EP3717757B1 - Procédé d'opération d'un système de post-traitement d'un moteur à combustion interne et système de post-traitement - Google Patents

Procédé d'opération d'un système de post-traitement d'un moteur à combustion interne et système de post-traitement Download PDF

Info

Publication number
EP3717757B1
EP3717757B1 EP18808321.6A EP18808321A EP3717757B1 EP 3717757 B1 EP3717757 B1 EP 3717757B1 EP 18808321 A EP18808321 A EP 18808321A EP 3717757 B1 EP3717757 B1 EP 3717757B1
Authority
EP
European Patent Office
Prior art keywords
concentration
particle filter
exhaust
scr
scr particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18808321.6A
Other languages
German (de)
English (en)
Other versions
EP3717757A1 (fr
Inventor
Hong Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies GmbH
Original Assignee
Vitesco Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies GmbH filed Critical Vitesco Technologies GmbH
Publication of EP3717757A1 publication Critical patent/EP3717757A1/fr
Application granted granted Critical
Publication of EP3717757B1 publication Critical patent/EP3717757B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/021Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting ammonia NH3
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0422Methods of control or diagnosing measuring the elapsed time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1406Exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1616NH3-slip from catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1622Catalyst reducing agent absorption capacity or consumption amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1812Flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D2041/1468Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an ammonia content or concentration of the exhaust gases

