown) distinct from the high definition pixelated spatial modulator 3.
  • the reflective surface is of a type known in itself, so that it will not be detailed here; it can make it possible to orient the light source 2 in a direction in which the light moves away from a reflection zone of the high-definition pixelated spatial modulator 3.
  • the first part IP1 can present at least one optical element (4; 41, 42), located upstream of the spatial modulator 3 and which belongs to the IMS imaging system, in order to define, from the light R0 emitted by the light source 2, the first radiation R1 projected onto the reflection zone of the spatial modulator 3.
  • an intermediate image is formed on this reflection zone which is distorted by an optical element of the converging type, here in the form lens 4 or an anamorphic system.
  • the projection optics 18 of the second part IP2 allows shaping of the radiation R2 complementary to the shaping carried out by the first part IP1. This shaping by the projection optics 18 makes it possible to form an outgoing beam 40 which has a photometric function suitable for a vehicle, in particular a motor vehicle.
  • a preferred photometric function associated with the light module 1 is a lighting and/or signaling function visible to a human eye.
  • These Photometric functions may be the subject of one or more regulations establishing requirements for colorimetry, intensity, spatial distribution according to a so-called photometric grid, or even visibility ranges of the emitted light.
  • the light module 1 is for example a lighting device constituting a headlight 10 - or headlight - of a vehicle. It is then configured to implement one or more photometric functions, for example chosen from a low beam function called a “code function”, a high beam function called a “road function”, a fog light function.
  • the light module 1 is a signaling device intended to be arranged at the front or at the rear of the motor vehicle.
  • the headlight 10 for a motor vehicle illustrated on the figure 1 can be housed in a housing 14 or be delimited by this housing 14.
  • the housing 14, as illustrated, comprises a body 14a forming a hollow interior space receiving at least in part the light module 1.
  • a cover 14b, at least in transparent part, is coupled to the body 14a to close the interior space.
  • the cover 14b also forms a hollow, partially receiving the light module 1, in particular all or part of the projection optics 18.
  • the cover 14b is for example made of plastic resin or other suitable plastic material.
  • the lighting projector 10 may include several light modules 1 which are then adapted to emit neighboring beams, the beams preferably partly overlapping. In particular, the lateral ends of neighboring beams can be superimposed.
  • the photometric functions that can be implemented by using the light module 1 include a direction change indication function, a daytime running light function known by the English acronym DRL, for “Daytime Running Light”, a front light signature function, a position light function, a so-called “Side- marker”, which comes from English and can be translated as side signage.
  • these functions photometric indicators include a reversing indication function, a stop function, a fog light function, a direction change indication function, a rear light signature function, a lantern function, a side signal function.
  • light source 2 may be red. In the case of a function for a front light, the light source 2 is preferably white.
  • the light source 2 is inclined so that the emission axis of the lens 4 is spaced from the optical axis of the lens 4 or of the optical imaging part IP1 in the plane defined by the axes optics of the projection optics 18 and the lens 4 or the projection optics 18 and the part IP1, respectively depending on the variant adopted, in the direction of the projection optics 18.
  • the light source 2 remains facing the reflection zone of the micro-mirror matrix 6 or other reflection zone of the spatial modulator 3, in order to optimize the sharpness of the image. Although this sharpness is not important in itself for many applications, it ensures that there is no spillover of light beyond the P6 perimeter of the reflection area. Losses and peripheral heating in the potentially dangerous spatial modulator 3 are therefore avoided.
  • the light source 2 can advantageously be placed at a short distance, for example less than 10 or 15 mm, from the lens 4 which is here convergent. As clearly visible in particular on the Figure 3 , this still makes it possible to obtain a flared beam shape for the light rays of the radiation R1 propagating between the light ray emission unit 20 and the micro-mirror matrix 6.
  • the light ray emitting unit 20 comprises a reflecting mirror.
  • the micro-mirror matrix 6 is here essentially defined by an electronic chip 7, attached to a printed circuit board 8 via a suitable connector (or “socket”) 9.
  • a cooling device here a radiator 11, is attached to the printed circuit board 8 to cool the printed circuit board 8 and/or the chip 7 of the micro-mirror array 6.
  • the radiator 11 can present a protruding relief passing through an opening in the printed circuit board 8 to be in contact with this chip 7, the connector 9 leaving a passage free for this protruding relief.
  • a thermal paste or any other means promoting thermal exchanges, accessible to those skilled in the art, can be interposed between the protruding relief and the micro-mirror matrix 6.
  • the micro-mirror matrix 6 is for example rectangular.
  • the micro-mirror matrix 6 thus extends mainly in a first direction of extension, between lateral ends of the micro-mirror matrix 6.
  • a second direction of extension which can correspond to a vertical dimension (height )
  • there are also two opposite end edges which are typically parallel to each other.
  • the first part IP1 of the IMS imaging system makes it possible to obtain homogeneity of the illumination on the micro-mirror matrix 6, the radiation R1 corresponding to an illumination with a spatial variation of the emittance similar to that of the source luminous 2. In fact, the inclination makes the emittance variation slow and limited.
  • optics that are as less sensitive as possible to variations in wavelength (for example for a single lens 4, a crown glass can be used, preferably a PSK53 type crown glass).
  • the light module 1 has a first optical element 21 arranged as an input lens for the projection optics 18, making it possible to capture the second radiation R2.
  • a spherical biconvex lens can constitute this first optical element 21.
  • a group of diopters is then provided downstream of the first optical element 21 , making it possible to define a retro-focusing system, preferably with at least one additional convergence.
  • the first optical element 21 can be placed downstream and in a position adjacent to the intersection zone 30 of the lighting beam corresponding to the radiation R1 and the reflected beam corresponding to the radiation R2 in the activated state of all the pixels of the spatial modulator 3. It is sized to capture all or most of the reflected beam.
  • the projection optics 18 ensures that the marginal rays are collimated, so that light reaching an entrance diopter of the lens assembly which follows this entrance diopter is not lost.
  • An achromatic doublet 24 can for example be provided as the last optical element.
  • the retro-focusing effect is obtained here by the presence of a converging lens 22 and a diverging lens (which may optionally be part of the achromatic doublet 24 or be formed by an independent lens 23).
  • the short focal length typically required is thus achieved when the light module 1 must operate with a wide field (wide angle), with the counter-grid length required by the lighting and the geometry of the beam reflected by the micro-mirror matrix. 6.
  • the achromatic doublet 24 can be placed by optionally omitting the lens 23, or a simple lens can be placed to replace the achromatic doublet 24, with in this case a lens 23 formed in a specific glass different from that used in the lens. simple next.
  • the assembly formed by elements 23 and 24 makes it possible to reduce chromatic aberrations.
  • more lenses can be added and at least two different materials (crown type low chromatic dispersion glass on the one hand, and flint glass generally called “flint” in the optical field on the other hand) used to correct geometric aberrations and cancel first-order chromatism.
  • the light module 1 can thus provide outgoing radiation corresponding substantially to white, or possibly yellowish, visible light.
  • the projection optics further comprises a crown glass, typically thinner than the other lenses of the projection optics 18, and placed between two lenses of the projection optics 18 , for example between two final lenses.
  • the type of configuration of the projection optics 18, shown on the figure 1 is well suited when the draw of this optic is determined by the imposed position of its entrance diopter, knowing that the surface of its entrance pupil must generally be at least equal to that of this entrance diopter.
  • the focal length of the projection optics 18 can be determined by the desired angular aperture of the beam, horizontally or vertically, depending on the ratio between the aspect ratio of the reflection surface of the micro-mirror matrix 6 and the ratio of the desired horizontal and vertical openings for the beam to be projected (the opening in the other direction can be achieved using an anamorphosis).
  • One of the advantages of the light module 1 is to make it possible to project a homogeneous light beam with a power optimized in relation to the energy supplied to the light source 2 and the possibility of making the incident R1 radiation coincide exactly with the size and shape of the light source.
  • the light module 1 has been illustrated for a case in which the projection screen E1 is defined internally with respect to the transparent wall forming the glass of the transparent cover 14b, it is understood that a part of the transparent cover 14b or another element forming part of the external housing 14 can define the projection screen.
  • the projection optics 18 can for example be focused on a film formed on the internal side of the glass rather than on a separate screen.
  • an indication or marking can be added within the outgoing light beam 40.
  • the light module 1 can present optical imaging with a large numerical aperture (0.6 or 0.7, for example non-limiting).
  • a high definition pixelated spatial modulator 3 and the correction of aberrations makes it possible to form characters (letters, numbers or the like) with sufficient resolution to make it possible to display to the attention of people external to the vehicle messages or pictograms which are for example representative of the activation of a functionality or an operating context of the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Lenses (AREA)

Description

La présente invention concerne l'éclairage pour véhicule, en particulier vers l'avant ou vers l'arrière. L'invention concerne plus précisément, dans le domaine automobile un module lumineux pourvu d'un modulateur spatial pixellisé, par exemple sous la forme d'une matrice à micro-miroirs (ou DMD de l'anglais « Digital Micromirror Device ») dont les micro-miroirs sont contrôlables.The present invention relates to lighting for vehicles, in particular towards the front or towards the rear. The invention relates more precisely, in the automotive field, to a light module provided with a pixelated spatial modulator, for example in the form of a micro-mirror matrix (or DMD from English "Digital Micromirror Device") whose micro-mirrors are controllable.

Il est connu un dispositif d'éclairage pour véhicule automobile comprenant une source lumineuse, une matrice de micro-miroirs ou dispositif modulateur similaire permettant de décomposer un faisceau lumineux en pixels répartis selon deux dimensions. La matrice de micro-miroirs est généralement utilisée pour réfléchir les rayons lumineux en provenance de la source lumineuse vers une optique de mise en forme du faisceau lumineux, destinée à projeter la figure formée sur la matrice de micro-miroirs, sous la forme d'un faisceau lumineux sortant. Ce faisceau lumineux permet par exemple d'éclairer la voie sur laquelle circule le véhicule automobile comprenant ce dispositif d'éclairage, ou remplit une fonction de signalisation.A lighting device for a motor vehicle is known comprising a light source, a matrix of micro-mirrors or similar modulator device making it possible to decompose a light beam into pixels distributed along two dimensions. The micro-mirror matrix is generally used to reflect the light rays coming from the light source towards an optic for shaping the light beam, intended to project the figure formed on the micro-mirror matrix, in the form of an outgoing beam of light. This light beam makes it possible, for example, to illuminate the lane on which the motor vehicle comprising this lighting device is traveling, or fulfills a signaling function.

