EP3717757B1 - Method for operating an exhaust aftertreatment system of an internal combustion engine and exhaust aftertreatment system - Google Patents

Method for operating an exhaust aftertreatment system of an internal combustion engine and exhaust aftertreatment system Download PDF

Info

Publication number
EP3717757B1
EP3717757B1 EP18808321.6A EP18808321A EP3717757B1 EP 3717757 B1 EP3717757 B1 EP 3717757B1 EP 18808321 A EP18808321 A EP 18808321A EP 3717757 B1 EP3717757 B1 EP 3717757B1
Authority
EP
European Patent Office
Prior art keywords
concentration
particle filter
exhaust
scr
scr particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18808321.6A
Other languages
German (de)
French (fr)
Other versions
EP3717757A1 (en
Inventor
Hong Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies GmbH
Original Assignee
Vitesco Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies GmbH filed Critical Vitesco Technologies GmbH
Publication of EP3717757A1 publication Critical patent/EP3717757A1/en
Application granted granted Critical
Publication of EP3717757B1 publication Critical patent/EP3717757B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/021Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting ammonia NH3
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0422Methods of control or diagnosing measuring the elapsed time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1406Exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1616NH3-slip from catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1622Catalyst reducing agent absorption capacity or consumption amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1812Flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D2041/1468Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an ammonia content or concentration of the exhaust gases

Definitions

  • the present invention relates to a method for operating an exhaust gas aftertreatment system of an internal combustion engine, in particular a diesel engine, which has a combined SCR particle filter arranged in an exhaust line and a device for targeted, defined changing of the NH 3 and / or NOx concentration in the exhaust gas mass flow upstream Has SCR particle filter.
  • SCR particle filter a particle filter with SCR function
  • SC-PF a particle filter with SCR function
  • a diagnostic method for an exhaust gas aftertreatment system which has an SCR catalytic converter.
  • the DE 10 2013 200 623 A1 shows a diagnostic method for breakthroughs in substrates of particle filters with an SCR-catalytic coating on the basis of sensor-detected changes in NOX concentration downstream of the SCR particle filter.
  • the present invention is therefore based on the object of creating a method and a corresponding exhaust gas aftertreatment system of an internal combustion engine that enable particularly rapid and precise monitoring of an SCR particle filter with regard to its NO x / NH 3 conversion and the particle filtering during operation of the internal combustion engine .
  • a method for operating an exhaust gas aftertreatment system of an internal combustion engine having an exhaust line for guiding an exhaust gas mass flow and an SCR particle filter arranged in the exhaust line and with a device for targeted, defined changing of the NH 3 and / or NOx concentration is arranged in the exhaust gas mass flow upstream in front of the SCR particle filter, and at least one first concentration sensor, in the exhaust gas mass flow downstream after the SCR particle filter.
  • the invention also relates to an exhaust gas aftertreatment system of an internal combustion engine, which has an SCR particle filter arranged in an exhaust line and at least one device for targeted, defined changing of the NH 3 and / or NOx concentration in the exhaust gas mass flow upstream in front of the SCR particle filter, and at least one concentration sensor , for measuring the NH 3 and / or NOx concentration in the exhaust gas mass flow downstream after the SCR particle filter.
  • This exhaust gas aftertreatment system is characterized in that it has an electronic computing and control unit which is set up for targeted, defined changing of the NH 3 and / or NOx concentration in the exhaust gas mass flow upstream of the SCR particle filter by means of the device for targeted, defined changing of the NH 3 and / or NOx concentration and for detecting a first concentration measurement signal output by the at least one concentration sensor.
  • the electronic computing and control unit is also set up to implement the method for operating an exhaust gas aftertreatment system of an internal combustion engine in accordance with one of the embodiments of the method according to the invention described above and below.
  • the basic idea of the invention is to use a NOx and / or NH 3 sensor downstream of an SCR particle filter to be used in conjunction with a change in NH 3 concentration and / or a change in NOx concentration in the exhaust gas mass flow upstream of the SCR particle filter to subject the SCR particle filter to a functional check, in particular a performance diagnosis.
  • a wall-flow filter with a suitable SCR coating is used as the SCR particle filter.
  • Function-influencing damage to SCR particle filters usually consists of breakthroughs or holes in the substrate of the filter, the number or cross-sectional area of which determine the degree of damage and through which a corresponding part of the exhaust gas can pass unfiltered and untreated. If the total cross-section of the breakthroughs or open holes is above a Threshold value, the corresponding particulate emissions exceed a diagnostic threshold value (OBD threshold value).
  • OBD threshold value diagnostic threshold value
  • the system is preferably in a steady or stationary operating state, for example idling, at a quasi-constant SCR particle filter temperature at which the NOx concentration signal and / or the NH 3 concentration signal after the SCR particle filter varies slightly , for example below 1 ppm / sec, the addition amount of the urea solution and / or the NOx raw emission preferably increased in one step, for example by 200 ppm NH 3 / NO x based on the previously given NH 3 addition amount or NOx raw emission, and the course of the NOx and / or NH 3 signal is observed (measurement of the corresponding increase in concentration).
  • the SCR particle filter is now within the emission limit, it can be assumed that the entire cross section of openings in the filter substrate is so small that the added urea or the increased NOx concentration is initially stored for the most part in the SCR particle filter. Therefore, the NOx or NH 3 signal measured after the filter has only a slight increase over a short period of time, for example 3 seconds, depending on the air mass flow. After that, the corresponding signal is stable and has a much lower gradient (less than 1 ppm / sec) than an SCR particle filter that is too badly damaged.
  • the entire cross section of openings in the filter substrate is so large that the added urea or. the increased NOx concentration flows through the SCR particle filter untreated to a large extent and almost without delay, so that the corresponding sensors after the SCR particle filter an immediate, increased NH 3 - / NO x concentration increase within the specified, immediately following time window register what the corresponding signal again assumes a more stable state with a lower gradient.
  • the ratio between the change in NOx and / or NH 3 concentration after the SCR particle filter and the change in NOx and / or NH 3 concentration before the SCR particle filter is directly proportional to the total cross-section of the openings in the filter substrate of the SCR -Particle filter is. If this ratio is above a certain threshold or limit, the filter is classified as defective in terms of particulate conversion.
  • a corresponding change in the NOx concentration upstream of the SCR particle filter can be carried out, for example, by reducing the exhaust gas recirculation rate (EGR rate), in particular with high pressure exhaust gas recirculation, but also with low pressure exhaust gas recirculation.
  • EGR rate exhaust gas recirculation rate
  • the change in NOx concentration after the SCR particle filter in relation to the change in NOx concentration before the SCR particle filter is directly proportional to the total cross-section of the openings in the filter substrate of the SCR particle filter.
  • a concentration comparison value is determined on the basis of the concentration measurement signal provided by means of the at least one concentration sensor. In its simplest form, this concentration comparison value can, for example, represent the maximum deflection of the concentration measurement signal within the defined time window.
  • the concentration comparison value can, however, also be a ratio between the NH 3 and / or NOx concentration change before and after the SCR particle filter.
  • the concentration comparison value can be determined on the basis of several successive changes in concentration and the respective gradients of the changes in concentration can also be used, as will be explained below.
  • the change in concentration is understood to mean both an increase in concentration and a reduction in concentration or both in succession.
  • the named concentration sensor is an NH 3 sensor or a NOx sensor, depending on whether the NH 3 or NOx concentration is changed to carry out the method. While an NH 3 sensor is only suitable for measuring the NH 3 concentration, the aforementioned NOx sensor, on the other hand, can measure both the NH 3 and the NOx concentration, i.e. consequently also a combination of NOx and NH 3 . In this case, it is a combined NH 3 / NO x concentration sensor. Depending on the desired measurement, the sensors suitable for this can therefore be provided.
  • the present invention also relates to an exhaust gas aftertreatment system of an internal combustion engine, in particular a diesel engine, which has an SCR particle filter arranged in an exhaust line and at least one device for targeted, defined changing of the NH 3 and / or NO x concentration in the exhaust gas mass flow upstream before the SCR.
  • This exhaust gas aftertreatment system is characterized by the fact that it has an electronic computing and control unit which is set up for targeted, defined changing of the NH 3 and / or NOx concentration in the exhaust gas mass flow upstream of the SCR particle filter by means of the device for targeted, defined Changing the NH 3 and / or NOx concentration and for detecting a first concentration measurement signal output by the at least one first concentration sensor.
  • the electronic computing and control unit is also set up to use the method for operating a Exhaust aftertreatment system of an internal combustion engine, as shown in the preceding and the following explanations.
  • FIG. 1 shows schematically in a simplified representation an embodiment of an exhaust gas aftertreatment system according to the invention of an internal combustion engine, for example a diesel engine.
  • the exhaust gas mass flow 10 coming from the internal combustion engine (not shown here) is guided in the direction of the arrow through an exhaust pipe 1 and passes an SCR particle filter 3 (SC-PF), which is designed, for example, as a wall-flow filter with an SCR coating and is arranged in the exhaust pipe 1 .
  • SC-PF SCR particle filter 3
  • the NH 3 supply device 7 For the targeted, defined bringing about a change in the NH 3 concentration in the exhaust gas mass flow 10 upstream of the SCR particle filter 3, there is an NH 3 supply device 7 on the exhaust pipe 1 upstream of the SCR particle filter 3 for supplying an NH 3 solution 7d into the Exhaust pipe 1 arranged.
  • the NH 3 supply device 7 has a storage container 7a for storing a suitable aqueous NH 3 solution 7d, which is also referred to as urea solution.
  • the storage container 7a is connected via a supply line to a metering device 7b, for example an injection valve, which in turn is arranged on the exhaust gas line 1 and is set up to dispense defined quantities of the NH 3 solution into the exhaust gas mass flow 10.
  • the supplied NH 3 solution produces NH 3 , which converts the NOx contained in the exhaust gas into nitrogen and water.
  • the SCR particulate filter therefore fulfills its function as a diesel particulate filter and at the same time reduces the NOx content in the exhaust gas.
  • an exhaust gas recirculation device 2 a so-called high-pressure exhaust gas recirculation system, which branches off from the exhaust pipe 1 upstream of the SCR particle filter 3 and branches off from the exhaust gas line 1 upstream of the SCR particle filter 3, is arranged for a targeted, defined change in the NOx concentration in the exhaust gas mass flow 10, via which a first part Exhaust gas mass flow 10a of the exhaust gas mass flow 10 emitted by the internal combustion engine is returned to the intake region of the internal combustion engine via a first exhaust gas recirculation line 2a.
  • the size of the recirculated first partial exhaust gas mass flow 10a can be set via a first exhaust gas recirculation valve 2b arranged in the first exhaust gas recirculation line 2a.
  • the junction of this exhaust gas recirculation device 2 is expediently arranged on the exhaust gas line 1 upstream of the NH 3 feed device 7, since the supplied NH 3 solution 7d is to be supplied completely to the SCR particle filter 3 for NOx reduction.
  • an exhaust gas recirculation device 8 a so-called low-pressure exhaust gas recirculation system, is arranged upstream of the SCR particle filter 3 upstream of the SCR particle filter 3 for the targeted, defined bringing about a change in the NOx concentration in the exhaust gas mass flow 10, via which a further part Exhaust gas mass flow 10b of the exhaust gas mass flow 10 emitted by the internal combustion engine is returned to the intake area of the internal combustion engine via a further exhaust gas recirculation line 8a.
  • the size of the recirculated further partial exhaust gas mass flow 10b can be set via a further exhaust gas recirculation valve 8b arranged in the further exhaust gas recirculation line 8a.
  • the maximum expansion stage of the exhaust gas aftertreatment system according to the invention shown has both an NH 3 supply device 7 and a first exhaust gas recirculation device 2 as well as a further exhaust gas recirculation device 8, then the presence of one of these devices is sufficient for an embodiment of the exhaust gas aftertreatment system according to the invention.
  • two or all three of these devices can also be used in combined operation and, as it were, become one device for targeted, defined bringing about a change in the NH 3 concentration and / or a change in the NOx concentration in the exhaust gas mass flow 10 upstream of the SCR particle filter 3.
  • At least one first concentration sensor 6 for measuring the NH 3 and / or NOx concentration in the exhaust gas mass flow 10 is arranged downstream, after the SCR particle filter 3, in the exhaust gas mass flow 10.
  • This first concentration sensor 6 emits a corresponding first concentration measurement signal 110, on the basis of which a correlating concentration comparison value (VgW) can be provided.
  • the embodiment of the exhaust gas aftertreatment system according to the invention shown here has, according to a further expansion stage, an additional concentration sensor 5 arranged in the exhaust gas mass flow 10 upstream in front of the SCR particle filter 3 for measuring the NH 3 and / or NOx concentration upstream of the SCR particle filter 3 on.
  • This is expediently arranged in the exhaust gas mass flow 10 downstream of the NH 3 feed device 7 and the junction of the first exhaust gas recirculation device 2, directly in front of the SCR particle filter 3, so that with this additional concentration sensor 5, both the NH 3 and the NOx concentration change can be detected in front of the SCR particle filter 3, that is to say the targeted change in the NH 3 and / or NOx concentration.
  • This additional concentration sensor 5 also emits a corresponding second concentration measurement signal 100 which can also be used to provide a concentration comparison value (VgW).
  • an actually measured value for the change in the NH 3 concentration can be used to carry out the method and / or the NOx concentration change in the exhaust gas mass flow 10 upstream of the SCR particle filter 3 can be used, for example, to provide a concentration comparison value (VgW), which increases the reliability of the diagnosis of the SCR particle filter.
  • VgW concentration comparison value
  • the concentration sensor 6 arranged downstream of the SCR particle filter 3 is available, for example the default value for the targeted, defined change in concentration is assumed as the actual value, it being assumed that the device for the targeted, defined change of the respective concentration value is functioning correctly .
  • the illustrated embodiment of the exhaust gas aftertreatment system according to the invention has an electronic computing and control unit 15 (ECU).
  • ECU electronic computing and control unit 15
  • This is set up for the targeted, defined changing of the NH 3 and / or NOx concentration in the exhaust gas mass flow 10 upstream of the SCR particle filter 3, by means of at least one of the above-mentioned devices for the targeted, defined changing of the NH 3 and / or NOx concentration and for detecting a first concentration measurement signal (110) output by the at least one concentration sensor 6 and, in a further expansion stage, a second concentration measurement signal.
  • the electronic computing and control unit 15 is electrically connected via signal lines 2c, 5c, 6c, 7c and 8c to the system components first exhaust gas recirculation valve 2b, additional concentration sensor 5, first concentration sensor 6, metering device 7b and further exhaust gas recirculation valve 8b in order to send control signals to the corresponding system components give or receive signals, in particular measurement signals, from the corresponding system components.
  • the electronic computing and control unit 15 is also set up to use the method according to the invention for operating a Execute exhaust gas aftertreatment system of an internal combustion engine according to one of the embodiments according to the invention on the basis of a first concentration measurement signal of the first concentration sensor 6 or on the basis of the two concentration measurement signals of the first and the additional concentration sensor 6, 5.
  • the sequence of the method, corresponding calculation algorithms, and the required default values for controlling the exhaust gas aftertreatment system and the internal combustion engine are stored in the form of executable program code in the electronic control unit 15 or in associated electronic storage units.
  • An embodiment of the exhaust gas aftertreatment system is characterized in that the electronic computing and control unit 15 is an integral part of a central control unit (CPU) 16 of the internal combustion engine, the method to be carried out being part of an on-board diagnostic system for monitoring the exhaust-relevant functional units of the internal combustion engine is in normal operation.
  • CPU central control unit
  • FIG Figure 2 An embodiment of the method according to the invention for operating an exhaust gas aftertreatment system of an internal combustion engine in one of the embodiments described above is illustrated in FIG Figure 2 The simplified block sequence program shown in the essential procedural steps.
  • the internal combustion engine is set to a diagnostic operating mode, with certain relevant diagnostic operating parameters (D-BP) of the internal combustion engine being in accordance with diagnostic default values (D-BP_set) verified, adjusted or adjusted.
  • D-BP diagnostic operating parameters
  • the corresponding diagnostic default values are for this purpose in an electronic memory of the electronic computing and control unit (ECU), which is shown in Figure 2 is marked with "E_Sp1" and can be easily read out and used to carry out this process step.
  • ECU electronic computing and control unit
  • D-BP D-BP_set
  • the targeted, defined induction of a change in the NH 3 concentration and / or a change in the NOx concentration in the exhaust gas mass flow 10 upstream of the SCR particle filter 3 takes place, depending on the design of the exhaust gas aftertreatment system by appropriate individual or combined control of one or more of the devices: NH 3 feed device 7, first exhaust gas recirculation device 2 and further exhaust gas recirculation device 8; as in Figure 2 shown with dashed lines.
  • a change in the NH 3 concentration or a change in the NOx concentration or a combined or superimposed change in the NOx / NH 3 concentration can be brought about by means of a corresponding control of the devices mentioned for the targeted, defined induction of the NH 3 and / or NOx concentration change, by the electronic computing and control unit (ECU) 15.
  • ECU electronic computing and control unit
  • the defined change in NOx concentration upstream of the SCR particle filter 3 can consist of an increase or a reduction in the NOx concentration, which is achieved, for example, by a defined reduction or increase in an exhaust gas recirculation rate, with an additional support here further operating parameters of the internal combustion engine can be influenced in the sense of an increase in the NOx concentration in the exhaust gas.
  • the exhaust gas recirculation rate can be determined by means of the first exhaust gas recirculation device 2 or the further exhaust gas recirculation device 8 or the two exhaust gas recirculation devices 2, 8 in combination.
  • the defined change in the NH 3 concentration upstream of the SCR particle filter 3 can consist of a defined increase or reduction in the NH 3 concentration, which is achieved by a defined increase or reduction in the amount of NH 3 solution 7d added by means of the NH 3 feed device 7 is set. This takes place in particular by appropriate activation of the metering device 7b by means of the electronic computing and control unit (ECU) 15.
  • ECU electronic computing and control unit
  • the change in the NH 3 and / or NO x concentration upstream, in front of the SCR particle filter is also measured in the same time window (TW) as part of the aforementioned method step.
  • TW time window
  • an additional concentration sensor 5 is used to arrange the exhaust gas mass flow 10 upstream in front of the SCR particle filter 3 is, a second concentration measurement signal 120 correlating to the NH 3 and / or NO x concentration change in the exhaust gas mass flow 10 upstream of the SCR particle filter 3 is provided and fed to the electronic computing and control unit ECU via a signal line 5c.
  • a correlating concentration comparison value is provided at least on the basis of the first concentration measurement signal (110).
  • a concentration comparison value for example, in different versions of the method, a respective maximum value or minimum value of the change in concentration reached within the defined time window (TW) and / or a concentration change gradient determined within the defined time window (TW) can be used.
  • the concentration comparison value (VgW) can be applied to the respective NH determined within the defined time window 3 - and / or NOx concentration changes after and before the SCR particle filter 3 are based.
  • the values of the NH 3 and / or NOx concentration changes determined within the defined time window at a certain point in time and / or the gradients of these concentration changes, in each case before and after the SCR particle filter 3, can be combined compared or put in relation to each other. This enables a particularly reliable concentration comparison value (VgW) to be provided and increases the diagnostic reliability of the method, since incorrect diagnoses due to possibly defective devices for changing the NH 3 and / or NOx concentration can be ruled out.
  • the change in NH 3 and / or NOx concentration measured within the specified time window TW after the SCR particle filter (3) is evaluated on the basis of the respective concentration comparison value (VgW) and specified limit values (GW).
  • VgW concentration comparison value
  • GW specified limit values
  • a respective maximum or minimum value of the change in concentration and / or a determined gradient of the change in concentration or also comparison or ratio values based on the respective before and after the SCR particle filter can be used as the concentration comparison value, depending on the execution of the method, as already mentioned above 3 measured values or gradients of the change in concentration can be used. This enables a wide range of variance in the design of the method according to the invention and the adaptation to the needs of the respective application.
  • correspondingly adapted limit values must then be specified. These can, for example, be determined beforehand empirically or by means of model calculation and are, for example, stored in an electronic memory area of the electronic computing and control unit and called up from there to evaluate the change in concentration. Such an electronic storage area is in Figure 2 , marked with E_Sp2 and contains the corresponding limit values, which are shown as "(NO x / NH 3 ) GW".
  • the method according to the invention can be repeated in certain cycles during operation, these cycles being based on a certain operating time, a certain operating performance or on requirement values determined during operation.
  • a further embodiment of the method is characterized in that in the context of the change in NH 3 and / or NOx concentration, there is initially an increase in concentration and an immediately subsequent reduction in concentration. In this case, after the concentration increase for a specific first period of time, the concentration is reduced to a value selected in this way and for a second period selected in this way, so that an average value of the NH 3 and / or NOx resulting over the duration of the increase in concentration and the reduction in concentration takes place. Concentration downstream of the SCR particle filter, which corresponds to the value of the NH 3 and / or NOx concentration prevailing before the concentration increase. In this way it is ensured that over the duration of the procedure, on average over time, there is no increase in pollutant emissions caused by the procedure.
  • a combined concentration sensor 6 is used to measure the change in NH 3 and / or NOx concentration in the exhaust gas mass flow 10, which measures the change in NH 3 and / or NOx in a combined concentration measurement signal 110 summarizes.
  • This can apply both to the first concentration sensor 6, downstream of the SCR particle filter 3, and to the second concentration sensor 5, upstream of the SCR particle filter 3.
  • This advantageously makes it possible to specify both a change in NH 3 concentration and a change in NOx concentration as well as a combined change in NH 3 / NO x concentration for carrying out the method and thus also opens up a greater scope for the extent of the predetermined change in concentration.
  • the respective fixed time window (TW) for measuring the change in NH 3 and / or NO x concentration in the exhaust gas mass flow 10 after and / or in front of the SCR particle filter 3 has a duration of less than or equal to 5 seconds, in particular less than or equal to 3 seconds.
  • the length of this time window ensures that only a rapid change in the NH 3 and / or NO x concentration after the SCR particle filter 3, as occurs only when the SCR particle filter 3 is defective, when determining the concentration comparison value and so on the diagnosis of the SCR particulate filter shows the effect.
  • Figure 3 shows an example of the curves of the NO x / NH 3 concentration over time, which were recorded with the aid of combined NO x / NH 3 concentration sensors upstream and downstream of the SCR particulate filter.
  • the curve 100 shows the NO x / NH 3 concentration upstream of the SCR particulate filter, starting from an in the NO x / NH 3 concentration regulated at approx. 40 ppm at time T1, a defined change in concentration by approx. 100 ppm to 140 ppm is brought about.
  • the curve 110 shows the NO x / NH 3 concentration recorded downstream of the SCR particle filter in the case of a defective SCR particle filter. An increased value of the NO x / NH 3 concentration at approx.
  • the NO x / NH 3 concentration begins to rise with a gradient G1 within time window TW and rises to a maximum concentration KM1 at time T2, at the end of time window TW.
  • the profile curve 120 shows the NO x / NH 3 concentration recorded downstream of the SCR particle filter in the case of an intact SCR particle filter.
  • the NO x / NH 3 concentration also begins to rise within the time window TW, but with a significantly smaller gradient G2 compared to the curve 110. Accordingly, only a significantly smaller maximum concentration KM2 is reached up to time T2, at the end of time window TW.
  • the maximum concentration MK1, MK2 reached up to a certain point in time within the time window TW or at the end of the time window TW or the respective gradient G1, G2 of the NO x - / NH 3 concentration increase within the time window TW can be used. Furthermore, it is possible to consider the concentration values determined downstream of the SCR particle filter and the concentration values specified or determined upstream in combination and to use them therefrom to determine a comparison value.
  • the NO x / NH 3 concentration values upstream of the SCR particle filter can be based on the default values, determined with the aid of model considerations or measured by means of a concentration sensor (if available).
  • the gradient of the increase in concentration downstream of the SCR particle filter determined within the time window TW can be divided by the jump value of the change in concentration upstream of the SCR particle filter.
  • the result is used as the concentration comparison value VgW.
  • the gradient of the increase in concentration downstream of the SCR particle filter is 11.3 ppm / s and the jump value for the change in concentration upstream of the SCR particle filter is 480 ppm (paying attention to the sign)
  • Another embodiment of the method is characterized in that the change in NH 3 and / or NO x concentration has an increase in concentration and an immediately following reduction in concentration, and the values and / or the gradients of the increase in concentration and the reduction in concentration in each case after and before the SCR particle filter 3 can be used in combination with one another to evaluate the measured change in NH 3 and / or NO x concentration after the SCR particle filter 3.
  • a ratio of the gradient of the concentration increase downstream and the grade value of the concentration increase upstream of the SCR particle filter as well as the gradient of the subsequent concentration drop downstream and the associated grade value of the concentration reduction upstream of the SCR particle filter can be formed and their sum can be calculated.
  • the resulting course of the NH 3 - / NO x concentration downstream of the SCR particle filter shows an increase following time T1 with the gradient + G1a, within the time window TW1 immediately following the change in concentration + KSp1, up to time T2 and a subsequent drop in the NH 3 - / NO x concentration with a gradient -G1b within the time window TW2 immediately following the change in concentration -KSp2, which lasts up to time T3.
  • the diagnostic mode is ended and the NH 3 - and / or NOx concentration is again set or regulated as a function of the current operating point of the internal combustion engine.
  • the internal combustion engine can continue to operate in the normal operating mode after the method has been carried out, i.e. after the functionality of the SCR particle filter 3 has been diagnosed , this is shown in the process step marked "BP_Norm".