Definitions

  • the present invention relates to a method for operating an exhaust gas aftertreatment system of an internal combustion engine, in particular a diesel engine, which has a combined SCR particle filter arranged in an exhaust line and a device for targeted, defined changing of the NH 3 and / or NOx concentration in the exhaust gas mass flow upstream Has SCR particle filter.
  • SCR particle filter a particle filter with SCR function
  • SC-PF a particle filter with SCR function
  • a diagnostic method for an exhaust gas aftertreatment system which has an SCR catalytic converter.
  • the DE 10 2013 200 623 A1 shows a diagnostic method for breakthroughs in substrates of particle filters with an SCR-catalytic coating on the basis of sensor-detected changes in NOX concentration downstream of the SCR particle filter.
  • the present invention is therefore based on the object of creating a method and a corresponding exhaust gas aftertreatment system of an internal combustion engine that enable particularly rapid and precise monitoring of an SCR particle filter with regard to its NO x / NH 3 conversion and the particle filtering during operation of the internal combustion engine .
  • a method for operating an exhaust gas aftertreatment system of an internal combustion engine having an exhaust line for guiding an exhaust gas mass flow and an SCR particle filter arranged in the exhaust line and with a device for targeted, defined changing of the NH 3 and / or NOx concentration is arranged in the exhaust gas mass flow upstream in front of the SCR particle filter, and at least one first concentration sensor, in the exhaust gas mass flow downstream after the SCR particle filter.
  • the invention also relates to an exhaust gas aftertreatment system of an internal combustion engine, which has an SCR particle filter arranged in an exhaust line and at least one device for targeted, defined changing of the NH 3 and / or NOx concentration in the exhaust gas mass flow upstream in front of the SCR particle filter, and at least one concentration sensor , for measuring the NH 3 and / or NOx concentration in the exhaust gas mass flow downstream after the SCR particle filter.
  • This exhaust gas aftertreatment system is characterized in that it has an electronic computing and control unit which is set up for targeted, defined changing of the NH 3 and / or NOx concentration in the exhaust gas mass flow upstream of the SCR particle filter by means of the device for targeted, defined changing of the NH 3 and / or NOx concentration and for detecting a first concentration measurement signal output by the at least one concentration sensor.
  • the electronic computing and control unit is also set up to implement the method for operating an exhaust gas aftertreatment system of an internal combustion engine in accordance with one of the embodiments of the method according to the invention described above and below.
  • the basic idea of the invention is to use a NOx and / or NH 3 sensor downstream of an SCR particle filter to be used in conjunction with a change in NH 3 concentration and / or a change in NOx concentration in the exhaust gas mass flow upstream of the SCR particle filter to subject the SCR particle filter to a functional check, in particular a performance diagnosis.
  • a wall-flow filter with a suitable SCR coating is used as the SCR particle filter.
  • Function-influencing damage to SCR particle filters usually consists of breakthroughs or holes in the substrate of the filter, the number or cross-sectional area of which determine the degree of damage and through which a corresponding part of the exhaust gas can pass unfiltered and untreated. If the total cross-section of the breakthroughs or open holes is above a Threshold value, the corresponding particulate emissions exceed a diagnostic threshold value (OBD threshold value).
  • OBD threshold value diagnostic threshold value
  • the system is preferably in a steady or stationary operating state, for example idling, at a quasi-constant SCR particle filter temperature at which the NOx concentration signal and / or the NH 3 concentration signal after the SCR particle filter varies slightly , for example below 1 ppm / sec, the addition amount of the urea solution and / or the NOx raw emission preferably increased in one step, for example by 200 ppm NH 3 / NO x based on the previously given NH 3 addition amount or NOx raw emission, and the course of the NOx and / or NH 3 signal is observed (measurement of the corresponding increase in concentration).
  • the SCR particle filter is now within the emission limit, it can be assumed that the entire cross section of openings in the filter substrate is so small that the added urea or the increased NOx concentration is initially stored for the most part in the SCR particle filter. Therefore, the NOx or NH 3 signal measured after the filter has only a slight increase over a short period of time, for example 3 seconds, depending on the air mass flow. After that, the corresponding signal is stable and has a much lower gradient (less than 1 ppm / sec) than an SCR particle filter that is too badly damaged.
  • the entire cross section of openings in the filter substrate is so large that the added urea or. the increased NOx concentration flows through the SCR particle filter untreated to a large extent and almost without delay, so that the corresponding sensors after the SCR particle filter an immediate, increased NH 3 - / NO x concentration increase within the specified, immediately following time window register what the corresponding signal again assumes a more stable state with a lower gradient.
  • the ratio between the change in NOx and / or NH 3 concentration after the SCR particle filter and the change in NOx and / or NH 3 concentration before the SCR particle filter is directly proportional to the total cross-section of the openings in the filter substrate of the SCR -Particle filter is. If this ratio is above a certain threshold or limit, the filter is classified as defective in terms of particulate conversion.
  • a corresponding change in the NOx concentration upstream of the SCR particle filter can be carried out, for example, by reducing the exhaust gas recirculation rate (EGR rate), in particular with high pressure exhaust gas recirculation, but also with low pressure exhaust gas recirculation.
  • EGR rate exhaust gas recirculation rate
  • the change in NOx concentration after the SCR particle filter in relation to the change in NOx concentration before the SCR particle filter is directly proportional to the total cross-section of the openings in the filter substrate of the SCR particle filter.
  • a concentration comparison value is determined on the basis of the concentration measurement signal provided by means of the at least one concentration sensor. In its simplest form, this concentration comparison value can, for example, represent the maximum deflection of the concentration measurement signal within the defined time window.
  • the concentration comparison value can, however, also be a ratio between the NH 3 and / or NOx concentration change before and after the SCR particle filter.
  • the concentration comparison value can be determined on the basis of several successive changes in concentration and the respective gradients of the changes in concentration can also be used, as will be explained below.
  • the change in concentration is understood to mean both an increase in concentration and a reduction in concentration or both in succession.
