EP3707381B1 - Undulating-membrane fluid circulator - Google Patents

Undulating-membrane fluid circulator Download PDF

Info

Publication number
EP3707381B1
EP3707381B1 EP18810891.4A EP18810891A EP3707381B1 EP 3707381 B1 EP3707381 B1 EP 3707381B1 EP 18810891 A EP18810891 A EP 18810891A EP 3707381 B1 EP3707381 B1 EP 3707381B1
Authority
EP
European Patent Office
Prior art keywords
membrane
fluid
orienting means
undulating
circulator according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18810891.4A
Other languages
German (de)
French (fr)
Other versions
EP3707381A1 (en
EP3707381B8 (en
Inventor
Jean-Baptiste Drevet
Harold GUILLEMIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CorWave SA
Original Assignee
CorWave SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CorWave SA filed Critical CorWave SA
Publication of EP3707381A1 publication Critical patent/EP3707381A1/en
Publication of EP3707381B1 publication Critical patent/EP3707381B1/en
Application granted granted Critical
Publication of EP3707381B8 publication Critical patent/EP3707381B8/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0018Special features the periphery of the flexible member being not fixed to the pump-casing, but acting as a valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0054Special features particularities of the flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive

Definitions

  • the present invention relates to an undulating membrane fluid circulator.
  • the invention will advantageously find application in the fields of the transport of fragile fluids, such as for example medical or food, however, although particularly intended for such applications, the circulator may be used in other industrial or domestic applications.
  • the document FR 355 700 discloses a circulator according to the preamble of claim 1, characterized in that one or more elastic impermeable membranes undulate against rigid walls by operating either the transformation of a flow of liquids, vapors or gases, into electrical or mechanical energy, or the reciprocal transformation.
  • This type of circulator comprises a membrane placed in undulation in a pump body.
  • the pump body defines a propulsion chamber for the fluid to be conveyed between an inlet orifice and a discharge orifice.
  • the actuation of the membrane is carried out by drive means such as an actuator, connected to the membrane.
  • the actuation of the membrane causes undulations of the latter which transmit mechanical energy to the fluid so as to ensure its propulsion.
  • This type of circulator has many advantages compared to other pump technologies, for example volumetric reciprocating cycles or volumetric peristaltic type.
  • this type circulator is suitable for the transport of fragile fluids and has a small footprint.
  • the Applicant has observed the existence of movements of the fluid in a direction transverse to the displacement of the wave on the membrane. These transverse movements, at the edges of the membrane, reduce the pressure differential existing in the propulsion chamber between the space located above the membrane and that located below and consequently reduce the propulsion force of the upstream edges and downstream of the membrane.
  • the object of the present invention is to propose an improvement to the undulating membrane fluid circulators described in the state of the art.
  • the object of the present invention is thus to provide a circulator whose structure makes it possible to maintain a significant pressure differential at the edges of the membrane, providing the circulator with increased hydraulic power for the same size.
  • the present invention relates to a fluid circulator with an undulating membrane according to the independent claim.
  • the expression “close to one of the edges of the undulating membrane” means “closer to one of the upstream or downstream edges of the membrane than to the other of the upstream or downstream of the membrane”.
  • the first fluid orientation means is closer to one of the edges of the membrane, in this case the upstream edge, than it is to the downstream edge.
  • the structure of the circulator according to the invention consequently makes it possible to eliminate or at least to limit, at the level of at least one edge of the membrane, the transverse flows of fluid to the displacement of the wave on the membrane.
  • the deflector is a part separate from the membrane which can be in contact against the membrane or which is preferentially remote from this membrane. Furthermore, this deflector is preferably fixed to the pump body.
  • the first orientation means is arranged close to the upstream edge of the undulating membrane and a second orientation means is arranged close to the downstream edge of the undulating membrane.
  • the first means orientation extends along the upstream edge while being opposite and at a distance from this upstream edge.
  • the second orientation means extends along the downstream edge while being opposite and at a distance from this downstream edge.
  • first orientation means is rigid and relatively non-deformable with respect to the membrane which is flexible and deformable.
  • the first orientation means promotes laminar flows on either side of the orientation means up to the proximity of the upstream edge of the membrane, this reduces turbulence at the level of the upstream edge and allows better fluid propulsion efficiency by the undulating membrane.
  • the second orientation means is rigid and relatively non-deformable opposite the membrane which is flexible and deformable.
  • the second orientation means favors laminar flows on either side of the orientation means, this laminar flow thus being favored close to the downstream edge of the membrane. This reduces turbulence at the downstream edge and allows better fluid propulsion efficiency through the undulating membrane.
  • first orientation means may be connected by a flexible connection to the upstream edge of the membrane, this first orientation means forming with the membrane and with the flexible connection a sealed separation between two distinct spaces of the propulsion separated from each other by the membrane.
  • This flexible connection opposes the passage of fluid between the first orientation means and the upstream edge of the membrane, which accordingly limits the sources of turbulence in the flow.
  • This solution can, in certain cases, allow an improvement in the efficiency of the circulator.
  • the second orientation means may be connected by a flexible connection to the downstream edge of the membrane, this second orientation means forming with the membrane and with this flexible connection, a sealed separation between two spaces distinct from the propulsion chamber separated from each other by the membrane and the second orientation means.
  • This flexible connection opposes the passage of fluid between the second orientation means and the downstream edge of the membrane, which accordingly limits the sources of turbulence in the flow.
  • This solution can, in certain cases, allow an improvement in the efficiency of the circulator.
  • the first orientation means comprises at least one deflector which preferably extends along the upstream edge of the membrane and in the extension of the membrane when the membrane is observed in a direction of observation perpendicular to a direction of flow substantially parallel to the displacement of the wave on the membrane.
  • the second orientation means comprises at least one deflector which preferably extends along the downstream edge of the membrane and in the extension of the membrane when the membrane is observed in a direction of observation perpendicular to a direction of flow substantially parallel to the displacement of the wave on the membrane.
  • the upstream deflector and/or the downstream deflector also extends in a plane parallel to the plane of the membrane (see the examples of figures 1 to 3 and 5 to 8 ).
  • the chosen membrane forms a tube extending between its upstream and downstream edges which are annular, there will then be an annular upstream deflector and/or an annular downstream deflector (see the example of the figure 4 ).
  • a circulator 1 with an undulating membrane 2, deformable, in the form of a longitudinal blade, a fluid inlet 3, a pump body 4 defining a propulsion chamber 5 and a discharge orifice 6.
  • the undulating membrane 2 is associated with a drive means allowing an undulating movement of the membrane 2 between its upstream 8 and downstream 9 edges, this drive means, as well as the elements for connecting to the membrane appear in the application FR 2 744 769 , and are not represented in the figures 1 to 6 appended for ease of reading.
  • the drive means will advantageously consist of an actuator connected directly or by a connecting element to the upstream edge of the membrane 2.
  • the actuation of the membrane 2 makes it possible to create a wave propagating from the upstream edge 8 towards the downstream edge 9 of the membrane 2.
  • the fluid is itself introduced through the inlet orifice 3 into the propulsion chamber 5 then moved in the direction of the discharge orifice 6 by the undulations of the membrane 2.
  • the circulator 1 is, according to the invention, equipped with means 7 for orienting the fluid.
  • orientation means 7 arranged in the propulsion chamber 5 upstream of the undulating membrane 2.
  • orientation means 7 make it possible to channel the flow of fluid in a direction substantially parallel to the displacement of the wave on the membrane 2.
  • the fluid, arriving upstream of the membrane 2 is prevented by the orientation means 7 from moving transversely to the movement of the wave and by consequently the fluid cannot flow above or below the membrane 2 depending on the undulations of the latter. In this way the pressure differential created by the ripple is no longer compensated by a transverse fluid transfer as in the circulator described in the document FR 2 744 769 .
  • the pressure differential ensures good propulsion of the fluid by the part of the membrane close to the upstream edge 8 which consequently becomes effective.
  • the hydraulic power generated by the circulator 1 is therefore increased.
  • orientation means 7 are also provided downstream of the membrane 2 near the downstream edge 9 of the membrane 2 .
  • the operation of the orientation means 7 arranged downstream is the same as that of those located upstream of the membrane 2, namely allowing by directing the flow of fluid at the outlet of the membrane 2 to maintain a pressure differential ensuring good propulsion of the fluid by the downstream edge 9. In this way the whole of the membrane 2 is used efficiently and the hydraulic power of the circulator 1 is increased.
  • the orientation means 7 comprise at least one deflector 10.
  • the deflector 10 is advantageously made from a flexible material, so as not only to orient the fluid but also to promote its propulsion.
  • means are provided for exciting the flexible deflector so that the excitation of the deflector 10 and of the membrane are in phase opposition.
  • a rigid deflector can be used.
  • the deflector(s) 10 In order to optimize the distribution of the fluid with respect to the membrane, provision is made for the deflector(s) 10 to be arranged parallel to the displacement of the wave on the membrane 2.
  • the deflector 10 can also have a slight inclination to distribute the fluid differently between the space located above the membrane 2 and that located below or even to take account of the position of the fluid inlet orifice. 3, or that of discharge 6.
  • the deflector 10 is fixed, directly or via connecting elements, to the pump body 4.
  • the deflector 10 and the pump body can be formed in one piece.
  • a fluid circulator 1 of the circular type in this type of circulator we find a pump body 4 and an undulating membrane 2 this membrane being of discoidal shape.
  • a first deflector 10 in the form of a ring can be seen surrounding the membrane 2 at its upstream edge 8 as well as a second deflector 10 disposed between the discharge orifice 6 and the downstream edge 9 of the membrane.
  • the deflectors 10 act in the same way as those provided for the membrane 2 in the form of a longitudinal blade illustrated in figure 1 .
  • At least two superposed deflectors 10 are provided upstream and/or downstream of the membrane 2 .
  • the picture 3 we see represented three superimposed deflectors.
  • the use of several superimposed deflectors 10 makes it possible to separate the main flow into several superimposed flows of secondary fluid and makes it possible to better channeling each of these flows in order to obtain laminar flows. This advantageous characteristic will be particularly suitable when the section of the propulsion chamber 5 at the level of the deflectors is large.
  • a third type of circulator 1 is shown, namely a cylindrical circulator in which the undulating membrane 2 is of tubular shape.
  • orientation means 7 are also provided in the form of cylindrical deflectors 10 arranged upstream and downstream of the membrane 2.
  • the deflectors 10 are placed at a low distance from the edge of the undulating membrane 2, or from its support connecting it to the actuator, advantageously less than one fiftieth of the length separating the upstream 8 and downstream 9 edges of the undulating membrane 2.
  • the first means orientation 7a is arranged at a distance from the upstream edge 8 of the membrane 2 which is less than one fiftieth of the length separating the upstream 8 and downstream 9 edges.
  • the second orientation means 7b can be arranged at a distance from the downstream edge 9 of the membrane 2 which is less than one fiftieth of the length separating the upstream 8 and downstream 9 edges.
  • deflectors further from the edges of the undulating membrane 2.
  • FIG. 5 there is shown a variant embodiment of a circulator 1.
  • this variant there are complementary orientation means 11, these orientation means complementary 11 are arranged in a plane perpendicular to a plane in which the first orientation means 7a extends and make it possible to prevent a circular displacement of the fluid between the inlet orifice 3 and the undulating membrane 2.
  • complementary orientation means 11 are arranged in a plane perpendicular to a plane in which extends the second orientation means 7b and make it possible to prevent a circular displacement fluid between the discharge port and the undulating diaphragm 2.
  • the complementary orientation means 11 make it possible to increase the hydraulic power of the circulator 1.
  • the complementary orientation means 11 are, as shown in figure 5 , subject to the first orientation means 7a; advantageously the first orientation means 7a and the complementary orientation means 11 are formed in one piece.
  • the orientation means 7a, 7b are respectively constituted by deflectors 10, however, in other embodiments, other devices may be used to orient the flow, in particular by providing two separate flow inlets, each oriented towards the top or the bottom of the membrane.
  • the orientation means 7a and or 7b to comprise heat transfer elements making it possible to vary the fluidity of the fluid to be pumped and/or its temperature.
  • This embodiment of the orientation means or means is shown in figure 6 with heating elements 12 carried by the first orientation means.
  • complementary orientation means 11 which also fulfill the function of thermal diffusers since they extend from the orientation means carrying the heating elements 12.
  • the heat transfer elements carried by the orientation 7a here include the heating means 12, but they could also include cooling means and / or a coolant transfer circuit.
  • the orientation means 7 are not connected to the pump body 4 but are fixed between the drive means 13 of the membrane and the membrane 2 itself.
  • the first orientation means 7a is connected via a spring effect connection to a movable part 14 of the drive means 13 to constitute an elastically deformable guide of the first orientation means with respect to the movable part 14.
  • the movable part 14 By connecting an orientation means 7a or 7b via a spring-effect connection to the drive means 13 and more particularly to the movable part 14 of the drive means 13, the movable part 14 is both guided and damped by the orientation means 7a or 7b which is immersed in the fluid.
  • the first orientation means 7a is obtained by a deflector 10, which is in the form of a crown, comprising at the level of the connection with the movable part 14 openings 15 giving a spring effect to the connection.
  • first way orientation 7a is connected by a flexible connection 16a to the upstream edge 8 of the membrane 2, this first orientation means 7a forming with the membrane 2 and with the flexible connection 16, a sealed separation between two distinct spaces of the chamber of propulsion 5.
  • the second orientation means 7b is connected by a second flexible connection 16b to the downstream edge 9 of the membrane 2, this second orientation means 7b forming with the membrane 2 and with the second flexible connection 16b, a sealed separation between two distinct spaces of the propulsion chamber 5 separated from each other by the membrane 2.
  • first and second flexible connections 16a, 16b making it possible to form a seal between the part of the chamber of propulsion located above the membrane and that located below. This avoids the transverse flows of fluid between these two parts/spaces of the chamber during the displacement of the wave on the membrane 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Description

