EP3672821A1 - Démarrage par impulsions dans une chaîne cinématique hybride - Google Patents

Démarrage par impulsions dans une chaîne cinématique hybride

Info

Publication number
EP3672821A1
EP3672821A1 EP18765573.3A EP18765573A EP3672821A1 EP 3672821 A1 EP3672821 A1 EP 3672821A1 EP 18765573 A EP18765573 A EP 18765573A EP 3672821 A1 EP3672821 A1 EP 3672821A1
Authority
EP
European Patent Office
Prior art keywords
clutch
internal combustion
combustion engine
speed
electric machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP18765573.3A
Other languages
German (de)
English (en)
Inventor
Bernhard Hoess
Thomas Jung
Sebastian Kobler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP3672821A1 publication Critical patent/EP3672821A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/022Gearing between starting-engines and started engines; Engagement or disengagement thereof the starter comprising an intermediate clutch
    • F02N15/025Gearing between starting-engines and started engines; Engagement or disengagement thereof the starter comprising an intermediate clutch of the friction type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/02Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/30Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by chargeable mechanical accumulators, e.g. flywheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • B60W30/194Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine related to low temperature conditions, e.g. high viscosity of hydraulic fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • F02N11/06Starting of engines by means of electric motors the motors being associated with current generators and with ignition apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4808Electric machine connected or connectable to gearbox output shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4816Electric machine connected or connectable to gearbox internal shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4833Step up or reduction gearing driving generator, e.g. to operate generator in most efficient speed range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4833Step up or reduction gearing driving generator, e.g. to operate generator in most efficient speed range
    • B60K2006/4841Step up or reduction gearing driving generator, e.g. to operate generator in most efficient speed range the gear provides shifting between multiple ratios
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0208Clutch engagement state, e.g. engaged or disengaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0208Clutch engagement state, e.g. engaged or disengaged
    • B60W2510/0216Clutch engagement rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0208Clutch engagement state, e.g. engaged or disengaged
    • B60W2510/0225Clutch actuator position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0241Clutch slip, i.e. difference between input and output speeds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0241Clutch slip, i.e. difference between input and output speeds
    • B60W2510/025Slip change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/04Vehicle stop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/20Ambient conditions, e.g. wind or rain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • B60W2710/022Clutch actuator position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • B60W2710/023Clutch engagement rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/025Clutch slip, i.e. difference between input and output speeds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/025Clutch slip, i.e. difference between input and output speeds
    • B60W2710/026Slip change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/027Clutch torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/028Clutch input shaft speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • B60W2710/082Speed change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/244Charge state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2300/00Control related aspects of engine starting
    • F02N2300/20Control related aspects of engine starting characterised by the control method
    • F02N2300/2002Control related aspects of engine starting characterised by the control method using different starting modes, methods, or actuators depending on circumstances, e.g. engine temperature or component wear
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to a method for operating a hybrid drive device of a motor vehicle, a hybrid drive device and a motor vehicle.
  • Hybrid drives for motor vehicles in which an electric machine between the engine and the transmission is arranged, are known.
  • these are hybrid drives in which the electric machine is coupled directly to the engine (mild hybrid) or between the engine and electric machine, a clutch is present (parallel hybrid drive). It is an object of the present invention to provide an improved method for the operation of a hybrid powertrain.
  • the invention is based on the following knowledge.
  • a motor vehicle with a mild hybrid powertrain is usually, the electric machine between the
  • Combustion engine and the transmission arranged, wherein the electric machine can be decoupled via a clutch from the engine.
  • a hybrid drive is not designed for a pulse start of the internal combustion engine.
  • the electric starting operation is possible as a bridged start:
  • the electric machine accelerates the motor vehicle, starting at a speed zero of the electric machine, all necessary for the power flow clutches are closed in the transmission.
  • Another possibility is the approach via an internal gear starting element: The electric machine on
  • a gear-internal starting element for example, a clutch
  • this clutch is then completely closed.
  • the start of the internal combustion engine VM via the moment of inertia of the rotating electric machine EM and a flywheel S.
  • a start of the engine VM for example, when a power limit of the electric machine EM is reached or the available Capacity of the battery (SOC) is low, there is first a speed increase of the electric machine EM, wherein the transmission input clutch GEK from the transmission G is in slip and transmits the torque required for the propulsion to the output A. If the rotational speed at the electric machine EM is then sufficiently high, the clutch K is closed to the internal combustion engine VM. The synchronous speed for the internal combustion engine VM is above the speed of the transmission input clutch GEK.
  • the object of the invention is achieved by a method for operating a hybrid drive device of a motor vehicle, wherein the hybrid drive device comprises an internal combustion engine, an electric machine and a pulse start module.
  • the pulse start module includes two clutches and one flywheel. The method comprises the following steps: opening the first clutch of the pulse start module, determining a request for the internal combustion engine, closing the first clutch when the second clutch is open or closed to start the internal combustion engine.
  • Zustartangins can be done via a control unit of the hybrid drive device or the vehicle.
  • the flywheel includes a rotational inaccuracy reducing element or a flywheel.
  • the focus is on the processes during the transition from electric driving to hybrid driving and vice versa.
  • the start of the internal combustion engine takes place via a mutual actuation of the first and second clutch of the pulse start module.
  • the second clutch is opened, while the first clutch is closed at the same time.
  • the closing or opening of the first and second clutch is parallel or simultaneous.
  • Initial start includes the start of the internal combustion engine when the vehicle is stationary.
  • An initial start of the internal combustion engine can after a
  • electrical consumers eg. Air conditioning, seat heating, etc.
  • the pulse start module the
  • the internal combustion engine starts when the electric starts and the inertia of the