  • the named concentration sensor is an NH 3 sensor or a NOx sensor, depending on whether the NH 3 or NOx concentration is changed to carry out the method. While an NH 3 sensor is only suitable for measuring the NH 3 concentration, the aforementioned NOx sensor, on the other hand, can measure both the NH 3 and the NOx concentration, i.e. consequently also a combination of NOx and NH 3 . In this case, it is a combined NH 3 / NO x concentration sensor. Depending on the desired measurement, the sensors suitable for this can therefore be provided.
  • the present invention also relates to an exhaust gas aftertreatment system of an internal combustion engine, in particular a diesel engine, which has an SCR particle filter arranged in an exhaust line and at least one device for targeted, defined changing of the NH 3 and / or NO x concentration in the exhaust gas mass flow upstream before the SCR.
  • This exhaust gas aftertreatment system is characterized by the fact that it has an electronic computing and control unit which is set up for targeted, defined changing of the NH 3 and / or NOx concentration in the exhaust gas mass flow upstream of the SCR particle filter by means of the device for targeted, defined Changing the NH 3 and / or NOx concentration and for detecting a first concentration measurement signal output by the at least one first concentration sensor.
  • the electronic computing and control unit is also set up to use the method for operating a Exhaust aftertreatment system of an internal combustion engine, as shown in the preceding and the following explanations.
  • FIG. 1 shows schematically in a simplified representation an embodiment of an exhaust gas aftertreatment system according to the invention of an internal combustion engine, for example a diesel engine.
  • the exhaust gas mass flow 10 coming from the internal combustion engine (not shown here) is guided in the direction of the arrow through an exhaust pipe 1 and passes an SCR particle filter 3 (SC-PF), which is designed, for example, as a wall-flow filter with an SCR coating and is arranged in the exhaust pipe 1 .
  • SC-PF SCR particle filter 3
  • the NH 3 supply device 7 For the targeted, defined bringing about a change in the NH 3 concentration in the exhaust gas mass flow 10 upstream of the SCR particle filter 3, there is an NH 3 supply device 7 on the exhaust pipe 1 upstream of the SCR particle filter 3 for supplying an NH 3 solution 7d into the Exhaust pipe 1 arranged.
  • the NH 3 supply device 7 has a storage container 7a for storing a suitable aqueous NH 3 solution 7d, which is also referred to as urea solution.
  • the storage container 7a is connected via a supply line to a metering device 7b, for example an injection valve, which in turn is arranged on the exhaust gas line 1 and is set up to dispense defined quantities of the NH 3 solution into the exhaust gas mass flow 10.
  • the supplied NH 3 solution produces NH 3 , which converts the NOx contained in the exhaust gas into nitrogen and water.
  • the SCR particulate filter therefore fulfills its function as a diesel particulate filter and at the same time reduces the NOx content in the exhaust gas.
  • an exhaust gas recirculation device 2 a so-called high-pressure exhaust gas recirculation system, which branches off from the exhaust pipe 1 upstream of the SCR particle filter 3 and branches off from the exhaust gas line 1 upstream of the SCR particle filter 3, is arranged for a targeted, defined change in the NOx concentration in the exhaust gas mass flow 10, via which a first part Exhaust gas mass flow 10a of the exhaust gas mass flow 10 emitted by the internal combustion engine is returned to the intake region of the internal combustion engine via a first exhaust gas recirculation line 2a.
  • the size of the recirculated first partial exhaust gas mass flow 10a can be set via a first exhaust gas recirculation valve 2b arranged in the first exhaust gas recirculation line 2a.
  • the junction of this exhaust gas recirculation device 2 is expediently arranged on the exhaust gas line 1 upstream of the NH 3 feed device 7, since the supplied NH 3 solution 7d is to be supplied completely to the SCR particle filter 3 for NOx reduction.
  • an exhaust gas recirculation device 8 a so-called low-pressure exhaust gas recirculation system, is arranged upstream of the SCR particle filter 3 upstream of the SCR particle filter 3 for the targeted, defined bringing about a change in the NOx concentration in the exhaust gas mass flow 10, via which a further part Exhaust gas mass flow 10b of the exhaust gas mass flow 10 emitted by the internal combustion engine is returned to the intake area of the internal combustion engine via a further exhaust gas recirculation line 8a.
  • the size of the recirculated further partial exhaust gas mass flow 10b can be set via a further exhaust gas recirculation valve 8b arranged in the further exhaust gas recirculation line 8a.
  • the maximum expansion stage of the exhaust gas aftertreatment system according to the invention shown has both an NH 3 supply device 7 and a first exhaust gas recirculation device 2 as well as a further exhaust gas recirculation device 8, then the presence of one of these devices is sufficient for an embodiment of the exhaust gas aftertreatment system according to the invention.
  • two or all three of these devices can also be used in combined operation and, as it were, become one device for targeted, defined bringing about a change in the NH 3 concentration and / or a change in the NOx concentration in the exhaust gas mass flow 10 upstream of the SCR particle filter 3.
  • At least one first concentration sensor 6 for measuring the NH 3 and / or NOx concentration in the exhaust gas mass flow 10 is arranged downstream, after the SCR particle filter 3, in the exhaust gas mass flow 10.
  • This first concentration sensor 6 emits a corresponding first concentration measurement signal 110, on the basis of which a correlating concentration comparison value (VgW) can be provided.
  • the embodiment of the exhaust gas aftertreatment system according to the invention shown here has, according to a further expansion stage, an additional concentration sensor 5 arranged in the exhaust gas mass flow 10 upstream in front of the SCR particle filter 3 for measuring the NH 3 and / or NOx concentration upstream of the SCR particle filter 3 on.
  • This is expediently arranged in the exhaust gas mass flow 10 downstream of the NH 3 feed device 7 and the junction of the first exhaust gas recirculation device 2, directly in front of the SCR particle filter 3, so that with this additional concentration sensor 5, both the NH 3 and the NOx concentration change can be detected in front of the SCR particle filter 3, that is to say the targeted change in the NH 3 and / or NOx concentration.
  • This additional concentration sensor 5 also emits a corresponding second concentration measurement signal 100 which can also be used to provide a concentration comparison value (VgW).
  • an actually measured value for the change in the NH 3 concentration can be used to carry out the method and / or the NOx concentration change in the exhaust gas mass flow 10 upstream of the SCR particle filter 3 can be used, for example, to provide a concentration comparison value (VgW), which increases the reliability of the diagnosis of the SCR particle filter.
  • VgW concentration comparison value
  • the concentration sensor 6 arranged downstream of the SCR particle filter 3 is available, for example the default value for the targeted, defined change in concentration is assumed as the actual value, it being assumed that the device for the targeted, defined change of the respective concentration value is functioning correctly .