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zum Betreiben einer Abgasnachbehandlungsanlage einer Brennkraftmaschine, insbesondere eines Dieselmotors, die einen in einer Abgasleitung angeordneten kombinierten SCR-Partikelfilter und eine Einrichtung zum gezielten, definierten Verändern der NH3- und/oder NOx-Konzentration im Abgasmassenstrom stromaufwärts vor dem SCR-Partikelfilter aufweist.The present invention relates to a method for operating an exhaust gas aftertreatment system of an internal combustion engine, in particular a diesel engine, which has a combined SCR particle filter arranged in an exhaust line and a device for targeted, defined changing of the NH 3 and / or NOx concentration in the exhaust gas mass flow upstream Has SCR particle filter.

Insbesondere Fahrzeuge mit Diesel-Brennkraftmaschinen (Dieselmotor), zunehmend jedoch auch Fahrzeuge mit Otto-Brennkraftmaschinen (Benzinmotor), weisen heutzutage einen Partikelfilter (DPF, PF) zur Vermeidung von Partikeln (Ruß, Feinstaub) in den Abgasemissionen sowie einen sogenannten SCR-Katalysator (Katalysator mit selektiver Reduktion) zur Verringerung des NOx-Anteiles in den Abgasemissionen auf. Dabei findet immer mehr ein kombinierter Filter-Katalysator, im Weiteren hier als SCR-Partikelfilter oder mit dem Kürzel SC-PF bezeichnet, Verwendung, bei dem es sich um einen Partikelfilter mit SCR-Funktion handelt, d.h. einen Partikelfilter, der eine zusätzliche Beschichtung aus einem NOx/NH3-Konvertierungsmaterial aufweist. Mit anderen Worten handelt es sich daher hierbei um einen Partikelfilter mit integrierter SCR-Funktion.In particular, vehicles with diesel internal combustion engines (diesel engine), but increasingly also vehicles with Otto internal combustion engines (gasoline engine), nowadays have a particle filter (DPF, PF) to avoid particles (soot, fine dust) in the exhaust emissions as well as a so-called SCR catalytic converter ( Catalytic converter with selective reduction) to reduce the NOx content in the exhaust emissions. A combined filter / catalytic converter, hereinafter referred to as SCR particle filter or with the abbreviation SC-PF, is increasingly being used, which is a particle filter with SCR function, ie a particle filter that has an additional coating a NO x / NH 3 conversion material. In other words, this is a particle filter with an integrated SCR function.

Bei einem SCR-Katalysator entsteht durch Zugabe einer wässrigen Harnstofflösung zum Abgas NH3 (Ammoniak), das mit dem NOx im Abgas zu elementarem Stickstoff (N2) und Wasser reagiert.With an SCR catalytic converter, adding an aqueous urea solution to the exhaust gas produces NH 3 (ammonia), which reacts with the NOx in the exhaust gas to form elemental nitrogen (N 2 ) and water.

Der Gesetzgeber senkt die Emissionsgrenzwerte der Abgase von Fahrzeugen mit Brennkraftmaschinen (Verbrennungsmotoren) immer weiter ab und erlässt Vorschriften zur Überwachung deren vorschriftsmäßiger Funktion. Dies betrifft insbesondere auch die sogenannte OBD-Diagnose (On-Board-Diagnose, laufende, automatische Selbstdiagnose im bestimmungsgemäßen Betrieb des Fahrzeugs) bei derartigen Fahrzeugen. So müssen heutzutage auch die SCR-Partikelfilter einer solchen, häufigen und genauen OBD-Diagnose unterzogen werden.The legislature is always lowering the emission limit values of the exhaust gases from vehicles with internal combustion engines (internal combustion engines) continues and issues regulations to monitor their proper functioning. This also applies in particular to the so-called OBD diagnosis (on-board diagnosis, ongoing, automatic self-diagnosis during normal operation of the vehicle) in such vehicles. Nowadays, SCR particulate filters must also be subjected to such frequent and precise OBD diagnostics.

Es ist bekannt, eine derartige Diagnose in Bezug auf die Partikel-Emissionen mit einem sogenannten PM-Sensor (Particulate Matter Sensor, Partikelsensor) durchzuführen. Wenn dabei die mit dem Partikelsensor gemessene PM-Emission nach dem Patikelfilter höher ist als ein Schwellenwert, wird der Partikelfilter als fehlerhaft diagnostiziert. Für eine derartige Diagnose wird jedoch ein relativ langer Zeitraum benötigt. Ferner ist die Diagnose auf die Partikel-Emission beschränkt und die Genauigkeit der Diagnose ist zudem nicht gut genug, um den Anforderungen von zukünftigen noch niedrigeren Emissionsschwellenwerten gerecht zu werden.It is known to carry out such a diagnosis with respect to the particle emissions with a so-called PM sensor (Particulate Matter Sensor). If the PM emission measured by the particle sensor after the particle filter is higher than a threshold value, the particle filter is diagnosed as faulty. However, a relatively long period of time is required for such a diagnosis. Furthermore, the diagnosis is limited to the particle emission and the accuracy of the diagnosis is also not good enough to meet the requirements of even lower emission threshold values in the future.

Aus der US 2013/0202506 A1 ist ein Verfahren zum Betreiben einer Abgasnachbehandlungsanlage bekannt, bei dem ein SCR-Katalysator diagnostiziert wird. Hierbei geht es um eine gezielte definierte Herbeiführung einer NH3-Konzentrationsänderung und/oder einer NOx-Konzentrationsänderung im Abgasmassenstrom stromauf des SCR-Katalysators und um die Messung der NH3- und/oder NOx-Konzentrationsänderung im Abgasmassenstrom nach dem SCR-Katalysator mit Hilfe eines Konzentrationssensors. Diese Veröffentlichung betrifft jedoch keinen SCR-Parktikelfilter.From the US 2013/0202506 A1 a method for operating an exhaust gas aftertreatment system is known in which an SCR catalytic converter is diagnosed. This involves a targeted, defined induction of a change in the NH 3 concentration and / or a change in the NO x concentration in the exhaust gas mass flow upstream of the SCR catalytic converter and the measurement of the NH 3 and / or NO x concentration change in the exhaust gas mass flow after the SCR catalytic converter with the help of a concentration sensor. However, this publication does not relate to an SCR particulate filter.

Ähnliche Diagnoseverfahren bei SCR-Katalysatoren gehen aus der WO 2013/147653 A1 und der US 2016/0069243 A1 hervor.Similar diagnostic procedures for SCR catalytic converters are based on the WO 2013/147653 A1 and the US 2016/0069243 A1 emerged.

Auch aus der WO 2007/037730 A1 ist ein Diagnoseverfahren für eine Abgasnachbehandlungsanlage bekannt, die einen SCR-Katalysator aufweist. Die DE 10 2013 200 623 A1 zeigt ein Diagnoseverfahren für Durchbrüche in Substraten von Partikelfiltern mit SCR-katalytischer Beschichtung auf Basis von sensorisch erfassten NOX-Konzentrationsänderungen stromab des SCR-Partikelfilters.Also from the WO 2007/037730 A1 a diagnostic method for an exhaust gas aftertreatment system is known which has an SCR catalytic converter. the DE 10 2013 200 623 A1 shows a diagnostic method for breakthroughs in substrates of particle filters with an SCR-catalytic coating on the basis of sensor-detected changes in NOX concentration downstream of the SCR particle filter.

Der vorliegenden Erfindung liegt deshalb die Aufgabe zugrunde, ein Verfahren und eine entsprechende Abgasnachbehandlungsanlage einer Brennkraftmaschine zu schaffen, die eine besonders rasche und genaue Überwachung eines SCR-Partikelfilters in Bezug auf seine NOx/NH3-Konvertierung und die Partikelfilterung im Betrieb der Brennkraftmaschine ermöglichen.The present invention is therefore based on the object of creating a method and a corresponding exhaust gas aftertreatment system of an internal combustion engine that enable particularly rapid and precise monitoring of an SCR particle filter with regard to its NO x / NH 3 conversion and the particle filtering during operation of the internal combustion engine .