Un éclairage avec projection par utilisation d'une matrice à micro-miroirs ou modulateur spatial pixellisé similaire offre la possibilité de fournir des solutions d'éclairage lumineux et adaptatives pour de nombreuses applications. On peut citer la fonction consistant à former un faisceau adaptatif, afin d'éclairer la route à l'endroit pertinent, le cas échéant afin de ne pas éblouir dans les virages les véhicules venant en sens inverse, qui est généralement désignée par le sigle DBL (Dynamic Bending Light). De façon connue en soi, la matrice groupant les dispositifs à micro-miroirs décompose en pixels le faisceau sortant, ce qui permet au faisceau de lumière projeté formé avec une matrice à micro-miroirs d'être façonné de manière adaptative pour convenir à une variété de besoins. Le circuit de commande peut être avantageusement utilisé pour segmenter et/ou façonner de manière adaptative le faisceau de lumière projeté, par exemple de façon à éviter les yeux des conducteurs venant en sens inverse. Les capteurs et circuits de commande peuvent être utilisés pour automatiser cette fonction "sans éblouissement".Projection lighting using a micro-mirror array or similar pixelated spatial modulator offers the ability to provide bright, adaptive lighting solutions for many applications. We can cite the function of forming an adaptive beam, in order to illuminate the road at the relevant location, if necessary so as not to dazzle oncoming vehicles when turning, which is generally designated by the acronym DBL (Dynamic Bending Light). In a manner known per se, the matrix grouping the micro-mirror devices decomposes the outgoing beam into pixels, which allows the projected light beam formed with a micro-mirror matrix to be adaptively shaped to suit a variety of needs. The control circuit can advantageously be used to segment and/or adaptively shape the projected light beam, for example so as to avoid the eyes of oncoming drivers. Sensors and control circuits can be used to automate this “glare-free” function.

En formant un faisceau adaptatif, certains des micro-miroirs dans une matrice DMD peuvent être dans une position inactive (du fait d'une certaine inclinaison) tandis que d'autres miroirs sont orientés à la position "marche" et reflètent la lumière vers le système d'imagerie, par exemple une lentille de projection. De cette manière, il est possible de façonner le faisceau de lumière projeté par la lentille. Cependant, le rayonnement lumineux dirigé vers les micro-miroirs de la matrice DMD n'est que très partiellement utilisé et il est généralement considéré que l'utilisation d'une matrice à micro-miroirs n'est pas efficace du point de vue énergétique.By forming an adaptive beam, some of the micro-mirrors in one DMD array may be in an inactive position (due to a certain tilt) while other mirrors are oriented to the "on" position and reflect light towards the imaging system, for example a projection lens. In this way it is possible to shape the beam of light projected by the lens. However, the light radiation directed towards the micro-mirrors of the DMD matrix is only very partially used and it is generally considered that the use of a micro-mirror matrix is not energy efficient.

Il existe donc un besoin pour utiliser de façon efficace des sources d'illumination avec une matrice DMD, y compris lorsque les sources d'illumination sont d'un type simple/peu coûteux comme des diodes électroluminescentes (DEL) ou éléments similaires.There is therefore a need to effectively use illumination sources with a DMD matrix, including when the illumination sources are of a simple/inexpensive type such as light-emitting diodes (LEDs) or similar elements.

Les documents US2016347237A1 et US2015377442A1 divulguent également un système d'imagerie comprenant, dans une première partie d'imagerie, une lentille d'ajustement à une dimension caractéristique du format d'un modulateur spatial, adaptée pour concentrer un rayonnement de la source lumineuse.The documents US2016347237A1 And US2015377442A1 also disclose an imaging system comprising, in a first imaging part, a lens adjusting to a dimension characteristic of the format of a spatial modulator, adapted to concentrate radiation from the light source.

Afin d'améliorer la situation, l'invention propose un module lumineux pour véhicule automobile selon la revendication 1.In order to improve the situation, the invention proposes a light module for a motor vehicle according to claim 1.

Le système d'imagerie comprend ainsi, dans une première partie d'imagerie, une lentille d'ajustement à une dimension caractéristique du format déterminé, adaptée pour concentrer un rayonnement de la source lumineuse (l'effet d'ajustement est par exemple tel que le rayonnement brut issu de la source lumineuse est converti, après passage dans la lentille, en un premier rayonnement qui est dans les limites du périmètre de la zone de réflexion du modulateur spatial lorsqu'il atteint celui-ci).The imaging system thus comprises, in a first imaging part, an adjustment lens to a dimension characteristic of the determined format, adapted to concentrate radiation from the light source (the adjustment effect is for example such that the raw radiation coming from the light source is converted, after passing through the lens, into a first radiation which is within the limits of the perimeter of the reflection zone of the spatial modulator when it reaches it).

Le système d'imagerie est ainsi conçu pour mettre en forme une image intermédiaire d'une part (du côté amont du modulateur spatial), et pour mettre en forme l'image à projeter d'autre part (du côté aval du modulateur spatial).The imaging system is thus designed to format an intermediate image on the one hand (on the upstream side of the spatial modulator), and to format the image to be projected on the other hand (on the downstream side of the spatial modulator) .

De façon habituelle pour ce type de module lumineux, on comprend que l'image créée à la sortie du système d'imagerie, appelée également image de sortie, est l'image qui sera perçue à l'extérieur du module. Le faisceau sortant propage simplement cette image de sortie, sans traitement optique supplémentaire à l'extérieur du module lumineuxUsually for this type of light module, we understand that the image created at the output of the imaging system, also called output image, is the image which will be perceived outside the module. The outgoing beam simply propagates this output image, without additional optical processing outside the light module

Une augmentation spectaculaire du rendement optique peut être obtenue par une mise en forme en amont du modulateur spatial pixellisé à haute définition. Il est permis de supprimer un collimateur puisqu'il s'agit d'éclairer par formation d'une image intermédiaire. Le rendement en flux est amélioré par la concentration du faisceau émis depuis la source lumineuse avec optionnellement une compression anamorphique du faisceau d'éclairement acheminé sur la zone de réflexion ou zone active du modulateur spatial pixellisé à haute définition. Ceci permet d'ajuster l'image intermédiaire de la source formée sur la zone de réflexion, au plus près des dimensions externes de cette zone. En pratique, les rayons externes du faisceau côté amont peuvent alors être incidents le long du périmètre de la zone de réflexion, sans dépassement sur l'extérieur de ce périmètre.A spectacular increase in optical efficiency can be obtained by shaping upstream of the high definition pixelated spatial modulator. It is permitted to remove a collimator since it involves illuminating by forming an intermediate image. The flux efficiency is improved by the concentration of the beam emitted from the light source with optionally an anamorphic compression of the illumination beam routed to the reflection zone or active zone of the high definition pixelated spatial modulator. This makes it possible to adjust the intermediate image of the source formed on the reflection zone, as close as possible to the external dimensions of this zone. In practice, the external rays of the beam on the upstream side can then be incident along the perimeter of the reflection zone, without extending beyond this perimeter.

Selon une particularité, le modulateur spatial pixellisé à haute définition est défini par une matrice de micro-miroirs ayant une zone de réflexion dont la plus grande dimension est supérieure à la plus grande dimension de la source lumineuse.According to one particular feature, the high-definition pixelated spatial modulator is defined by a matrix of micro-mirrors having a reflection zone whose largest dimension is greater than the largest dimension of the light source.

Dans le cas d'une zone de réflexion significativement allongée, avec par exemple une longueur d'environ le double de la largeur, la partie du système d'imagerie en amont du modulateur spatial peut réaliser une anamorphose. Plus généralement, un avantage technique de ce type de solution, avec éventuellement une compression anamorphique de l'image de la source lumineuse dans une direction, est qu'il est permis de faire coïncider l'image intermédiaire avec la structure du modulateur spatial tout en permettant que cette même image soit agrandie pour remplir le dioptre d'entrée de l'optique de projection, du côté aval du modulateur spatial.In the case of a significantly elongated reflection zone, for example with a length of approximately twice the width, the part of the imaging system upstream of the spatial modulator can perform an anamorphosis. More generally, a technical advantage of this type of solution, possibly with anamorphic compression of the image of the light source in one direction, is that it is possible to make the intermediate image coincide with the structure of the spatial modulator while allowing this same image to be enlarged to fill the input diopter of the projection optics, on the downstream side of the spatial modulator.

Par ailleurs, l'image de sortie peut être très homogène. En outre, il est permis d'éviter de chauffer inutilement la périphérie de la zone de réflexion, qui est généralement sensible à la chaleur.Furthermore, the output image can be very homogeneous. Furthermore, it is permitted to avoid unnecessarily heating the periphery of the reflection area, which is generally sensitive to heat.

Un module lumineux selon l'invention peut comporter l'une ou plusieurs des caractéristiques suivantes :