  • the illustrated embodiment of the exhaust gas aftertreatment system according to the invention has an electronic computing and control unit 15 (ECU).
  • ECU electronic computing and control unit 15
  • This is set up for the targeted, defined changing of the NH 3 and / or NOx concentration in the exhaust gas mass flow 10 upstream of the SCR particle filter 3, by means of at least one of the above-mentioned devices for the targeted, defined changing of the NH 3 and / or NOx concentration and for detecting a first concentration measurement signal (110) output by the at least one concentration sensor 6 and, in a further expansion stage, a second concentration measurement signal.
  • the electronic computing and control unit 15 is electrically connected via signal lines 2c, 5c, 6c, 7c and 8c to the system components first exhaust gas recirculation valve 2b, additional concentration sensor 5, first concentration sensor 6, metering device 7b and further exhaust gas recirculation valve 8b in order to send control signals to the corresponding system components give or receive signals, in particular measurement signals, from the corresponding system components.
  • the electronic computing and control unit 15 is also set up to use the method according to the invention for operating a Execute exhaust gas aftertreatment system of an internal combustion engine according to one of the embodiments according to the invention on the basis of a first concentration measurement signal of the first concentration sensor 6 or on the basis of the two concentration measurement signals of the first and the additional concentration sensor 6, 5.
  • the sequence of the method, corresponding calculation algorithms, and the required default values for controlling the exhaust gas aftertreatment system and the internal combustion engine are stored in the form of executable program code in the electronic control unit 15 or in associated electronic storage units.
  • An embodiment of the exhaust gas aftertreatment system is characterized in that the electronic computing and control unit 15 is an integral part of a central control unit (CPU) 16 of the internal combustion engine, the method to be carried out being part of an on-board diagnostic system for monitoring the exhaust-relevant functional units of the internal combustion engine is in normal operation.
  • CPU central control unit
  • FIG Figure 2 An embodiment of the method according to the invention for operating an exhaust gas aftertreatment system of an internal combustion engine in one of the embodiments described above is illustrated in FIG Figure 2 The simplified block sequence program shown in the essential procedural steps.
  • the internal combustion engine is set to a diagnostic operating mode, with certain relevant diagnostic operating parameters (D-BP) of the internal combustion engine being in accordance with diagnostic default values (D-BP_set) verified, adjusted or adjusted.
  • D-BP diagnostic operating parameters
  • the corresponding diagnostic default values are for this purpose in an electronic memory of the electronic computing and control unit (ECU), which is shown in Figure 2 is marked with "E_Sp1" and can be easily read out and used to carry out this process step.
  • ECU electronic computing and control unit
  • D-BP D-BP_set
  • the targeted, defined induction of a change in the NH 3 concentration and / or a change in the NOx concentration in the exhaust gas mass flow 10 upstream of the SCR particle filter 3 takes place, depending on the design of the exhaust gas aftertreatment system by appropriate individual or combined control of one or more of the devices: NH 3 feed device 7, first exhaust gas recirculation device 2 and further exhaust gas recirculation device 8; as in Figure 2 shown with dashed lines.
  • a change in the NH 3 concentration or a change in the NOx concentration or a combined or superimposed change in the NOx / NH 3 concentration can be brought about by means of a corresponding control of the devices mentioned for the targeted, defined induction of the NH 3 and / or NOx concentration change, by the electronic computing and control unit (ECU) 15.
  • ECU electronic computing and control unit
  • the defined change in NOx concentration upstream of the SCR particle filter 3 can consist of an increase or a reduction in the NOx concentration, which is achieved, for example, by a defined reduction or increase in an exhaust gas recirculation rate, with an additional support here further operating parameters of the internal combustion engine can be influenced in the sense of an increase in the NOx concentration in the exhaust gas.
  • the exhaust gas recirculation rate can be determined by means of the first exhaust gas recirculation device 2 or the further exhaust gas recirculation device 8 or the two exhaust gas recirculation devices 2, 8 in combination.
  • the defined change in the NH 3 concentration upstream of the SCR particle filter 3 can consist of a defined increase or reduction in the NH 3 concentration, which is achieved by a defined increase or reduction in the amount of NH 3 solution 7d added by means of the NH 3 feed device 7 is set. This takes place in particular by appropriate activation of the metering device 7b by means of the electronic computing and control unit (ECU) 15.
  • ECU electronic computing and control unit
  • the change in the NH 3 and / or NO x concentration upstream, in front of the SCR particle filter is also measured in the same time window (TW) as part of the aforementioned method step.
  • TW time window
  • an additional concentration sensor 5 is used to arrange the exhaust gas mass flow 10 upstream in front of the SCR particle filter 3 is, a second concentration measurement signal 120 correlating to the NH 3 and / or NO x concentration change in the exhaust gas mass flow 10 upstream of the SCR particle filter 3 is provided and fed to the electronic computing and control unit ECU via a signal line 5c.
  • a correlating concentration comparison value is provided at least on the basis of the first concentration measurement signal (110).
  • a concentration comparison value for example, in different versions of the method, a respective maximum value or minimum value of the change in concentration reached within the defined time window (TW) and / or a concentration change gradient determined within the defined time window (TW) can be used.
  • the concentration comparison value (VgW) can be applied to the respective NH determined within the defined time window 3 - and / or NOx concentration changes after and before the SCR particle filter 3 are based.
  • the values of the NH 3 and / or NOx concentration changes determined within the defined time window at a certain point in time and / or the gradients of these concentration changes, in each case before and after the SCR particle filter 3, can be combined compared or put in relation to each other. This enables a particularly reliable concentration comparison value (VgW) to be provided and increases the diagnostic reliability of the method, since incorrect diagnoses due to possibly defective devices for changing the NH 3 and / or NOx concentration can be ruled out.
  • the change in NH 3 and / or NOx concentration measured within the specified time window TW after the SCR particle filter (3) is evaluated on the basis of the respective concentration comparison value (VgW) and specified limit values (GW).
  • VgW concentration comparison value
  • GW specified limit values