La présente invention concerne un circulateur de fluide à membrane ondulante.The present invention relates to an undulating membrane fluid circulator.

L'invention trouvera avantageusement application dans les domaines du transport de fluides fragiles, comme par exemple le médical ou l'alimentaire, toutefois bien que particulièrement prévu pour de telles applications le circulateur pourra être utilise dans d'autres applications industrielles ou domestiques.The invention will advantageously find application in the fields of the transport of fragile fluids, such as for example medical or food, however, although particularly intended for such applications, the circulator may be used in other industrial or domestic applications.

ARRIERE PLAN DE L'INVENTIONBACKGROUND OF THE INVENTION

Le document FR 355 700 divulgue un circulateur selon le préambule de la revendication 1, caractérisé par le fait qu'une ou plusieurs membranes imperméables élastiques ondulent contre des parois rigides en opérant soit la transformation d'un débit de liquides, vapeurs ou gaz, en énergie électrique ou mécanique, soit la transformation réciproque.The document FR 355 700 discloses a circulator according to the preamble of claim 1, characterized in that one or more elastic impermeable membranes undulate against rigid walls by operating either the transformation of a flow of liquids, vapors or gases, into electrical or mechanical energy, or the reciprocal transformation.

On connaît déjà du document FR 2 744 769 le principe d'un circulateur de fluide à membrane ondulante, pouvant prendre par exemple la forme d'une pompe, d'un ventilateur, d'un compresseur, ou d'un propulseur.We already know from the document FR 2 744 769 the principle of a fluid circulator with an undulating membrane, which can for example take the form of a pump, a fan, a compressor, or a thruster.

Ce type de circulateur comporte une membrane mise en ondulation dans un corps de pompe. Le corps de pompe définit une chambre de propulsion pour le fluide à véhiculer entre un orifice d'admission et un orifice de refoulement. La mise en action de la membrane est réalisée par des moyens d'entrainement tels qu'un actionneur, reliée à la membrane. La mise en action de la membrane provoque des ondulations de cette dernière qui transmettent une énergie mécanique au fluide de manière à assurer sa propulsion.This type of circulator comprises a membrane placed in undulation in a pump body. The pump body defines a propulsion chamber for the fluid to be conveyed between an inlet orifice and a discharge orifice. The actuation of the membrane is carried out by drive means such as an actuator, connected to the membrane. The actuation of the membrane causes undulations of the latter which transmit mechanical energy to the fluid so as to ensure its propulsion.

Ce type de circulateur présente de nombreux avantages par rapport à d'autres technologies de pompes par exemple volumétriques à cycles alternatifs ou volumétriques de type péristaltiques. Notamment, ce type de circulateur est adapté au transport de fluides fragiles et présente un encombrement réduit.This type of circulator has many advantages compared to other pump technologies, for example volumetric reciprocating cycles or volumetric peristaltic type. In particular, this type circulator is suitable for the transport of fragile fluids and has a small footprint.

Toutefois il est apparu à la demanderesse que la structure dans la demande FR 2 744 769 n'est pas optimisée et que compte tenu des mouvements du fluide en aval et amont de la membrane, l'efficacité de la propulsion au niveau des bords amont et aval de la membrane est réduite et par conséquent limite la puissance hydraulique du circulateur.However, it appeared to the applicant that the structure in the application FR 2 744 769 is not optimized and that taking into account the movements of the fluid downstream and upstream of the membrane, the efficiency of the propulsion at the upstream and downstream edges of the membrane is reduced and therefore limits the hydraulic power of the circulator.

Plus précisément la demanderesse a constaté l'existence de mouvements du fluide dans un sens transversal au déplacement de l'onde sur la membrane. Ces mouvements transversaux, au niveau des bords de la membrane, réduisent le différentiel de pression existant dans la chambre de propulsion entre l'espace situé au dessus de la membrane et celui situé au dessous et par conséquent réduisent la force de propulsion des bords amont et aval de la membrane.More specifically, the Applicant has observed the existence of movements of the fluid in a direction transverse to the displacement of the wave on the membrane. These transverse movements, at the edges of the membrane, reduce the pressure differential existing in the propulsion chamber between the space located above the membrane and that located below and consequently reduce the propulsion force of the upstream edges and downstream of the membrane.

La présente invention a pour but de proposer un perfectionnement aux circulateurs de fluide à membrane ondulante décrits dans l'état de la technique.The object of the present invention is to propose an improvement to the undulating membrane fluid circulators described in the state of the art.

OBJET DE L'INVENTIONOBJECT OF THE INVENTION

La présente invention a ainsi pour objet de proposer un circulateur dont la structure permet de conserver un différentiel de pression important au niveau des bords de la membrane assurant au circulateur une puissance hydraulique accrue pour un même encombrement.The object of the present invention is thus to provide a circulator whose structure makes it possible to maintain a significant pressure differential at the edges of the membrane, providing the circulator with increased hydraulic power for the same size.

RESUME DE L'INVENTIONSUMMARY OF THE INVENTION

A cet effet la présente invention concerne un circulateur de fluide à membrane ondulante selon la revendication indépendante.To this end, the present invention relates to a fluid circulator with an undulating membrane according to the independent claim.

Pour la compréhension de l'invention, l'expression « à proximité d'un des bords de la membrane ondulante » signifie « à plus grande proximité d'un des bords amont ou aval de la membrane que de l'autre des bords amont ou aval de la membrane ».For the understanding of the invention, the expression "close to one of the edges of the undulating membrane" means "closer to one of the upstream or downstream edges of the membrane than to the other of the upstream or downstream of the membrane”.

Ainsi, le premier moyen d'orientation du fluide est à plus grande proximité d'un des bords de la membrane, en l'occurrence du bord amont, qu'il ne l'est du bord aval.Thus, the first fluid orientation means is closer to one of the edges of the membrane, in this case the upstream edge, than it is to the downstream edge.

La structure du circulateur selon l'invention permet par conséquent de supprimer ou pour le moins de limiter, au niveau d'au moins un bord de la membrane, les flux transversaux de fluide au déplacement de l'onde sur la membrane.The structure of the circulator according to the invention consequently makes it possible to eliminate or at least to limit, at the level of at least one edge of the membrane, the transverse flows of fluid to the displacement of the wave on the membrane.