  • la zone de réflexion du modulateur spatial pixellisé à haute définition a un format rectangulaire et est délimitée par un périmètre rectangulaire.
  • le module lumineux comporte une optique de projection incluant plusieurs lentilles et pouvant correspondre à une deuxième partie d'imagerie du système d'imagerie.
  • la lentille permet en outre un ajustement à la forme de la zone de réflexion.
  • l'un au moins des éléments optiques du système d'imagerie, définissant la première partie d'imagerie, comprend une lentille d'ajustement au format déterminé, cette lentille d'ajustement étant conçue et agencée pour concentrer le rayonnement de la source lumineuse en définissant une forme de contour du rayonnement qui correspond à la forme d'un périmètre de la zone de réflexion définie par le modulateur spatial.
  • la première partie d'imagerie, agencée en amont du modulateur spatial en suivant le sens de propagation de la lumière émise par la source lumineuse, présente au moins un élément optique transparent à effet d'anamorphose ; ainsi il est permis par exemple de comprimer typiquement la composante verticale et/ou la composante horizontale du faisceau dirigé vers le modulateur spatial, afin de faire coïncider ce faisceau exactement avec les dimensions de la zone de réflexion du modulateur spatial.
  • la première partie d'imagerie, agencée en amont du modulateur spatial, présente un miroir à effet d'anamorphose.
  • le modulateur spatial pixellisé à haute définition comprend une matrice de micro-miroirs, les micro-miroirs de la matrice de micro-miroirs étant déplaçables chacun entre :
    • une première position dans laquelle le micro-miroir est agencé pour réfléchir des rayons lumineux d'un premier rayonnement lui parvenant de la première partie d'imagerie du système d'imagerie, en direction d'une optique de projection incluant ou définissant une deuxième partie du système d'imagerie,
    • et une deuxième position dans laquelle le micro-miroir est agencé pour réfléchir les rayons lumineux du premier rayonnement lui parvenant de la première partie d'imagerie du système d'imagerie, à l'écart de l'optique de projection.
  • le modulateur spatial pixellisé à haute définition comprend une zone réfléchissante d'affichage du type à cristaux liquides sur silicium.
  • le modulateur spatial pixellisé à haute définition comprend une matrice de micro-miroirs répartis dans un plan, la matrice définissant un axe optique typiquement perpendiculaire à ce plan et qui traverse de façon centrale l'optique de projection.
  • au moins pendant la réalisation d'une fonction photométrique du module, des micro-miroirs actifs de la matrice de micro-miroirs sont dans un état actif pivoté d'un angle déterminé, préférentiellement compris entre 6 et 15°, vers un élément optique de type convergent situé en amont du modulateur spatial et qui appartient au système d'imagerie. Cette orientation rapproche ainsi typiquement la normale à ces miroirs de la source et/ou de la lentille d'illumination.
  • la source lumineuse et l'élément optique de type convergent sont :
    • préférentiellement décalés latéralement, d'un même côté, par rapport aux micro-miroirs de la matrice de micro-miroirs, et
    • associés de façon à ce que le rayon lumineux qui parcourt le plus de distance entre l'élément optique de type convergent et un micro-miroir dans un état actif d'une part, et le rayon lumineux qui parcourt le moins de distance entre l'élément optique de type convergent et un micro-miroir d'autre part, soient réfléchis de manière à entrer dans l'optique de projection en passant par les bords de la première lentille (convergente), éventuellement de façon sensiblement perpendiculaire à la matrice de micro-miroirs. L'expression sensiblement perpendiculaire s'interprète ici comme strictement perpendiculaire ou avec un décalage inférieur ou égal à 3° par rapport à la direction strictement perpendiculaire.
  • l'élément optique de type convergent s'étend dans une position (par exemple à moins de 3 ou 5 mm) adjacente à un autre élément optique sur lequel est dirigé un deuxième rayonnement directement issu d'une réflexion du premier rayonnement sur le modulateur spatial, l'autre élément optique formant de préférence un premier élément optique d'une optique de projection appartenant au système d'imagerie. Plus généralement afin d'optimiser le rendement optique du système, il peut être prévu que cet élément soit adjacent ou proche de l'enveloppe des rayons lumineux en amont du modulateur.
  • selon l'invention,
    l'élément optique de type convergent s'étend comparativement plus loin du modulateur spatial pixellisé à haute définition et plus près de l'autre élément optique sur lequel est dirigé le deuxième rayonnement directement issu d'une réflexion du premier rayonnement sur le modulateur spatial.- certains éléments de l'optique de projection forment un système de rétro-focalisation.
  • l'optique de projection comprend, successivement dans cet ordre, suivant une direction d'éloignement par rapport au modulateur spatial :
    • le premier élément optique agencé en tant que lentille d'entrée de l'optique de projection afin de capter le deuxième rayonnement (la forme et les dimensions de cette lentille d'entrée permettant typiquement de capturer dans sa totalité ce deuxième rayonnement dirigé de façon générale vers une face de sortie du module lumineux) ;
    • une paire d'éléments optiques, éventuellement sous la forme de deux lentilles optiques, permettant de rendre la distance focale de l'optique de projection inférieure au tirage de ladite optique (en d'autres termes, la distance focale est diminuée par rapport à une distance focale plus grande qui serait obtenue pour l'optique de projection en l'absence de cette paire d'éléments optiques).
  • la lentille d'entrée de l'optique de projection consiste en une lentille biconvexe, de préférence biconvexe sphérique.
  • l'optique de projection comprend en outre un doublet achromatique.
  • le doublet achromatique peut former l'un des éléments optiques de la paire d'éléments optiques.
  • l'optique de projection comprend en outre un verre crown plus mince que les autres lentilles de l'optique de projection et placé entre deux lentilles finales de l'optique de projection.
  • la source lumineuse comprend ou consiste essentiellement en une ou plusieurs diodes électroluminescentes.
    • le groupe de diodes électroluminescentes définissant la source lumineuse est monté sur un support commun. Lorsqu'on utilise plusieurs sources, chacune peut éventuellement avoir sa propre optique en amont de la matrice. La solution avec rétro-focalisation et typiquement avec un doublet achromatique permet d'obtenir un module compact, pour éclairer de façon homogène sur un champ étendu, tout en optimisant le rendement énergétique grâce à la partie de mise en forme prévue en amont du modulateur spatial pixellisé à haute définition.
A light module according to the invention may include one or more of the following characteristics:
  • the reflection zone of the high-definition pixelated spatial modulator has a rectangular format and is delimited by a rectangular perimeter.
  • the light module comprises projection optics including several lenses and which can correspond to a second imaging part of the imaging system.
  • the lens further allows adjustment to the shape of the reflection zone.
  • at least one of the optical elements of the imaging system, defining the first imaging part, comprises an adjustment lens of the determined format, this adjustment lens being designed and arranged to concentrate the radiation of the light source in defining a contour shape of the radiation which corresponds to the shape of a perimeter of the reflection zone defined by the spatial modulator.
  • the first imaging part, arranged upstream of the spatial modulator following the direction of propagation of the light emitted by the light source, presents at least one transparent optical element with anamorphosis effect; thus it is possible for example to typically compress the vertical component and/or the horizontal component of the beam directed towards the spatial modulator, in order to make this beam coincide exactly with the dimensions of the reflection zone of the spatial modulator.
  • the first imaging part, arranged upstream of the spatial modulator, presents a mirror with an anamorphosis effect.
  • the high-definition pixelated spatial modulator comprises a matrix of micro-mirrors, the micro-mirrors of the matrix of micro-mirrors each being movable between:
    • a first position in which the micro-mirror is arranged to reflect light rays of a first radiation reaching it from the first imaging part of the imaging system, towards projection optics including or defining a second part of the imaging system,
    • and a second position in which the micro-mirror is arranged to reflect the light rays of the first radiation reaching it from the first imaging part of the imaging system, away from the projection optics.
  • the high definition pixelated spatial modulator comprises a reflective display area of the liquid crystal type on silicon.
  • the high definition pixelated spatial modulator comprises a matrix of micro-mirrors distributed in a plane, the matrix defining an optical axis typically perpendicular to this plane and which passes centrally through the projection optics.
  • at least during the realization of a photometric function of the module, active micro-mirrors of the micro-mirror matrix are in an active state rotated by a determined angle, preferably between 6 and 15°, towards an optical element of convergent type located upstream of the spatial modulator and which belongs to the imaging system. This orientation thus typically brings the normal to these mirrors closer to the source and/or the illumination lens.
  • the light source and the converging type optical element are:
    • preferentially offset laterally, on the same side, relative to the micro-mirrors of the micro-mirror matrix, and
    • associated so that the light ray which travels the most distance between the convergent type optical element and a micro-mirror in an active state on the one hand, and the light ray which travels the least distance between the optical element of convergent type and a micro-mirror on the other hand, are reflected so as to enter the projection optics passing through the edges of the first (convergent) lens, possibly in a manner substantially perpendicular to the micro matrix -mirrors. The expression substantially perpendicular is interpreted here as strictly perpendicular or with an offset less than or equal to 3° relative to the strictly perpendicular direction.
  • the convergent type optical element extends in a position (for example less than 3 or 5 mm) adjacent to another optical element on which a second radiation directly resulting from a reflection of the first radiation on the spatial modulator is directed , the other optical element preferably forming a first optical element of projection optics belonging to the system imaging. More generally, in order to optimize the optical efficiency of the system, it can be provided that this element is adjacent to or close to the envelope of the light rays upstream of the modulator.
  • according to the invention,
    the convergent type optical element extends comparatively further from the high definition pixelated spatial modulator and closer to the other optical element on which the second radiation directly resulting from a reflection of the first radiation on the spatial modulator is directed. - certain elements of the projection optics form a retro-focusing system.
  • the projection optics comprise, successively in this order, in a direction of distance from the spatial modulator:
    • the first optical element arranged as an input lens of the projection optics in order to capture the second radiation (the shape and dimensions of this input lens typically allowing this second radiation directed generally to be captured in its entirety towards an exit face of the light module);
    • a pair of optical elements, possibly in the form of two optical lenses, making it possible to make the focal length of the projection optics less than the draw of said optics (in other words, the focal length is reduced compared to a greater focal length which would be obtained for projection optics in the absence of this pair of optical elements).
  • the input lens of the projection optics consists of a biconvex lens, preferably spherical biconvex.
  • the projection optics further comprises an achromatic doublet.
  • the achromatic doublet can form one of the optical elements of the pair of optical elements.
  • the projection optics further comprises a crown glass that is thinner than the other lenses of the projection optics and placed between two final lenses of the projection optics.
  • the light source comprises or consists essentially of one or more light-emitting diodes.
    • the group of light-emitting diodes defining the light source is mounted on a common support. When using several sources, each can possibly have its own optics upstream of the matrix. There solution with retro-focusing and typically with an achromatic doublet makes it possible to obtain a compact module, to illuminate homogeneously over a wide field, while optimizing energy efficiency thanks to the shaping part provided upstream of the pixelated spatial modulator in high definition.

Selon une autre particularité, la source lumineuse fait partie d'une unité d'émission de rayons lumineux pourvue d'au moins une surface réfléchissante distincte du modulateur spatial et permettant d'orienter la source lumineuse suivant une direction d'éloignement de la lumière par rapport à une zone de réflexion du modulateur spatial (dans ce cas, on comprend que l'axe d'émission de la source n'est pas plus ou moins dirigé vers la matrice).According to another particularity, the light source is part of a unit for emitting light rays provided with at least one reflective surface distinct from the spatial modulator and making it possible to orient the light source in a direction of distance of the light by relative to a reflection zone of the spatial modulator (in this case, we understand that the emission axis of the source is not more or less directed towards the matrix).

Selon une particularité, il est prévu dans le module lumineux un écran de projection, par exemple parallèle à une zone de réflexion du modulateur spatial. Le terme « parallèle » peut s'interpréter ici avec une certaine tolérance, typiquement de plus ou moins 1 à 5°. Une deuxième partie du système d'imagerie peut être adaptée pour créer l'image souhaitée sur l'écran de projection, à partir d'une image intermédiaire de la source lumineuse formée sur la zone de réflexion. L'image intermédiaire est elle-même obtenue par utilisation d'une première partie du système d'imagerie et s'étend exclusivement à l'intérieur d'un périmètre de la zone de réflexion, de façon à ne pas chauffer inutilement la périphérie de cette zone de réflexion.According to one particular feature, a projection screen is provided in the light module, for example parallel to a reflection zone of the spatial modulator. The term “parallel” can be interpreted here with a certain tolerance, typically plus or minus 1 to 5°. A second part of the imaging system can be adapted to create the desired image on the projection screen, from an intermediate image of the light source formed on the reflection zone. The intermediate image is itself obtained by using a first part of the imaging system and extends exclusively within a perimeter of the reflection zone, so as not to unnecessarily heat the periphery of the this area of reflection.

Un autre objet de l'invention est de proposer un projecteur pour véhicule automobile, comprenant un boîtier de projecteur et au moins un module lumineux selon l'invention afin de réaliser une fonction d'éclairage et/ou de signalisation.Another object of the invention is to propose a headlight for a motor vehicle, comprising a headlight housing and at least one light module according to the invention in order to perform a lighting and/or signaling function.