Diese Aufgabe wird erfindungsgemäß mit einem Verfahren und einer Abgasnachbehandlungsanlage gemäß den Ansprüchen 1 und 14 gelöst. Erfindungsgemäß wird ein Verfahren zum Betreiben einer Abgasnachbehandlungsanlage einer Brennkraftmaschine vorgestellt, wobei die Abgasnachbehandlungsanlage eine Abgasleitung zur Führung eines Abgasmassenstroms und einen in der Abgasleitung angeordneten SCR-Partikelfilter aufweist und wobei eine Einrichtung zum gezielten, definierten Verändern der NH3- und/oder NOx-Konzentration im Abgasmassenstrom stromaufwärts vor dem SCR-Partikelfilter, und zumindest ein erster Konzentrationssensor, im Abgasmassenstrom stromabwärts nach dem SCR-Partikelfilter, angeordnet ist.This object is achieved according to the invention with a method and an exhaust gas aftertreatment system according to claims 1 and 14. According to the invention, a method for operating an exhaust gas aftertreatment system of an internal combustion engine is presented, the exhaust gas aftertreatment system having an exhaust line for guiding an exhaust gas mass flow and an SCR particle filter arranged in the exhaust line and with a device for targeted, defined changing of the NH 3 and / or NOx concentration is arranged in the exhaust gas mass flow upstream in front of the SCR particle filter, and at least one first concentration sensor, in the exhaust gas mass flow downstream after the SCR particle filter.

Das erfindungsgemäße Verfahren dient dabei zur Erkennung von Durchbrüchen im Filtersubstrat des SCR-Partikelfilters und weist die im Folgenden dargestellten Schritte auf:

  • Zunächst wird die Brennkraftmaschine auf eine Diagnosebetriebsart eingestellt, wobei bestimmte maßgebliche Diagnose-Betriebsparameter der Brennkraftmaschine auf Übereinstimmung mit Diagnose-Vorgabewerten verifiziert, eingestellt oder eingeregelt werden.
  • Bei Vorliegen der Diagnosebetriebsart erfolgt eine gezielte, definierte Herbeiführung einer NH3-Konzentrationsänderung und/oder einer NOx-Konzentrationsänderung im Abgasmassenstrom stromaufwärts des SCR-Partikelfilters, in Bezug auf die in der Diagnosebetriebsart vorliegenden Werte der NH3-Konzentration und oder der NOx-Konzentration.
  • Anschließend erfolgt das Messen der NH3- und/oder NOx-Konzentrationsänderung im Abgasmassenstrom nach dem SCR-Partikelfilter innerhalb eines, unmittelbar auf die vorgenannte NH3- und/oder NOx-Konzentrationsänderung vor dem SCR-Partikelfilter folgenden, festgelegten Zeitfensters, mittels des zumindest einen ersten Konzentrationssensors, der ein entsprechendes erstes Konzentrationsmesssignal abgibt, und das
  • Bereitstellen eines korrelierenden Konzentrations-Vergleichswertes zumindest auf Basis des ersten Konzentrationsmesssignals.
  • Anhand des jeweiligen Konzentrations-Vergleichswertes und vorgegebener Grenzwerte erfolgt eine Bewertung der innerhalb des festgelegten Zeitfensters gemessenen NH3- und/oder NOx-Konzentrationsänderung nach dem SCR-Partikelfilter.
  • Schließlich erfolgt ein Diagnostizieren des SCR-Partikelfilters als schadhaft aufgrund von Durchbrüchen im Filtersubstrat, wenn die Bewertung ergibt, dass der Konzentrations-Vergleichswert zumindest einen vorgegebenen Grenzwert überschritten hat.
The method according to the invention serves to identify breakthroughs in the filter substrate of the SCR particle filter and has the following steps:
  • First of all, the internal combustion engine is set to a diagnostic operating mode, with certain relevant diagnostic operating parameters of the internal combustion engine being verified, set or regulated for compliance with predetermined diagnostic values.
  • When the diagnostic mode is present, a targeted, defined induction of a change in the NH 3 concentration and / or a change in the NOx concentration in the exhaust gas mass flow upstream of the SCR particle filter takes place in relation to the values of the NH 3 concentration and / or the NOx concentration in the diagnostic mode .
  • The change in NH 3 and / or NOx concentration in the exhaust gas mass flow downstream of the SCR particle filter is then measured within a specified time window immediately following the aforementioned change in NH 3 and / or NOx concentration upstream of the SCR particle filter, by means of the at least a first concentration sensor which emits a corresponding first concentration measurement signal, and that
  • Providing a correlating concentration comparison value at least on the basis of the first concentration measurement signal.
  • On the basis of the respective concentration comparison value and specified limit values, an assessment of the change in NH 3 and / or NOx concentration measured within the specified time window takes place after the SCR particle filter.
  • Finally, the SCR particle filter is diagnosed as defective due to breakthroughs in the filter substrate if the assessment shows that the comparison value for the concentration has exceeded at least a predetermined limit value.

Die Erfindung betrifft ferner eine Abgasnachbehandlungsanlage einer Brennkraftmaschine, die einen in einer Abgasleitung angeordneten SCR-Partikelfilter und zumindest eine Einrichtung zum gezielten, definierten Verändern der NH3- und/oder NOx-Konzentration im Abgasmassenstrom stromaufwärts vor dem SCR-Partikelfilter, und zumindest einen Konzentrationssensor, zum Messen der NH3- und/oder NOx-Konzentration im Abgasmassenstrom stromabwärts nach dem SCR-Partikelfilter aufweist.The invention also relates to an exhaust gas aftertreatment system of an internal combustion engine, which has an SCR particle filter arranged in an exhaust line and at least one device for targeted, defined changing of the NH 3 and / or NOx concentration in the exhaust gas mass flow upstream in front of the SCR particle filter, and at least one concentration sensor , for measuring the NH 3 and / or NOx concentration in the exhaust gas mass flow downstream after the SCR particle filter.

Diese Abgasnachbehandlungsanlage ist dadurch gekennzeichnet, dass sie eine elektronische Rechen- und Steuereinheit aufweist, die eingerichtet ist zum gezielten, definierten Verändern der NH3- und/oder NOx-Konzentration im Abgasmassenstrom stromaufwärts des SCR-Partikelfilter mittels der Einrichtung zum gezielten, definierten Verändern der NH3- und/oder NOx-Konzentration und zur Erfassung eines von dem zumindest einen Konzentrationssensor ausgegebenen ersten Konzentrationsmesssignals. Dabei ist die elektronische Rechen- und Steuereinheit weiterhin dazu eingerichtet, das Verfahren zum Betreiben einer Abgasnachbehandlungsanlage einer Brennkraftmaschine gemäß einer der vorausgehend und nachfolgend beschriebenen Ausführungen des erfindungsgemäßen Verfahrens zu realisieren.This exhaust gas aftertreatment system is characterized in that it has an electronic computing and control unit which is set up for targeted, defined changing of the NH 3 and / or NOx concentration in the exhaust gas mass flow upstream of the SCR particle filter by means of the device for targeted, defined changing of the NH 3 and / or NOx concentration and for detecting a first concentration measurement signal output by the at least one concentration sensor. The electronic computing and control unit is also set up to implement the method for operating an exhaust gas aftertreatment system of an internal combustion engine in accordance with one of the embodiments of the method according to the invention described above and below.

Es lässt sich somit zusammenfassen, dass die Grundidee der Erfindung darin besteht, einen NOx- und/oder NH3-Sensor nach einem SCR-Partikelfilter zu verwenden, um in Verbindung mit einer NH3-Konzentrationsänderung und/oder einer NOx-Konzentrationsänderung im Abgasmassenstrom stromaufwärts des SCR-Partikelfilters den SCR-Partikelfilter einer Funktionsüberprüfung, insbesondere einer Performancediagnose, zu unterziehen. Als SCR-Partikelfilter findet beispielsweise ein Wandstromfilter mit geeigneter SCR-Beschichtung Verwendung.It can thus be summarized that the basic idea of the invention is to use a NOx and / or NH 3 sensor downstream of an SCR particle filter to be used in conjunction with a change in NH 3 concentration and / or a change in NOx concentration in the exhaust gas mass flow upstream of the SCR particle filter to subject the SCR particle filter to a functional check, in particular a performance diagnosis. For example, a wall-flow filter with a suitable SCR coating is used as the SCR particle filter.

Funktionsbeeinflussende Beschädigungen von SCR-Partikelfiltern bestehen in der Regel aus Durchbrüchen bzw. Löchern im Substrat des Filters, deren Anzahl oder Querschnittsfläche den Grad der Beschädigung bestimmen und durch die ein entsprechender Teil des Abgases ungefiltert und unbehandelt durchtreten kann. Wenn der Gesamtquerschnitt der Durchbrüche oder offenen Löcher über einem Schwellenwert liegt, überschreitet die entsprechende Partikelemission einen Diagnoseschwellenwert (OBD-Schwellenwert).Function-influencing damage to SCR particle filters usually consists of breakthroughs or holes in the substrate of the filter, the number or cross-sectional area of which determine the degree of damage and through which a corresponding part of the exhaust gas can pass unfiltered and untreated. If the total cross-section of the breakthroughs or open holes is above a Threshold value, the corresponding particulate emissions exceed a diagnostic threshold value (OBD threshold value).

Um diesen Zustand zu erfassen, wird vorzugsweise in einem stetigen bzw. stationären Betriebszustand, beispielsweise im Leerlauf, bei einer quasikonstanten SCR-Partikelfilter-Temperatur, bei dem das NOx-Konzentrationssignal und/oder das NH3-Konzentrationssignal nach dem SCR-Partikelfilter gering variiert, beispielsweise unter 1 ppm/sec, die Zugabemenge der Harnstofflösung und/oder die NOx-Rohemission vorzugsweise in einem Schritt erhöht, beispielsweise um 200 ppm NH3/NOx ausgehend von der zuvor gegebenen NH3-Zugabemenge bzw. NOx-Rohemission, und es wird der NOx- und/oder NH3-Signalverlauf beobachtet (Messung des entsprechenden Konzentrationsanstieges) . Liegt nunmehr der SCR-Partikelfilter innerhalb der Emissionsgrenze, ist davon auszugehen, dass der gesamte Querschnitt von Durchbrüchen im Filtersubstrat so gering ist, dass der zugegebene Harnstoff bzw. die erhöhte NOx-Konzenteration zunächst zum größten Teil im SCR-Partikelfilter gespeichert wird. Daher besitzt das nach dem Filter gemessene NOx- oder NH3-Signal während einer kurzen Zeitdauer von beispielsweise 3 sec in Abhängigkeit vom Luftmassenstrom nur einen geringen Anstieg. Danach ist das entsprechende Signal stabil und hat einen sehr viel geringeren Gradienten (weniger als 1 ppm/sec) als ein zu stark geschädigter SCR-Partikelfilter.In order to detect this state, the system is preferably in a steady or stationary operating state, for example idling, at a quasi-constant SCR particle filter temperature at which the NOx concentration signal and / or the NH 3 concentration signal after the SCR particle filter varies slightly , for example below 1 ppm / sec, the addition amount of the urea solution and / or the NOx raw emission preferably increased in one step, for example by 200 ppm NH 3 / NO x based on the previously given NH 3 addition amount or NOx raw emission, and the course of the NOx and / or NH 3 signal is observed (measurement of the corresponding increase in concentration). If the SCR particle filter is now within the emission limit, it can be assumed that the entire cross section of openings in the filter substrate is so small that the added urea or the increased NOx concentration is initially stored for the most part in the SCR particle filter. Therefore, the NOx or NH 3 signal measured after the filter has only a slight increase over a short period of time, for example 3 seconds, depending on the air mass flow. After that, the corresponding signal is stable and has a much lower gradient (less than 1 ppm / sec) than an SCR particle filter that is too badly damaged.

Wird jedoch der Schwellenwert überschritten, ist der gesamte Querschnitt von Durchbrüchen im Filtersubstrat so groß, dass der zugegebene Harnstoffbzw. die erhöhte NOx-Konzentration zu einem großen Anteil und nahezu ohne Verzögerung unbehandelt durch den SCR-Partikelfilter strömt, so dass die entsprechenden Sensoren nach dem SCR-Partikelfilter innerhalb des festgelegten, unmittelbar folgenden Zeitfensters einen unmittelbaren, erhöten NH3-/NOx-Konzentrationsanstieg registrieren, wonach das entsprechende Signal wieder einen stabileren Zustand mit niedrigerem Gradienten einnimmt.However, if the threshold value is exceeded, the entire cross section of openings in the filter substrate is so large that the added urea or. the increased NOx concentration flows through the SCR particle filter untreated to a large extent and almost without delay, so that the corresponding sensors after the SCR particle filter an immediate, increased NH 3 - / NO x concentration increase within the specified, immediately following time window register what the corresponding signal again assumes a more stable state with a lower gradient.

Es hat sich erwiesen, dass das Verhältnis zwischen der NOx-und/oder NH3-Konzentrationsänderung nach dem SCR-Partikelfilter und der NOx- und/oder NH3-Konzentrationsänderung vor dem SCR-Partikelfilter direkt proportional zum Gesamtquerschnitt der Durchbrüche im Filtersubstrat des SCR-Partikelfilters ist. Wenn dieses Verhältnis über einem bestimmten Schwellenwert oder Grenzwert liegt, wird der Filter als schadhaft in Bezug auf die Partikelumwandlung eingestuft.It has been shown that the ratio between the change in NOx and / or NH 3 concentration after the SCR particle filter and the change in NOx and / or NH 3 concentration before the SCR particle filter is directly proportional to the total cross-section of the openings in the filter substrate of the SCR -Particle filter is. If this ratio is above a certain threshold or limit, the filter is classified as defective in terms of particulate conversion.

Eine entsprechende NOx-Konzentrationsänderung vor dem SCR-Partikelfilter kann beispielsweise durch Reduktion der Abgasrückführrate (EGR-Rate), insbesondere bei einer Hochdruckabgasrückführung, aber auch bei einer Niederdruckabgasrückführung, durchgeführt werden. Auch hier zeigt sich, dass die NOx-Konzentrationsänderung nach dem SCR-Partikelfilter in Relation zur NOx-Konzentrationsänderung vor dem SCR-Partikelfilter direkt proportional zum Gesamtquerschnitt der Durchbrüche im Filtersubstrat des SCR-Partikelfilters ist. Im Rahmen des Verfahrens wird auf Basis des, mittels des zumindest einen Konzentrationssensors bereitgestellten, Konzentrationsmesssignals ein Konzentrations-Vergleichswert ermittelt. In einfachster Ausprägung kann dieser Konzentrations-Vergleichswert zum Beispiel den Maximalausschlag des Konzentrationsmessignals innerhalb des festgelegten Zeitfensters darstellen. Der Konzentrations-Vergleichswert kann jedoch auch eine Verhältniszahl zwischen der NH3- und/oder NOx-Konzentrationsänderung vor und nach dem SCR-Partikelfilter sein. Ebenso kann der Konzentrations-Vergleichswert auf Basis mehrerer aufeinanderfolgender Konzentrationsänderungen ermittelt werden und es können auch die jeweiligen Gradienten der Konzentrationsänderungen herangezogen werden, wie im Weiteren noch erläutert werden soll. Dabei kann unter der Konzentrationsänderung sowohl eine Konzentrationserhöhung als auch eine Konzentrationsreduzierung oder beides aufeinanderfolgend verstanden werden.A corresponding change in the NOx concentration upstream of the SCR particle filter can be carried out, for example, by reducing the exhaust gas recirculation rate (EGR rate), in particular with high pressure exhaust gas recirculation, but also with low pressure exhaust gas recirculation. Here, too, it can be seen that the change in NOx concentration after the SCR particle filter in relation to the change in NOx concentration before the SCR particle filter is directly proportional to the total cross-section of the openings in the filter substrate of the SCR particle filter. In the context of the method, a concentration comparison value is determined on the basis of the concentration measurement signal provided by means of the at least one concentration sensor. In its simplest form, this concentration comparison value can, for example, represent the maximum deflection of the concentration measurement signal within the defined time window. The concentration comparison value can, however, also be a ratio between the NH 3 and / or NOx concentration change before and after the SCR particle filter. Likewise, the concentration comparison value can be determined on the basis of several successive changes in concentration and the respective gradients of the changes in concentration can also be used, as will be explained below. Here can the change in concentration is understood to mean both an increase in concentration and a reduction in concentration or both in succession.