Idéalement, le déflecteur est une pièce distincte de la membrane qui peut être en contact contre la membrane ou qui est préférentiellement éloigné de cette membrane. Par ailleurs, ce déflecteur est préférentiellement fixé au corps de pompe.Ideally, the deflector is a part separate from the membrane which can be in contact against the membrane or which is preferentially remote from this membrane. Furthermore, this deflector is preferably fixed to the pump body.

Dans un mode de réalisation préférentiel, le premier moyen d'orientation est disposé à proximité du bord amont de la membrane ondulante et un second moyen d'orientation est disposé à proximité du bord aval de la membrane ondulante.In a preferred embodiment, the first orientation means is arranged close to the upstream edge of the undulating membrane and a second orientation means is arranged close to the downstream edge of the undulating membrane.

De la sorte la différence de pression entre l'espace situé au dessus de la membrane et celui situé au dessous est maintenue à un niveau élevé sur l'ensemble de la surface de la membrane assurant à cette dernière une puissance hydraulique accrue par rapport aux dispositifs antérieurs.In this way, the pressure difference between the space located above the membrane and that located below is maintained at a high level over the entire surface of the membrane, providing the latter with increased hydraulic power compared to the devices. previous.

On note que préférentiellement, le premier moyen d'orientation s'étend le long du bord amont tout en étant en vis-à-vis et à distance de ce bord amont.It is noted that preferentially, the first means orientation extends along the upstream edge while being opposite and at a distance from this upstream edge.

On note que préférentiellement, le deuxième moyen d'orientation s'étend le long du bord aval tout en étant en vis-à-vis et à distance de ce bord aval.It is noted that preferentially, the second orientation means extends along the downstream edge while being opposite and at a distance from this downstream edge.

Il est à noter que le premier moyen d'orientation est rigide et relativement indéformable en regard de la membrane qui est souple et déformable.It should be noted that the first orientation means is rigid and relatively non-deformable with respect to the membrane which is flexible and deformable.

De par sa rigidité, le premier moyen d'orientation favorise des écoulements laminaires de part et d'autre du moyen d'orientation jusqu'à la proximité du bord amont de la membrane, ceci réduit les turbulences au niveau du bord amont et permet une meilleure efficacité de propulsion de fluide par la membrane ondulante.Due to its rigidity, the first orientation means promotes laminar flows on either side of the orientation means up to the proximity of the upstream edge of the membrane, this reduces turbulence at the level of the upstream edge and allows better fluid propulsion efficiency by the undulating membrane.

De manière similaire, le deuxième moyen d'orientation est rigide et relativement indéformable en regard de la membrane qui est souple et déformable.Similarly, the second orientation means is rigid and relatively non-deformable opposite the membrane which is flexible and deformable.

De par sa rigidité, le deuxième moyen d'orientation favorise des écoulements laminaires de part et d'autre du moyen d'orientation, cet écoulement laminaire étant ainsi favorisé à proximité du bord aval de la membrane. Ceci réduit les turbulences au niveau du bord aval et permet une meilleure efficacité de propulsion de fluide par la membrane ondulante.Due to its rigidity, the second orientation means favors laminar flows on either side of the orientation means, this laminar flow thus being favored close to the downstream edge of the membrane. This reduces turbulence at the downstream edge and allows better fluid propulsion efficiency through the undulating membrane.

Il est aussi possible que le premier moyen d'orientation soit relié par une liaison souple au bord amont de la membrane, ce premier moyen d'orientation formant avec la membrane et avec la liaison souple une séparation étanche entre deux espaces distincts de la chambre de propulsion séparés entre eux par la membrane.It is also possible for the first orientation means to be connected by a flexible connection to the upstream edge of the membrane, this first orientation means forming with the membrane and with the flexible connection a sealed separation between two distinct spaces of the propulsion separated from each other by the membrane.

Cette liaison souple s'oppose au passage de fluide entre le premier moyen d'orientation et le bord amont de membrane, ce qui limite d'autant les sources de turbulences dans l'écoulement. Cette solution peut, dans certains cas, permettre une amélioration d'efficacité du circulateur.This flexible connection opposes the passage of fluid between the first orientation means and the upstream edge of the membrane, which accordingly limits the sources of turbulence in the flow. This solution can, in certain cases, allow an improvement in the efficiency of the circulator.

De manière similaire, il est aussi possible que le deuxième moyen d'orientation soit relié par une liaison souple au bord aval de la membrane, ce deuxième moyen d'orientation formant avec la membrane et avec cette liaison souple, une séparation étanche entre deux espaces distincts de la chambre de propulsion séparés entre eux par la membrane et le deuxième moyen d'orientation.Similarly, it is also possible for the second orientation means to be connected by a flexible connection to the downstream edge of the membrane, this second orientation means forming with the membrane and with this flexible connection, a sealed separation between two spaces distinct from the propulsion chamber separated from each other by the membrane and the second orientation means.

Cette liaison souple s'oppose au passage de fluide entre le deuxième moyen d'orientation et le bord aval de membrane, ce qui limite d'autant les sources de turbulences dans l'écoulement. Cette solution peut, dans certains cas, permettre une amélioration d'efficacité du circulateur.This flexible connection opposes the passage of fluid between the second orientation means and the downstream edge of the membrane, which accordingly limits the sources of turbulence in the flow. This solution can, in certain cases, allow an improvement in the efficiency of the circulator.

Préférentiellement, le premier moyen d'orientation comporte au moins un déflecteur qui s'étend préférentiellement le long du bord amont de la membrane et dans le prolongement de la membrane lorsque la membrane est observée selon une direction d'observation perpendiculaire à une direction d'écoulement sensiblement parallèle au déplacement de l'onde sur la membrane.Preferably, the first orientation means comprises at least one deflector which preferably extends along the upstream edge of the membrane and in the extension of the membrane when the membrane is observed in a direction of observation perpendicular to a direction of flow substantially parallel to the displacement of the wave on the membrane.

Préférentiellement, le deuxième moyen d'orientation comporte au moins un déflecteur qui s'étend préférentiellement le long du bord aval de la membrane et dans le prolongement de la membrane lorsque la membrane est observée selon une direction d'observation perpendiculaire à une direction d'écoulement sensiblement parallèle au déplacement de l'onde sur la membrane.Preferably, the second orientation means comprises at least one deflector which preferably extends along the downstream edge of the membrane and in the extension of the membrane when the membrane is observed in a direction of observation perpendicular to a direction of flow substantially parallel to the displacement of the wave on the membrane.

Ainsi, dans les cas où la membrane choisie à tendance à s'étendre dans un plan de membrane, on fera en sorte que le déflecteur amont et/ou le déflecteur aval s'étende aussi dans un plan parallèle au plan de membrane (voir les exemples des figures 1 à 3 et 5 à 8). A contrario, dans les cas où la membrane choisie forme un tube s'étendant entre ses bords amont et aval qui sont annulaire, on aura alors un déflecteur amont annulaire et/ou un déflecteur aval annulaire (voir l'exemple de la figure 4).Thus, in cases where the membrane chosen tends to extend in a plane of the membrane, it will be ensured that the upstream deflector and/or the downstream deflector also extends in a plane parallel to the plane of the membrane (see the examples of figures 1 to 3 and 5 to 8 ). Conversely, in cases where the chosen membrane forms a tube extending between its upstream and downstream edges which are annular, there will then be an annular upstream deflector and/or an annular downstream deflector (see the example of the figure 4 ).

BREVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS

La présente invention sera mieux comprise à la lecture d'un exemple détaillé de réalisation en référence aux dessins annexés, fournis à titre d'exemple non limitatif, parmi lesquels :

  • la figure 1 représente de manière schématique, en vue de coupe latérale, un exemple de réalisation d'un circulateur de fluide de type longitudinal réalisé selon un premier exemple ;
  • la figure 2 représente de manière schématique et en coupe diamétrale partielle, un second exemple de réalisation d'un circulateur de fluide, de type circulaire ;
  • la figure 3 représente de manière schématique, selon une vue en coupe partielle, un troisième exemple de réalisation d'un circulateur de fluide, de type longitudinal;
  • la figure 4 représente, selon une vue en coupe partielle, un quatrième exemple de réalisation d'un circulateur de fluide, de type cylindrique;
  • la figure 5 représente, en vue de perspective, une première variante de réalisation ;
  • la figure 6 représente, en vue de perspective, une seconde variante de réalisation
  • la ; figure 7 représente, en vue de perspective un cinquième exemple de circulateur de fluide.
The present invention will be better understood on reading a detailed example of embodiment with reference to the appended drawings, provided by way of non-limiting example, among which:
  • the figure 1 shows schematically, in side sectional view, an embodiment of a longitudinal type fluid circulator produced according to a first example;
  • the figure 2 shows schematically and in partial diametrical section, a second embodiment of a fluid circulator, of the circular type;
  • the picture 3 shows schematically, in a partial sectional view, a third embodiment of a fluid circulator, of the longitudinal type;
  • the figure 4 represents, according to a view in partial section, a fourth embodiment of a fluid circulator, of the cylindrical type;
  • the figure 5 shows, in perspective view, a first alternative embodiment;
  • the figure 6 represents, in perspective view, a second alternative embodiment
  • the ; figure 7 shows, in perspective view, a fifth example of a fluid circulator.

DESCRIPTION DETAILLEE DE L'INVENTIONDETAILED DESCRIPTION OF THE INVENTION

En se reportant principalement à la figure 1 on voit représenté partiellement un circulateur 1 avec une membrane ondulante 2, déformable, en forme de lame longitudinale, un orifice d'admission du fluide 3, un corps de pompe 4 définissant une chambre de propulsion 5 et un orifice de refoulement 6.Referring mainly to the figure 1 partially shown is a circulator 1 with an undulating membrane 2, deformable, in the form of a longitudinal blade, a fluid inlet 3, a pump body 4 defining a propulsion chamber 5 and a discharge orifice 6.