  • a respective maximum or minimum value of the change in concentration and / or a determined gradient of the change in concentration or also comparison or ratio values based on the respective before and after the SCR particle filter can be used as the concentration comparison value, depending on the execution of the method, as already mentioned above 3 measured values or gradients of the change in concentration can be used. This enables a wide range of variance in the design of the method according to the invention and the adaptation to the needs of the respective application.
  • correspondingly adapted limit values must then be specified. These can, for example, be determined beforehand empirically or by means of model calculation and are, for example, stored in an electronic memory area of the electronic computing and control unit and called up from there to evaluate the change in concentration. Such an electronic storage area is in Figure 2 , marked with E_Sp2 and contains the corresponding limit values, which are shown as "(NO x / NH 3 ) GW".
  • the method according to the invention can be repeated in certain cycles during operation, these cycles being based on a certain operating time, a certain operating performance or on requirement values determined during operation.
  • a further embodiment of the method is characterized in that in the context of the change in NH 3 and / or NOx concentration, there is initially an increase in concentration and an immediately subsequent reduction in concentration. In this case, after the concentration increase for a specific first period of time, the concentration is reduced to a value selected in this way and for a second period selected in this way, so that an average value of the NH 3 and / or NOx resulting over the duration of the increase in concentration and the reduction in concentration takes place. Concentration downstream of the SCR particle filter, which corresponds to the value of the NH 3 and / or NOx concentration prevailing before the concentration increase. In this way it is ensured that over the duration of the procedure, on average over time, there is no increase in pollutant emissions caused by the procedure.
  • a combined concentration sensor 6 is used to measure the change in NH 3 and / or NOx concentration in the exhaust gas mass flow 10, which measures the change in NH 3 and / or NOx in a combined concentration measurement signal 110 summarizes.
  • This can apply both to the first concentration sensor 6, downstream of the SCR particle filter 3, and to the second concentration sensor 5, upstream of the SCR particle filter 3.
  • This advantageously makes it possible to specify both a change in NH 3 concentration and a change in NOx concentration as well as a combined change in NH 3 / NO x concentration for carrying out the method and thus also opens up a greater scope for the extent of the predetermined change in concentration.
  • the respective fixed time window (TW) for measuring the change in NH 3 and / or NO x concentration in the exhaust gas mass flow 10 after and / or in front of the SCR particle filter 3 has a duration of less than or equal to 5 seconds, in particular less than or equal to 3 seconds.
  • the length of this time window ensures that only a rapid change in the NH 3 and / or NO x concentration after the SCR particle filter 3, as occurs only when the SCR particle filter 3 is defective, when determining the concentration comparison value and so on the diagnosis of the SCR particulate filter shows the effect.
  • Figure 3 shows an example of the curves of the NO x / NH 3 concentration over time, which were recorded with the aid of combined NO x / NH 3 concentration sensors upstream and downstream of the SCR particulate filter.
  • the curve 100 shows the NO x / NH 3 concentration upstream of the SCR particulate filter, starting from an in the NO x / NH 3 concentration regulated at approx. 40 ppm at time T1, a defined change in concentration by approx. 100 ppm to 140 ppm is brought about.
  • the curve 110 shows the NO x / NH 3 concentration recorded downstream of the SCR particle filter in the case of a defective SCR particle filter. An increased value of the NO x / NH 3 concentration at approx.
  • the NO x / NH 3 concentration begins to rise with a gradient G1 within time window TW and rises to a maximum concentration KM1 at time T2, at the end of time window TW.
  • the profile curve 120 shows the NO x / NH 3 concentration recorded downstream of the SCR particle filter in the case of an intact SCR particle filter.
  • the NO x / NH 3 concentration also begins to rise within the time window TW, but with a significantly smaller gradient G2 compared to the curve 110. Accordingly, only a significantly smaller maximum concentration KM2 is reached up to time T2, at the end of time window TW.
  • the maximum concentration MK1, MK2 reached up to a certain point in time within the time window TW or at the end of the time window TW or the respective gradient G1, G2 of the NO x - / NH 3 concentration increase within the time window TW can be used. Furthermore, it is possible to consider the concentration values determined downstream of the SCR particle filter and the concentration values specified or determined upstream in combination and to use them therefrom to determine a comparison value.
  • the NO x / NH 3 concentration values upstream of the SCR particle filter can be based on the default values, determined with the aid of model considerations or measured by means of a concentration sensor (if available).
  • the gradient of the increase in concentration downstream of the SCR particle filter determined within the time window TW can be divided by the jump value of the change in concentration upstream of the SCR particle filter.
  • the result is used as the concentration comparison value VgW.
  • the gradient of the increase in concentration downstream of the SCR particle filter is 11.3 ppm / s and the jump value for the change in concentration upstream of the SCR particle filter is 480 ppm (paying attention to the sign)
  • Another embodiment of the method is characterized in that the change in NH 3 and / or NO x concentration has an increase in concentration and an immediately following reduction in concentration, and the values and / or the gradients of the increase in concentration and the reduction in concentration in each case after and before the SCR particle filter 3 can be used in combination with one another to evaluate the measured change in NH 3 and / or NO x concentration after the SCR particle filter 3.
  • a ratio of the gradient of the concentration increase downstream and the grade value of the concentration increase upstream of the SCR particle filter as well as the gradient of the subsequent concentration drop downstream and the associated grade value of the concentration reduction upstream of the SCR particle filter can be formed and their sum can be calculated.
  • the resulting course of the NH 3 - / NO x concentration downstream of the SCR particle filter shows an increase following time T1 with the gradient + G1a, within the time window TW1 immediately following the change in concentration + KSp1, up to time T2 and a subsequent drop in the NH 3 - / NO x concentration with a gradient -G1b within the time window TW2 immediately following the change in concentration -KSp2, which lasts up to time T3.
  • the diagnostic mode is ended and the NH 3 - and / or NOx concentration is again set or regulated as a function of the current operating point of the internal combustion engine.
  • the internal combustion engine can continue to operate in the normal operating mode after the method has been carried out, i.e. after the functionality of the SCR particle filter 3 has been diagnosed , this is shown in the process step marked "BP_Norm".