Bei dem benannten Konzentrationssensor handelt es sich, je nachdem ob zur Durchführung des Verfahrens die NH3- oder NOx -Konzentration geändert wird, um einem NH3-Sensor oder einen NOx-Sensor. Während ein NH3-Sensor lediglich zur Messung der NH3-Konzentration geeignet ist, kann mit dem erwähnten NOx-Sensor hingegen sowohl die NH3- als auch die NOx -Konzentration also folglich auch eine Kombination aus NOx und NH3 gemessen werden. Es handelt sich in diesem Fall also um einen kombinierten NH3-/NOx -Konzentrationssensor. Je nach der gewünschten Messung können daher die hierfür geeigneten Sensoren vorgesehen werden. The named concentration sensor is an NH 3 sensor or a NOx sensor, depending on whether the NH 3 or NOx concentration is changed to carry out the method. While an NH 3 sensor is only suitable for measuring the NH 3 concentration, the aforementioned NOx sensor, on the other hand, can measure both the NH 3 and the NOx concentration, i.e. consequently also a combination of NOx and NH 3 . In this case, it is a combined NH 3 / NO x concentration sensor. Depending on the desired measurement, the sensors suitable for this can therefore be provided.

Die vorliegende Erfindung betrifft ferner eine Abgasnachbehandlungsanlage einer Brennkraftmaschine, insbesondere eines Dieselmotors, die einen in einer Abgasleitung angeordneten SCR-Partikelfilter und zumindest eine Einrichtung zum gezielten, definierten Verändern der NH3- und/oder NOx-Konzentration im Abgasmassenstrom stromaufwärts vor dem SCR-Partikelfilter, und zumindest einen ersten Konzentrationssensor, zum Messen der NH3und/oder NOx-Konzentration im Abgasmassenstrom stromabwärts nach dem SCR-Partikelfilter aufweist. Dabei zeichnet sich diese Abgasnachbehandlungsanlage dadurch aus, dass sie eine elektronische Rechen- und Steuereinheit aufweist, die eingerichtet ist zum gezielten, definierten Verändern der NH3- und/oder NOx-Konzentration im Abgasmassenstrom stromaufwärts des SCR-Partikelfilters mittels der Einrichtung zum gezielten, definierten Verändern der NH3- und/oder NOx-Konzentration und zur Erfassung eines von dem zumindest einen ersten Konzentrationssensor ausgegebenen ersten Konzentrationsmesssignals. Die elektronische Rechen- und Steuereinheit ist erfindungsgemäß weiterhin dazu eingerichtet, das Verfahren zum Betreiben einer Abgasnachbehandlungsanlage einer Brennkraftmaschine, wie in dem vorausgehend und den nachfolgend beschriebenen Ausführungen dargestellt, auszuführen.The present invention also relates to an exhaust gas aftertreatment system of an internal combustion engine, in particular a diesel engine, which has an SCR particle filter arranged in an exhaust line and at least one device for targeted, defined changing of the NH 3 and / or NO x concentration in the exhaust gas mass flow upstream before the SCR. Particle filter, and at least one first concentration sensor, for measuring the NH 3 and / or NOx concentration in the exhaust gas mass flow downstream after the SCR particle filter. This exhaust gas aftertreatment system is characterized by the fact that it has an electronic computing and control unit which is set up for targeted, defined changing of the NH 3 and / or NOx concentration in the exhaust gas mass flow upstream of the SCR particle filter by means of the device for targeted, defined Changing the NH 3 and / or NOx concentration and for detecting a first concentration measurement signal output by the at least one first concentration sensor. According to the invention, the electronic computing and control unit is also set up to use the method for operating a Exhaust aftertreatment system of an internal combustion engine, as shown in the preceding and the following explanations.

Die Erfindung sowie weitere vorteilhafte Ausführungsbeispiele und Weiterbildungen der Erfindung werden nachfolgend anhand der Figuren im Einzelnen erläutert. Es zeigen:

  • Figur 1 eine schematische Darstellung einer Ausführung einer erfindungsgemäßen Abgasnachbehandlungsanlage;
  • Figur 2 ein Blockdiagramm zur Darstellung des Verfahrensablaufs einer Ausführung des erfindungsgemäßen Verfahens;
  • Figur 3 eine qualitative Darstellung von Verlaufskurven der NOx/NH3-Konzentration vor und nach dem SCR-Partikelfilter bei intaktem und defektem SCR-Partikelfilter; und
  • Figur 4 eine qualitative Darstellung von Verlaufskurven der NOx/NH3-Konzentration vor und nach dem SCR-Partikelfilter bei aufeinanderfolgenden NOx/NH3-Konzentrationsänderungen.
The invention and further advantageous exemplary embodiments and developments of the invention are explained in detail below with reference to the figures. Show it:
  • Figure 1 a schematic representation of an embodiment of an exhaust gas aftertreatment system according to the invention;
  • Figure 2 a block diagram to illustrate the process sequence of an embodiment of the method according to the invention;
  • Figure 3 a qualitative representation of course curves of the NO x / NH 3 concentration before and after the SCR particle filter with an intact and defective SCR particle filter; and
  • Figure 4 a qualitative representation of course curves of the NO x / NH 3 concentration before and after the SCR particle filter with successive changes in the NO x / NH 3 concentration.

Funktions- und Benennungsgleiche Objekte sind in den Figuren durchgehend mit gleichen Bezugszeichen gekennzeichnet.Objects with the same function and name are identified throughout the figures with the same reference symbols.

Figur 1 zeigt schematisch in einer vereinfachten Darstellung eine Ausführung einer erfindungsgemäßen Abgasnachbehandlungsanlage einer Brennkraftmaschine, beispielsweise eines Dieselmotors. Der von der Brennkraftmaschine (hier nicht dargestellt) kommende Abgasmassenstrom 10 wird in Pfeilrichtung durch eine Abgasleitung 1 geführt und passiert dabei einen SCR-Partikelfilter 3 (SC-PF), der beispielsweise als Wandstromfilter mit SCR-Beschichtung ausgebildet und in der Abgasleitung 1 angeordnet ist. Figure 1 shows schematically in a simplified representation an embodiment of an exhaust gas aftertreatment system according to the invention of an internal combustion engine, for example a diesel engine. The exhaust gas mass flow 10 coming from the internal combustion engine (not shown here) is guided in the direction of the arrow through an exhaust pipe 1 and passes an SCR particle filter 3 (SC-PF), which is designed, for example, as a wall-flow filter with an SCR coating and is arranged in the exhaust pipe 1 .

Zum gezielten, definierten Herbeiführen einer NH3-Konzentrationsänderung im Abgasmassenstrom 10 stromaufwärts vor dem SCR-Partikelfilter 3 ist an der Abgasleitung 1 stromaufwärts vor dem SCR-Partikelfilter 3 eine NH3-Zuführeinrichtung 7, für die Zuführung einer NH3-Lösung 7d in die Abgasleitung 1, angeordnet. Die NH3-Zuführeinrichtung 7 weist in diesem Ausführungsbeispiel einen Vorratsbehälter 7a, zur Bevorratung einer geeigneten wässrigen NH3-Lösung 7d auf, die auch als Harnstofflösung bezeichnet wird. Über eine Zuführleitung steht der Vorratsbehälter 7a mit einer Dosiereinrichtung 7b, beispielsweise einem Einspritzventil, in Verbindung, das wiederum an der Abgasleitung 1 angeordnet und dazu eingerichtet ist, definierte Mengen der NH3-Lösung in den Abgasmassenstrom 10 abzugeben. Durch die zugeführte NH3-Lösung entsteht NH3, das den im Abgas enthaltenen NOx-Anteil in Stickstoff und Wasser umwandelt. Der SCR-Partikelfilter erfüllt daher seine Funktion als Dieselpartikelfilter und bewirkt gleichzeitig eine Reduzierung des NOx-Anteiles im Abgas.For the targeted, defined bringing about a change in the NH 3 concentration in the exhaust gas mass flow 10 upstream of the SCR particle filter 3, there is an NH 3 supply device 7 on the exhaust pipe 1 upstream of the SCR particle filter 3 for supplying an NH 3 solution 7d into the Exhaust pipe 1 arranged. In this exemplary embodiment, the NH 3 supply device 7 has a storage container 7a for storing a suitable aqueous NH 3 solution 7d, which is also referred to as urea solution. The storage container 7a is connected via a supply line to a metering device 7b, for example an injection valve, which in turn is arranged on the exhaust gas line 1 and is set up to dispense defined quantities of the NH 3 solution into the exhaust gas mass flow 10. The supplied NH 3 solution produces NH 3 , which converts the NOx contained in the exhaust gas into nitrogen and water. The SCR particulate filter therefore fulfills its function as a diesel particulate filter and at the same time reduces the NOx content in the exhaust gas.

Weiterhin ist zum gezielten, definierten Herbeiführen einer NOx-Konzentrationsänderung im Abgasmassenstrom 10 stromaufwärts vor dem SCR-Partikelfilter 3, eine von der Abgasleitung 1 stromaufwärts vor dem SCR-Partikelfilter 3 abzweigende Abgasrückführungseinrichtung 2, ein sogenanntes Hochdruckabgasrückführungssystem, angeordnet, über das ein erster Teil-Abgasmassenstrom 10a des von der Brennkraftmaschine abgegebenen Abgasmassestroms 10 über eine erste Abgasrückführleitung 2a in den Ansaugbereich der Brennkraftmaschine zurückgeführt wird. Die Größe des zurückgeführten ersten Teil-Abgasmassenstroms 10a kann dabei über ein in der ersten Abgasrückführleitung 2a angeordnetes erstes Abgasrückführventil 2b eingestellt werden. In zweckmäßiger Weise ist die Abzweigung dieser Abgasrückführungseinrichtung 2 an der Abgasleitung 1 stromaufwärts der NH3-Zuführeinrichtung 7 angeordnet, da die zugeführte NH3-Lösung 7d vollständig dem SCR-Partikelfilter 3 zur NOx-Reduktion zugeführt werden soll.Furthermore, an exhaust gas recirculation device 2, a so-called high-pressure exhaust gas recirculation system, which branches off from the exhaust pipe 1 upstream of the SCR particle filter 3 and branches off from the exhaust gas line 1 upstream of the SCR particle filter 3, is arranged for a targeted, defined change in the NOx concentration in the exhaust gas mass flow 10, via which a first part Exhaust gas mass flow 10a of the exhaust gas mass flow 10 emitted by the internal combustion engine is returned to the intake region of the internal combustion engine via a first exhaust gas recirculation line 2a. The size of the recirculated first partial exhaust gas mass flow 10a can be set via a first exhaust gas recirculation valve 2b arranged in the first exhaust gas recirculation line 2a. The junction of this exhaust gas recirculation device 2 is expediently arranged on the exhaust gas line 1 upstream of the NH 3 feed device 7, since the supplied NH 3 solution 7d is to be supplied completely to the SCR particle filter 3 for NOx reduction.

In einer weiteren Ausbaustufe der erfindungsgemäßen Abgasnachbehandlungsanlage, wie in Figur 1 dargestellt, ist zum gezielten, definierten Herbeiführen einer NOx-Konzentrationsänderung im Abgasmassenstrom 10 stromaufwärts vor dem SCR-Partikelfilter 3, eine von der Abgasleitung 1 stromabwärts nach dem SCR-Partikelfilter 3 abzweigende Abgasrückführungseinrichtung 8, ein sogenanntes Niederdruckabgasrückführungssystem, angeordnet, über das ein weiterer Teil-Abgasmassenstrom 10b des von der Brennkraftmaschine abgegebenen Abgasmassestroms 10 über eine weitere Abgasrückführleitung 8a in den Ansaugbereich der Brennkraftmaschine zurückgeführt wird. Die Größe des zurückgeführten weiteren Teil-Abgasmassenstroms 10b kann dabei über ein in der weiteren Abgasrückführleitung 8a angeordnetes, weiteres Abgasrückführventil 8b eingestellt werden.In a further expansion stage of the exhaust gas aftertreatment system according to the invention, as in Figure 1 shown, an exhaust gas recirculation device 8, a so-called low-pressure exhaust gas recirculation system, is arranged upstream of the SCR particle filter 3 upstream of the SCR particle filter 3 for the targeted, defined bringing about a change in the NOx concentration in the exhaust gas mass flow 10, via which a further part Exhaust gas mass flow 10b of the exhaust gas mass flow 10 emitted by the internal combustion engine is returned to the intake area of the internal combustion engine via a further exhaust gas recirculation line 8a. The size of the recirculated further partial exhaust gas mass flow 10b can be set via a further exhaust gas recirculation valve 8b arranged in the further exhaust gas recirculation line 8a.

Die Funktionsweise derartiger Abgasrückführungseinrichtungen zur Emissionsreduzierung, insbesondere zur Beeinflussung der NOx-Rohemissionen der Brennkraftmaschine, also der NOx-Konzentration im Abgas ist dem Fachmann aus dem Stand der Technik bekannt und soll hier nicht weiter erläutert werden.The mode of operation of such exhaust gas recirculation devices for reducing emissions, in particular for influencing the raw NOx emissions of the internal combustion engine, that is to say the NOx concentration in the exhaust gas, is known to the person skilled in the art from the prior art and will not be explained further here.

Obwohl die in der in Figur 1 gezeigte maximale Ausbaustufe der erfindungsgemäßen Abgasnachbehandlungsanlage sowohl eine NH3-Zuführeinrichtung 7 als auch eine erste Abgasrückführungseinrichtung 2 als auch eine weitere Abgasrückführungseinrichtung 8 aufweist, so ist für eine erfindungsgemäße Ausführung der Abgasnachbehandlungsanlage auch bereits das Vorhandensein einer dieser Einrichtungen ausreichend. Ebenso können auch zwei oder alle drei dieser Einrichtungen im kombinierten Betrieb eingesetzt und quasi zu einer Einrichtung zum gezielten definierten Herbeiführen einer NH3-Konzentrationsänderung und/oder einer NOx-Konzentrationsänderung im Abgasmassenstrom 10 stromaufwärts des SCR-Partikelfilters 3 zusammengefasst werden.Although the in Figure 1 The maximum expansion stage of the exhaust gas aftertreatment system according to the invention shown has both an NH 3 supply device 7 and a first exhaust gas recirculation device 2 as well as a further exhaust gas recirculation device 8, then the presence of one of these devices is sufficient for an embodiment of the exhaust gas aftertreatment system according to the invention. Likewise, two or all three of these devices can also be used in combined operation and, as it were, become one device for targeted, defined bringing about a change in the NH 3 concentration and / or a change in the NOx concentration in the exhaust gas mass flow 10 upstream of the SCR particle filter 3.

Als für das erfindungsgemäße Verfahren unabdingbare Komponente, ist zumindest ein erster Konzentrationssensor 6, zum Messen der NH3- und/oder NOx-Konzentration im Abgasmassenstrom 10 stromabwärts, nach dem SCR-Partikelfilter 3, im Abgasmassenstrom 10 angeordnet. Dieser erste Konzentrationssensor 6 gibt ein entsprechendes erstes Konzentrationsmesssignal 110 ab, auf dessen Basis ein korrelierender Konzentrations-Vergleichswert (VgW) bereitgestellt werden kann.As an indispensable component for the method according to the invention, at least one first concentration sensor 6 for measuring the NH 3 and / or NOx concentration in the exhaust gas mass flow 10 is arranged downstream, after the SCR particle filter 3, in the exhaust gas mass flow 10. This first concentration sensor 6 emits a corresponding first concentration measurement signal 110, on the basis of which a correlating concentration comparison value (VgW) can be provided.

Ferner weist die hier gezeigte Ausführung der erfindungsgemäßen Abgasnachbehandlungsanlage, gemäß einer weiteren Ausbaustufe, einen, im Abgasmassenstrom 10 stromaufwärts, vor dem SCR-Partikelfilter 3, angeordneten zusätzlichen Konzentrationssensor 5 zum Messen der NH3- und/oder NOx-Konzentration vor dem SCR-Partikelfilter 3 auf. Dieser ist in zweckmäßiger Weise im Abgasmassenstrom 10 stromabwärts der NH3-Zuführeinrichtung 7 sowie der Abzweigung der ersten Abgasrückführungseinrichtung 2, unmittelbar vor dem SCR-Partikelfilter 3 angeordnet, so dass mit diesem zusätzlichen Konzentrationssensor 5 sowohl die NH3- als auch die NOx-Konzentrationsänderung vor dem SCR-Partikelfilter 3, also die gezielt herbeigeführte NH3- und/oder NOx -Konzentrationsänderung, erfasst werden kann. Auch dieser zusätzliche Konzentrationssensor 5 gibt ein entsprechendes zweites Konzentrationsmesssignal 100 ab, das zur Bereitstellung eines Konzentrations-Vergleichswertes (VgW) mit herangezogen werden kann.Furthermore, the embodiment of the exhaust gas aftertreatment system according to the invention shown here has, according to a further expansion stage, an additional concentration sensor 5 arranged in the exhaust gas mass flow 10 upstream in front of the SCR particle filter 3 for measuring the NH 3 and / or NOx concentration upstream of the SCR particle filter 3 on. This is expediently arranged in the exhaust gas mass flow 10 downstream of the NH 3 feed device 7 and the junction of the first exhaust gas recirculation device 2, directly in front of the SCR particle filter 3, so that with this additional concentration sensor 5, both the NH 3 and the NOx concentration change can be detected in front of the SCR particle filter 3, that is to say the targeted change in the NH 3 and / or NOx concentration. This additional concentration sensor 5 also emits a corresponding second concentration measurement signal 100 which can also be used to provide a concentration comparison value (VgW).