On comprend que ce type de projecteur peut présenter avantageusement un éclairage homogène à partir d'une source, par exemple une source lumineuse à une ou plusieurs diodes électroluminescentes, en ciblant de façon ajustée la surface de réflexion active du DMD sans déborder, sans optique de collimation.It is understood that this type of projector can advantageously present homogeneous lighting from a source, for example a light source with one or more light-emitting diodes, by targeting in an adjusted manner the active reflection surface of the DMD without overflowing, without optics of collimation.

Dans le cas de plusieurs diodes, celles-ci peuvent être groupées sur un support commun ou éventuellement réparties sur plusieurs supports.In the case of several diodes, these can be grouped on a common support or possibly distributed over several supports.

L'efficacité énergétique est grandement améliorée par l'utilisation d'une optique d'imagerie de grande ouverture.Power efficiency is greatly improved by the use of large aperture imaging optics.

D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description suivante de plusieurs de ses modes de réalisation, donnés à titre d'exemples non limitatifs, en regard des dessins joints dans lesquels :

  • la figure 1 représente schématiquement un exemple de projecteur d'éclairage pour véhicule automobile comprenant un module lumineux selon un premier mode de réalisation ;
  • la figure 2 représente schématiquement en coupe un détail d'une matrice de micro-miroirs formant le modulateur spatial pixellisé à haute définition, utilisée dans le module lumineux de la figure 1 ;
  • la figure 3 illustre de façon schématique le trajet de la lumière de part et d'autre du modulateur spatial pixellisé à haute définition.
  • la figure 4 représente une variante de réalisation pour concentrer le rayonnement de la source lumineuse sur la zone de réflexion du modulateur spatial, avec un effet d'anamorphose.
Other characteristics and advantages of the invention will appear during the following description of several of its embodiments, given by way of non-limiting examples, with reference to the attached drawings in which:
  • there figure 1 schematically represents an example of a lighting projector for a motor vehicle comprising a light module according to a first embodiment;
  • there figure 2 schematically represents in section a detail of a matrix of micro-mirrors forming the high-definition pixelated spatial modulator, used in the light module of the figure 1 ;
  • there Figure 3 schematically illustrates the path of light on either side of the high definition pixelated spatial modulator.
  • there figure 4 represents an alternative embodiment for concentrating the radiation of the light source on the reflection zone of the spatial modulator, with an anamorphosis effect.

Sur les différentes figures, les mêmes références désignent des éléments identiques ou similaires. Certains éléments peuvent avoir été agrandis sur les dessins, afin de faciliter la compréhension.In the different figures, the same references designate identical or similar elements. Some elements may have been enlarged in the drawings to facilitate understanding.

La figure 1 représente un premier mode de réalisation d'un module optique 1 pour véhicule automobile, pouvant être intégré par exemple dans un feu avant ou un feu arrière. Le module optique 1 forme un dispositif d'émission lumineuse configuré pour mettre en oeuvre une ou plusieurs fonctions photométriques.There figure 1 represents a first embodiment of an optical module 1 for a motor vehicle, which can be integrated for example in a front light or a rear light. The optical module 1 forms a light emitting device configured to implement one or more photometric functions.

Le module lumineux 1 comprend, tel qu'illustré, une source lumineuse 2, une matrice de micro-miroirs 6 (ou DMD, pour l'anglais « Digital Micromirror Device »), une unité de contrôle 16, par exemple sous la forme d'un contrôleur, permettant de commander des micro-miroirs 12 de la matrice de micro-miroirs 6 et une optique de projection 18 (ou optique de mise en forme) qui appartient à un système d'imagerie IMS. L'unité de contrôle 16 peut être optionnellement délocalisée, par exemple pour permettre de contrôler plusieurs modules lumineux 1.The light module 1 comprises, as illustrated, a light source 2, a micro-mirror matrix 6 (or DMD, for English “Digital Micromirror Device”), a control unit 16, for example in the form of a controller, making it possible to control micro-mirrors 12 of the micro-mirror matrix 6 and projection optics 18 (or shaping optics) which belongs to an IMS imaging system. The control unit 16 can optionally be relocated, for example to allow several light modules 1 to be controlled.

Les micro-miroirs 12 sont répartis dans un plan, de façon à ce que la matrice 6 définisse un axe optique A qui coïncide sensiblement avec un axe central de l'optique de projection 18. Comme bien visible sur la figure 1 notamment, l'optique de projection 18 est prévue ici entre la zone de réflexion de la matrice de micro-miroirs 6 et un écran de projection E1.The micro-mirrors 12 are distributed in a plane, so that the matrix 6 defines an optical axis A which substantially coincides with a central axis of the projection optics 18. As clearly visible in the figure 1 in particular, the projection optics 18 is provided here between the reflection zone of the micro-mirror matrix 6 and a projection screen E1.

Bien que les dessins montrent une matrice de micro-miroirs 6, on comprend que les rayons lumineux émis par la source de lumière 2 peuvent être dirigés, au moyen d'une optique adaptée, vers tout type de modulateur spatial pixellisé à haute définition 3, qui permet de décomposer le rayonnement reçu R1 en pixels. Dans une variante de réalisation, une matrice de pixels pourvue de surfaces actives dans le plan focal de l'optique de projection sous la forme de pixels, de type « LCoS » (de l'anglais « Liquid Crystal on Silicon »), peut être utilisée. Un dispositif à matrice LCoS peut en effet convenir. Plus généralement, on comprend qu'un premier rayonnement R1 peut être reçu sur une surface subdivisée de façon très fine pour définir des pixels avec une haute définition, avec typiquement de 1280 par 720 pixels voire plus, sachant qu'une résolution plus basse serait aussi acceptable dans de nombreux cas, en particulier 640 par 480, et dont il est possible de moduler les configurations. Le changement d'état est de préférence permis pour chaque pixel, de façon connue en soi.Although the drawings show a micro-mirror array 6, we understands that the light rays emitted by the light source 2 can be directed, by means of suitable optics, towards any type of high definition pixelated spatial modulator 3, which makes it possible to decompose the received radiation R1 into pixels. In a variant embodiment, a matrix of pixels provided with active surfaces in the focal plane of the projection optics in the form of pixels, of the "LCoS" type (from the English "Liquid Crystal on Silicon"), can be used. An LCoS matrix device may indeed be suitable. More generally, we understand that a first radiation R1 can be received on a surface subdivided very finely to define pixels with high definition, with typically 1280 by 720 pixels or more, knowing that a lower resolution would also be acceptable in many cases, in particular 640 by 480, and whose configurations can be modulated. The change of state is preferably permitted for each pixel, in a manner known per se.

La source lumineuse 2 peut consister en un élément électroluminescent tel qu'une diode électroluminescente (ou DEL) ou une matrice de DEL. Dans le cas d'un groupe d'éléments électroluminescents, ceux-ci sont de préférence resserrés dans une même zone assimilable à une source unique d'éclairage. Une diode laser, le cas échéant couplée avec un système collimateur et éventuellement un dispositif de conversion de longueur d'onde, peut aussi permettre de former un rayonnement brut R0.The light source 2 may consist of a light-emitting element such as a light-emitting diode (or LED) or an LED matrix. In the case of a group of electroluminescent elements, these are preferably packed together in the same area which can be compared to a single lighting source. A laser diode, where appropriate coupled with a collimator system and possibly a wavelength conversion device, can also make it possible to form raw radiation R0.

En référence à la figure 1, la source lumineuse 2 permet ici de former le rayonnement brut R0. Ce rayonnement brut R0 est orienté, directement ou indirectement, vers une première partie IP1 du système d'imagerie IMS. Cette première partie IP1 peut être définie par une lentille 4 conçue et agencée afin de définir une image modifiée de la source lumineuse 2. La lentille 4 peut être de périmètre utile supérieur ou égal au périmètre P6 de la zone de réflexion de la matrice de micro-miroirs 6 ou zone de réflexion d'un modulateur spatial à haute définition 3 équivalent à ce genre de matrice. Plus particulièrement, la lentille 4 est typiquement une optique fonctionnant à ouverture maximale, pour laquelle quelques aberrations ne posent pas problème, ce qui se traduit ici par un diamètre élevé.In reference to the figure 1 , the light source 2 here allows the raw radiation R0 to be formed. This raw radiation R0 is directed, directly or indirectly, towards a first part IP1 of the IMS imaging system. This first part IP1 can be defined by a lens 4 designed and arranged in order to define a modified image of the light source 2. The lens 4 can have a useful perimeter greater than or equal to the perimeter P6 of the reflection zone of the microphone matrix -mirrors 6 or reflection zone of a high definition spatial modulator 3 equivalent to this type of matrix. More particularly, the lens 4 is typically an optic operating at maximum aperture, for which some aberrations do not pose a problem, which results here in a high diameter.

Ici, dans la matrice de micro-miroirs 6, chacun des micro-miroirs 12 est déplaçable entre :

  • la première position dans laquelle le micro-miroir 12 réfléchit des rayons lumineux incidents du rayonnement R1 en direction de l'optique de projection 18,
  • et la deuxième position dans laquelle le micro-miroir 12 transmet par réflexion les rayons lumineux incidents du rayonnement R1 à l'écart de l'optique de projection 18, par exemple vers un dispositif 19 d'absorption de radiations qui présente une surface absorbante de lumière.
Here, in the micro-mirror matrix 6, each of the micro-mirrors 12 can be moved between:
  • the first position in which the micro-mirror 12 reflects incident light rays of the radiation R1 in the direction of the projection optics 18,
  • and the second position in which the micro-mirror 12 transmits by reflection the incident light rays of the radiation R1 away from the projection optics 18, for example towards a radiation absorption device 19 which has an absorbent surface of light.

Comme visible sur la figure 2, la matrice de micro-miroirs 6 peut être optionnellement recouverte d'une couche CP de protection des micro-miroirs 12 qui est transparente. L'axe de pivotement de chacun des micro-miroirs 12 peut permettre, à titre d'exemple non limitatif, une rotation de plus ou moins 10° ou de plus ou moins 12° par rapport à une position nominale sans rotation.As visible on the figure 2 , the micro-mirror matrix 6 can optionally be covered with a layer CP for protecting the micro-mirrors 12 which is transparent. The pivot axis of each of the micro-mirrors 12 can allow, by way of non-limiting example, a rotation of plus or minus 10° or plus or minus 12° relative to a nominal position without rotation.

Le rayonnement R1 obtenu à la sortie de la lentille 4 est convergent vers un point virtuel situé plus loin que la matrice de micro-miroirs 6. Le rayonnement R2, issu de la réflexion sur cette matrice 6 peut être focalisé à l'infini ou vers un point externe au module 1 et lointain. L'énergie du rayonnement R2 peut être entièrement reçue par l'optique de projection 18, formant la deuxième partie IP2 du système d'imagerie IMS.The radiation R1 obtained at the exit of the lens 4 converges towards a virtual point located further than the matrix of micro-mirrors 6. The radiation R2, resulting from the reflection on this matrix 6 can be focused to infinity or towards a point external to module 1 and far away. The energy of the radiation R2 can be entirely received by the projection optics 18, forming the second part IP2 of the IMS imaging system.