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Claims (17)

  1. Procédé de fonctionnement d'un système de post-traitement de gaz d'échappement d'un moteur à combustion interne, qui comporte une conduite de gaz d'échappement (1) destinée à guider un flux massique de gaz d'échappement (10) et un filtre à particules RCS (3) disposé dans la conduite de gaz d'échappement (1), un dispositif destiné à faire varier de manière définie et ciblée la concentration de NH3 et/ou de NOx dans le flux massique de gaz d'échappement (10) étant disposé en amont du filtre à particules RCS (3), et au moins un premier capteur de concentration (6) destiné à détecter des brèches dans le substrat filtrant du filtre à particules RCS (3) étant disposé dans le flux massique de gaz d'échappement (10) en aval du filtre à particules RCS (3), le procédé comprenant les étapes suivantes :
    - régler le moteur à combustion interne sur le mode de fonctionnement en diagnostic, des paramètres de fonctionnement en diagnostic pertinents déterminés (D-BP) du moteur à combustion interne étant vérifiés, réglés ou régulés conformément à des valeurs de diagnostic spécifiées (D-BP_set) ;
    en mode de fonctionnement en diagnostic,
    - effectuer de manière définie et ciblée une variation de la concentration de NH3 et/ou une variation de la concentration de NOx dans le flux massique de gaz d'échappement (10) en amont du filtre à particules RCS (3) par rapport aux valeurs de la concentration de NH3 et/ou de la concentration de NOx qui sont présentes dans le mode de fonctionnement en diagnostic ;
    - mesurer les variations de concentration de NH3 et/ou de NOx dans le flux massique de gaz d'échappement (10) du filtre à particules RCS (3) à l'intérieur d'une fenêtre temporelle (TW) suivant directement la variation de la concentration en NH3 et/ou NOx en amont du filtre à particules RCS (3) au moyen de l'au moins un premier capteur de concentration (6), qui délivre un premier signal de mesure de concentration correspondant (110) ; et
    - fournir une valeur de comparaison de concentration corrélée (VgW) au moins sur la base du premier signal de mesure de concentration (110) ;
    - évaluer la variation de la concentration de NH3 et/ou NOx mesurée dans la fenêtre temporelle spécifiée (TW) en aval du filtre à particules RCS (3) sur la base de la valeur de comparaison de concentration respective (VgW) et de valeurs limites spécifiées (GW) ; et
    - diagnostiquer le filtre à particules RCS (3) comme défectueux en raison de brèches dans le substrat filtrant si l'évaluation montre que la valeur de comparaison de concentration (VgW) a dépassé au moins une valeur limite spécifiée (GW).
  2. Procédé selon la revendication 1, dans lequel le dispositif destiné à effectuer de manière définie et ciblée la variation de concentration de NH3 et/ou de NOx dans le flux massique de gaz d'échappement (10) en amont du filtre à particules RCS (3) comporte un dispositif d'alimentation en NH3 (7) destiné à alimenter la conduite de gaz d'échappement (1) en solution de NH3 (7d) et/ou un premier dispositif de recirculation de gaz d'échappement (2) dérivant de la conduite de gaz d'échappement (1) en amont du filtre à particules RCS (3) et/ou un autre dispositif de recirculation de gaz d'échappement (8) dérivant de la conduite de gaz de d'échappement (1) en aval du filtre à particules RCS (3) .
  3. Procédé selon la revendication 1 ou 2,
    le mode de fonctionnement en diagnostic étant caractérisé par l'un au moins des paramètres de fonctionnement en diagnostic suivants :
    - la vitesse de rotation (RPM) du moteur à combustion interne est comprise entre 1100 et 1900 tours par minute ;
    - la température de fonctionnement (T-SC-PF) du filtre à particules RCS (3) est comprise entre 250 °C et 350 °C ;
    - la différence de pression du flux massique de gaz d'échappement (ΔP_RCS-PF) aux bornes du filtre à particules RCS (3) est comprise entre 3 bar et 7 bar ;
    - la quantité de NH3 stockée (SM_SC-PF) dans le filtre à particules RCS (3) est supérieure à une valeur seuil prédéfinie ;
    - la quantité d'ajout de NH3 régulée à une valeur stœchiométrique par rapport à la concentration de NOx dans les gaz d'échappement en amont du filtre à particules RCS.
  4. Procédé selon l'une des revendications 2 et 3,
    la variation définie de la concentration de NOx en amont du filtre à particules RCS (3) consiste en une augmentation ou une réduction de la concentration de NOx qui est réglée par une réduction ou une augmentation définie d'un taux de recirculation de gaz d'échappement du premier dispositif de recirculation de gaz d'échappement (2) et/ou de l'autre dispositif de recirculation de gaz d'échappement (8).
  5. Procédé selon l'une des revendications 2 à 4,
    la variation définie de concentration de NH3 du filtre à particules RCS (3) consistant en une augmentation ou une réduction définie de la concentration de NH3 qui est régulée par une augmentation ou une diminution définie de la quantité d'ajout de solution de NH3 (7d) au moyen du dispositif d'alimentation en NH3 (7).
  6. Procédé selon l'une des revendications 1 à 5,
    lors de l'évaluation de la variation de la concentration de NOx et/ou de la variation de la concentration de NH3 mesurée dans la fenêtre temporelle spécifiée (TW) en aval du filtre à particules RCS (3), une valeur maximale ou valeur minimale respective, atteinte dans la fenêtre temporelle définie (TW), de la variation de la concentration et/ou un gradient de la variation de la concentration, déterminé dans la fenêtre temporelle définie (TW), étant utilisés comme valeur de comparaison de concentration (VgW).
  7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce qu'une augmentation de la concentration et une diminution de la concentration immédiatement consécutive sont effectuées dans le cadre des variations de concentration de NH3 et/ou de NOx, après l'augmentation de la concentration pendant une première durée déterminée, la concentration étant réduite à une valeur sélectionnée de cette manière et pendant une deuxième durée sélectionnée de sorte qu'une valeur moyenne de la concentration de NH3 et/ou de NOx résultant pendant la durée de l'augmentation de la concentration et de la diminution de la concentration, correspond à la valeur de la concentration de NH3 et/ou de NOx avant l'augmentation de la concentration.
  8. Procédé selon l'une des revendications 1 à 7,
    un capteur de concentration combiné (6), qui rassemble les variations de concentration de NH3 et/ou de NOx dans un signal de mesure de concentration combiné (110), étant utilisé pour mesurer les variations de concentration de NH3 et/ou de NOx dans le flux massique de gaz d'échappement (10).
  9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que la fenêtre temporelle fixe (TW) a une durée inférieure ou égale à 5 secondes, notamment inférieure ou égale à 3 secondes.
  10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que la variation définie et ciblée de la concentration de NH3 et/ou de NOx dans le flux massique de gaz d'échappement (10) en amont du filtre à particules RCS (3) est supprimée après diagnostic du filtre à particules RCS (3) et le moteur à combustion interne est ramené au mode de fonctionnement de travail normal (BP_Norm) et continue de fonctionner ou est limité au fonctionnement d'urgence (BP_Not) en fonction du résultat du diagnostic.
  11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce qu'un capteur de concentration supplémentaire (5) est disposé dans le flux massique de gaz d'échappement (10) en amont du filtre à particules RCS (3), lequel capteur produit un deuxième signal de mesure de concentration (100) qui corrèle les variations de concentration NH3 et/ou NOx dans le flux massique de gaz d'échappement (10) en amont du filtre à particules RCS (3), la valeur de comparaison de concentrations (VGW), utilisée pour évaluer les variations de concentration de NH3 et/ou NOx en aval du filtre à particules RCS (3) étant basée sur les variations de concentration de NH3 et/ou de NOx respectives, déterminées dans la fenêtre temporelle définie (TW), en aval et en amont du filtre à particules RCS (3).
  12. Procédé selon la revendication 11, caractérisé en ce que les valeurs de concentrations de NH3 et/ou de NOx, déterminées dans la fenêtre temporelle définie, sont comparées entre elles à un instant déterminé et/ou les gradients de ces variations de concentration en amont et en aval du filtre à particules RCS (3) sont comparés entre eux ou mis en relation entre eux.
  13. Procédé selon la revendication 12, caractérisé en ce que les variations de concentration de NH3 et/ou de NOx comportent une augmentation de concentration et une diminution de concentration immédiatement consécutive et les valeurs et/ou les gradients de l'augmentation de concentration et de la diminution de concentration en aval et en amont du filtre à particules RCS (3) peuvent être utilisés en combinaison les uns avec les autres pour évaluer les variations mesurées de concentration de NH3 et/ou de NOx en aval du filtre à particules RCS (3) .
  14. Système de post-traitement de gaz d'échappement d'un moteur à combustion interne, lequel système comporte un filtre à particules RCS (3) disposé dans une conduite de gaz d'échappement (1) et au moins un dispositif destiné à faire varier de manière définie et ciblée les concentrations de NH3 et/ou de NOx dans le flux massique de gaz d'échappement (10) en amont du filtre à particules RCS (3), et au moins un premier capteur de concentration (6) destiné à mesurer les concentrations de NH3 et/ou NOx dans le flux massique de gaz d'échappement (10) en aval du filtre à particules RCS (3), caractérisé en ce que le système de post-traitement de gaz d'échappement comporte une unité de commande et de calcul électronique (15) qui est conçue pour faire varier de manière définie et ciblée la concentration de NH3 et/ou de NOx dans le flux massique de gaz d'échappement (10) en amont du filtre à particules RCS (3) au moyen d'au moins un des dispositifs destinés à faire varier de manière définie et ciblée les concentrations de NH3 et/ou de NOx et à détecter un premier signal de concentration (110) délivré par l'au moins un premier capteur de concentration (6), l'unité de commande et de calcul électronique (15) étant en outre conçue pour mettre en œuvre le procédé de fonctionnement d'un système de post-traitement de gaz d'échappement d'un moteur à combustion interne selon les revendications 1 à 10.
  15. Système de post-traitement de gaz d'échappement selon la revendication 14, caractérisé en ce qu'il comporte un capteur de concentration supplémentaire (5) disposé dans le flux massique de gaz d'échappement (10) en amont du filtre à particules RCS (3) et destiné à mesurer les concentrations de NH3 et/ou de NOx en amont du filtre à particules RCS (3), l'unité de commande et de calcul électronique (15) étant conçue pour mettre en œuvre le procédé de fonctionnement d'un système de post-traitement de gaz d'échappement d'un moteur à combustion interne selon l'une des revendications 11 à 13.
  16. Système de post-traitement de gaz d'échappement selon la revendication 14 ou 15, dans lequel le dispositif destiné à faire varier de manière définie et ciblée les concentrations de NH3 et/ou NOx dans le flux massique de gaz d'échappement (10) en amont du filtre à particules RCS (3) comporte un dispositif d'alimentation en NH3 (7) destiné à alimenter la conduite de gaz d'échappement (1) en solution de NH3 (7d) et/ou un premier dispositif de recirculation de gaz d'échappement (2) dérivant de la conduite d'échappement (1) en amont du filtre à particules RCS (3) et/ou un autre dispositif de recirculation de gaz d'échappement (8) dérivant de la conduite de gaz de d'échappement (1) en aval du filtre à particules RCS (3) .
  17. Système de post-traitement de gaz d'échappement selon l'une des revendications 14 à 16, caractérisé en ce que l'unité de commande et de calcul électronique (15) fait partie intégrante d'une unité de commande centrale (16) du moteur à combustion interne et le procédé à mettre en œuvre fait partie d'un système de diagnostic embarqué destiné à surveiller les unités fonctionnelles relatives aux gaz d'échappement du moteur à combustion interne en fonctionnement normal.
EP18808321.6A 2017-11-29 2018-11-23 Procédé d'opération d'un système de post-traitement d'un moteur à combustion interne et système de post-traitement Active EP3717757B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102017221358 2017-11-29
DE102018215627.1A DE102018215627A1 (de) 2017-11-29 2018-09-13 Verfahren zum Betreiben einer Abgasnachbehandlungsanlage einer Brennkraftmaschine und Abgasnachbehandlungsanlage
PCT/EP2018/082357 WO2019105859A1 (fr) 2017-11-29 2018-11-23 Procédé pour faire fonctionner une installation de retraitement des gaz d'échappement d'un moteur à combustion interne et installation de retraitement des gaz d'échappement