Auf diese Weise kann zur Ausführung des Verfahrens ein tatsächlich gemessener Wert für die NH3-Konzentrationsänderung und/oder die NOx-Konzentrationsänderung im Abgasmassenstrom 10 stromaufwärts des SCR-Partikelfilters 3 zum Beispiel für die Bereitstellung eines Konzentrations-Vergleichswertes (VgW) herangezogen werden, was die Sicherheit der Diagnose des SCR-Partikelfilters erhöht. Andernfalls, wenn nur der stromabwärts des SCR-Partikelfilters 3 angeordnete Konzentrationssensor 6 zur Verfügung steht, wird beispielsweise der Vorgabewert für die gezielte, definierte Konzentrationsänderung als Istwert angenommen, wobei davon ausgegangen wird, dass die Einrichtung zum gezielten, definierten Verändern des jeweiligen Konzentrationswertes fehlerfrei funktioniert.In this way, an actually measured value for the change in the NH 3 concentration can be used to carry out the method and / or the NOx concentration change in the exhaust gas mass flow 10 upstream of the SCR particle filter 3 can be used, for example, to provide a concentration comparison value (VgW), which increases the reliability of the diagnosis of the SCR particle filter. Otherwise, if only the concentration sensor 6 arranged downstream of the SCR particle filter 3 is available, for example the default value for the targeted, defined change in concentration is assumed as the actual value, it being assumed that the device for the targeted, defined change of the respective concentration value is functioning correctly .

Weiterhin weist die in Figur 1 dargestellte Ausführung der erfindungsgemäßen Abgasnachbehandlungsanlage eine elektronische Rechen- und Steuereinheit 15 (ECU) auf. Diese ist eingerichtet zum gezielten, definierten Verändern der NH3- und/oder NOx-Konzentration im Abgasmassenstrom 10 stromaufwärts des SCR-Partikelfilter 3, mittels zumindest einer der oben genannten Einrichtungen zum gezielten, definierten Verändern der NH3und/oder NOx-Konzentration und zur Erfassung eines, von dem zumindest einen Konzentrationssensor 6 ausgegebenen ersten Konzentrationsmesssignals (110) und in weiterer Ausbaustufe eines zweiten Konzentrationsmesssignals. Dazu ist die elektronische Rechen- und Steuereinheit 15 über Signalleitungen 2c, 5c, 6c, 7c und 8c mit den Systemkomponenten erstes Abgasrückführventil 2b, zusätzlicher Konzentrationssensor 5, erster Konzentrationssensor 6, Dosiereinrichtung 7b sowie weiteres Abgasrückführventil 8b elektrisch verbunden um Steuersignale an die entsprechenden Systemkomponenten zu geben oder Signale, insbesondere Messsignale von den entsprechenden Systemkomponenten zu erhalten.Furthermore, the in Figure 1 The illustrated embodiment of the exhaust gas aftertreatment system according to the invention has an electronic computing and control unit 15 (ECU). This is set up for the targeted, defined changing of the NH 3 and / or NOx concentration in the exhaust gas mass flow 10 upstream of the SCR particle filter 3, by means of at least one of the above-mentioned devices for the targeted, defined changing of the NH 3 and / or NOx concentration and for detecting a first concentration measurement signal (110) output by the at least one concentration sensor 6 and, in a further expansion stage, a second concentration measurement signal. For this purpose, the electronic computing and control unit 15 is electrically connected via signal lines 2c, 5c, 6c, 7c and 8c to the system components first exhaust gas recirculation valve 2b, additional concentration sensor 5, first concentration sensor 6, metering device 7b and further exhaust gas recirculation valve 8b in order to send control signals to the corresponding system components give or receive signals, in particular measurement signals, from the corresponding system components.

Die elektronische Rechen- und Steuereinheit 15 ist weiterhin dazu eingerichtet, das erfindungsgemäße Verfahren zum Betreiben einer Abgasnachbehandlungsanlage einer Brennkraftmaschine gemäß einer der erfindungsgemäßen Ausführungen auf Basis eines ersten Konzentrationsmesssignals des ersten Konzentrationssensors 6 oder auf Basis der beiden Konzentrationsmesssignale des ersten und des zusätzlichen Konzentrationssensors 6, 5 auszuführen. Dazu ist der Ablauf des Verfahrens, entsprechende Berechnungsalgorithmen, sowie die erforderlichen Vorgabewerte zur Ansteuerung der Abgasnachbehandlungsanlage sowie der Brennkraftmaschine, in Form von ausführbarem Programmcode in der elektronischen Steuereinheit 15 bzw. in zugeordneten elektronischen Speichereinheiten hinterlegt.The electronic computing and control unit 15 is also set up to use the method according to the invention for operating a Execute exhaust gas aftertreatment system of an internal combustion engine according to one of the embodiments according to the invention on the basis of a first concentration measurement signal of the first concentration sensor 6 or on the basis of the two concentration measurement signals of the first and the additional concentration sensor 6, 5. For this purpose, the sequence of the method, corresponding calculation algorithms, and the required default values for controlling the exhaust gas aftertreatment system and the internal combustion engine are stored in the form of executable program code in the electronic control unit 15 or in associated electronic storage units.

Eine Ausführung der Abgasnachbehandlungsanlage, wie zuvor beschrieben, zeichnet sich dadurch aus, dass die elektronische Rechen- und Steuereinheit 15 integraler Bestandteil einer zentralen Steuereinheit (CPU) 16 der Brennkraftmaschine ist, wobei das auszuführende Verfahren Teil eines On-Board-Diagnose-Systems zur Überwachung der abgasrelevanten Funktionseinheiten der Brennkraftmaschine im bestimmungsgemäßen Betrieb ist.An embodiment of the exhaust gas aftertreatment system, as described above, is characterized in that the electronic computing and control unit 15 is an integral part of a central control unit (CPU) 16 of the internal combustion engine, the method to be carried out being part of an on-board diagnostic system for monitoring the exhaust-relevant functional units of the internal combustion engine is in normal operation.

Eine Ausführung des erfindungsgemäßen Verfahrens zum Betreiben einer Abgasnachbehandlungsanlage einer Brennkraftmaschine in einer der vorausgehend beschriebenen Ausführungen ist anhand des in Figur 2 dargestellten vereinfachten Block-Ablaufprogramms in den wesentlichen Verfahrensschritten dargestellt.An embodiment of the method according to the invention for operating an exhaust gas aftertreatment system of an internal combustion engine in one of the embodiments described above is illustrated in FIG Figure 2 The simplified block sequence program shown in the essential procedural steps.

Nach dem Start des Verfahrens wird in dem ersten, mit "D-BP_set" gekennzeichneten Verfahrensschritt, die Brennkraftmaschine auf eine Diagnosebetriebsart eingestellt, wobei bestimmte maßgebliche Diagnose-Betriebsparameter (D-BP) der Brennkraftmaschine auf Übereinstimmung mit Diagnose-Vorgabewerten (D-BP_set) verifiziert, eingestellt oder eingeregelt werden.After the start of the process, in the first process step marked with "D-BP_set", the internal combustion engine is set to a diagnostic operating mode, with certain relevant diagnostic operating parameters (D-BP) of the internal combustion engine being in accordance with diagnostic default values (D-BP_set) verified, adjusted or adjusted.

In einer Ausführungsvariante des Verfahrens ist die Diagnosebetriebsart gekennzeichnet durch zumindest einen der folgenden Diagnose-Betriebsparameter:

  • Die Motordrehzahl (RPM) der Brennkraftmaschine wird auf einen Wert zwischen 1100 und 1900 Umdrehungen/Minute eingeregelt.
  • Die Betriebstemperatur (T-SC-PF) des SCR-Partikelfilters 3 wird auf einen Wert zwischen 250°C und 350°C eingeregelt.
  • Eine Druckdifferenz des Abgasmassenstroms (ΔP_SCR-PF) über den SCR-Partikelfilter 3 zwischen 3 bar und 7 bar wird verifiziert.
  • Weiterhin wird verifiziert, dass eine NH3-Speichermenge (SM_SC-PF) im SCR-Partikelfilter 3 über einem vordefinierten Schwellenwert liegt.
  • Ergänzend kann die NH3-Zugabemenge auf einen, in Bezug auf die stromaufwärts des SCR-Partikelfilters im Abgas vorliegende NOx-Konzentration, stöchiometrischen Wert eingeregelt werden, das heißt, dass die NH3-Zugabemenge einer Menge entspricht, die zur vollständigen Umsetzung des NOx-Anteils im Abgas im SCR-Partikelfilter erforderlich ist. Die Vorgabe dieser Betriebsparameter gewährleistet einen stabilen Betrieb der Brennkraftmaschine, reduziert Störeinflüsse auf das Verfahren und erhöht somit die Sicherheit der Aussagekraft der Diagnose des SCR-Partikelfilters.
In one embodiment variant of the method, the diagnostic mode is characterized by at least one of the following diagnostic operating parameters:
  • The engine speed (RPM) of the internal combustion engine is regulated to a value between 1100 and 1900 revolutions / minute.
  • The operating temperature (T-SC-PF) of the SCR particle filter 3 is regulated to a value between 250 ° C and 350 ° C.
  • A pressure difference in the exhaust gas mass flow (ΔP_SCR-PF) across the SCR particle filter 3 between 3 bar and 7 bar is verified.
  • It is also verified that an NH 3 storage amount (SM_SC-PF) in the SCR particle filter 3 is above a predefined threshold value.
  • In addition, the amount of NH 3 added can be adjusted to a stoichiometric value in relation to the NOx concentration present in the exhaust gas upstream of the SCR particulate filter, i.e. the amount of NH 3 added corresponds to an amount that is necessary for complete conversion of the NOx -Part of the exhaust gas in the SCR particle filter is required. The specification of these operating parameters ensures stable operation of the internal combustion engine, reduces disruptive influences on the method and thus increases the reliability of the informative value of the diagnosis of the SCR particle filter.

Die entsprechenden Diagnose-Vorgabewerte sind dazu in einem elektronischen Speicher der elektronischen Rechen- und Steuereinheit (ECU), der in Figur 2 mit "E_Sp1" gekennzeichnet ist, abgelegt und können zur Ausführung dieses Verfahrensschrittes auf einfache Weise ausgelesen und herangezogen werden.The corresponding diagnostic default values are for this purpose in an electronic memory of the electronic computing and control unit (ECU), which is shown in Figure 2 is marked with "E_Sp1" and can be easily read out and used to carry out this process step.

Da die Einregelung, Einstellung und Verifizierung der Diagnose-Betriebsparameter eine gewisse Zeit in Anspruch nehmen kann wird in dem folgenden Verfahrensschritt, der mit "D-BP = D-BP_set" gekennzeichnet ist überprüft, ob die aktuellen Diagnose-Betriebsparameter mit den Diagnose-Vorgabewerten übereinstimmen. Solange das nicht der Fall ist wird weiterhin versucht die Diagnose-Betriebsparameter (D-BP) an die Diagnose-Vorgabewerte (D-BP_set) anzugleichen. Liegen die gewünschten Diagnose-Betriebsparameter vor, so kann der nächste Verfahrensschritt folgen.Since the adjustment, setting and verification of the diagnostic operating parameters can take a certain amount of time, the following process step, which is marked with "D-BP = D-BP_set", checks whether the current diagnostic operating parameters match the diagnostic default values to match. As long as this is not the case, attempts are made to adjust the diagnostic operating parameters (D-BP) to the diagnostic default values (D-BP_set). If the desired diagnostic operating parameters are available, the next method step can follow.

Im folgenden, mit "NOx/NH3" gekennzeichneten Verfahrensschritt erfogt dann die gezielte, definierte Herbeiführung einer NH3-Konzentrationsänderung und/oder einer NOx-Konzentrationsänderung im Abgasmassenstrom 10 stromaufwärts des SCR-Partikelfilters 3. Dies erfolgt, je nach Ausführung der Abgasnachbehandlungsanlage, durch entsprechende einzelne oder kombinierte Ansteuerung einer oder mehrerer der Einrichtungen: NH3-Zuführeinrichtung 7, erste Abgasrückführungseinrichtung 2 und weitere Abgasrückführungseinrichtung 8; wie in Figur 2 mit gestrichelten Linien dargestellt. So kann je nach Ausführung der Abgasnachbehandlungsanlage eine NH3-Konzentrationsänderung oder einer NOx-Konzentrationsänderung oder auch eine kombinierte bzw. überlagerte NOx/ NH3-Konzentrationsänderung herbeigeführt werden, mittels einer entsprechenden Ansteuerung der genannten Einrichtungen zum gezielten, definierten Herbeiführen der NH3und/oder NOx -Konzentrationsänderung, durch die Elektronische Rechen- und Steuereinheit (ECU) 15.In the following process step, marked with "NO x / NH 3 ", the targeted, defined induction of a change in the NH 3 concentration and / or a change in the NOx concentration in the exhaust gas mass flow 10 upstream of the SCR particle filter 3 takes place, depending on the design of the exhaust gas aftertreatment system by appropriate individual or combined control of one or more of the devices: NH 3 feed device 7, first exhaust gas recirculation device 2 and further exhaust gas recirculation device 8; as in Figure 2 shown with dashed lines. Thus, depending on the design of the exhaust gas aftertreatment system, a change in the NH 3 concentration or a change in the NOx concentration or a combined or superimposed change in the NOx / NH 3 concentration can be brought about by means of a corresponding control of the devices mentioned for the targeted, defined induction of the NH 3 and / or NOx concentration change, by the electronic computing and control unit (ECU) 15.

So kann in einer Ausführung des Verfahrens die definierte NOx-Konzentrationsänderung vor dem SCR-Partikelfilter 3 in einer Erhöhung oder einer Reduzierung der NOx-Konzentration bestehen, die zum Beispiel durch eine definierte Reduzierung bzw. Erhöhung einer Abgasrückführungsrate erzielt wird, wobei hier unterstützend auch noch weitere Betriebsparameter der Brennkraftmaschine im Sinne einer Erhöhung der NOx-Konzentration im Abgas beeinflusst werden können. Dabei kann die Abgasrückführrate mittels der ersten Abgasrückführungseinrichtung 2 oder der weiteren Abgasrückführungseinrichtung 8 oder der beiden Abgasrückführungseinrichtungen 2, 8 in Kombination, eingestellt werden. Dies erfolgt zum Beispiel durch entsprechende Ansteuerung des ersten Abgasrückführventils 2b oder des zweiten Abgasrückführungsventils 8b oder einer kombinierten Ansteuerung des ersten und des zweiten Abgasrückführventils 2b, 8b mittels der elektronischen Rechen- und Steuereinheit (ECU) 15.Thus, in one embodiment of the method, the defined change in NOx concentration upstream of the SCR particle filter 3 can consist of an increase or a reduction in the NOx concentration, which is achieved, for example, by a defined reduction or increase in an exhaust gas recirculation rate, with an additional support here further operating parameters of the internal combustion engine can be influenced in the sense of an increase in the NOx concentration in the exhaust gas. The exhaust gas recirculation rate can be determined by means of the first exhaust gas recirculation device 2 or the further exhaust gas recirculation device 8 or the two exhaust gas recirculation devices 2, 8 in combination. This is done, for example, by appropriate control of the first exhaust gas recirculation valve 2b or the second exhaust gas recirculation valve 8b or a combined control of the first and second exhaust gas recirculation valve 2b, 8b by means of the electronic computing and control unit (ECU) 15.

Weiterhin kann in einer Ausführung des Verfahrens die definierte NH3-Konzentrationsänderung vor dem SCR-Partikelfilter 3 in einer definierten Erhöhung oder Reduzierung der NH3-Konzentration bestehen, die durch eine definierte Erhöhung bzw. Reduzierung der Zugabemenge der NH3-Lösung 7d mittels der NH3-Zuführeinrichtung 7, eingestellt wird. Dies erfolgt insbesondere durch entsprechende Ansteuerung der Dosiereinrichtung 7b mittels der elektronischen Rechen- und Steuereinheit (ECU) 15.Furthermore, in one embodiment of the method, the defined change in the NH 3 concentration upstream of the SCR particle filter 3 can consist of a defined increase or reduction in the NH 3 concentration, which is achieved by a defined increase or reduction in the amount of NH 3 solution 7d added by means of the NH 3 feed device 7 is set. This takes place in particular by appropriate activation of the metering device 7b by means of the electronic computing and control unit (ECU) 15.