La membrane ondulante 2 est associée à un moyen d'entraînement permettant un mouvement d'ondulation de la membrane 2 entre ses bords amont 8 et aval 9, ce moyen d'entraînement, ainsi que les éléments de liaison à la membrane figurent dans la demande FR 2 744 769 , et ne sont pas représentés dans les figures 1 à 6 annexées pour en simplifier leur lecture. Le moyen d'entraînement sera avantageusement constitué par un actionneur relié directement ou par un élément de liaison au bord amont de la membrane 2.The undulating membrane 2 is associated with a drive means allowing an undulating movement of the membrane 2 between its upstream 8 and downstream 9 edges, this drive means, as well as the elements for connecting to the membrane appear in the application FR 2 744 769 , and are not represented in the figures 1 to 6 appended for ease of reading. The drive means will advantageously consist of an actuator connected directly or by a connecting element to the upstream edge of the membrane 2.

L'actionnement de la membrane 2 permet de créer une ondulation se propageant du bord amont 8 en direction du bord aval 9 de la membrane 2. Le fluide est quant à lui introduit par l'orifice d'admission 3 dans la chambre de propulsion 5 puis déplacé en direction de l'orifice de refoulement 6 par les ondulations de la membrane 2.The actuation of the membrane 2 makes it possible to create a wave propagating from the upstream edge 8 towards the downstream edge 9 of the membrane 2. The fluid is itself introduced through the inlet orifice 3 into the propulsion chamber 5 then moved in the direction of the discharge orifice 6 by the undulations of the membrane 2.

Pour améliorer ce transfert en direction de l'orifice de refoulement 6 on prévoit que le circulateur 1 est, selon l'invention, équipé de moyens d'orientation 7 du fluide. On voit à la figure 1 des moyens d'orientation 7 disposés dans la chambre de propulsion 5 en amont de la membrane ondulante 2.To improve this transfer in the direction of the discharge orifice 6 it is provided that the circulator 1 is, according to the invention, equipped with means 7 for orienting the fluid. We see at the figure 1 orientation means 7 arranged in the propulsion chamber 5 upstream of the undulating membrane 2.

Ces moyens d'orientation 7 permettent de canaliser le flux de fluide dans une direction sensiblement parallèle au déplacement de l'onde sur la membrane 2.These orientation means 7 make it possible to channel the flow of fluid in a direction substantially parallel to the displacement of the wave on the membrane 2.

Le fluide, arrivant en amont de la membrane 2, est empêché par les moyens d'orientation 7 de se déplacer transversalement au déplacement de l'onde et par conséquent le fluide ne peut s'écouler en dessus ou en dessous de la membrane 2 en fonction des ondulations de cette dernière. De la sorte le différentiel de pression crée par l'ondulation n'est plus compensé par un transfert de fluide transversal comme dans le circulateur décrit dans le document FR 2 744 769 .The fluid, arriving upstream of the membrane 2, is prevented by the orientation means 7 from moving transversely to the movement of the wave and by consequently the fluid cannot flow above or below the membrane 2 depending on the undulations of the latter. In this way the pressure differential created by the ripple is no longer compensated by a transverse fluid transfer as in the circulator described in the document FR 2 744 769 .

Le différentiel de pression, ainsi conservé, assure une bonne propulsion du fluide par la partie de la membrane proche du bord amont 8 qui devient par conséquent efficace. La puissance hydraulique générée par le circulateur 1 est par conséquent augmentée.The pressure differential, thus preserved, ensures good propulsion of the fluid by the part of the membrane close to the upstream edge 8 which consequently becomes effective. The hydraulic power generated by the circulator 1 is therefore increased.

Selon une caractéristique avantageuse de l'invention on prévoit également des moyens d'orientation 7 en aval de la membrane 2 à proximité du bord aval 9 de la membrane2.According to an advantageous characteristic of the invention, orientation means 7 are also provided downstream of the membrane 2 near the downstream edge 9 of the membrane 2 .

Le fonctionnement des moyens d'orientation 7 disposés en aval est le même que celui de ceux situés en amont de la membrane 2 à savoir permettre en dirigeant le flux de fluide en sortie de membrane 2 de conserver un différentiel de pression assurant une bonne propulsion du fluide par le bord aval 9. De cette manière l'ensemble de la membrane 2 est utilisé efficacement et la puissance hydraulique du circulateur 1 est augmentée.The operation of the orientation means 7 arranged downstream is the same as that of those located upstream of the membrane 2, namely allowing by directing the flow of fluid at the outlet of the membrane 2 to maintain a pressure differential ensuring good propulsion of the fluid by the downstream edge 9. In this way the whole of the membrane 2 is used efficiently and the hydraulic power of the circulator 1 is increased.

Dans le mode de réalisation préféré illustré dans les figures annexées les moyens d'orientation 7 comportent au moins un déflecteur 10.In the preferred embodiment illustrated in the appended figures, the orientation means 7 comprise at least one deflector 10.

Le déflecteur 10 est avantageusement réalisé à partir d'un matériau souple, de façon à non seulement orienter le fluide mais également à favoriser sa propulsion. De manière avantageuse, on prévoit des moyens d'excitation du déflecteur souple de sorte que l'excitation du déflecteur 10 et de la membrane soient en opposition de phase.The deflector 10 is advantageously made from a flexible material, so as not only to orient the fluid but also to promote its propulsion. Advantageously, means are provided for exciting the flexible deflector so that the excitation of the deflector 10 and of the membrane are in phase opposition.

Cela étant dans d'autres modes de réalisation on pourra utiliser un déflecteur rigide.However, in other embodiments, a rigid deflector can be used.

De manière à optimiser la répartition du fluide par rapport à la membrane on prévoit que le ou les déflecteurs 10 soient disposés parallèle au déplacement de l'onde sur la membrane 2.In order to optimize the distribution of the fluid with respect to the membrane, provision is made for the deflector(s) 10 to be arranged parallel to the displacement of the wave on the membrane 2.

Cela étant, le déflecteur 10 peut également présenter une légère inclinaison pour répartir différemment le fluide entre l'espace situé au dessus de la membrane 2 et celui situé au dessous ou encore pour tenir compte de la position de l'orifice d'admission du fluide 3, ou de de celui du refoulement 6.This being the case, the deflector 10 can also have a slight inclination to distribute the fluid differently between the space located above the membrane 2 and that located below or even to take account of the position of the fluid inlet orifice. 3, or that of discharge 6.

Selon un exemple qui ne fait pas partie de l'invention le déflecteur 10 est fixé, directement ou par l'intermédiaire d'éléments de liaison, au corps de pompe 4. Dans cet exemple, le déflecteur 10 et le corps de pompe peuvent être formés d'une seule pièce.According to an example which does not form part of the invention, the deflector 10 is fixed, directly or via connecting elements, to the pump body 4. In this example, the deflector 10 and the pump body can be formed in one piece.

En se reportant cette fois à la figure 2 on voit représenté un circulateur de fluide 1 de type circulaire, dans ce type de circulateur on retrouve un corps de pompe 4 et une membrane ondulante 2 cette membrane étant de forme discoïdale. Dans cet exemple de réalisation, on voit un premier déflecteur 10 en forme d'anneau entourant la membrane 2 au niveau de son bord amont 8 ainsi qu'un second déflecteur 10 disposé entre l'orifice de refoulement 6 et le bord aval 9 de la membrane. Les déflecteurs 10 agissent de la même manière que ceux prévus pour la membrane 2 en forme de lame longitudinale illustrée à la figure 1.Referring this time to the figure 2 we see represented a fluid circulator 1 of the circular type, in this type of circulator we find a pump body 4 and an undulating membrane 2 this membrane being of discoidal shape. In this embodiment, a first deflector 10 in the form of a ring can be seen surrounding the membrane 2 at its upstream edge 8 as well as a second deflector 10 disposed between the discharge orifice 6 and the downstream edge 9 of the membrane. The deflectors 10 act in the same way as those provided for the membrane 2 in the form of a longitudinal blade illustrated in figure 1 .

Il est à noter que dans d'autres modes de réalisation on prévoit en amont et/ou en aval de la membrane 2 au moins deux déflecteurs 10 superposés. A titre d'exemple en se reportant cette fois à la figure 3 on voit représenté trois déflecteurs superposés. L'utilisation de plusieurs déflecteurs 10 superposés permet de séparer le flux principal en plusieurs flux superposés de fluide secondaires et permet de mieux canaliser chacun de ces flux afin d'obtenir des écoulements laminaires. Cette caractéristique avantageuse sera notamment adaptée lorsque la section de la chambre de propulsion 5 au niveau des déflecteurs est importante.It should be noted that in other embodiments, at least two superposed deflectors 10 are provided upstream and/or downstream of the membrane 2 . By way of example, referring this time to the picture 3 we see represented three superimposed deflectors. The use of several superimposed deflectors 10 makes it possible to separate the main flow into several superimposed flows of secondary fluid and makes it possible to better channeling each of these flows in order to obtain laminar flows. This advantageous characteristic will be particularly suitable when the section of the propulsion chamber 5 at the level of the deflectors is large.

En se reportant cette fois à la figure 4 on voit représenté un troisième type de circulateur 1 à savoir un circulateur cylindrique dans lequel la membrane ondulante 2 est de forme tubulaire. Dans ce type de circulateur on prévoit également des moyens d'orientation 7 sous forme de déflecteurs cylindriques 10 disposés en amont et en aval de la membrane 2.Referring this time to the figure 4 a third type of circulator 1 is shown, namely a cylindrical circulator in which the undulating membrane 2 is of tubular shape. In this type of circulator, orientation means 7 are also provided in the form of cylindrical deflectors 10 arranged upstream and downstream of the membrane 2.