Publications (2)

Publication Number Publication Date
EP3717757A1 EP3717757A1 (fr) 2020-10-07
EP3717757B1 true EP3717757B1 (fr) 2021-10-06

Family

ID=66442738

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18808321.6A Active EP3717757B1 (fr) 2017-11-29 2018-11-23 Procédé d'opération d'un système de post-traitement d'un moteur à combustion interne et système de post-traitement

Country Status (6)

Country Link
US (1) US11346267B2 (fr)
EP (1) EP3717757B1 (fr)
KR (1) KR102435576B1 (fr)
CN (1) CN111492126B (fr)
DE (1) DE102018215627A1 (fr)
WO (1) WO2019105859A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019207757B4 (de) * 2019-05-27 2021-10-14 Vitesco Technologies GmbH Verfahren zum Betreiben einer Abgasnachbehandlungsanlage einer Brennkraftmaschine und Abgasnachbehandlungsanlage
DE102020202551A1 (de) 2020-02-28 2021-09-02 Vitesco Technologies GmbH Verfahren und Vorrichtung zur Diagnose eines in einem Abgaskanal eines Kraftfahrzeugs angeordneten beschichteten Partikelfilters
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
DE102020211731B4 (de) 2020-09-18 2022-08-18 Vitesco Technologies GmbH Verfahren und Vorrichtung zur Diagnose eines beschichteten Ottopartikelfilters eines Abgastrakts einer Brennkraftmaschine
CN113513419B (zh) * 2021-03-29 2022-10-14 广西玉柴机器股份有限公司 一种调整发动机后处理热处理系统的方法及发动机控制器
CN113340605B (zh) * 2021-04-29 2023-01-24 广西玉柴机器股份有限公司 一种拖拉机整车累碳试验方法及系统
CN113279849B (zh) * 2021-07-05 2023-04-07 凯龙高科技股份有限公司 一种scr系统nh3泄露识别检测方法
KR102600606B1 (ko) * 2021-10-19 2023-11-09 한화오션 주식회사 선박의 연료공급시스템 및 방법
DE102021212868A1 (de) * 2021-11-16 2023-05-17 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Ermitteln einer Abgaszusammensetzung eines Abgases einer Brennkraftmaschine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037730A1 (fr) * 2005-09-29 2007-04-05 Volvo Lastvagnar Ab Procede de diagnostic d'un systeme de post traitement d'echappement
US20130202506A1 (en) * 2012-02-07 2013-08-08 Robert Bosch Gmbh Method for monitoring an scr catalyst
WO2013147653A1 (fr) * 2012-03-29 2013-10-03 Volvo Construction Equipment Ab Procédé pour diagnostiquer un catalyseur de réduction catalytique sélective
DE102013200623A1 (de) * 2013-01-17 2014-07-17 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung eines Partikelfilters
US20160069243A1 (en) * 2013-04-10 2016-03-10 Daimler Ag Method for Operating an Exhaust Gas Purification System of a Motor Vehicle Combustion Engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156159A (ja) 2007-12-26 2009-07-16 Toyota Motor Corp 排気ガス浄化システムの異常部位の判定装置
FR2956987B1 (fr) 2010-03-02 2012-03-23 Peugeot Citroen Automobiles Sa Procede de detection du fonctionnement defaillant d'un filtre a particules d'un systeme anti-pollution
DE102010029740B4 (de) * 2010-06-07 2022-05-12 Robert Bosch Gmbh Verfahren zur Überwachung eines SCR-Katalysators
US8800274B2 (en) * 2011-05-12 2014-08-12 GM Global Technology Operations LLC Method for managing ammonia slip
DE102012105952A1 (de) * 2012-07-04 2014-01-09 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zur Zugabe eines Reduktionsmittels in eine Abgasbehandlungsvorrichtung
DE102012220151A1 (de) 2012-11-06 2014-05-22 Robert Bosch Gmbh Verfahren zur Überprüfung eines Ammoniaksensors oder eines NH3-querempfindlichen Sensors
US9879580B2 (en) * 2015-08-19 2018-01-30 Cummins, Inc. Diagnostic methods for a high efficiency exhaust aftertreatment system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037730A1 (fr) * 2005-09-29 2007-04-05 Volvo Lastvagnar Ab Procede de diagnostic d'un systeme de post traitement d'echappement
US20130202506A1 (en) * 2012-02-07 2013-08-08 Robert Bosch Gmbh Method for monitoring an scr catalyst
WO2013147653A1 (fr) * 2012-03-29 2013-10-03 Volvo Construction Equipment Ab Procédé pour diagnostiquer un catalyseur de réduction catalytique sélective
DE102013200623A1 (de) * 2013-01-17 2014-07-17 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung eines Partikelfilters
US20160069243A1 (en) * 2013-04-10 2016-03-10 Daimler Ag Method for Operating an Exhaust Gas Purification System of a Motor Vehicle Combustion Engine