Im weiteren Ablauf des erfindungsgemäßen Verfahrens wird nun gemäß dem mit "NOx/NH3_Sig" gekennzeichneten Verfahrensschritt, die NH3- und/oder NOx -Konzentrationsänderung im Abgasmassenstrom 10 nach dem SCR-Partikelfilter 3 innerhalb eines, unmittelbar auf die vorgenannte NH3- und/oder NOx-Konzentrationsänderung vor dem SCR-Partikelfilter 3 folgenden, festgelegten Zeitfensters (TW) gemessen. Dies erfolgt mittels des zumindest einen ersten Konzentrationssensors 6, der ein entsprechendes erstes Konzentrationsmesssignal 110 abgibt, das über die Signalleitung 6c der elektronischen Rechen- und Steuereinheit zur weiteren Verarbeitung zugeführt wird.In the further course of the method according to the invention will now be in accordance with the "NO x / NH 3 _Sig" step marked, the NH 3 - and / or NO x -Konzentrationsänderung in the exhaust gas mass flow 10 after the SCR particle filter 3 within a directly on the aforementioned NH 3 - and / or NO x concentration change before the SCR particle filter 3 following, measured time window (TW). This takes place by means of the at least one first concentration sensor 6, which emits a corresponding first concentration measurement signal 110, which is fed via the signal line 6c to the electronic computing and control unit for further processing.

In einer Ausführung des Verfahrens wird im Rahmen des vorgenannten Verfahrensschrittes im gleichen Zeitfenster (TW) zusätzlich die NH3- und/oder NOx-Konzentrationsänderung stromaufwärts, vor dem SCR-Partikelfilter gemessen. Dazu wird mittels eines zusätzlichen Konzentrationssensors 5, der im Abgasmassenstrom 10 stromaufwärts vor dem SCR-Partikelfilter 3 angeordnet ist, ein zu der NH3- und/oder NOx-Konzentrationsänderung im Abgasmassenstrom 10 vor dem SCR-Partikelfilter 3 korrelierendes zweites Konzentrationsmesssignal 120 bereitgestellt und über eine Signalleitung 5c der elektronischen Rechen- und Steuereinheit ECU zugeführt. Dies ermöglicht nicht nur die relative Betrachtung der Konzentrationsänderung vor und nach dem SCR-Partikelfilter 3 und eine damit einhergehende Erhöhung der Diagnosesicherheit des Verfahrens, sondern auch die Möglichkeit der Beurteilung der Funktion der Abgasrückführungseinrichtungen 2, 8 und der NH3-Zufüreinrichtung 7. In one embodiment of the method, the change in the NH 3 and / or NO x concentration upstream, in front of the SCR particle filter, is also measured in the same time window (TW) as part of the aforementioned method step. For this purpose, an additional concentration sensor 5 is used to arrange the exhaust gas mass flow 10 upstream in front of the SCR particle filter 3 is, a second concentration measurement signal 120 correlating to the NH 3 and / or NO x concentration change in the exhaust gas mass flow 10 upstream of the SCR particle filter 3 is provided and fed to the electronic computing and control unit ECU via a signal line 5c. This not only enables the relative consideration of the change in concentration before and after the SCR particle filter 3 and an associated increase in the diagnostic reliability of the method, but also the possibility of assessing the function of the exhaust gas recirculation devices 2, 8 and the NH 3 feed device 7.

Im Folgenden, mit "(NOx/NH3)VGW" gekennzeichneten Verfahrensschritt erfolgt das Bereitstellen eines korrelierenden Konzentrations-Vergleichswertes (VgW) zumindest auf Basis des ersten Konzentrationsmesssignals (110). Als Konzentrations-Vergleichswert (VgW) kann beispielsweise in unterschiedlichen Ausführungen des Verfahrens ein jeweiliger, innerhalb des definierten Zeitfensters (TW) erreichter Maximalwert oder Minimalwert der Konzentrationsänderung und/oder ein innerhalb des definierten Zeitfensters (TW) ermittelter Gradient der Konzentrationsänderung herangezogen werden.In the following method step labeled “(NO x / NH 3 ) VGW”, a correlating concentration comparison value (VgW) is provided at least on the basis of the first concentration measurement signal (110). As a concentration comparison value (VgW), for example, in different versions of the method, a respective maximum value or minimum value of the change in concentration reached within the defined time window (TW) and / or a concentration change gradient determined within the defined time window (TW) can be used.

In einer weiteren Ausführung des Verfahrens kann, unter der Voraussetzung, dass zusätzlich die NH3- und/oder NOx-Konzentrationsänderung stromaufwärts vor dem SCR-Partikelfilter gemessen wird, der Konzentrations-Vergleichswert (VgW) auf den jeweiligen, innerhalb des definierten Zeitfensters ermittelten NH3- und/oder NOx-Konzentrationsänderungen nach und vor dem SCR-Partikelfilter 3 basieren. Dazu können beispielsweise in einer weiteren Ausführung des Verfahrens die, innerhalb des definierten Zeitfensters ermittelten, Werte der NH3- und/oder NOx-Konzentrationsänderungen zu einem bestimmten Zeitpunkt und/oder die Gradienten dieser Konzentrationsänderungen, jeweils vor und nach dem SCR-Partikelfilter 3 miteinander verglichen oder zueinander ins Verhältnis gesetzt werden. Dies ermöglicht die Bereitstellung eines besonders zuverlässigen Konzentrations-Vergleichswertes (VgW) und erhöht die Diagnosesicherheit des Verfahrens, da Fehldiagnosen aufgrund möglicherweise defekter Einrichtungen zur NH3- und/oder NOx-Konzentrationsänderung ausgeschlossen werden können.In a further embodiment of the method, provided that the NH 3 and / or NOx concentration change is also measured upstream in front of the SCR particle filter, the concentration comparison value (VgW) can be applied to the respective NH determined within the defined time window 3 - and / or NOx concentration changes after and before the SCR particle filter 3 are based. For this purpose, for example, in a further embodiment of the method, the values of the NH 3 and / or NOx concentration changes determined within the defined time window at a certain point in time and / or the gradients of these concentration changes, in each case before and after the SCR particle filter 3, can be combined compared or put in relation to each other. This enables a particularly reliable concentration comparison value (VgW) to be provided and increases the diagnostic reliability of the method, since incorrect diagnoses due to possibly defective devices for changing the NH 3 and / or NOx concentration can be ruled out.

In dem folgenden, mit "VgW - GW" gekennzeichneten, Verfahrensschritt, erfolgt die Bewertung der innerhalb des festgelegten Zeitfensters TW gemessenen NH3- und/oder NOx-Konzentrationsänderung nach dem SCR-Partikelfilter (3) anhand des jeweiligen Konzentrations-Vergleichswertes (VgW) und vorgegebener Grenzwerte (GW) . Als Konzentrations-Vergleichswert kann dabei, je nach Ausführung des Verfahrens, wie oben bereits erwähnt, ein jeweiliger Maximalwert oder Minimalwert der Konzentrationsänderung und/oder ein ermittelter Gradient der Konzentrationsänderung oder auch Vergleichs- oder Verhältniswerte basierend auf den jeweils vor und nach dem SCR-Partikelfilter 3 gemessenen Werten oder Gradienten der Konzentrationsänderung, herangezogen werden. Dies ermöglicht eine breite Varianz bei der Gestaltung des erfindungsgemäßen Verfahrens und die Anpassung an die Bedürfnisse im jeweiligen Anwendungsfall. Gemäß dem zur Anwendung kommenden konzentrations-Vergleichswert sind dann entsprechend angepasste Grenzwerte vorzugeben. Diese können zum Beispiel vorausgehend empirisch oder mittels Modellrechnung ermittelt werden und werden beispielsweise in einem elektronischen Speicherbereich der elektronischen Rechen- und Steuerungseinheit abgelegt und zur Bewertung der Konzentrationsänderung von dort abgerufen. Ein solcher elektronischer Speicherbereich ist in Figur 2, mit E_Sp2 gekennzeichnet und beinhaltet die entsprechenden Grenzwerte, die als "(NOx/NH3)GW" dargestellt sind.In the following process step, marked with "VgW - GW", the change in NH 3 and / or NOx concentration measured within the specified time window TW after the SCR particle filter (3) is evaluated on the basis of the respective concentration comparison value (VgW) and specified limit values (GW). As already mentioned above, a respective maximum or minimum value of the change in concentration and / or a determined gradient of the change in concentration or also comparison or ratio values based on the respective before and after the SCR particle filter can be used as the concentration comparison value, depending on the execution of the method, as already mentioned above 3 measured values or gradients of the change in concentration can be used. This enables a wide range of variance in the design of the method according to the invention and the adaptation to the needs of the respective application. In accordance with the concentration comparison value to be used, correspondingly adapted limit values must then be specified. These can, for example, be determined beforehand empirically or by means of model calculation and are, for example, stored in an electronic memory area of the electronic computing and control unit and called up from there to evaluate the change in concentration. Such an electronic storage area is in Figure 2 , marked with E_Sp2 and contains the corresponding limit values, which are shown as "(NO x / NH 3 ) GW".

Auf Basis der zuvor beschriebenen Bewertung der Konzentrationsänderung nach dem SCR-Partikelfilter 3 erfolgt dann in dem folgenden, mit "VGW≥GW" gekennzeichneten, Verfahrensschritt Das Diagnostizieren des SCR-Partikelfilters 3 als schadhaft, "SCR-PF=nok" wenn die Bewertung ergibt, dass der Konzentrations-Vergleichswert (VgW) zumindest einen vorgegebenen Grenzwert (GW) überschritten hat. Andernfalls wird der SCR-Partikelfilter als funktionstüchtig diagnostiziert "SCR-PF=ok" wenn der Konzentrations-Vergleichswert keinen Grenzwert erreicht oder überschritten hat. Damit ist das erfindungsgemäße Verfahren abgeschlossen.On the basis of the previously described evaluation of the change in concentration after the SCR particle filter 3, the following method step, marked with “VGW≥GW”, diagnoses the SCR particle filter 3 as defective, “SCR-PF = nok” if the evaluation results that the concentration comparison value (VgW) has exceeded at least a predetermined limit value (GW). Otherwise, the SCR particle filter is diagnosed as functional "SCR-PF = ok" if the concentration comparison value has not reached or exceeded a limit value. This concludes the method according to the invention.

Um einen dauerhaft fehlerfreien Betrieb der Abgasnachbehandlungsanlage sicherzustellen kann das erfindungsgemäße Verfahren in bestimmten Zyklen im Betrieb wiederholt werden, wobei diese Zyklen basieren können auf einer bestimmten Betriebs-Zeitdauer, einer bestimmten Betriebsleistung oder auf im Betrieb ermittelten Bedarfswerten.In order to ensure a permanently error-free operation of the exhaust gas aftertreatment system, the method according to the invention can be repeated in certain cycles during operation, these cycles being based on a certain operating time, a certain operating performance or on requirement values determined during operation.

Eine weitere Ausführung des Verfahrens ist dadurch gekennzeichnet, dass im Rahmen der NH3- und/oder NOx-Konzentrationsänderung zunächst eine Konzentrationserhöhung und eine unmittelbar darauffolgende Konzentrationsreduzierung erfolgt. Dabei erfolgt, nach der Konzentrationserhöhung für eine bestimmte erste Zeitdauer, die Konzentrationsreduzierung auf einen derart gewählten Wert und für eine derart gewählte zweite Zeitdauer, sodass ein sich über die Dauer der Konzentrationserhöhung und der Konzentrationsreduzierung hinweg ergebender Mittelwert der NH3- und/oder NOx-Konzentration stromabwärts des SCR-Partikelfilters, dem vor der Konzentrationserhöhung vorherrschenden Wert der NH3- und/oder NOx-Konzentration entspricht. Auf diese Weise wird gewährleistet, dass es über die Verfahrensdauer hinweg, im zeitlichen Mittel, zu keiner durch das Verfahren verursachten Erhöhung des Schadstoffausstoßes kommt. Eine weitere Ausführung des Verfahrens zeichnet sich dadurch aus, dass zum Messen der NH3- und/oder NOx-Konzentrationsänderung im Abgasmassenstrom 10 jeweils ein kombinierter Konzentrationssensor 6 eingesetzt wird, der die NH3- und/oder NOx-Konzentrationsänderung in einem kombinierten Konzentrationsmesssignal 110 zusammenfasst. Dies kann sowohl auf den ersten Konzentrationssensor 6, stromabwärts des SCR-Partikelfilters 3, als auch auf den zweiten Konzentrationssensor 5, stromaufwärts des SCR-Partikelfilters 3, zutreffen. Dies ermöglicht es in vorteilhafter Weise für die Durchführung des Verfahrens sowohl eine NH3-Konzentrationsänderung als auch eine NOx-Konzentrationsänderung als auch eine kombinierte NH3/NOx-Konzentrationsänderung vorzugeben und eröffnet so auch einen größeren Spielraum für das Maß der vorgegebenen Konzentrationsänderung.A further embodiment of the method is characterized in that in the context of the change in NH 3 and / or NOx concentration, there is initially an increase in concentration and an immediately subsequent reduction in concentration. In this case, after the concentration increase for a specific first period of time, the concentration is reduced to a value selected in this way and for a second period selected in this way, so that an average value of the NH 3 and / or NOx resulting over the duration of the increase in concentration and the reduction in concentration takes place. Concentration downstream of the SCR particle filter, which corresponds to the value of the NH 3 and / or NOx concentration prevailing before the concentration increase. In this way it is ensured that over the duration of the procedure, on average over time, there is no increase in pollutant emissions caused by the procedure. Another embodiment of the method is characterized in that a combined concentration sensor 6 is used to measure the change in NH 3 and / or NOx concentration in the exhaust gas mass flow 10, which measures the change in NH 3 and / or NOx in a combined concentration measurement signal 110 summarizes. This can apply both to the first concentration sensor 6, downstream of the SCR particle filter 3, and to the second concentration sensor 5, upstream of the SCR particle filter 3. This advantageously makes it possible to specify both a change in NH 3 concentration and a change in NOx concentration as well as a combined change in NH 3 / NO x concentration for carrying out the method and thus also opens up a greater scope for the extent of the predetermined change in concentration.

In weiterer Ausgestaltung des Verfahrens weist das jeweilige festgelegte Zeitfenster (TW) zum Messen der NH3- und/oder NOx -Konzentrationsänderung im Abgasmassenstrom 10 nach und/oder vor dem SCR-Partikelfilter 3 eine Dauer von kleiner gleich 5 Sekunden, insbesondere kleiner gleich 3 Sekunden auf. Die Länge dieses Zeitfensters gewährleistet, dass lediglich eine schnelle NH3- und/oder NOx-Konzentrationsänderung nach dem SCR-Partikelfilter 3, wie sie ausschließlich bei einem Defekt des SCR-Partikelfilters 3 auftritt, bei der Ermittlung des Konzentrations-Vergleichswertes und so bei der Diagnose des SCR-Partikelfilters Auswirkung zeigt.In a further embodiment of the method, the respective fixed time window (TW) for measuring the change in NH 3 and / or NO x concentration in the exhaust gas mass flow 10 after and / or in front of the SCR particle filter 3 has a duration of less than or equal to 5 seconds, in particular less than or equal to 3 seconds. The length of this time window ensures that only a rapid change in the NH 3 and / or NO x concentration after the SCR particle filter 3, as occurs only when the SCR particle filter 3 is defective, when determining the concentration comparison value and so on the diagnosis of the SCR particulate filter shows the effect.

Figur 3 zeigt an einem Beispiel die Verläufe der NOx-/NH3-Konzentration über der Zeit, die mit Hilfe von kombinierten NOx-/NH3-Konzentrationssensoren stromaufwärts und stromabwärts des SCR-Partikelfilters aufgenommen wurden. Dabei zeigt die Verlaufskurve 100 die NOx-/NH3-Konzentration stromaufwärts des SCR-Partikelfilters, wobei ausgehend von einer in der Diagnosebetriebsart eingeregelten NOx-/NH3-Konzentration bei ca. 40 ppm zum Zeitpunkt T1 eine definierte Konzentrationsänderung um ca. 100ppm auf 140 ppm herbeigeführt wird. Die Verlaufskurve 110 zeigt die stromabwärts des SCR-Partikelfilters aufgenommene NOx-/NH3-Konzentration bei einem defekten SCR-Partikelfilter. Hier ist bereits in der Phase der Diagnosebetriebsart ein erhöhter Wert der NOx-/NH3-Konzentration bei ca. 15 ppm zu erkennen. Zum Zeitpunkt T1 beginnt die NOx-/NH3-Konzentration mit einem Gradient G1 innerhalb des Zeitfensters TW zu steigen und steigt bis auf eine Maximalkonzentration KM1 zu zum Zeitpunkt T2, am Ende des Zeitfensters TW. Figure 3 shows an example of the curves of the NO x / NH 3 concentration over time, which were recorded with the aid of combined NO x / NH 3 concentration sensors upstream and downstream of the SCR particulate filter. The curve 100 shows the NO x / NH 3 concentration upstream of the SCR particulate filter, starting from an in the NO x / NH 3 concentration regulated at approx. 40 ppm at time T1, a defined change in concentration by approx. 100 ppm to 140 ppm is brought about. The curve 110 shows the NO x / NH 3 concentration recorded downstream of the SCR particle filter in the case of a defective SCR particle filter. An increased value of the NO x / NH 3 concentration at approx. 15 ppm can already be seen here in the phase of the diagnostic operating mode. At time T1, the NO x / NH 3 concentration begins to rise with a gradient G1 within time window TW and rises to a maximum concentration KM1 at time T2, at the end of time window TW.