De manière à éviter un transfert du fluide entre le déflecteur amont 10 et le bord amont 8 de la membrane ondulante 2 et entre le déflecteur aval 10 et le bord aval 9 de la membrane ondulante 2, on prévoit de disposer les déflecteurs 10 à une faible distance du bord de la membrane ondulante 2, ou de son support la reliant à l'actionneur, avantageusement inférieure au cinquantième de la longueur séparant les bords amont 8 et aval 9 de la membrane ondulante 2. En d'autres termes, le premier moyen d'orientation 7a est disposé à une distance du bord amont 8 de la membrane 2 qui est inférieure au cinquantième de la longueur séparant les bords amont 8 et aval 9. De manière similaire, le second moyen d'orientation 7b peut être disposé à une distance du bord aval 9 de la membrane 2 qui est inférieure au cinquantième de la longueur séparant les bords amont 8 et aval 9.In order to avoid a transfer of the fluid between the upstream deflector 10 and the upstream edge 8 of the undulating membrane 2 and between the downstream deflector 10 and the downstream edge 9 of the undulating membrane 2, provision is made to place the deflectors 10 at a low distance from the edge of the undulating membrane 2, or from its support connecting it to the actuator, advantageously less than one fiftieth of the length separating the upstream 8 and downstream 9 edges of the undulating membrane 2. In other words, the first means orientation 7a is arranged at a distance from the upstream edge 8 of the membrane 2 which is less than one fiftieth of the length separating the upstream 8 and downstream 9 edges. Similarly, the second orientation means 7b can be arranged at a distance from the downstream edge 9 of the membrane 2 which is less than one fiftieth of the length separating the upstream 8 and downstream 9 edges.

Cela étant, dans d'autres modes de réalisation on pourra utiliser des déflecteurs plus éloignés des bords de la membrane ondulante 2.This being so, in other embodiments it is possible to use deflectors further from the edges of the undulating membrane 2.

En se reportant à la figure 5 on voit représenté une variante de réalisation d'un circulateur 1. Dans cette variante on retrouve des moyens d'orientation complémentaires 11, ces moyens d'orientation complémentaires 11 sont disposés dans un plan perpendiculaire à un plan dans lequel s'étend le premier moyen d'orientation 7a et permettent d'empêcher un déplacement circulaire du fluide entre l'orifice d'admission 3 et la membrane ondulante 2.By referring to the figure 5 there is shown a variant embodiment of a circulator 1. In this variant there are complementary orientation means 11, these orientation means complementary 11 are arranged in a plane perpendicular to a plane in which the first orientation means 7a extends and make it possible to prevent a circular displacement of the fluid between the inlet orifice 3 and the undulating membrane 2.

Dans un mode non illustré, on peut aussi faire en sorte que des moyens d'orientation complémentaires 11, soient disposés dans un plan perpendiculaire à un plan dans lequel s'étend le deuxième moyen d'orientation 7b et permettent d'empêcher un déplacement circulaire du fluide entre l'orifice de refoulement et la membrane ondulante 2.In a mode not illustrated, it is also possible to ensure that complementary orientation means 11 are arranged in a plane perpendicular to a plane in which extends the second orientation means 7b and make it possible to prevent a circular displacement fluid between the discharge port and the undulating diaphragm 2.

A l'instar des moyens d'orientation 7a, 7b, les moyens d'orientation complémentaires 11 permettent d'augmenter la puissance hydraulique du circulateur 1.Like the orientation means 7a, 7b, the complementary orientation means 11 make it possible to increase the hydraulic power of the circulator 1.

Selon une caractéristique particulière les moyens d'orientation complémentaires 11 sont, comme représentés à la figure 5, assujettis au premier moyen d'orientation 7a ; avantageusement le premier moyen d'orientation 7a et les moyens d'orientation complémentaires 11 sont formés d'une seule pièce.According to a particular characteristic, the complementary orientation means 11 are, as shown in figure 5 , subject to the first orientation means 7a; advantageously the first orientation means 7a and the complementary orientation means 11 are formed in one piece.

D'autres caractéristiques de l'invention auraient également pu être envisagées sans pour autant sortir du cadre de l'invention définie par les revendications ci-après.Other characteristics of the invention could also have been envisaged without thereby departing from the scope of the invention defined by the claims below.

Ainsi, à titre d'exemple, dans les différents exemples repris dans la description les moyens de d'orientation 7a, 7b sont respectivement constitués par des déflecteurs 10 toutefois dans d'autres modes de réalisation on pourra utiliser d'autres dispositifs pour orienter le flux, notamment en prévoyant deux arrivées de flux distinctes chacune orientée vers le dessus ou le dessous de la membrane.Thus, by way of example, in the various examples given in the description, the orientation means 7a, 7b are respectively constituted by deflectors 10, however, in other embodiments, other devices may be used to orient the flow, in particular by providing two separate flow inlets, each oriented towards the top or the bottom of the membrane.

Dans un autre mode de réalisation on prévoit que les moyens d'orientations 7a et ou 7b comportent des éléments de transfert thermique permettant de faire varier la fluidité du fluide à pomper et/ou sa température. Ce mode de réalisation du ou des moyens d'orientation est représenté à la figure 6 avec des éléments de chauffage 12 porté par le premier moyen d'orientation. Dans cet exemple figurent également des moyens d'orientation complémentaire 11 qui remplissent également la fonction de diffuseurs thermiques puisqu'ils s'étendent depuis le moyen d'orientation portant les éléments de chauffage 12. Bien entendu les éléments de transfert thermique portés par le moyen d'orientation 7a comportent ici les moyens de chauffage 12, mais ils pourraient aussi comporter des moyens de refroidissement et/ou un circuit de transfert de fluide caloporteur.In another embodiment, provision is made for the orientation means 7a and or 7b to comprise heat transfer elements making it possible to vary the fluidity of the fluid to be pumped and/or its temperature. This embodiment of the orientation means or means is shown in figure 6 with heating elements 12 carried by the first orientation means. In this example also appear complementary orientation means 11 which also fulfill the function of thermal diffusers since they extend from the orientation means carrying the heating elements 12. Of course the heat transfer elements carried by the orientation 7a here include the heating means 12, but they could also include cooling means and / or a coolant transfer circuit.

Comme le montre la figure 7, on prévoit que les moyens d'orientation 7 ne sont pas reliés au corps de pompe 4 mais sont fixés entre le moyen d'entraînement 13 de la membrane et la membrane 2 elle-même. Ainsi, le premier moyen d'orientation 7a est relié via une liaison à effet ressort à une partie mobile 14 du moyen d'entraînement 13 pour constituer un guidage élastiquement déformable du premier moyen d'orientation par rapport à la partie mobile 14.As shown in figure 7 , it is provided that the orientation means 7 are not connected to the pump body 4 but are fixed between the drive means 13 of the membrane and the membrane 2 itself. Thus, the first orientation means 7a is connected via a spring effect connection to a movable part 14 of the drive means 13 to constitute an elastically deformable guide of the first orientation means with respect to the movable part 14.

En reliant un moyen d'orientation 7a ou 7b via une liaison à effet ressort au moyen d'entraînement 13 et plus particulièrement à la partie mobile 14 du moyen d'entraînement 13, la partie mobile 14 est à la fois guidée et amortie par le moyen d'orientation 7a ou 7b qui est plongé dans le fluide. Pour ce faire le premier moyen d'orientation 7a est obtenu par un déflecteur 10, qui est en forme de couronne, comportant au niveau de la liaison avec la partie mobile 14 des ajourages 15 donnant un effet ressort à la liaison.By connecting an orientation means 7a or 7b via a spring-effect connection to the drive means 13 and more particularly to the movable part 14 of the drive means 13, the movable part 14 is both guided and damped by the orientation means 7a or 7b which is immersed in the fluid. To do this, the first orientation means 7a is obtained by a deflector 10, which is in the form of a crown, comprising at the level of the connection with the movable part 14 openings 15 giving a spring effect to the connection.

Dans un autre mode de réalisation représenté à la figure 8, on peut faire en sorte que le premier moyen d'orientation 7a soit relié par une liaison souple 16a au bord amont 8 de la membrane 2, ce premier moyen d'orientation 7a formant avec la membrane 2 et avec la liaison souple 16, une séparation étanche entre deux espaces distincts de la chambre de propulsion 5.In another embodiment shown in figure 8 , we can make the first way orientation 7a is connected by a flexible connection 16a to the upstream edge 8 of the membrane 2, this first orientation means 7a forming with the membrane 2 and with the flexible connection 16, a sealed separation between two distinct spaces of the chamber of propulsion 5.

Dans un autre mode de réalisation représenté à la figure 8, on peut aussi faire en sorte que le deuxième moyen d'orientation 7b soit relié par une deuxième liaison souple 16b au bord aval 9 de la membrane 2, ce deuxième moyen d'orientation 7b formant avec la membrane 2 et avec la deuxième liaison souple 16b, une séparation étanche entre deux espaces distincts de la chambre de propulsion 5 séparés entre eux par la membrane 2.In another embodiment shown in figure 8 , it is also possible to ensure that the second orientation means 7b is connected by a second flexible connection 16b to the downstream edge 9 of the membrane 2, this second orientation means 7b forming with the membrane 2 and with the second flexible connection 16b, a sealed separation between two distinct spaces of the propulsion chamber 5 separated from each other by the membrane 2.

En d'autres termes, sur le mode de réalisation représenté à la figure 8, on prévoit que les moyens d'orientation 7a, 7b et les bords amont 8 et aval 9 de la membrane soient respectivement reliés entre eux par des première et deuxième liaisons souples 16a, 16b permettant de constituer une étanchéité entre la partie de la chambre de propulsion située au-dessus de la membrane et celle située en-dessous. On évite ainsi les flux transversaux de fluide entre ces deux parties/espaces de la chambre pendant le déplacement de l'onde sur la membrane 2.In other words, in the embodiment shown in figure 8 , provision is made for the orientation means 7a, 7b and the upstream 8 and downstream 9 edges of the membrane to be respectively interconnected by first and second flexible connections 16a, 16b making it possible to form a seal between the part of the chamber of propulsion located above the membrane and that located below. This avoids the transverse flows of fluid between these two parts/spaces of the chamber during the displacement of the wave on the membrane 2.