En référence aux figures 2 et 3, afin d'obtenir un tel parallélisme du faisceau réfléchi destiné à l'optique de projection 18, il est prévu que les micro-miroirs 12 actifs soient orientés de façon comparable ou identique. La première partie IP1 du système d'imagerie IMS est dimensionnée et conçue/assemblée dans le module lumineux 1, de façon à ce que le plan général de la zone de réflexion soit incliné par rapport à l'axe optique Z (figure 3) du système d'éclairement. Dans le cas de la figure 3, la lentille 4 définit la sortie d'un système d'éclairement pour éclairer la matrice de micro-miroirs 6. Plus particulièrement, l'axe optique Z montré sur la figure 3 et le plan de la zone de réflexion sont inclinés entre eux d'un angle qui est par exemple le double de l'angle de rotation α des micro-miroirs 12 mobiles (par exemple 2x12°=24°), ce qui permet de placer le centre de la zone de réflexion sur l'axe optique A de l'objectif ou optique de projection 18 et faire en sorte que le rayon principal du système d'éclairement soit réfléchi suivant cet axe optique A. Optionnellement, la matrice de micro-miroirs 6 peut être davantage inclinée pour éviter que l'optique de projection 18 ne crée une pénombre dans le faisceau d'éclairage issu de la réflexion par la matrice de micro-miroirs 6 .With reference to figures 2 and 3 , in order to obtain such parallelism of the reflected beam intended for the projection optics 18, it is provided that the active micro-mirrors 12 are oriented in a comparable or identical manner. The first part IP1 of the IMS imaging system is dimensioned and designed/assembled in the light module 1, so that the general plane of the reflection zone is inclined relative to the optical axis Z ( Figure 3 ) of the lighting system. In the case of the Figure 3 , the lens 4 defines the output of an lighting system for illuminating the array of micro-mirrors 6. More particularly, the optical axis Z shown on the Figure 3 and the plane of the reflection zone are inclined between them by an angle which is for example double the angle of rotation α of the mobile micro-mirrors 12 (for example 2x12°=24°), which makes it possible to place the center of the reflection zone on the optical axis A of the objective or projection optics 18 and ensure that the main ray of the lighting system is reflected along this optical axis A. Optionally, the micro-matrix mirrors 6 can be more inclined to prevent the projection optics 18 from creating a shadow in the lighting beam resulting from the reflection by the matrix of micro-mirrors 6.

Dans les exemples des figures 1 et 3, par rapport aux micro-miroirs 12 de la matrice de micro-miroirs 6, la source lumineuse 2 et la lentille 4 peuvent être entièrement décalés latéralement, de façon à ne pas interférer avec le rayonnement R2 qui est réfléchi depuis la zone de réflexion de la matrice de micro-miroirs 6.In the examples of figures 1 And 3 , relative to the micro-mirrors 12 of the micro-mirror matrix 6, the light source 2 and the lens 4 can be entirely offset laterally, so as not to interfere with the radiation R2 which is reflected from the reflection zone of the micro-mirror matrix 6.

Afin d'optimiser le rendement optique du système, il peut être prévu que la lentille 4 et un autre élément optique 21 soit adjacents ou proches l'un de l'autre, et/ou positionnés de telle façon que l'élément optique 21 et l'enveloppe des rayons lumineux en amont du modulateur 3 soit au plus près l'un de l'autre. Dans l'exemple illustré et non limitatif, la lentille 4 peut s'étendre dans une position proche, à moins de 5 mm par exemple, telle que la lentille 4 est adjacente à cet autre élément optique 21 sur lequel est dirigé le deuxième rayonnement R2 directement issu de la réflexion sur la matrice de micro-miroirs 6. Un axe virtuel vertical peut par exemple à la fois traverser ou être tangent aux surfaces d'entrée respectives de la première partie IP1 et de la deuxième partie IP2. Plus généralement, la lentille 4 peut être disposée de façon proche de l'élément optique 21, typiquement en étant plus proche de cet élément optique 21 que de la matrice de micro-miroirs 6.In order to optimize the optical efficiency of the system, it can be provided that the lens 4 and another optical element 21 are adjacent or close to each other, and/or positioned in such a way that the optical element 21 and the envelope of the light rays upstream of the modulator 3 is as close as possible to each other. In the illustrated and non-limiting example, the lens 4 can extend in a close position, less than 5 mm for example, such that the lens 4 is adjacent to this other optical element 21 on which the second radiation R2 is directed directly resulting from the reflection on the micro-mirror matrix 6. A vertical virtual axis can for example both cross or be tangent to the respective input surfaces of the first part IP1 and the second part IP2. More generally, the lens 4 can be arranged close to the optical element 21, typically being closer to this optical element 21 than to the micro-mirror matrix 6.

En référence à la figure 4, la première partie IP1 peut alternativement être formée par un système anamorphique d'éclairement. Dans cet exemple, la source lumineuse 2 peut former une surface de 1,7×1,7 mm2, tandis que la zone de réflexion de la matrice de micro-miroirs 6 (de type DMD) s'étend de façon rectangulaire sur une surface plus grande (par exemple 12×6 mm2). Sans que ce soit limitatif, on peut préférer que la source lumineuse 2, qui est typiquement formée par un groupement de diodes, présente un aspect compact, sans dépasser par exemple 9 ou 10 mm2, de préférence sans dépasser 3 ou 4 mm2, ou éventuellement quasi ponctuel, avec une surface d'émission de l'ordre de 0,1 mm2.In reference to the figure 4 , the first part IP1 can alternatively be formed by an anamorphic lighting system. In this example, the light source 2 can form a surface of 1.7×1.7 mm 2 , while the reflection zone of the micro-mirror matrix 6 (DMD type) extends rectangularly over a larger surface area (e.g. 12×6 mm 2 ). Without this being limiting, it may be preferred that the light source 2, which is typically formed by a group of diodes, has a compact appearance, without exceeding for example 9 or 10 mm 2 , preferably without exceeding 3 or 4 mm 2 , or possibly almost punctual, with an emission surface of the order of 0.1 mm 2 .

Ici, le système anamorphique éclaire la matrice de micro-miroirs 6 par utilisation de deux lentilles 41, 42 cylindriques croisées ayant des faces d'entrée asphériques de révolution, typiquement pour une correction (partielle) des aberrations. La lentille 41 la plus proche de la source lumineuse 2 a sa puissance dans le sens du grandissement le plus fort, ici horizontalement lorsque la dimension horizontale de la zone de réflexion est supérieure à sa dimension verticale. On comprend que l'anamorphose permet d'éclairer de façon homogène la surface de réflexion et permet avantageusement des options avec une grande ouverture du système d'imagerie IMS.Here, the anamorphic system illuminates the micro-mirror matrix 6 by using two crossed cylindrical lenses 41, 42 having aspherical entrance faces of revolution, typically for (partial) correction of aberrations. The lens 41 closest to the light source 2 has its power in the direction of the strongest magnification, here horizontally when the horizontal dimension of the reflection zone is greater than its vertical dimension. We understand that anamorphosis makes it possible to homogeneously illuminate the reflection surface and advantageously allows options with a large aperture of the IMS imaging system.

Selon les besoins, il peut être prévu d'augmenter l'ouverture (ici environ 0.32 contre 0,53 dans l'exemple de réalisation de la figure 3, optimisé par la conception et la position de la lentille 4).Depending on the needs, it can be planned to increase the aperture (here approximately 0.32 compared to 0.53 in the example of realization of the Figure 3 , optimized by the design and position of the lens 4).

Dans une variante de réalisation, la première partie d'imagerie IP1 agencée en amont du modulateur spatial 3 présente un miroir à effet d'anamorphose, par exemple un miroir à surface de réflexion concave. Dans ce type de cas, la source lumineuse 2 peut faire optionnellement partie d'une unité d'émission de rayons lumineux 20 pourvue d'au moins une surface réfléchissante (non représentée) distincte du modulateur spatial pixellisé à haute définition 3. La surface réfléchissante est d'un type connu en soi, de sorte qu'elle ne sera pas détaillée ici ; elle peut permettre d'orienter la source lumineuse 2 suivant une direction d'éloignement de la lumière par rapport à une zone de réflexion du modulateur spatial pixellisé à haute définition 3.In a variant embodiment, the first imaging part IP1 arranged upstream of the spatial modulator 3 has a mirror with an anamorphosis effect, for example a mirror with a concave reflection surface. In this type of case, the light source 2 can optionally form part of a light ray emission unit 20 provided with at least one reflective surface (not shown) distinct from the high definition pixelated spatial modulator 3. The reflective surface is of a type known in itself, so that it will not be detailed here; it can make it possible to orient the light source 2 in a direction in which the light moves away from a reflection zone of the high-definition pixelated spatial modulator 3.

Plus généralement, on comprend que la première partie IP1 peut présenter au moins un élément optique (4; 41, 42), situé en amont du modulateur spatial 3 et qui appartient au système d'imagerie IMS, afin de définir, à partir de la lumière R0 émise par la source lumineuse 2, le premier rayonnement R1 projeté sur la zone de réflexion du modulateur spatial 3. Typiquement, on forme sur cette zone de réflexion une image intermédiaire qui est déformée par un élément optique de type convergent, ici sous forme de la lentille 4 ou d'un système anamorphique.More generally, we understand that the first part IP1 can present at least one optical element (4; 41, 42), located upstream of the spatial modulator 3 and which belongs to the IMS imaging system, in order to define, from the light R0 emitted by the light source 2, the first radiation R1 projected onto the reflection zone of the spatial modulator 3. Typically, an intermediate image is formed on this reflection zone which is distorted by an optical element of the converging type, here in the form lens 4 or an anamorphic system.

L'optique de projection 18 de la deuxième partie IP2 permet une mise en forme du rayonnement R2 complémentaire de la mise en forme réalisé par la première partie IP1. Cette mise en forme par l'optique de projection 18 permet de former un faisceau sortant 40 qui présente une fonction photométrique adaptée pour un véhicule, en particulier un véhicule automobile.The projection optics 18 of the second part IP2 allows shaping of the radiation R2 complementary to the shaping carried out by the first part IP1. This shaping by the projection optics 18 makes it possible to form an outgoing beam 40 which has a photometric function suitable for a vehicle, in particular a motor vehicle.

Une fonction photométrique préférée associée au module lumineux 1 est une fonction d'éclairage et/ou de signalisation visible pour un oeil humain. Ces fonctions photométriques peuvent faire l'objet d'une ou plusieurs règlementations établissant des exigences de colorimétrie, d'intensité, de répartition spatiale selon une grille dite photométrique, ou encore de plages de visibilité de la lumière émise.A preferred photometric function associated with the light module 1 is a lighting and/or signaling function visible to a human eye. These Photometric functions may be the subject of one or more regulations establishing requirements for colorimetry, intensity, spatial distribution according to a so-called photometric grid, or even visibility ranges of the emitted light.