Die Verlaufskurve 120 zeigt dagegen die stromabwärts des SCR-Partikelfilters aufgenommene NOx-/NH3-Konzentration bei einem intakten SCR-Partikelfilter. Hier liegt in der Phase der Diagnosebetriebsart ein minimaler Wert der NOx-/NH3-Konzentration vor. Zum Zeitpunkt T1 beginnt auch hier die NOx-/NH3-Konzentration innerhalb des Zeitfensters TW zu steigen, jedoch mit einem gegenüber der Verlaufskurve 110 wesentlich kleineren Gradienten G2. Dementsprechend wird bis zum Zeitpunkt T2, am Ende des Zeitfensters TW, auch nur eine wesentlich kleinere Maximalkonzentration KM2 erreicht.In contrast, the profile curve 120 shows the NO x / NH 3 concentration recorded downstream of the SCR particle filter in the case of an intact SCR particle filter. Here, in the phase of the diagnostic operating mode, there is a minimum value for the NO x / NH 3 concentration. At the point in time T1, the NO x / NH 3 concentration also begins to rise within the time window TW, but with a significantly smaller gradient G2 compared to the curve 110. Accordingly, only a significantly smaller maximum concentration KM2 is reached up to time T2, at the end of time window TW.

Als Konzentrations-Vergleichswertes VgW kann, wie aus den vorgenannten Ausführungsbeispielen ersichtlich wird, die jeweilige bis zu einem bestimmten Zeitpunkt innerhalb des Zeitfensters TW oder zum Ende des Zeitfensters TW erreichte Maximalkonzentration MK1, MK2 oder auch der jeweilige Gradient G1, G2 des NOx-/NH3-Konzentrationsanstiegs innerhalb des Zeitfensters TW herangezogen werden. Weiterhin ist es möglich die stromabwärts des SCR-Partikelfilters ermittelten Konzentrationswerte und die stromaufwärts vorgegebenen oder ermittelten Konzentrationswerte in Kombination zu betrachten und daraus einen Vergleichswert zu ermitteln. Die NOx-/NH3-Konzentrationswerte stromaufwärts des SCR-Partikelfilters können dabei auf den Vorgabewerten beruhen, mit Hilfe von Modellbetrachtungen ermittelt oder mittels Konzentrationssensor (sofern vorhanden) gemessen werden.As can be seen from the aforementioned exemplary embodiments, the maximum concentration MK1, MK2 reached up to a certain point in time within the time window TW or at the end of the time window TW or the respective gradient G1, G2 of the NO x - / NH 3 concentration increase within the time window TW can be used. Furthermore, it is possible to consider the concentration values determined downstream of the SCR particle filter and the concentration values specified or determined upstream in combination and to use them therefrom to determine a comparison value. The NO x / NH 3 concentration values upstream of the SCR particle filter can be based on the default values, determined with the aid of model considerations or measured by means of a concentration sensor (if available).

Zur Ermittlung eines Konzentrations-Vergleichswertes VgW kann in einem Ausführungsbeispiel der innerhalb des Zeitfensters TW ermittelte Gradient des Konzentrationsanstieges stromabwärts des SCR-Partikelfilters durch den Sprungwert der Konzentrationsänderung stromaufwärts des SCR-Partikelfilters dividiert werden. Das Ergebnis wird als Konzentrations-Vergleichswertes VgW herangezogen. Liegt beispielsweise der Gradient des Konzentrationsanstieges stromabwärts des SCR-Partikelfilters bei 11,3 ppm/s und der Sprungwert der Konzentrationsänderung stromaufwärts des SCR-Partikelfilters beträgt 480ppm (wobei auf die Vorzeichen zu achten ist) so ergibt sich ein Konzentrations-Vergleichswert von: 11,3 ppm / s / 480 ppm = 0,024 / s .

Figure imgb0001
To determine a concentration comparison value VgW, in one embodiment the gradient of the increase in concentration downstream of the SCR particle filter determined within the time window TW can be divided by the jump value of the change in concentration upstream of the SCR particle filter. The result is used as the concentration comparison value VgW. For example, if the gradient of the increase in concentration downstream of the SCR particle filter is 11.3 ppm / s and the jump value for the change in concentration upstream of the SCR particle filter is 480 ppm (paying attention to the sign), the result is a comparison value of: 11.3 ppm / s / 480 ppm = 0.024 / s .
Figure imgb0001

Liegt nun ein Grenzwert GW von zum Beispiel 0,016 /s vor, so wäre dieser überschritten (VgW ≥ GW) und der SCR-Partikelfilter wäre als schadhaft zu bewerten (SCR-PF=nok).If there is a limit value GW of, for example, 0.016 / s, then this would be exceeded (VgW ≥ GW) and the SCR particle filter would have to be assessed as defective (SCR-PF = nok).

Diese Vorgehensweise erhöht die Robustheit des Verfahrens gegen Störeinflüsse.This procedure increases the robustness of the method against interfering influences.

Eine weitere Ausführung des Verfahrens ist dadurch gekennzeichnet, dass die NH3- und/oder NOx-Konzentrationsänderung eine Konzentrationserhöhung und eine unmittelbar darauf folgende Konzentrationsreduzierung aufweist und die Werte und oder die Gradienten der Konzentrationserhöhung und der Konzentrationsreduzierung jeweils nach und vor dem SCR-Partikelfilter 3 in Kombination miteinander zur Bewertung der gemessenen NH3und/oder NOx-Konzentrationsänderung nach dem SCR-Partikelfilter 3 herangezogen werden.Another embodiment of the method is characterized in that the change in NH 3 and / or NO x concentration has an increase in concentration and an immediately following reduction in concentration, and the values and / or the gradients of the increase in concentration and the reduction in concentration in each case after and before the SCR particle filter 3 can be used in combination with one another to evaluate the measured change in NH 3 and / or NO x concentration after the SCR particle filter 3.

So kann beispielsweise jeweils ein Verhältniswert des Gradienten des Konzentrationsanstieges stromabwärts und des Sprungwertes der Konzentrationsanhebung stromaufwärts des SCR-Partikelfilters sowie des Gradienten des darauffolgenden Konzentrationsabfalls stromabwärts und des zugehörigen Sprungwertes der Konzentrationsreduzierung stromaufwärts des SCR-Partikelfilters gebildet und deren Summe errechnet werden.For example, a ratio of the gradient of the concentration increase downstream and the grade value of the concentration increase upstream of the SCR particle filter as well as the gradient of the subsequent concentration drop downstream and the associated grade value of the concentration reduction upstream of the SCR particle filter can be formed and their sum can be calculated.

Dies ist qualitativ in Figur 4 dargestellt. Gezeigt ist die Verlaufskurve 100 der NH3-/NOx-Konzentration stromaufwärts und die daraus resultierende Verlaufskurve 110 der NH3-/NOx-Konzentration stromabwärts des SCR-Partikelfilters. Die Verlaufskurve 100 zeigt eine gezielt und definiert herbeigeführte sprunghafte Konzentrationserhöhung +KSp1 um einen bestimmten Betrag, zum Zeitpunkt T1 und ein Verharren der erhöhten NH3-/NOx-Konzentration über das Zeitfenster TW1 bis zum Zeitpunkt T2. Dann folgt eine ebenso gezielt und definiert herbeigeführte sprunghafte Konzentrationsreduzierung -KSp2 um den gleichen Betrag, also eine komplette Zurücknahme der Konzentrationserhöhung, zum Zeitpunkt T2. Der sich daraus ergebende Verlauf der NH3-/NOx-Konzentration stromabwärts des SCR-Partikelfilters verzeichnet einen auf den Zeitpunkt T1 folgenden Anstieg mit dem Gradient +G1a, innerhalb des unmittelbar auf die Konzentrationsänderung +KSp1 folgenden Zeitfensters TW1, bis zum Zeitpunkt T2 und ein darauf folgendes Abfallen der NH3-/NOx-Konzentration mit einem Gradient -G1b innerhalb des unmittelbar auf die Konzentrationsänderung -KSp2 folgenden Zeitfensters TW2 das bis zu Zeitpunkt T3 dauert. Nach dem oben genannten Schema kann der Konzentrations-Vergleichswert VgW nach folgender Beziehung ermittelt werden: + G1a / + KSp1 + G1b / KSp2 = VgW

Figure imgb0002
This is qualitatively in Figure 4 shown. Shown is the curve 100 of the NH 3 - / NO x concentration upstream and the resulting curve 110 of the NH 3 - / NO x concentration downstream of the SCR particle filter. The curve 100 shows a deliberately and defined sudden increase in concentration + KSp1 by a certain amount at time T1 and a persistence of the increased NH 3 - / NO x concentration over the time window TW1 up to time T2. This is followed by an equally targeted and defined sudden concentration reduction -KSp2 by the same amount, that is to say a complete reduction in the concentration increase, at time T2. The resulting course of the NH 3 - / NO x concentration downstream of the SCR particle filter shows an increase following time T1 with the gradient + G1a, within the time window TW1 immediately following the change in concentration + KSp1, up to time T2 and a subsequent drop in the NH 3 - / NO x concentration with a gradient -G1b within the time window TW2 immediately following the change in concentration -KSp2, which lasts up to time T3. According to the above scheme, the concentration comparison value VgW can be determined according to the following relationship: + G1a / + KSp1 + - G1b / - KSp2 = VgW
Figure imgb0002

Ergibt sich beispielsweise ein Gradient von +7,3 ppm/s stromabwärts bei einem Sprungwert der Konzentrationsanhebung von +480 ppm stromaufwärts des SCR-Partikelfilters und darauffolgend ein Gradient von -11,3 ppm/s stromabwärts bei einem Sprungwert der Konzentrationsreduzierung von -480 ppm/s so errechnet sich der Konzentrations-Vergleichswert zu: + 7,3 ppm / s / + 480 ppm + 11,3 ppm / s / 480 ppm = 0,015 / s + 0,024 / s = 0,039 / s .

Figure imgb0003
For example, there is a gradient of +7.3 ppm / s downstream with a jump value of the concentration increase of +480 ppm upstream of the SCR particle filter and then a gradient of -11.3 ppm / s downstream with a jump value of the concentration reduction of -480 ppm / s this is how the concentration comparison value is calculated as follows: + 7.3 ppm / s / + 480 ppm + - 11.3 ppm / s / - 480 ppm = 0.015 / s + 0.024 / s = 0.039 / s .
Figure imgb0003

Liegt nun ein Grenzwert GW von zum Beispiel 0,026 /s vor, so wäre dieser überschritten (VgW ≥ GW) und der SCR-Partikelfilter wäre als schadhaft zu bewerten (SCR-PF=nok).If there is a limit value GW of, for example, 0.026 / s, then this would be exceeded (VgW ≥ GW) and the SCR particle filter would have to be assessed as defective (SCR-PF = nok).

Diese Vorgehensweise erhöht die Robustheit des Verfahrens gegen Störeinflüsse weiter.This procedure further increases the robustness of the method against interfering influences.

In weiterer Ausgestaltung des Verfahrens wird nach dem Diagnostizieren des SCR-Partikelfilter 3, die gezielte, definierte NH3- und/oder NOx-Konzentrationsänderung im Abgasmassenstrom 10 stromaufwärts des SCR-Partikelfilters 3 zurückgenommen, die Diagnose-Betriebsart beendet und die NH3- und/oder NOx-Konzentration wird wieder in Abhängigkeit vom aktuellen Betriebspunkt des Verbrennungsmotors eingestellt oder geregelt.In a further embodiment of the method, after the diagnosis of the SCR particle filter 3, the targeted, defined change in the NH 3 and / or NO x concentration in the exhaust gas mass flow 10 upstream of the SCR particle filter 3 is withdrawn, the diagnostic mode is ended and the NH 3 - and / or NOx concentration is again set or regulated as a function of the current operating point of the internal combustion engine.

Wie aus Figur 2 ersichtlich ist können nun auf Basis und in Abhängigkeit des Diagnoseergebnisses unterschiedliche weitere Maßnahmen eingeleitet werden.How out Figure 2 As can be seen, different further measures can now be initiated on the basis of and as a function of the diagnosis result.

Ergibt die Diagnose, dass der SCR-Partikelfilter intakt ist und fehlerfrei funktioniert (SCR-PF = ok) so kann die Brennkraftmaschine nach Durchführung des Verfahrens, also nach der Diagnose der Funktionstüchtigkeit des SCR-Partikelfilters 3 wieder im normalen Arbeits-Betriebsmodus weiter betrieben werden, dies ist in dem mit "BP_Norm" gekennzeichneten Verfahrensschritt dargestellt.If the diagnosis shows that the SCR particle filter is intact and working properly (SCR-PF = ok), the internal combustion engine can continue to operate in the normal operating mode after the method has been carried out, i.e. after the functionality of the SCR particle filter 3 has been diagnosed , this is shown in the process step marked "BP_Norm".

Ergibt die Diagnose jedoch, dass der SCR-Partikelfilter schadhaft ist (SCR-PF = nok) kann stattdessen ein Notbetrieb der Brennkraftmaschine eingeleitet werden, der beispielsweise ein Aufsuchen einer Werkstatt bei reduzierter Motorleistung noch ermöglicht. Gleichzeitig kann eine Fehlermeldung an den Fahrzeugführer ausgegeben werden mit der Aufforderung umgehend die nächste Werkstatt aufzusuchen bzw. die Reperatur zu veranlassen. Dies ist in Figur 2 in dem mit "BP_Not" gekennzeichneten Verfahrensschritt dargestellt.However, if the diagnosis reveals that the SCR particle filter is defective (SCR-PF = nok), emergency operation of the internal combustion engine can be initiated instead, which, for example, still enables a workshop to be visited when the engine output is reduced. At the same time, an error message can be output to the vehicle driver with the request to visit the nearest workshop immediately or to initiate the repair. This is in Figure 2 in the process step marked with "BP_Not".