Also Published As

Publication number Publication date
KR20200087859A (ko) 2020-07-21
EP3717757A1 (fr) 2020-10-07
US11346267B2 (en) 2022-05-31
WO2019105859A1 (fr) 2019-06-06
CN111492126B (zh) 2022-04-29
KR102435576B1 (ko) 2022-08-23
US20200378288A1 (en) 2020-12-03
CN111492126A (zh) 2020-08-04
DE102018215627A1 (de) 2019-05-29

Similar Documents

Publication Publication Date Title
EP3717757B1 (fr) Procédé d'opération d'un système de post-traitement d'un moteur à combustion interne et système de post-traitement
DE112011100874B4 (de) Steuersystem zur Dosiererkompensation in einem SCR-System
EP3111061B1 (fr) Procédé pour la détermination du vieillissement d'un catalyseur d'oxydation dans un système de post-traitement de gaz d'échappement d'un moteur à combustion interne, procédé pour la détection de cendres dans un filtre à particules d'un système de post-traitement de gaz d'échappement, dispositif de commande et moteur à combustion interne
DE102008038677B4 (de) Verfahren und Vorrichtung zum Diagnostizieren eines Abgaskatalysators
DE102007040439A1 (de) Betriebs- und Diagnoseverfahren für ein SCR-Abgasnachbehandlungssystem
DE102007006489A1 (de) Verfahren zur Diagnose eines in einem Abgasbereich einer Brennkraftmaschine angeordneten Abgassensors und Vorrichtung zur Durchführung des Verfahrens
EP1373693A1 (fr) Procede et dispositif de controle d'un systeme de traitement ulterieur de gaz d'echappement
WO2009092429A1 (fr) Procédé pour déterminer la concentration en dioxyde d’azote de gaz d’échappement
DE10254843A1 (de) Verfahren und Vorrichtung zur Überwachung eines Abgasnachbehandlungssystems
DE102009055082A1 (de) Verfahren zur Überwachung einer Schadstoff-Konvertierungsfähigkeit in einem Abgasnachbehandlungssystem
DE102016211575A1 (de) Fehlererkennung in einem SCR-System mittels eines Ammoniak-Füllstands
DE102016203227A1 (de) Verfahren zur Diagnose eines Abgasnachbehandlungssystems für eine Brennkraftmaschine
EP2238321B1 (fr) Procede et appareil de commande pour controler un systeme de post-traitement des gaz d'echappement d'un moteur a combustion interne
DE102007003547B4 (de) Verfahren zur Diagnose eines eine Abgasbehandlungsvorrichtung enthaltenden Abgasbereichs einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE102015200751B4 (de) Verfahren zur Überwachung einer Abgasnachbehandlungsanlage eines Verbrennungsmotors sowie Steuerungseinrichtung für eine Abgasnachbehandlungsanlage
DE102012211705A1 (de) Verfahren zur Überprüfung eines Stickoxidsensors
DE102017204300A1 (de) Verfahren zur Diagnose eines SCR-Systems
DE102010028846A1 (de) Verfahren zum Betreiben einer Abgasanlage einer Brennkraftmaschine
DE102018213380A1 (de) Verfahren zur Überwachung eines SCR-Katalysators
WO2020052866A1 (fr) Procédé pour effectuer un diagnostic fonctionnel d'un dispositif de post-traitement des gaz d'échappement d'un moteur à combustion interne et dispositif de post-traitement des gaz d'échappement
DE102007006487B4 (de) Verfahren zur Diagnose eines in einem Abgasbereich einer Brennkraftmaschine angeordneten Abgassensors und Vorrichtung zur Durchführung des Verfahrens
DE102014209966B4 (de) Verfahren und Vorrichtung zum Bewerten der Funktionsfähigkeit einesSCR-Katalysators in einem Abgassystem eines Dieselmotors
DE102019207757B4 (de) Verfahren zum Betreiben einer Abgasnachbehandlungsanlage einer Brennkraftmaschine und Abgasnachbehandlungsanlage
DE102008042763B4 (de) Verfahren zur Diagnose einer Reagenzmittel-Dosiervorrichtung und Vorrichtung zur Durchführung des Verfahrens
DE102015207881A1 (de) Verfahren zur Überwachung eines SCR-Katalysators

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200629

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VITESCO TECHNOLOGIES GMBH

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210630

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1436416

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018007394

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: VITESCO TECHNOLOGIES GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502018007394

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220206

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220207

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220106

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220107

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018007394

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211123

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211123

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181123

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231120

Year of fee payment: 6

Ref country code: DE

Payment date: 20231130

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006