Le module lumineux 1 est par exemple un dispositif d'éclairage constituant un projecteur 10 - ou phare - de véhicule. Il est alors configuré pour mettre en oeuvre une ou plusieurs fonctions photométriques par exemple choisie(s) parmi une fonction de feux de croisement dite « fonction code », une fonction de feux de route dite « fonction route », une fonction antibrouillard.The light module 1 is for example a lighting device constituting a headlight 10 - or headlight - of a vehicle. It is then configured to implement one or more photometric functions, for example chosen from a low beam function called a “code function”, a high beam function called a “road function”, a fog light function.

Alternativement ou parallèlement, le module lumineux 1 est un dispositif de signalisation destiné à être agencé à l'avant ou à l'arrière du véhicule automobile.Alternatively or in parallel, the light module 1 is a signaling device intended to be arranged at the front or at the rear of the motor vehicle.

Le projecteur 10 pour véhicule automobile illustré sur la figure 1 peut être logé dans un boîtier 14 ou être délimité par ce boîtier 14. Le boîtier 14, tel qu'illustré, comporte un corps 14a formant un espace intérieur creux recevant au moins en partie le module lumineux 1. Un couvercle 14b, au moins en partie transparent, est couplé au corps 14a pour fermer l'espace intérieur. Tel qu'illustré, le couvercle 14b forme également un creux, recevant partiellement le module lumineux 1, notamment tout ou partie de l'optique de projection 18.The headlight 10 for a motor vehicle illustrated on the figure 1 can be housed in a housing 14 or be delimited by this housing 14. The housing 14, as illustrated, comprises a body 14a forming a hollow interior space receiving at least in part the light module 1. A cover 14b, at least in transparent part, is coupled to the body 14a to close the interior space. As illustrated, the cover 14b also forms a hollow, partially receiving the light module 1, in particular all or part of the projection optics 18.

Le couvercle 14b est par exemple réalisé en résine plastique ou autre matière plastique adaptée. Le projecteur d'éclairage 10 peut inclure plusieurs modules lumineux 1 qui sont alors adaptés à émettre des faisceaux voisins, les faisceaux se chevauchant, de préférence, en partie. Notamment, les extrémités latérales des faisceaux voisins peuvent être superposées.The cover 14b is for example made of plastic resin or other suitable plastic material. The lighting projector 10 may include several light modules 1 which are then adapted to emit neighboring beams, the beams preferably partly overlapping. In particular, the lateral ends of neighboring beams can be superimposed.

Lorsqu'il est destiné à être agencé à l'avant, les fonctions photométriques pouvant être mises en oeuvre par utilisation du module lumineux 1 (éventuellement en sus de celles qu'il met en oeuvre en sa qualité de dispositif d'éclairage) incluent une fonction d'indication de changement de direction, une fonction d'éclairage diurne connue sous l'acronyme anglophone DRL, pour « Daytime Running Light », une fonction de signature lumineuse avant, une fonction de feux de position, une fonction dite « Side-marker », qui vient de l'anglais et peut être traduit par signalisation latérale.When it is intended to be arranged at the front, the photometric functions that can be implemented by using the light module 1 (possibly in addition to those that it implements in its capacity as a lighting device) include a direction change indication function, a daytime running light function known by the English acronym DRL, for “Daytime Running Light”, a front light signature function, a position light function, a so-called “Side- marker”, which comes from English and can be translated as side signage.

Lorsqu'il est destiné à être agencé à l'arrière, ces fonctions photométriques incluent une fonction d'indication de recul, une fonction stop, une fonction antibrouillard, une fonction d'indication de changement de direction, une fonction de signature lumineuse arrière, une fonction lanterne, une fonction de signalisation latérale.When it is intended to be arranged at the rear, these functions photometric indicators include a reversing indication function, a stop function, a fog light function, a direction change indication function, a rear light signature function, a lantern function, a side signal function.

Dans le cas d'une fonction de signalisation d'un feu arrière, la source lumineuse 2 peut être rouge. Dans le cas d'une fonction pour un feu avant, la source de lumière 2 est de préférence blanche.In the case of a rear light signaling function, light source 2 may be red. In the case of a function for a front light, the light source 2 is preferably white.

Préférentiellement, la source lumineuse 2 est inclinée de façon à ce que l'axe d'émission de la lentille 4 soit écarté de l'axe optique de la lentille 4 ou de la partie d'imagerie optique IP1 dans le plan défini par les axes optiques de l'optique de projection 18 et de la lentille 4 ou de l'optique de projection 18 et de la partie IP1, respectivement suivant la variante adoptée, en direction de l'optique de projection 18. Comme cela est bien visible sur la figure 1 ou la figure 3, la source lumineuse 2 reste en regard de la zone de réflexion de la matrice de micro-miroirs 6 ou autre zone de réflexion du modulateur spatial 3, afin d'optimiser la netteté de l'image. Bien que cette netteté ne soit pas importante en soi pour de nombreuses applications, cela garantit l'absence de débordement de lumière au-delà du périmètre P6 de la zone de réflexion. On évite donc ainsi des pertes et un échauffement périphérique dans le modulateur spatial 3, potentiellement dangereux.Preferably, the light source 2 is inclined so that the emission axis of the lens 4 is spaced from the optical axis of the lens 4 or of the optical imaging part IP1 in the plane defined by the axes optics of the projection optics 18 and the lens 4 or the projection optics 18 and the part IP1, respectively depending on the variant adopted, in the direction of the projection optics 18. As is clearly visible on the figure 1 or the Figure 3 , the light source 2 remains facing the reflection zone of the micro-mirror matrix 6 or other reflection zone of the spatial modulator 3, in order to optimize the sharpness of the image. Although this sharpness is not important in itself for many applications, it ensures that there is no spillover of light beyond the P6 perimeter of the reflection area. Losses and peripheral heating in the potentially dangerous spatial modulator 3 are therefore avoided.

Dans ce cas, la source de lumière 2 peut être avantageusement disposée à une courte distance, par exemple moins de 10 ou 15 mm, de la lentille 4 qui est ici convergente. Comme bien visible notamment sur la figure 3, ceci permet d'obtenir tout de même une forme de faisceau évasé pour les rayons lumineux du rayonnement R1 se propageant entre l'unité d'émission de rayons lumineux 20 et la matrice de micro-miroirs 6. Alternativement ou au surplus, l'unité d'émission de rayons lumineux 20 comporte un miroir réfléchissant.In this case, the light source 2 can advantageously be placed at a short distance, for example less than 10 or 15 mm, from the lens 4 which is here convergent. As clearly visible in particular on the Figure 3 , this still makes it possible to obtain a flared beam shape for the light rays of the radiation R1 propagating between the light ray emission unit 20 and the micro-mirror matrix 6. Alternatively or additionally, the light ray emitting unit 20 comprises a reflecting mirror.

En référence à la figure 1, la matrice de micro-miroirs 6 est ici essentiellement définie par une puce électronique 7, fixée à une carte de circuit imprimé 8 via un connecteur (ou « socket ») 9 adapté. Un dispositif de refroidissement, ici un radiateur 11, est fixé à la carte de circuit imprimé 8 pour refroidir la carte de circuit imprimé 8 et/ou la puce 7 de la matrice de micro-miroirs 6. Pour refroidir la puce 7 de la matrice de micro-miroirs 6, le radiateur 11 peut présenter un relief saillant traversant une ouverture dans la carte de circuit imprimé 8 pour être en contact avec cette puce 7, le connecteur 9 laissant libre un passage pour ce relief saillant. Une pâte thermique ou tout autre moyen favorisant les échanges thermiques, accessible à l'homme de l'art, peut être interposé entre le relief saillant et la matrice de micro-miroirs 6.In reference to the figure 1 , the micro-mirror matrix 6 is here essentially defined by an electronic chip 7, attached to a printed circuit board 8 via a suitable connector (or “socket”) 9. A cooling device, here a radiator 11, is attached to the printed circuit board 8 to cool the printed circuit board 8 and/or the chip 7 of the micro-mirror array 6. To cool the chip 7 of the array of micro-mirrors 6, the radiator 11 can present a protruding relief passing through an opening in the printed circuit board 8 to be in contact with this chip 7, the connector 9 leaving a passage free for this protruding relief. A thermal paste or any other means promoting thermal exchanges, accessible to those skilled in the art, can be interposed between the protruding relief and the micro-mirror matrix 6.

La matrice de micro-miroirs 6 est par exemple rectangulaire. La matrice de micro-miroirs 6 s'étend ainsi principalement selon une première direction d'extension, entre des extrémités latérales de la matrice de micro-miroirs 6. Selon une deuxième direction d'extension, qui peut correspondre à une dimension verticale (hauteur), on trouve aussi deux bords d'extrémité opposés qui sont typiquement parallèles entre eux.The micro-mirror matrix 6 is for example rectangular. The micro-mirror matrix 6 thus extends mainly in a first direction of extension, between lateral ends of the micro-mirror matrix 6. In a second direction of extension, which can correspond to a vertical dimension (height ), there are also two opposite end edges which are typically parallel to each other.

La première partie IP1 du système d'imagerie IMS permet d'obtenir une homogénéité de l'éclairement sur la matrice de micro-miroirs 6, le rayonnement R1 correspondant à un éclairement avec une variation spatiale de l'émittance similaire à celle de la source lumineuse 2. En effet, l'inclinaison rend la variation d'émittance lente et limitée. Pour éviter de créer un problème de chromatisme dès le stade de l'éclairement de la matrice de micro-miroirs 6, on peut optionnellement utiliser une optique la moins sensible possible aux variations de longueur d'onde (par exemple pour une lentille 4 unique, on peut utiliser un verre crown, de préférence un verre crown de type PSK53).The first part IP1 of the IMS imaging system makes it possible to obtain homogeneity of the illumination on the micro-mirror matrix 6, the radiation R1 corresponding to an illumination with a spatial variation of the emittance similar to that of the source luminous 2. In fact, the inclination makes the emittance variation slow and limited. To avoid creating a chromatism problem at the stage of illuminating the micro-mirror matrix 6, it is possible to optionally use optics that are as less sensitive as possible to variations in wavelength (for example for a single lens 4, a crown glass can be used, preferably a PSK53 type crown glass).

En référence aux figures 1 et 3, le module lumineux 1 présente un premier élément optique 21 agencé en tant que lentille d'entrée de l'optique de projection 18, permettant de capter le deuxième rayonnement R2. Une lentille biconvexe sphérique peut constituer ce premier élément optique 21. Selon la direction de propagation de la lumière (en s'éloignant de la matrice de micro-miroirs 6), il est prévu ensuite un groupe de dioptres en aval du premier élément optique 21, permettant de définir un système de rétro-focalisation, de préférence avec au moins une convergence supplémentaire.With reference to figures 1 And 3 , the light module 1 has a first optical element 21 arranged as an input lens for the projection optics 18, making it possible to capture the second radiation R2. A spherical biconvex lens can constitute this first optical element 21. Depending on the direction of propagation of the light (moving away from the micro-mirror matrix 6), a group of diopters is then provided downstream of the first optical element 21 , making it possible to define a retro-focusing system, preferably with at least one additional convergence.