Claims (12)

  1. Undulating-membrane fluid circulator comprising at least one intake port (3), a pump body (4), a propulsion chamber (5), at least one discharge port (6), and an undulating membrane (2) associated with a drive means (13) for generating an undulating movement of the membrane (2) between the upstream (8) and downstream (9) edges thereof, the undulating membrane (2) being adapted to move a fluid in the direction of the discharge port (6), wherein said circulator further comprises a first orienting means (7a) for orienting fluid disposed in the fluid propulsion chamber (5) near one of the edges (8; 9) of the undulating membrane (2) and making it possible to channel the fluid flow in a direction substantially parallel to the displacement of the wave on the membrane (2), characterized in that the first orienting means (7a) is connected to a movable portion (14) of the drive means (13) via a spring-loaded connection for providing an elastically deformable guiding of the first orienting means relative to the movable portion (14).
  2. Fluid circulator according to claim 1, wherein said first orienting means (7a) is disposed near the upstream edge (8) of the undulating membrane (2) and wherein a second orienting means (7b) is disposed near the downstream edge (9) of the undulating membrane (2).
  3. Fluid circulator according to any of claims 1 or 2, wherein the first orienting means (7a) comprises at least one baffle (10).
  4. Fluid circulator according to claim 2, wherein the second orienting means (7b) comprises at least one baffle (10).
  5. Fluid circulator according to claim 3 or claim 4, wherein said baffle (10) is flexible.
  6. Fluid circulator according to claim 3 or claim 4, wherein the baffle (10) is disposed substantially parallel to the displacement of the wave on the membrane (2).
  7. Fluid circulator according to claim 3, comprising at least two baffles (10) placed one above the other, making it possible to channel the main fluid flow into a plurality of flows that flow one above the other.
  8. Fluid circulator according to any of claims 1 to 6, wherein the first orienting means (7a) comprise heat transfer elements that are capable of varying the temperature of the fluid.
  9. Fluid circulator according to any of claims 1 to 7, wherein the first orienting means (7a) is disposed at a distance from the upstream (8) or downstream edge of the membrane (2) of less than one fiftieth of the length separating the upstream (8) and downstream (9) edges.
  10. Fluid circulator according to any of claims 1 to 9, comprising complementary orienting means (11) disposed in a plane perpendicular to a plane in which the first orienting means (7a) extends.
  11. Fluid circulator according to claim 10, wherein the complementary orienting means (11) are fastened to the first orienting means (7a).
  12. Fluid circulator according to claim 1, wherein the first orienting means (7a) is connected via a flexible connection (16) to the upstream edge (8) of the membrane (2), said first orienting means (7a), together with the membrane (2) and the flexible connection (16), forming a tight barrier between two different spaces of the propulsion chamber (5) separated from one another by the membrane (2).
EP18810891.4A 2017-11-10 2018-11-09 Undulating-membrane fluid circulator Active EP3707381B8 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1760583A FR3073578B1 (en) 2017-11-10 2017-11-10 FLUID CIRCULATOR WITH RINGING MEMBRANE
PCT/EP2018/080749 WO2019092175A1 (en) 2017-11-10 2018-11-09 Undulating-membrane fluid circulator

Publications (3)

Publication Number Publication Date
EP3707381A1 EP3707381A1 (en) 2020-09-16
EP3707381B1 true EP3707381B1 (en) 2022-02-16
EP3707381B8 EP3707381B8 (en) 2022-03-23

Family

ID=60955259

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18810891.4A Active EP3707381B8 (en) 2017-11-10 2018-11-09 Undulating-membrane fluid circulator

Country Status (7)

Country Link
US (1) US11512689B2 (en)
EP (1) EP3707381B8 (en)
JP (1) JP7158061B2 (en)
CN (1) CN111433460B (en)
AU (1) AU2018365313B2 (en)
FR (1) FR3073578B1 (en)
WO (1) WO2019092175A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10166319B2 (en) 2016-04-11 2019-01-01 CorWave SA Implantable pump system having a coaxial ventricular cannula
US9968720B2 (en) 2016-04-11 2018-05-15 CorWave SA Implantable pump system having an undulating membrane
WO2018178939A1 (en) 2017-03-31 2018-10-04 CorWave SA Implantable pump system having a rectangular membrane
FR3073578B1 (en) 2017-11-10 2019-12-13 Corwave FLUID CIRCULATOR WITH RINGING MEMBRANE
US10188779B1 (en) 2017-11-29 2019-01-29 CorWave SA Implantable pump system having an undulating membrane with improved hydraulic performance
EP3938006A1 (en) 2019-03-15 2022-01-19 Corwave SA Systems and methods for controlling an implantable blood pump
FR3099748B1 (en) * 2019-08-09 2023-07-28 Finx Device for moving a watercraft
CN110425119A (en) * 2019-08-21 2019-11-08 劳特士(嘉兴)机械设备有限公司 A kind of pneumatic pump means
WO2021176423A1 (en) 2020-03-06 2021-09-10 CorWave SA Implantable blood pumps comprising a linear bearing
FR3137658A1 (en) * 2022-07-05 2024-01-12 Finx MULTI-DIRECTIONAL MEMBRANE FLUIDIC FLOW GENERATING DEVICE
WO2024105583A1 (en) 2022-11-15 2024-05-23 CorWave SA Implantable heart pump system including an improved apical connector and/or graft connector
FR3144105A1 (en) * 2022-12-23 2024-06-28 Finx system for tensioning a membrane equipping a fluid flow generator device
FR3144231A1 (en) * 2022-12-23 2024-06-28 Finx HYDRAULIC PROPELLER INCLUDING AN IMMERSED ELECTRONIC BOARD
FR3147242A1 (en) * 2023-03-31 2024-10-04 Finx MOBILE DEFLECTOR FOR MEMBRANE FLUID FLOW GENERATING DEVICE
FR3147332A1 (en) * 2023-03-31 2024-10-04 Finx FLUID FLOW GENERATING DEVICE COMPRISING A MEMBRANE WITH DECREASING STIFFNESS