Claims (17)

  1. Method for operating an exhaust-gas aftertreatment system of an internal combustion engine, which exhaust-gas aftertreatment system has an exhaust-gas line (1) for conducting an exhaust-gas mass flow (10) and has an SCR particle filter (3) arranged in the exhaust-gas line (1), wherein a device for targeted, defined variation of the NH3 and/or NOx concentration is arranged in the exhaust-gas mass flow (10) upstream of the SCR particle filter (3), and at least one first concentration sensor (6) is arranged in the exhaust-gas mass flow (10) downstream of the SCR particle filter (3), in order to detect apertures in the filter substrate of the SCR particle filter (3), having the following steps:
    - setting the internal combustion engine to a diagnostic operating mode, wherein certain relevant diagnostic operating parameters (D-BP) of the internal combustion engine are verified for, or set or adjusted to, correspondence with diagnostic default values (D-BP_set);
    in the presence of the diagnostic operating mode,
    - targeted, defined inducement of an NH3 concentration change and/or of an NOx concentration change in the exhaust-gas mass flow (10) upstream of the SCR particle filter (3) in relation to the values of the NH3 concentration and/or of the NOx concentration that are present in the diagnostic operating mode;
    - measuring the NH3 and/or NOx concentration change in the exhaust-gas mass flow (10) downstream of the SCR particle filter (3) within a specified time window (TW), which directly follows the abovementioned NH3 and/or NOx concentration change measured upstream of the SCR particle filter (3), by means of the at least one first concentration sensor (6), which outputs a corresponding first concentration measurement signal (110); and
    - providing a correlating concentration comparison value (VgW) at least on the basis of the first concentration measurement signal (110);
    - evaluating the NH3 and/or NOx concentration change downstream of the SCR particle filter (3) measured within the specified time window (TW) on the basis of the respective concentration comparison value (VgW) and predefined limit values (GW); and
    - diagnosing the SCR particle filter (3) as defective owing to apertures in the filter substrate if the evaluation yields that the concentration comparison value (VgW) has overshot at least one predefined limit value (GW) .
  2. Method according to Claim 1, in which the device for targeted, defined inducement of the NH3 and/or NOx concentration change in the exhaust-gas mass flow (10) upstream of the SCR particle filter (3) has an NH3 feed device (7) for the feed of an NH3 solution (7d) into the exhaust-gas line (1) and/or has a first exhaust-gas recirculation device (2) which branches off from the exhaust-gas line (1) upstream of the SCR particle filter (3) and/or has a further exhaust-gas recirculation device (8) which branches off from the exhaust-gas line (1) downstream of the SCR particle filter (3).
  3. Method according to Claim 1 or 2,
    wherein the diagnostic operating mode is characterized by at least one of the following diagnostic operating parameters:
    - engine speed (RPM) of the internal combustion engine between 1100 and 1900 revolutions/minute;
    - operating temperature (T-SC-PF) of the SCR particle filter (3) between 250°C and 350°C;
    - pressure difference of the exhaust-gas mass flow (ΔP_SCR-PF) across the SCR particle filter (3) of between 3 bar and 7 bar;
    - stored NH3 quantity (SM_SC-PF) in the SCR particle filter (3) lies above a predefined threshold value;
    - added NH3 quantity adjusted to a value which is stoichiometric in relation to the NOx concentration in the exhaust gas upstream of the SCR particle filter.
  4. Method according to either of Claims 2 and 3,
    wherein the defined NOx concentration change upstream of the SCR particle filter (3) consists in an increase or a reduction of the NOx concentration that is set as a result of a defined reduction or increase of an exhaust-gas recirculation rate of the first exhaust-gas recirculation device (2) and/or of the further exhaust-gas recirculation device (8).
  5. Method according to one of Claims 2 to 4,
    wherein the defined NH3 concentration change upstream of the SCR particle filter (3) consists in a defined increase or reduction of the NH3 concentration that is set as a result of a defined increase or reduction of the added quantity of the NH3 solution (7d) by means of the NH3 feed device (7) .
  6. Method according to one of Claims 1 to 5,
    wherein, in the evaluation of the NOx concentration change and/or NH3 concentration change downstream of the SCR particle filter (3) measured within the specified time window (TW), a respective maximum value or minimum value, attained within the defined time window (TW), of the concentration change and/or a gradient, determined within the defined time window (TW), of the concentration change is used as concentration comparison value (VgW).
  7. Method according to any of Claims 1 to 6, characterized in that, in the course of the NH3 and/or NOx concentration change, a concentration increase and an immediately subsequent concentration reduction occur, wherein, after the concentration increase for a particular first period of time, the concentration reduction occurs to such a selected value, and for such a selected second period of time, that a resulting mean value of the NH3 and/or NOx concentration over the duration of the concentration increase and of the concentration reduction corresponds to the value of the NH3 and/or NOx concentration prevailing before the concentration increase.
  8. Method according to one of Claims 1 to 7,
    wherein, for the measurement of the NH3 and/or NOx concentration change in the exhaust-gas mass flow (10),
    use is made in each case of a combined concentration sensor (6) which combines the NH3 and/or NOx concentration change in a combined concentration measurement signal (110) .
  9. Method according to any of Claims 1 to 8, characterized in that the respective specified time window (TW) has a duration of less than or equal to 5 seconds, in particular less than or equal to 3 seconds.
  10. Method according to any of Claims 1 to 9, characterized in that, after the diagnosis of the SCR particle filter (3), the targeted, defined NH3 and/or NOx concentration change in the exhaust-gas mass flow (10) upstream of the SCR particle filter (3) is withdrawn and, in a manner dependent on the diagnosis result, the internal combustion engine is transferred back into the normal working operating mode (BP_Norm) and continues to be operated, or is restricted to emergency operation (BP_Not).
  11. Method according to any of Claims 1 to 10, characterized in that an additional concentration sensor (5) is arranged in the exhaust-gas mass flow (10) upstream of the SCR particle filter (3), by means of which additional concentration sensor a second concentration measurement signal (100) which correlates with the NH3 and/or NOx concentration change in the exhaust-gas mass flow (10) upstream of the SCR particle filter (3) is provided, wherein the concentration comparison value (VgW) used for the evaluation of the measured NH3 and/or NOx concentration change downstream of the SCR particle filter (3) is based on the respective NH3 and/or NOx concentration changes downstream and upstream of the SCR particle filter (3) determined within the defined time window (TW).
  12. Method according to Claim 11, characterized in that the values of the NH3 and/or NOx concentration changes determined within the defined time window at a particular point in time, and/or the gradients of said concentration changes, in each case upstream and downstream of the SCR particle filter (3) are compared with one another or set in relation to one another.
  13. Method according to Claim 12, characterized in that the NH3 and/or NOx concentration change has a concentration increase and an immediately subsequent concentration reduction, and the values and/or the gradients of the concentration increase and of the concentration reduction in each case upstream and downstream of the SCR particle filter (3) are used in combination with one another for the evaluation of the measured NH3 and/or NOx concentration change downstream of the SCR particle filter (3).
  14. Exhaust-gas aftertreatment system of an internal combustion engine, which exhaust-gas aftertreatment system has an SCR particle filter (3) arranged in an exhaust-gas line (1) and has at least one device for targeted, defined variation of the NH3 and/or NOx concentration in the exhaust-gas mass flow (10) upstream of the SCR particle filter (3) and has at least one first concentration sensor (6) for measuring the NH3 and/or NOx concentration in the exhaust-gas mass flow (10) downstream of the SCR particle filter (3), characterized in that the exhaust-gas aftertreatment system has an electronic processing and control unit (15) which is configured for targeted, defined variation of the NH3 and/or NOx concentration in the exhaust-gas mass flow (10) upstream of the SCR particle filter (3) by means of at least one of the devices for targeted, defined variation of the NH3 and/or NOx concentration and for detecting a first concentration measurement signal (110) output by the at least one concentration sensor (6), wherein the electronic processing and control unit (15) is furthermore configured to execute the method for operating an exhaust-gas aftertreatment system of an internal combustion engine according to any of Claims 1 to 10.
  15. Exhaust-gas aftertreatment system according to Claim 14, characterized in that it has an additional concentration sensor (5) which is arranged in the exhaust-gas mass flow (10) upstream of the SCR particle filter (3) and which serves for measuring the NH3 and/or NOx concentration upstream of the SCR particle filter (3), wherein the electronic processing and control unit (15) is configured to execute the method for operating an exhaust-gas aftertreatment system of an internal combustion engine according to any of Claims 11 to 13.
  16. Exhaust-gas aftertreatment system according to Claim 14 or 15, in which the device for targeted, defined variation of the NH3 and/or NOx concentration in the exhaust-gas mass flow (10) upstream of the SCR particle filter (3) has an NH3 feed device (7) for the feed of an NH3 solution (7d) into the exhaust-gas line (1) and/or has a first exhaust-gas recirculation device (2) which branches off from the exhaust-gas line (1) upstream of the SCR particle filter (3) and/or has a further exhaust-gas recirculation device (8) which branches off from the exhaust-gas line (1) downstream of the SCR particle filter (3).
  17. Exhaust-gas aftertreatment system according to any of Claims 14 to 16, characterized in that the electronic processing and control unit (15) is an integral constituent part of a central control unit (16) of the internal combustion engine, and the method for being executed is part of an on-board diagnostic system for monitoring the exhaust-gas-relevant functional units of the internal combustion engine during intended operation.
EP18808321.6A 2017-11-29 2018-11-23 Method for operating an exhaust aftertreatment system of an internal combustion engine and exhaust aftertreatment system Active EP3717757B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102017221358 2017-11-29
DE102018215627.1A DE102018215627A1 (en) 2017-11-29 2018-09-13 Method for operating an exhaust aftertreatment system of an internal combustion engine and exhaust aftertreatment system
PCT/EP2018/082357 WO2019105859A1 (en) 2017-11-29 2018-11-23 Method for operating an exhaust gas aftertreatment system of an internal combustion engine, and exhaust gas aftertreatment system

Publications (2)

Publication Number Publication Date
EP3717757A1 EP3717757A1 (en) 2020-10-07
EP3717757B1 true EP3717757B1 (en) 2021-10-06

Family

ID=66442738

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18808321.6A Active EP3717757B1 (en) 2017-11-29 2018-11-23 Method for operating an exhaust aftertreatment system of an internal combustion engine and exhaust aftertreatment system

Country Status (6)

Country Link
US (1) US11346267B2 (en)
EP (1) EP3717757B1 (en)
KR (1) KR102435576B1 (en)
CN (1) CN111492126B (en)
DE (1) DE102018215627A1 (en)
WO (1) WO2019105859A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019207757B4 (en) * 2019-05-27 2021-10-14 Vitesco Technologies GmbH Method for operating an exhaust gas aftertreatment system of an internal combustion engine and an exhaust gas aftertreatment system
DE102020202551A1 (en) 2020-02-28 2021-09-02 Vitesco Technologies GmbH Method and device for diagnosing a coated particle filter arranged in an exhaust gas duct of a motor vehicle
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods
DE102020211731B4 (en) 2020-09-18 2022-08-18 Vitesco Technologies GmbH Method and device for diagnosing a coated Otto particle filter of an exhaust system of an internal combustion engine
CN113513419B (en) * 2021-03-29 2022-10-14 广西玉柴机器股份有限公司 Method for adjusting engine post-treatment heat treatment system and engine controller
CN113340605B (en) * 2021-04-29 2023-01-24 广西玉柴机器股份有限公司 Tractor whole vehicle carbon accumulation test method and system
CN113279849B (en) * 2021-07-05 2023-04-07 凯龙高科技股份有限公司 NH3 leakage identification and detection method for SCR system
KR102600606B1 (en) * 2021-10-19 2023-11-09 한화오션 주식회사 Fuel Supply System And Method For Ship
DE102021212868A1 (en) * 2021-11-16 2023-05-17 Robert Bosch Gesellschaft mit beschränkter Haftung Method for determining an exhaust gas composition of an exhaust gas from an internal combustion engine
WO2024116089A1 (en) * 2022-12-01 2024-06-06 Stellantis Europe S.P.A. A method for detecting malfunctions of a particulate trap installed in an exhaust after-treatment system of a motor vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037730A1 (en) * 2005-09-29 2007-04-05 Volvo Lastvagnar Ab A diagnostic method for an exhaust aftertreatment system
US20130202506A1 (en) * 2012-02-07 2013-08-08 Robert Bosch Gmbh Method for monitoring an scr catalyst
WO2013147653A1 (en) * 2012-03-29 2013-10-03 Volvo Construction Equipment Ab Method for diagnosing a selective catalytic reduction catalyst
DE102013200623A1 (en) * 2013-01-17 2014-07-17 Robert Bosch Gmbh Method for monitoring particulate filter in exhaust gas purification system in internal combustion engine of motor car, involves closing emission control component in comparison to oxide concentration in flow direction of exhaust gas
US20160069243A1 (en) * 2013-04-10 2016-03-10 Daimler Ag Method for Operating an Exhaust Gas Purification System of a Motor Vehicle Combustion Engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156159A (en) 2007-12-26 2009-07-16 Toyota Motor Corp Device for determining abnormal section of exhaust emission control system
FR2956987B1 (en) 2010-03-02 2012-03-23 Peugeot Citroen Automobiles Sa METHOD FOR DETECTING THE FAILURE OPERATION OF A PARTICLE FILTER OF AN ANTI-POLLUTION SYSTEM
DE102010029740B4 (en) * 2010-06-07 2022-05-12 Robert Bosch Gmbh Procedure for monitoring an SCR catalytic converter
US8800274B2 (en) * 2011-05-12 2014-08-12 GM Global Technology Operations LLC Method for managing ammonia slip
DE102012105952A1 (en) * 2012-07-04 2014-01-09 Emitec Gesellschaft Für Emissionstechnologie Mbh A method of adding a reducing agent to an exhaust treatment device
DE102012220151A1 (en) 2012-11-06 2014-05-22 Robert Bosch Gmbh Method for checking SCR catalysts in exhaust gas system of internal combustion engine of motor car, involves altering size of ammonia sensor to output signal to ammonium cross-sensitive sensor, which is attenuated below threshold level
US9879580B2 (en) * 2015-08-19 2018-01-30 Cummins, Inc. Diagnostic methods for a high efficiency exhaust aftertreatment system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037730A1 (en) * 2005-09-29 2007-04-05 Volvo Lastvagnar Ab A diagnostic method for an exhaust aftertreatment system
US20130202506A1 (en) * 2012-02-07 2013-08-08 Robert Bosch Gmbh Method for monitoring an scr catalyst
WO2013147653A1 (en) * 2012-03-29 2013-10-03 Volvo Construction Equipment Ab Method for diagnosing a selective catalytic reduction catalyst
DE102013200623A1 (en) * 2013-01-17 2014-07-17 Robert Bosch Gmbh Method for monitoring particulate filter in exhaust gas purification system in internal combustion engine of motor car, involves closing emission control component in comparison to oxide concentration in flow direction of exhaust gas
US20160069243A1 (en) * 2013-04-10 2016-03-10 Daimler Ag Method for Operating an Exhaust Gas Purification System of a Motor Vehicle Combustion Engine

Also Published As

Publication number Publication date
WO2019105859A1 (en) 2019-06-06
CN111492126B (en) 2022-04-29
KR20200087859A (en) 2020-07-21
US11346267B2 (en) 2022-05-31
CN111492126A (en) 2020-08-04
DE102018215627A1 (en) 2019-05-29
KR102435576B1 (en) 2022-08-23
EP3717757A1 (en) 2020-10-07
US20200378288A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
EP3717757B1 (en) Method for operating an exhaust aftertreatment system of an internal combustion engine and exhaust aftertreatment system
DE112011100874B4 (en) Control system for dosing compensation in an SCR system
EP3111061B1 (en) Method for determining the aging of an oxidation catalyst in an exhaust gas aftertreatment system of an internal combustion engine, method for detecting ash in a particle filter of an exhaust gas aftertreatment system, control device, and internal combustion engine
DE102008038677B4 (en) Method and device for diagnosing a catalytic converter
DE102007040439A1 (en) Operating and diagnostic procedures for an SCR exhaust aftertreatment system
DE102007006489A1 (en) Method for diagnosis of exhaust sensor within exhaust area of internal-combustion engine, involves detecting change in operating value of internal-combustion engine or characteristic of exhaust gas
EP1373693A1 (en) Method and device for monitoring an exhaust gas treatment system
WO2009092429A1 (en) Method for determining the nitrogen dioxide concentration in exhaust gases
DE102009055082A1 (en) A method of monitoring pollutant conversion capability in an exhaust aftertreatment system
DE102016211575A1 (en) Error detection in an SCR system using an ammonia level
DE102010040678A1 (en) A method of monitoring pollutant conversion capability in an exhaust aftertreatment system
DE102016203227A1 (en) Method for diagnosing an exhaust gas aftertreatment system for an internal combustion engine
EP2238321B1 (en) Method and controller for checking an exhaust gas aftertreatment system of an internal combustion engine
DE102007003547B4 (en) Method for diagnosing an exhaust region of an internal combustion engine containing an exhaust gas treatment device and device for carrying out the method
DE102012211705A1 (en) Method for checking cross-sensitivity of ammonia of nitrogen oxide sensor in SCR catalyst system of diesel engine, involves determining nitrogen oxide concentration in exhaust gas between catalysts from nitrogen oxide model
DE102017204300A1 (en) Method for diagnosing an SCR system
DE102015200751B4 (en) Method for monitoring an exhaust gas aftertreatment system of an internal combustion engine and control device for an exhaust gas aftertreatment system
DE102010028846A1 (en) Method for operating exhaust system of diesel engine, involves evaluating temporally increase of nitrogen oxide flow supplied from selective catalytic reduction catalyzer for closing aging state of catalyzer
DE102018213380A1 (en) Method for monitoring an SCR catalytic converter
WO2020052866A1 (en) Method for diagnosing the function of an exhaust gas aftertreatment system of an internal combustion engine, and exhaust gas aftertreatment system
DE102007006487B4 (en) Method for diagnosing an exhaust gas sensor arranged in an exhaust region of an internal combustion engine and device for carrying out the method
DE102014209966B4 (en) Method and device for evaluating the functionality of a SCR catalytic converter in an exhaust system of a diesel engine
DE102019207757B4 (en) Method for operating an exhaust gas aftertreatment system of an internal combustion engine and an exhaust gas aftertreatment system
DE102008042763B4 (en) Method for diagnosing a reagent dosing device and device for carrying out the method
DE102015207881A1 (en) Method for monitoring an SCR catalyst

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200629

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VITESCO TECHNOLOGIES GMBH

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210630

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1436416

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018007394

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: VITESCO TECHNOLOGIES GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502018007394

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220206

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220207

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220106

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220107

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018007394

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211123

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211123

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181123

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231120

Year of fee payment: 6

Ref country code: DE

Payment date: 20231130

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006