Comme illustré, le premier élément optique 21 peut être placé en aval et dans une position adjacente à la zone d'intersection 30 du faisceau d'éclairage correspondant au rayonnement R1 et du faisceau reflété correspondant au rayonnement R2 à l'état activé de tous les pixels du modulateur spatial 3. Il est dimensionné pour capter la totalité ou la majeure partie du faisceau reflété.As illustrated, the first optical element 21 can be placed downstream and in a position adjacent to the intersection zone 30 of the lighting beam corresponding to the radiation R1 and the reflected beam corresponding to the radiation R2 in the activated state of all the pixels of the spatial modulator 3. It is sized to capture all or most of the reflected beam.

L'optique de projection 18 assure que les rayons marginaux soient collimatés, de sorte que la lumière atteignant un dioptre d'entrée de l'ensemble de lentilles qui suit ce dioptre d'entrée n'est pas perdue. Un doublet achromatique 24 peut par exemple être prévu en tant que dernier élément optique.The projection optics 18 ensures that the marginal rays are collimated, so that light reaching an entrance diopter of the lens assembly which follows this entrance diopter is not lost. An achromatic doublet 24 can for example be provided as the last optical element.

L'effet de rétro-focalisation est ici obtenu par la présence d'une lentille convergente 22 et d'une lentille divergente (laquelle peut éventuellement faire partie du doublet achromatique 24 ou être formée par une lentille 23 indépendante). On atteint ainsi la longueur focale courte typiquement requise lorsque le module lumineux 1 doit fonctionner avec un champ large (grand angle), avec la longueur de contre-grille requise par l'éclairage et la géométrie du faisceau réfléchi par la matrice de micro-miroirs 6.The retro-focusing effect is obtained here by the presence of a converging lens 22 and a diverging lens (which may optionally be part of the achromatic doublet 24 or be formed by an independent lens 23). The short focal length typically required is thus achieved when the light module 1 must operate with a wide field (wide angle), with the counter-grid length required by the lighting and the geometry of the beam reflected by the micro-mirror matrix. 6.

L'exemple illustré n'est absolument pas limitatif. Typiquement, on peut placer le doublet achromatique 24 en omettant optionnellement la lentille 23, ou bien on peut placer une lentille simple en remplacement du doublet achromatique 24, avec dans ce cas une lentille 23 formée dans un verre spécifique différent de celui utilisé dans la lentille simple suivante. On comprend que l'ensemble formé par les éléments 23 et 24 permet de réduire les aberrations chromatiques. Eventuellement, par exemple pour une application monochromatique type feu arrière, on peut omettre la lentille 23 et avoir une lentille simple, au lieu d'un doublet, en tant qu'élément final remplaçant le doublet achromatique 24.The example illustrated is absolutely not limiting. Typically, the achromatic doublet 24 can be placed by optionally omitting the lens 23, or a simple lens can be placed to replace the achromatic doublet 24, with in this case a lens 23 formed in a specific glass different from that used in the lens. simple next. We understand that the assembly formed by elements 23 and 24 makes it possible to reduce chromatic aberrations. Optionally, for example for a monochromatic rear light type application, we can omit the lens 23 and have a single lens, instead of a doublet, as a final element replacing the achromatic doublet 24.

Dans des variantes de réalisation, on peut ajouter plus de lentilles et au moins deux matériaux différents (verre à faible dispersion chromatique de type crown d'une part, et verre silex généralement appelé « flint » dans le domaine optique d'autre part) utilisés pour corriger les aberrations géométriques et annuler le chromatisme au premier ordre. Le module lumineux 1 peut ainsi fournir un rayonnement sortant correspondant sensiblement à de la lumière visible blanche, ou éventuellement jaunâtre.In alternative embodiments, more lenses can be added and at least two different materials (crown type low chromatic dispersion glass on the one hand, and flint glass generally called "flint" in the optical field on the other hand) used to correct geometric aberrations and cancel first-order chromatism. The light module 1 can thus provide outgoing radiation corresponding substantially to white, or possibly yellowish, visible light.

Optionnellement pour permettre d'annuler plus efficacement le chromatisme, l'optique de projection comprend en outre un verre crown, typiquement plus mince que les autres lentilles de l'optique de projection 18, et placé entre deux lentilles de l'optique de projection 18, par exemple entre deux lentilles finales.Optionally to make it possible to cancel chromatism more effectively, the projection optics further comprises a crown glass, typically thinner than the other lenses of the projection optics 18, and placed between two lenses of the projection optics 18 , for example between two final lenses.

Le type de configuration de l'optique de projection 18, montré sur la figure 1 est bien adapté lorsque le tirage de cette optique est déterminé par la position imposée de son dioptre d'entrée, sachant que la surface de sa pupille d'entrée doit généralement être au moins égale à celle de ce dioptre d'entrée. La focale de l'optique de projection 18 peut être déterminée par l'ouverture angulaire souhaitée du faisceau, horizontalement ou verticalement, suivant le rapport entre le rapport d'aspect la surface de réflexion de la matrice de micro-miroirs 6 et le rapport des ouvertures horizontales et verticales souhaitées pour le faisceau à projeter (l'ouverture suivant l'autre direction pouvant être atteinte à l'aide d'une anamorphose).The type of configuration of the projection optics 18, shown on the figure 1 is well suited when the draw of this optic is determined by the imposed position of its entrance diopter, knowing that the surface of its entrance pupil must generally be at least equal to that of this entrance diopter. The focal length of the projection optics 18 can be determined by the desired angular aperture of the beam, horizontally or vertically, depending on the ratio between the aspect ratio of the reflection surface of the micro-mirror matrix 6 and the ratio of the desired horizontal and vertical openings for the beam to be projected (the opening in the other direction can be achieved using an anamorphosis).

Un des avantages du module lumineux 1 est de permettre de projeter un faisceau lumineux homogène avec une puissance optimisée par rapport à l'énergie fournie à la source lumineuse 2 et la possibilité de faire coïncider exactement le rayonnement R1 incident avec la taille et la forme de la structure active du modulateur spatial 3. Ceci rend le module lumineux 1 adaptée pour une optique à grande ouverture.One of the advantages of the light module 1 is to make it possible to project a homogeneous light beam with a power optimized in relation to the energy supplied to the light source 2 and the possibility of making the incident R1 radiation coincide exactly with the size and shape of the light source. the active structure of the spatial modulator 3. This makes the light module 1 suitable for large aperture optics.

Il doit être évident pour les personnes versées dans l'art que la présente invention permet des modes de réalisation sous de nombreuses autres formes spécifiques sans l'éloigner du domaine d'application de l'invention comme revendiqué.It should be apparent to those skilled in the art that the present invention permits embodiments in many other specific forms without departing from the scope of the invention as claimed.

Ainsi, alors que le module lumineux 1 a été illustré pour un cas dans lequel l'écran de projection E1 est défini intérieurement par rapport à la paroi transparente formant la glace du couvercle 14b transparent, on comprend qu'une partie du couvercle 14b transparent ou autre élément formant partie du boîtier externe 14 peut définir l'écran de projection. L'optique de projection 18 peut par exemple être focalisée sur un film formé sur le côté interne de la glace plutôt que sur un écran distinct.Thus, while the light module 1 has been illustrated for a case in which the projection screen E1 is defined internally with respect to the transparent wall forming the glass of the transparent cover 14b, it is understood that a part of the transparent cover 14b or another element forming part of the external housing 14 can define the projection screen. The projection optics 18 can for example be focused on a film formed on the internal side of the glass rather than on a separate screen.

Egalement, des fonctions additionnelles peuvent être implémentées en fonction des besoins. Par exemple, on comprend qu'il peut être ajouté une indication ou marquage au sein du faisceau lumineux sortant 40. Le module lumineux 1 peut présenter une imagerie optique de grande ouverture numérique (0,6 ou 0,7, à titre d'exemple non limitatif). L'utilisation d'un modulateur spatial pixellisé à haute définition 3 et la correction des aberrations permet de former des caractères (lettres, chiffres ou similaires) avec une résolution suffisante pour permettre d'afficher à l'attention de personnes externes au véhicule des messages ou des pictogrammes qui sont par exemple représentatifs de l'activation d'une fonctionnalité ou d'un contexte de fonctionnement du véhicule.Also, additional functions can be implemented according to needs. For example, we understand that an indication or marking can be added within the outgoing light beam 40. The light module 1 can present optical imaging with a large numerical aperture (0.6 or 0.7, for example non-limiting). The use of a high definition pixelated spatial modulator 3 and the correction of aberrations makes it possible to form characters (letters, numbers or the like) with sufficient resolution to make it possible to display to the attention of people external to the vehicle messages or pictograms which are for example representative of the activation of a functionality or an operating context of the vehicle.

Claims (14)