Family Cites Families (155)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR355700A (en) * 1905-06-28 1905-11-09 Leopold Selme Turbine with undulating membranes, reversible as a pump
GB662047A (en) 1949-11-21 1951-11-28 George Aksel Thiberg Improvements in diaphragm pumps and compressors
US2842067A (en) 1954-10-12 1958-07-08 Stevens Ronald John Pumps for fluids, more especially liquids
US3107630A (en) 1955-01-31 1963-10-22 Textron Inc Non-magnetic electro-hydraulic pump
US3165061A (en) 1963-02-18 1965-01-12 Edward H Smith Method and apparatus employing acoustic energy for increasing fluid flow
GB1302541A (en) 1969-02-07 1973-01-10
US3608088A (en) 1969-04-17 1971-09-28 Univ Minnesota Implantable blood pump
JPS5019840B1 (en) 1970-12-30 1975-07-10
US3743446A (en) 1971-07-12 1973-07-03 Atek Ind Inc Standing wave pump
DE2522309C3 (en) 1975-05-20 1979-10-11 Waldemar 4500 Osnabrueck Riepe Liquid pump
AU5665580A (en) 1979-03-22 1980-09-25 Wakelin, R.R.F. Moving-wall type pump
US4277706A (en) 1979-04-16 1981-07-07 Nu-Tech Industries, Inc. Actuator for heart pump
US4498851A (en) * 1980-05-02 1985-02-12 Piezo Electric Products, Inc. Solid state blower
DE3207101C1 (en) 1982-02-27 1983-10-06 Dornier System Gmbh Stepper motor
US4488854A (en) 1982-04-12 1984-12-18 Miller Richard B Constrained wave pump
US4648807A (en) 1985-05-14 1987-03-10 The Garrett Corporation Compact piezoelectric fluidic air supply pump
US4753221A (en) 1986-10-22 1988-06-28 Intravascular Surgical Instruments, Inc. Blood pumping catheter and method of use
US4918383A (en) 1987-01-20 1990-04-17 Huff Richard E Membrane probe with automatic contact scrub action
JPS63229060A (en) 1987-03-18 1988-09-22 アイシン精機株式会社 Balloon pump in main artery
JPH01174278A (en) 1987-12-28 1989-07-10 Misuzu Erii:Kk Inverter
US4906229A (en) 1988-05-03 1990-03-06 Nimbus Medical, Inc. High-frequency transvalvular axisymmetric blood pump
US5011380A (en) 1989-01-23 1991-04-30 University Of South Florida Magnetically actuated positive displacement pump
US4995857A (en) 1989-04-07 1991-02-26 Arnold John R Left ventricular assist device and method for temporary and permanent procedures
US5324177A (en) 1989-05-08 1994-06-28 The Cleveland Clinic Foundation Sealless rotodynamic pump with radially offset rotor
US4955856A (en) 1989-06-30 1990-09-11 Phillips Steven J Method and apparatus for installing a ventricular assist device cannulae
FR2650862B1 (en) 1989-08-11 1991-11-08 Salmson Pompes DEVICE FOR PROPELLING A FLUID
JPH0636821B2 (en) 1990-03-08 1994-05-18 健二 山崎 Implantable auxiliary artificial heart
DE4129970C1 (en) 1991-09-10 1993-03-04 Forschungsgesellschaft Fuer Biomedizinische Technik E.V., 5100 Aachen, De
US5360445A (en) 1991-11-06 1994-11-01 International Business Machines Corporation Blood pump actuator
US5982801A (en) 1994-07-14 1999-11-09 Quantum Sonic Corp., Inc Momentum transfer apparatus
US5525041A (en) 1994-07-14 1996-06-11 Deak; David Momemtum transfer pump
US5588812A (en) 1995-04-19 1996-12-31 Nimbus, Inc. Implantable electric axial-flow blood pump
FR2744769B1 (en) * 1996-02-12 1999-02-12 Drevet Jean Baptiste FLUID CIRCULATOR WITH VIBRATING MEMBRANE
US5840070A (en) 1996-02-20 1998-11-24 Kriton Medical, Inc. Sealless rotary blood pump
FR2744924B1 (en) 1996-02-21 1998-04-24 Franchi Pierre PRESSURE GENERATOR / REGULATOR DEVICE FOR AN IMPLANTABLE HEART ASSISTANCE PUMP OF THE COUNTERPRESSURE BALLOON TYPE
DE19613564C1 (en) 1996-04-04 1998-01-08 Guenter Prof Dr Rau Intravascular blood pump
DE19625300A1 (en) 1996-06-25 1998-01-02 Guenter Prof Dr Rau Blood pump
US5964694A (en) 1997-04-02 1999-10-12 Guidant Corporation Method and apparatus for cardiac blood flow assistance
US6123725A (en) 1997-07-11 2000-09-26 A-Med Systems, Inc. Single port cardiac support apparatus
US6532964B2 (en) 1997-07-11 2003-03-18 A-Med Systems, Inc. Pulmonary and circulatory blood flow support devices and methods for heart surgery procedures
US6395026B1 (en) 1998-05-15 2002-05-28 A-Med Systems, Inc. Apparatus and methods for beating heart bypass surgery
US7182727B2 (en) 1997-07-11 2007-02-27 A—Med Systems Inc. Single port cardiac support apparatus
US6176822B1 (en) 1998-03-31 2001-01-23 Impella Cardiotechnik Gmbh Intracardiac blood pump
US6079214A (en) 1998-08-06 2000-06-27 Face International Corporation Standing wave pump
US6659740B2 (en) 1998-08-11 2003-12-09 Jean-Baptiste Drevet Vibrating membrane fluid circulator
RU2143343C1 (en) 1998-11-03 1999-12-27 Самсунг Электроникс Ко., Лтд. Microinjector and microinjector manufacture method
AUPQ090499A0 (en) 1999-06-10 1999-07-01 Peters, William S Heart assist device and system
US6346071B1 (en) 1999-07-16 2002-02-12 World Heart Corporation Inflow conduit assembly for a ventricular assist device
JP2001034568A (en) 1999-07-21 2001-02-09 Fujitsu Ltd Logical path establishing method, and storage medium
DE29921352U1 (en) 1999-12-04 2001-04-12 Impella Cardiotechnik AG, 52074 Aachen Intravascular blood pump
US7168138B2 (en) 2000-03-27 2007-01-30 Newfrey Llc Resilient clip fastener
US6530876B1 (en) 2000-04-25 2003-03-11 Paul A. Spence Supplemental heart pump methods and systems for supplementing blood through the heart
US6726648B2 (en) 2000-08-14 2004-04-27 The University Of Miami Valved apical conduit with trocar for beating-heart ventricular assist device placement
DE10059714C1 (en) 2000-12-01 2002-05-08 Impella Cardiotech Ag Intravasal pump has pump stage fitted with flexible expandible sleeve contricted during insertion through blood vessel
US20020095210A1 (en) 2001-01-16 2002-07-18 Finnegan Michael T. Heart pump graft connector and system
US6658740B2 (en) 2001-03-16 2003-12-09 Wahl Clipper Corporation Blade assembly for a vibrator motor
DE10119691A1 (en) 2001-04-20 2002-11-21 Deutsch Zentr Luft & Raumfahrt Left ventricular assist system
US6723039B2 (en) 2001-04-27 2004-04-20 The Foundry, Inc. Methods, systems and devices relating to implantable fluid pumps
US6493254B1 (en) 2001-06-28 2002-12-10 Intel Corporation Current leakage reduction for loaded bit-lines in on-chip memory structures
AT412416B (en) * 2001-10-23 2005-02-25 Zackl Wilhelm VALVE-FREE PUMP
US6672847B2 (en) 2001-12-27 2004-01-06 Pratt & Whitney Canada Corp. Standing wave excitation cavity fluid pump
EP1551500A2 (en) 2002-06-11 2005-07-13 Walid Najib Aboul-Hosn Percutaneously introduced blood pump and related methods
US6732501B2 (en) 2002-06-26 2004-05-11 Heartware, Inc. Ventricular connector
AU2002951685A0 (en) 2002-09-30 2002-10-17 Ventrassist Pty Ltd Physiological demand responsive control system
EP1644639B1 (en) 2003-06-30 2009-02-11 Nxp B.V. Device for generating sound by means of a medium stream generated
FR2861910B1 (en) 2003-10-29 2006-01-13 Jean Baptiste Drevet ELECTROMAGNETIC MACHINE WITH DEFORMABLE MEMBRANE AND ELECTROMAGNETIC MOTOR ADAPTED TO SUCH A MACHINE
WO2005051838A2 (en) 2003-11-19 2005-06-09 Transoma Medical, Inc. Feedback control of ventricular assist devices
DE102004019721A1 (en) 2004-03-18 2005-10-06 Medos Medizintechnik Ag pump
US20050261543A1 (en) 2004-05-18 2005-11-24 Yusuke Abe Implantable artificial ventricular assist device
US7374565B2 (en) 2004-05-28 2008-05-20 Ethicon Endo-Surgery, Inc. Bi-directional infuser pump with volume braking for hydraulically controlling an adjustable gastric band
US7108652B2 (en) 2004-06-07 2006-09-19 University Of Florida Research Foundation, Inc. Multi-chamber self-regulating ventricular assist device
WO2006020273A2 (en) 2004-07-19 2006-02-23 Vascor, Inc. Devices, systems and methods for assisting blood flow
WO2006020942A1 (en) 2004-08-13 2006-02-23 Delgado Reynolds M Iii Method and apparatus for long-term assisting a left ventricle to pump blood
DE102004049986A1 (en) 2004-10-14 2006-04-20 Impella Cardiosystems Gmbh Intracardiac blood pump
WO2007053881A1 (en) 2005-11-08 2007-05-18 Ventrassist Pty Ltd Improvements to control systems and power systems for rotary blood pumps
US9144669B2 (en) 2005-11-16 2015-09-29 Heartware, Inc. Implantation procedure for blood pumps
US20080232987A1 (en) 2006-11-28 2008-09-25 S.A.M. Amstar Diaphragm circulator
US9744279B2 (en) 2005-12-08 2017-08-29 Heartware, Inc. Implant connector
CA2636105C (en) 2006-01-27 2015-05-05 Circulite, Inc Heart assist system
CN101472627B (en) 2006-01-30 2013-05-08 国立成功大学 Dual-pulsation bi-ventricular assist device
AU2013203301B2 (en) 2006-05-31 2015-10-29 Star Bp, Inc. Heart Assist Device
US20070299297A1 (en) 2006-06-26 2007-12-27 Robert Jarvik Textured conforming shell for stabilization of the interface of precision heart assist device components to tissues
FR2905147B1 (en) 2006-08-25 2008-10-31 Ubbink Garden B V VIBRATORY MEMBRANE FLUID CIRCULATION PUMP.
US8333686B2 (en) 2006-08-30 2012-12-18 Circulite, Inc. Cannula insertion devices, systems, and methods including a compressible member
US9145875B2 (en) 2007-05-01 2015-09-29 Pliant Energy Systems Llc Ribbon transducer and pump apparatuses, methods and systems
US7696634B2 (en) 2007-05-01 2010-04-13 Pliant Energy Systems Llc Pliant mechanisms for extracting power from moving fluid
US8432057B2 (en) 2007-05-01 2013-04-30 Pliant Energy Systems Llc Pliant or compliant elements for harnessing the forces of moving fluid to transport fluid or generate electricity
JP5752413B2 (en) 2007-06-06 2015-07-22 ワールドハート コーポレイション Wearable VAD controller with spare battery
US8574291B2 (en) 2007-08-17 2013-11-05 Rheinisch-Westfaelische Technische Hochschule Aachen Linear drive and pump system, in particular an artificial heart
US8414603B2 (en) 2007-09-25 2013-04-09 Correx, Inc. Applicator, assembly, and method for connecting an inlet conduit to a hollow organ
GB0718943D0 (en) 2007-09-28 2007-11-07 Univ Nottingham Mechanical support
US8343029B2 (en) 2007-10-24 2013-01-01 Circulite, Inc. Transseptal cannula, tip, delivery system, and method
US8821366B2 (en) 2007-10-24 2014-09-02 Circulite, Inc. Transseptal cannula, tip, delivery system, and method
CA3017406C (en) 2008-01-23 2023-08-22 Deka Products Limited Partnership Fluid handling cassette for use with a peritoneal dialysis system
CA2713865C (en) 2008-02-08 2017-06-20 Heartware, Inc. Ventricular assist device for intraventricular placement
GB0813603D0 (en) 2008-07-25 2008-09-03 Cardio Carbon Technology Ltd Ventricular assist system
FR2934652B1 (en) * 2008-08-01 2013-01-11 Ams R & D Sas IMPROVED PERFORMANCE MEMBRANE PUMP WITH IMPROVED PERFORMANCE.
FR2934651B1 (en) * 2008-08-01 2010-08-27 Ams R & D Sas PERFECTED ONDULATING MEMBRANE PUMP.
US8449444B2 (en) 2009-02-27 2013-05-28 Thoratec Corporation Blood flow meter
US8366401B2 (en) 2009-04-16 2013-02-05 The Board Of Regents Of The University Of Texas Systems Positive displacement pump system and method with rotating valve
US8167593B2 (en) 2009-04-16 2012-05-01 The Board Of Regents Of The University Of Texas System System and method for pump with deformable bearing surface
WO2011056823A2 (en) 2009-11-03 2011-05-12 Coherex Medical, Inc. Ventricular assist device and related methods
US8562508B2 (en) 2009-12-30 2013-10-22 Thoratec Corporation Mobility-enhancing blood pump system
US8152845B2 (en) 2009-12-30 2012-04-10 Thoratec Corporation Blood pump system with mounting cuff
DE102010009670B4 (en) 2010-02-27 2013-09-19 Knf Neuberger Gmbh diaphragm pump
US9579434B2 (en) 2010-03-03 2017-02-28 The Secretary Of Atomic Energy, Govt. Of India Flexible magnetic membrane based actuation system and devices involving the same
JP5898098B2 (en) 2010-03-05 2016-04-06 ミネトロニクス インコーポレイティド Portable controller with integrated power supply for mechanical circulation assist system
US20110260449A1 (en) 2010-04-21 2011-10-27 Pokorney James L Apical access and control devices
CA2802215A1 (en) 2010-06-22 2011-12-29 Thoratec Corporation Apparatus and method for modifying pressure-flow characteristics of a pump
EP2600918B1 (en) 2010-08-06 2021-10-13 Heartware, Inc. Conduit device for use with a ventricular assist device
US9227001B2 (en) 2010-10-07 2016-01-05 Everheart Systems Inc. High efficiency blood pump
US8556795B2 (en) 2010-11-23 2013-10-15 Minnetronix Inc. Portable controller with integral power source for mechanical circulation support systems
WO2012078873A1 (en) 2010-12-09 2012-06-14 Heartware, Inc. Controller and power source for implantable blood pump
EP2662558A3 (en) 2011-01-10 2015-01-14 Benjamin Filardo Mechanisms for creating undulating motion, such as for propulsion and for harnessing the energy of moving fluid
AU2012217696B2 (en) 2011-02-16 2015-11-12 Sequana Medical Nv Apparatus and methods for treating intracorporeal fluid accumulation
PL218244B1 (en) 2011-02-28 2014-10-31 Fundacja Rozwoju Kardiochirurgii Im Prof Zbigniewa Religi Blood pump, especially implantable pneumatic ventricular assist device
JP5502017B2 (en) 2011-04-15 2014-05-28 株式会社テクノ高槻 Electromagnetic vibration type diaphragm pump
CN103635210A (en) 2011-05-05 2014-03-12 柏林心脏有限公司 Blood pump
EP2524709A1 (en) 2011-05-16 2012-11-21 Berlin Heart GmbH Connection system for reversible fixing of a hollow cylindrical component to a recess
WO2013014339A1 (en) 2011-07-28 2013-01-31 Fineheart Removable heart pump, and method implemented in such a pump
CN102904448B (en) 2011-07-29 2015-07-22 比亚迪股份有限公司 Control chip of switch power supply and switch power supply
WO2013026485A1 (en) 2011-08-25 2013-02-28 Ecolab Inc. A diaphragm pump for dosing a fluid capable of automatic degassing and an according method
US8821527B2 (en) 2011-09-07 2014-09-02 Circulite, Inc. Cannula tips, tissue attachment rings, and methods of delivering and using the same
KR101341326B1 (en) * 2011-12-15 2013-12-13 (주)에스티아이 Fixing apparatus for flexible thin film substrate
US8579790B2 (en) 2012-01-05 2013-11-12 Thoratec Corporation Apical ring for ventricular assist device
US9199019B2 (en) 2012-08-31 2015-12-01 Thoratec Corporation Ventricular cuff
EP2822614B1 (en) 2012-03-05 2016-12-28 Thoratec Corporation Modular implantable medical pump
WO2013148697A1 (en) 2012-03-26 2013-10-03 Procyrion, Inc. Systems and methods for fluid flows and/or pressures for circulation and perfusion enhancement
US9289110B2 (en) 2012-04-05 2016-03-22 Stryker Corporation Control for surgical fluid management pump system
WO2013177396A2 (en) 2012-05-24 2013-11-28 Heartware, Inc. Low-power battery pack with safety system
US9364596B2 (en) 2013-01-04 2016-06-14 HeartWave, Inc. Controller and power source for implantable blood pump
US9398951B2 (en) 2013-03-12 2016-07-26 St. Jude Medical, Cardiology Division, Inc. Self-actuating sealing portions for paravalvular leak protection
US8882477B2 (en) 2013-03-14 2014-11-11 Circulite, Inc. Magnetically levitated and driven blood pump and method for using the same
WO2015085076A1 (en) 2013-12-04 2015-06-11 Heartware, Inc. Molded vad
EP3131600B1 (en) 2014-04-15 2021-06-16 Tc1 Llc Methods and systems for providing battery feedback to patient
CN110101927B (en) 2014-04-15 2021-10-08 Tc1有限责任公司 Method and system for controlling a blood pump
FR3021074B1 (en) 2014-05-14 2016-05-27 Saint Gobain Performance Plastics France MEMBRANE PUMP
CN106456854B (en) 2014-05-20 2019-05-31 瑟柯莱特公司 Heart assist system and method
US9526819B2 (en) 2014-09-26 2016-12-27 Ch Biomedical (Usa), Inc. Ventricular assist device controller with integrated power source
EP3256185B1 (en) 2015-02-12 2019-10-30 Tc1 Llc System and method for controlling the position of a levitated rotor
FR3032917B1 (en) * 2015-02-20 2017-02-17 Valeo Systemes Thermiques AIR CONDITIONING MODULE OF A MOTOR VEHICLE
WO2016179262A1 (en) 2015-05-04 2016-11-10 Yeoman & Company Hand tool handle assembly and method of manufacture
EP3115616B1 (en) 2015-07-06 2022-09-07 Levitronix GmbH Electromagnetic rotary drive
EP3377136B1 (en) 2015-11-20 2020-05-06 Tc1 Llc Energy management of blood pump controllers
EP3377135B1 (en) 2015-11-20 2020-05-06 Tc1 Llc Blood pump controllers having daisy-chained batteries
WO2017161317A1 (en) 2016-03-18 2017-09-21 Everheart Systems Inc. Cardiac connection for ventricular assist device
US10166319B2 (en) 2016-04-11 2019-01-01 CorWave SA Implantable pump system having a coaxial ventricular cannula
US9968720B2 (en) 2016-04-11 2018-05-15 CorWave SA Implantable pump system having an undulating membrane
FR3054861B1 (en) 2016-08-02 2019-08-23 Zodiac Aerotechnics METHOD OF CONTROLLING AN ONDULATING MEMBRANE PUMP, AND PILOT SYSTEM OF AN INJUSTING MEMBRANE PUMP
WO2018039124A1 (en) 2016-08-22 2018-03-01 Tc1 Llc Heart pump cuff
WO2018178939A1 (en) 2017-03-31 2018-10-04 CorWave SA Implantable pump system having a rectangular membrane
FR3073578B1 (en) 2017-11-10 2019-12-13 Corwave FLUID CIRCULATOR WITH RINGING MEMBRANE
US10188779B1 (en) 2017-11-29 2019-01-29 CorWave SA Implantable pump system having an undulating membrane with improved hydraulic performance
WO2020115607A2 (en) 2018-12-05 2020-06-11 CorWave SA Apparatus and methods for coupling a blood pump to the heart
EP3938006A1 (en) 2019-03-15 2022-01-19 Corwave SA Systems and methods for controlling an implantable blood pump