  • this flywheel includes the rotational inaccuracy reducing element of the internal combustion engine.
  • the A rotational inaccuracy reducing element is in particular connected to the electric machine during electric driving, wherein the second clutch is closed.
  • the pulse start module the
  • the pulse start module the
  • a rotational speed of the flywheel mass is selected such that, when the internal combustion engine is started up, its rotational speed, after switching on the flywheel mass, is above an idling rotational speed.
  • the electric machine is switched at least one gear higher after opening the second clutch, before switching on the internal combustion engine.
  • it is a switching strategy for the electric machine, especially in electric driving, selected so that the flywheel sendrehress comes to rest so that the engine has a speed above the idle speed of the engine when you start immediately after switching on the flywheel.
  • the speed is well above the idle speed of
  • a speed of the electric machine is selected before the start of the engine so that the speed of the
  • the electric machine supports the acceleration of the internal combustion engine by its inertia and / or torque side.
  • the hybrid drive apparatus includes an internal combustion engine, an electric machine, and a pulse start module disposed between the internal combustion engine and the electric machine and including a first clutch and a second clutch.
  • the first clutch is closed when the second clutch of the pulse start module is open or closed.
  • Torsion-reduction element comprises.
  • Passenger car specified for applying the method wherein the motor vehicle has a hybrid drive device comprising an internal combustion engine and an electric machine.
  • Figure 2 a hybrid powertrain
  • Figure 3 a first variant of an electrical starting based on speed
  • Figure 4 a second variant of an electrical starting based on speed
  • Figure 5 an engine off sailing based on speed and clutch status
  • FIG. 6 shows a condition of the internal combustion engine from an electric driving on the basis of speed and clutch status
  • FIG. 7A shows a first variant of an initial start of the internal combustion engine when the vehicle is stationary on the basis of speed and torque
  • FIG. 7B shows a second variant of an initial start of the internal combustion engine on the basis of FIG
  • FIG. 7C shows a third variant of an initial start of the internal combustion engine on the basis of rotational speed and torque
  • the hybrid drive device HA includes an engine VM, an electric machine EM, and a
  • Pulse start module IM which is arranged between the engine VM and the electric machine EM and comprises a first clutch KS and a second clutch K0. Between the clutches KS and K0 a Schwaldenheitheitsreduzi mecanics- element DU is arranged. Instead of the rotation inaccuracy reducing element DU, a flywheel is used in some embodiments.
  • the start of the internal combustion engine VM via a mutual actuation of the first KS and second K0 coupling of the pulse start module IM.
  • the figures described below each relate to an operating strategy for the method for operating a hybrid propulsion device HA of a P2-Mild Hybrid powertrain vehicle, as shown in FIG.
  • the first clutch KS separates this
  • the lower axis in each figure indicates the change in clutch or the speeds over time.
  • the transitions from one state to another or from one speed to another are in the milliseconds (ms) range.
  • the states in which the vehicle is represented electrically or hybridically (that is to say with connection of the internal combustion engine) comprise a range of seconds.
  • the speed indicated with LL corresponds to one
  • Idling speed of the internal combustion engine and is between 600 - 900 revolutions / minute.
  • FIG. 3 shows a first variant of an electrical approach based on speed and clutch status, also called electrical creep.
  • the vehicle is at the beginning, the speed of VM and EM is zero.
  • the electric machine EM is brought to a certain speed.
  • Coupling K0 is closed, so that the DU element is mitbelectt.
  • the starting element is here in the transmission iAE. If you do not crawl with an accelerator pedal and with a constant speed, the electric machine EM rotates so that a pulse start of the internal combustion engine is possible at any time.
  • the iAE is in slippage.
  • the first clutch KS is first closed at start request.
  • the internal combustion engine VM is started and accelerated to a self-adjusting synchronous speed, which is above the speed at the iAE. There is thus no change of investment at the iAE, which would be noticeable at the downforce.
  • Clutch KS adjusting speed on the engine VM above the speed at the transmission iAE lies.
  • the speed at the transmission iAE is considered to be directly proportional to the speed (in a fixed gear).
  • Figure 4 a second variant of an electrical starting based on speed
  • FIG. 5 shows engine off sailing based on speed and clutch status.
  • Engine-off sailing means that the engine VM is disconnected from the powertrain and the first clutch KS is open. The driver does not operate an accelerator pedal and the electric machine EM therefore does not provide a positive moment. The vehicle can thus roll more or less freely. All internal transmission clutches are closed, the gears are tracked according to the speed. The second clutch K0 is closed. The inertia of the DU element DU thus always has the same speed as the
  • the free rolling is represented by the decrease of the speed of nJ.
  • the second clutch K0 is opened quickly.
  • the flywheel can rotate freely.
  • the first clutch KS of the engine VM is started and dragged to a synchronous speed.
  • the engine VM builds up speed by burning fuel.
  • a speed control begins to control the engine VM to the target speed and the second clutch K0 can be closed.
  • the internal combustion engine VM takes over the propulsion and the electric machine EM reduces its torque.
  • the support from the engine off recuperation is identical. With the difference that the speed in the recuperation due to the negative moment at the
  • FIG. 6 shows a status of the internal combustion engine from an electric drive on the basis of speed and clutch status.
  • the charge from the electric driving runs like the start from the motor-off sailing (see Fig. 5).
  • the electric machine EM can provide the complete power for propulsion of the vehicle. A first vehicle reaction can thus be displayed.
  • Flywheel DU thus rotates with transmission input speed. Through an adapted transmission shift strategy, this speed can always be kept in a suitable for the pulse start speed band.
  • niAE speed of the internal clutch iAE
  • nVM rotational speed of the internal combustion engine VM
  • nJ rotational speed of the flywheel J
  • nEM rotational speed of the electric machine EM
  • KS, K0 or iAE Status of the corresponding coupling.
  • FIG. 7A shows a first variant of a cold start of the internal combustion engine on the basis of rotational speed and torque.
  • the first clutch KS and the second clutch K0 are closed at the beginning.
  • the internal combustion engine VM is started over the moment of the electric machine.
  • FIG. 7B shows a second variant of a cold start of the internal combustion engine on the basis of rotational speed and torque.
  • the flywheel DU is brought to a certain starting speed by the moment of the electric machine. Subsequently, the
  • FIG. 7C shows a third variant of a cold start of the internal combustion engine based on rotational speed and torque and can be seen as a combination of the first and second variants (FIGS. 7A, 7B): the electric machine and the flywheel DU turn up at the beginning. Once a certain speed is reached, the first clutch KS is closed. Under the effect of torque of the electric machine EM and the inertia of flywheel and electric machine EM, the engine VM is started.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