  1. Light module (1) for motor vehicle, intended to shape a light beam, the light module including:
    - a light source (2),
    - an imaging system (4, 18) suitable for creating an image of the light source (2),
    - a high definition pixellated spatial light modulator (3) presenting a zone of reflection having a determined format,
    wherein the imaging system (IMS) includes at least two optical elements (4, 21, 22, 23, 24; 41, 42) distributed upstream and downstream of the high definition pixellated spatial light modulator (3), following the direction of propagation of the light emitted by the light source (2), such that there is at least one element of the imaging system upstream, and at least one element of the imaging system downstream of the high definition pixellated spatial light modulator (3),
    the imaging system (IMS) comprising, in a first imaging part (IP1), a lens (4) for adjustment to a characteristic dimension of the determined format, suitable for concentrating a radiation from the light source (2),
    and a convergent type of optical element (4; 41, 42), situated upstream of the high definition pixellated spatial light modulator (3) and which belongs to the imaging system (IMS) and
    defines, from the light (R0) emitted by the light source (2), a first radiation (R1) projected onto a zone of reflection of the high definition pixellated spatial light modulator (3), forming on this zone of reflection an intermediate image, which is distorted by said optical element (4; 41, 42) of the convergent type, characterized in that said optical element (4; 41, 42) extends comparatively further from the high definition pixellated spatial light modulator (3) and nearer to another optical element (21) onto which is directed a second radiation (R2), coming directly from a reflection of the first radiation (R1) on the high definition pixellated spatial light modulator (3), the other optical element (21) forming a first optical element (21) of an optical projection system (18) belonging to the imaging system (IMS), and
    in that the optical projection system (18) comprises, successively in this order, along a distancing direction relative to the high definition pixellated spatial light modulator (3):
    - the first optical element (21) arranged as an input lens of the optical projection system (18) so as to capture the second radiation (R2);
    - a pair of optical elements (22, 24), making it possible to reduce the focal length of the optical projection system (18) relative to a longer focal length that would be obtained for the optical projection system (18) in the absence of this pair of optical elements (22, 24).
  2. Light module according to Claim 1, wherein the high definition pixellated spatial light modulator (3) is defined by a digital micromirror device (6) having a zone of reflection whose largest dimension is greater than the largest dimension of the light source.
  3. Light module according to Claim 1 or 2, wherein the determined format of said zone of reflection has a rectangular perimeter format.
  4. Light module according to Claim 1, 2 or 3, wherein at least one of the optical elements of the imaging system (IMS) forms said first imaging part (IP1), which comprises:
    - the adjustment lens (4) for adjustment to the determined format, designed and arranged so as to concentrate the radiation from the light source (2) by defining a contour shape of the radiation that corresponds to the shape of a perimeter (P6) of the zone of reflection defined by the high definition pixellated spatial light modulator (3).
  5. Light module according to Claim 3 or 4, wherein the first imaging part (IP1), arranged upstream of the high definition pixellated spatial light modulator (3) has at least one transparent optical element with an anamorphosis effect.
  6. Light module according to Claim 3, 4 or 5, wherein the first imaging part (IP1), arranged upstream of the high definition pixellated spatial light modulator (3), has an anamorphosis effect mirror.
  7. Light module according to any one of Claims 3 to 6, wherein the high definition pixellated spatial light modulator (3) comprises a digital micromirror device (6), the micromirrors (12) of the digital micromirror device (6) each being moveable between:
    - a first position in which the micromirror (12) is arranged so as to reflect light rays of a first radiation (R1) reaching it from the first imaging part (IP1) of the imaging system, in the direction of an optical projection system (18) including a second part of the imaging system (IMS),
    - and a second position in which the micromirror (12) is arranged so as to reflect the light rays of the first radiation (R1) reaching it from the first imaging part (IP1) of the imaging system, away from the optical projection system (18).
  8. Light module according to any one of Claims 1 to 6, wherein the high definition pixellated spatial light modulator (3) comprises a displaying reflective zone of the liquid crystals on silicon type.
  9. Light module according to any one of Claims 1 to 7, comprising an optical projection system (18),
    wherein the high definition pixellated spatial light modulator (3) comprises a matrix of micromirrors (6) distributed in a plane, said matrix defining an optical axis (A), which spans in a central manner the optical projection system (18),
    and wherein active micromirrors of the digital micromirror device (6) are in an active state rotated through a determined angle, preferably comprised between 6 and 15°, towards an optical element (4; 41, 42) of the convergent type situated upstream of the high definition pixellated spatial light modulator (3) and which belongs to the imaging system (IMS).
  10. Light module according to any one of the preceding claims, wherein the optical projection system (18) furthermore comprises an achromat (24), preferably forming one of the optical elements of said pair of optical elements (22, 24).
  11. Light module according to any one of the preceding claims, wherein the light source (2) is part of a unit for emitting light rays (20) provided with at least one reflecting surface distinct from the high definition pixellated spatial light modulator (3) and making it possible to orient the light source (2) along a direction for distancing the light relative to a zone of reflection of the high definition pixellated spatial light modulator (3).
  12. Light module according to any one of the preceding claims, comprising a projection screen (E1) parallel to a zone of reflection of the high definition pixellated spatial light modulator (3), a second part (18) of the imaging system (IMS) being suitable for creating said image on the projection screen (E1), based on an intermediate image of the light source formed on the zone of reflection by using a first part (4) of the imaging system (IMS), said intermediate image extending entirely inside a perimeter (P6) of the zone of reflection.
  13. Light module according to any one of the preceding claims, wherein the light source (2) consists essentially in one light emitting diode or in several light emitting diodes, grouped in particular on a common mount.
  14. Headlamp (10) for motor vehicle, comprising a headlamp housing (14) and at least one optical module (1) according to any one of the preceding claims.
EP18168421.8A 2017-04-28 2018-04-20 Light module with imaging optics optimised for a pixelated spatial modulator, intended for a motor vehicle Active EP3396241B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1753756A FR3065784B1 (en) 2017-04-28 2017-04-28 LUMINOUS MODULE WITH OPTICAL IMAGING OPTICS FOR A PIXELLIZED SPATIAL MODULATOR FOR A MOTOR VEHICLE

Publications (2)

Publication Number Publication Date
EP3396241A1 EP3396241A1 (en) 2018-10-31
EP3396241B1 true EP3396241B1 (en) 2024-02-07

Family

ID=59579707

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18168421.8A Active EP3396241B1 (en) 2017-04-28 2018-04-20 Light module with imaging optics optimised for a pixelated spatial modulator, intended for a motor vehicle

Country Status (4)

Country Link
US (1) US10571091B2 (en)
EP (1) EP3396241B1 (en)
CN (1) CN108826217B (en)
FR (1) FR3065784B1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3492805T3 (en) * 2017-12-01 2021-04-19 Marelli Automotive Lighting Italy S.p.A. Automotive lighting unit
WO2020051276A1 (en) * 2018-09-05 2020-03-12 Flex-N-Gate Advanced Product Development, Llc Programmable glare-free high beam
TWI803532B (en) * 2018-11-02 2023-06-01 揚明光學股份有限公司 Pattern projection device and manufacturing method thereof
DE102018008760A1 (en) * 2018-11-08 2019-04-25 Daimler Ag Vehicle headlight with a light source
EP3918424A4 (en) * 2019-01-28 2022-09-14 Stanley Electric Co., Ltd. Ballistic light modulations for image enhancement through fog
DE102019102475A1 (en) * 2019-01-31 2020-08-06 HELLA GmbH & Co. KGaA Lighting device for a motor vehicle, in particular high-resolution headlights
CN212226934U (en) * 2019-08-05 2020-12-25 株式会社小糸制作所 Vehicle lamp
US20220268424A1 (en) * 2019-08-07 2022-08-25 Lensvector Inc. Light source having a variable asymmetric beam
CN111895364A (en) * 2019-10-31 2020-11-06 长城汽车股份有限公司 Lighting device and vehicle
JPWO2021095673A1 (en) * 2019-11-15 2021-05-20
FR3103876B1 (en) * 2019-12-03 2022-02-18 Valeo Vision Optical device for projecting light beams
EP3839324A1 (en) * 2019-12-16 2021-06-23 ZKW Group GmbH Lighting device for a motor vehicle headlight
CN113154331B (en) * 2020-01-22 2024-01-23 扬明光学股份有限公司 Projection device for vehicle, method for manufacturing the same, and headlight for vehicle
GB2593500B (en) * 2020-03-25 2022-05-18 Dualitas Ltd Projection
CN113639245A (en) * 2020-04-27 2021-11-12 深圳光峰科技股份有限公司 Self-adaptive laser car lamp
WO2022111467A1 (en) * 2020-11-27 2022-06-02 华域视觉科技(上海)有限公司 Pixel illumination module, vehicle illumination device, and vehicle
US20230418034A1 (en) * 2022-06-22 2023-12-28 Reald Spark, Llc Anamorphic directional illumination device
WO2024030274A1 (en) 2022-08-02 2024-02-08 Reald Spark, Llc Pupil tracking near-eye display

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100504506C (en) * 2005-06-07 2009-06-24 佳世达科技股份有限公司 Optical system for projector
CN102563493A (en) * 2012-01-16 2012-07-11 安徽师范大学 Design method for adaptive automobile headlamp based on digital micromirror device
US9658447B2 (en) * 2013-12-09 2017-05-23 Texas Instruments Incorporated Multiple illumination sources for DMD lighting apparatus and methods
DE102014203335A1 (en) * 2014-02-25 2015-08-27 Automotive Lighting Reutlingen Gmbh Light module of a motor vehicle headlight and headlights with such a light module
US10066799B2 (en) * 2014-06-26 2018-09-04 Texas Instruments Incorporated Pixelated projection for automotive headlamp
US10436409B2 (en) * 2015-05-28 2019-10-08 Texas Instruments Incorporated Methods and apparatus for light efficient programmable headlamp with anamorphic optics
FR3041073B1 (en) * 2015-09-15 2020-01-31 Valeo Vision LIGHT BEAM PROJECTION DEVICE WITH DIGITAL SCREEN AND PROJECTOR PROVIDED WITH SUCH A DEVICE

Also Published As

Publication number Publication date
FR3065784B1 (en) 2019-10-11
EP3396241A1 (en) 2018-10-31
CN108826217A (en) 2018-11-16
CN108826217B (en) 2021-08-27
FR3065784A1 (en) 2018-11-02
US10571091B2 (en) 2020-02-25
US20180313510A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
EP3396241B1 (en) Light module with imaging optics optimised for a pixelated spatial modulator, intended for a motor vehicle
EP3830474A1 (en) Luminous module that images the illuminated surface of a collector
EP3124854B1 (en) Lighting system for motor vehicle headlight
EP1746339B1 (en) Device for lighting or signalising, in particular for vehicles
EP1500869B1 (en) Elliptical lighting module without screen emitting a low beam and headlamp comprising the same
EP2690352B1 (en) Adaptive lighting system for an automobile
EP3167226B1 (en) Lighting module for a motor vehicle
FR3072531A1 (en) METHOD AND SYSTEM SELECTIVELY ADJUSTING PIXELS, IN AN OPTICAL MODULE, FOR RETRIEVING GEOMETRIC DEFECTS DUE TO MANUFACTURING TOLERANCES
FR2853393A1 (en) VEHICLE HEADLIGHT WITH PHOTOEMISSIVE DIODE
EP2743567A1 (en) Primary optical element, lighting module and headlight for motor vehicle
EP3357752B1 (en) Lighting module of a light beam for a motor vehicle headlight
EP3225905A1 (en) Rear lighting and/or signalling device for motor vehicle, and rear lighting and/or signalling light provided with such a device
EP3350506B1 (en) Light-beam-projecting device of a vehicle and vehicle headlamp comprising it
EP1528312A1 (en) Lighting module for vehicle headlamp
EP3604904A1 (en) Light module comprising an array of light sources and a bifocal optical system
EP3399519B1 (en) Light module for a motor vehicle configured to project a light beam forming a pixelated image
EP3453946A1 (en) Light module for a motor vehicle, and lighting and/or signalling device comprising such a module
EP2472176B1 (en) Lighting and/or signalling device, in particular of an automobile
EP2853804B1 (en) Lighting and/or signalling module with a plurality of rotary optical systems
WO2019105588A1 (en) Luminous module for motor vehicle, and lighting and/or signalling device provided with such a module
FR2918441A1 (en) VEHICLE PROJECTOR
WO2024133408A1 (en) Lighting module for a motor vehicle
WO2024133261A1 (en) Lighting device for a motor vehicle
EP0351380B1 (en) Optical system for permanent luminous signals of different colours, especially for railway signalling
EP3276249A1 (en) Illumination system for lighting device and/or signalling device of a motor vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180420

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210316

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230302

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230823

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018064885

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240607