Also Published As

Publication number Publication date
EP3707381A1 (en) 2020-09-16
FR3073578A1 (en) 2019-05-17
US20210172429A1 (en) 2021-06-10
WO2019092175A1 (en) 2019-05-16
CN111433460B (en) 2022-10-04
JP2021502513A (en) 2021-01-28
AU2018365313A1 (en) 2020-05-21
US11512689B2 (en) 2022-11-29
EP3707381B8 (en) 2022-03-23
FR3073578B1 (en) 2019-12-13
AU2018365313B2 (en) 2024-05-09
CN111433460A (en) 2020-07-17
JP7158061B2 (en) 2022-10-21

Similar Documents

Publication Publication Date Title
EP3707381B1 (en) Undulating-membrane fluid circulator
EP3859135B1 (en) Turbine engine for aircraft provided with a thermoacoustic system
EP2740905B1 (en) Splitter of an axial turbomachine, corresponding compressor and axial turbomachine
EP1969232B1 (en) Diaphragm circulator
EP2756252B1 (en) Heat transfer device using capillary pumping
EP2352922A1 (en) Diffuser having blades with apertures
EP2430314B1 (en) Double exhaust centrifugal pump
EP3465043B1 (en) Air manifold and vehicle comprising said air manifold
EP3869993B1 (en) Hairstyling appliance having a liquid evacuation device
EP3640467B1 (en) Turbine engine provided with a thermoacoustic system
EP2879955B1 (en) Air inlet for helicopter engine with increased circumferential intake lips
EP3452772B1 (en) Plastic heat exchanger and vehicle comprising this exchanger
FR3087855A1 (en) A CENTRIFUGAL TURBOCHARGER HAVING A GAS FLOW PATH HAVING A RELAXATION CHAMBER
FR3079605A1 (en) PLATE HEAT EXCHANGER HAVING A FLOW DISTRIBUTION SHIELD FOR A TURBOMOTEUR FLUID
EP3027995B1 (en) Evaporator with non-return device for diphasic loop
EP3482148B1 (en) Heat exchanger and vehicle comprising said exchanger
FR3115333A1 (en) Piston for cryogenic fluid pump
FR2931901A1 (en) ACOUSTICAL ATTENUATION DEVICE FOR THE INTAKE LINE OF A THERMAL MOTOR, AND ADMISSION LINE INCORPORATING IT.
FR3099525A1 (en) Thermal management system
WO2024200306A1 (en) Movable deflector for a membrane device for generating a fluid flow
FR2914978A1 (en) Four way valve for motor vehicle, has body delimiting chamber in which inlet ducts and outlet ducts open, and flap extending across chamber to close former inlet duct and latter outlet duct in derivation position
EP3054168B1 (en) Device for circulating a gas in a closed circuit
EP2006631A1 (en) Collector flange for a heat exchanger
FR3035167A1 (en) PURGE SOLENOID VALVE FOR VAPOR EXHAUST DEVICE
FR2962515A1 (en) Fluidic connector for connecting e.g. bags, has set of male and female connection end fittings that are respectively connected to another set of female and male connection end fittings at coupled state of elements

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200604

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210305

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211007

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

GRAT Correction requested after decision to grant or after decision to maintain patent in amended form

Free format text: ORIGINAL CODE: EPIDOSNCDEC

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: RECTIFICATION B8

Ref country code: CH

Ref legal event code: EP

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CORWAVE SA

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018030982

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1469038

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220315

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CORWAVE SA

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220216

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1469038

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220616

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220516

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220517

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018030982

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20221117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230912

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240919

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240909

Year of fee payment: 7