L'invention concerne un procédé pour faire fonctionner un système d'entraînement hybride d'un véhicule à moteur, un système d'entraînement hybride et un véhicule à moteur. Le système d'entraînement hybride comprend un moteur à combustion interne, une machine électrique et un module de démarrage par impulsions, ce dernier comprenant deux embrayages (KS, KO) et une masse d'inertie. Ledit procédé comprend les étapes suivantes : débrayer le premier embrayage du module de démarrage par impulsions, déterminer une demande de démarrage pour le moteur à combustion interne, embrayer le premier embrayage lorsque le second embrayage est débrayé ou embrayé, de manière à démarrer le moteur à combustion interne.
EP18765573.3A 2017-08-23 2018-08-23 Démarrage par impulsions dans une chaîne cinématique hybride Ceased EP3672821A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017214787.3A DE102017214787A1 (de) 2017-08-23 2017-08-23 Impulsstart in einem Hybrid-Antriebsstrang
PCT/EP2018/072799 WO2019038394A1 (fr) 2017-08-23 2018-08-23 Démarrage par impulsions dans une chaîne cinématique hybride

Publications (1)

Publication Number Publication Date
EP3672821A1 true EP3672821A1 (fr) 2020-07-01

Family

ID=63517846

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18765573.3A Ceased EP3672821A1 (fr) 2017-08-23 2018-08-23 Démarrage par impulsions dans une chaîne cinématique hybride

Country Status (7)

Country Link
US (1) US11359593B2 (fr)
EP (1) EP3672821A1 (fr)
CN (1) CN110382274B (fr)
DE (1) DE102017214787A1 (fr)
MX (1) MX2019011722A (fr)
WO (1) WO2019038394A1 (fr)
ZA (1) ZA201906627B (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6791262B2 (ja) * 2016-11-30 2020-11-25 マツダ株式会社 エンジンの始動制御装置

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2133485A1 (de) * 1971-07-06 1973-01-25 Bosch Gmbh Robert Kraftfahrzeug mit einem hybridantrieb
DE2916816A1 (de) * 1979-04-26 1980-11-20 Volkswagenwerk Ag Anordnung zum antrieb der lichtmaschine eines fahrzeugs, insbesondere eines personenkraftfahrzeugs
US6040634A (en) * 1989-12-19 2000-03-21 Larguier; Rene Electric motor/thermal engine drive for a vehicle in which the electric motor functions as a flywheel, starter motor, and generator
US6033340A (en) * 1996-05-24 2000-03-07 Luk Getriebe-Systeme Gmbh Method of and apparatus for operating a torque transmitting system in the power train of a motor vehicle
DE19645943A1 (de) * 1996-11-07 1998-05-14 Bosch Gmbh Robert Startereinheit für eine Brennkraftmaschine
BR9808326A (pt) * 1997-03-11 2000-05-16 Bosch Gmbh Robert Máquina elétrica integrada na engrenagem para motores de combustão interna de automóveis e comando da mesma
EP0990094A1 (fr) * 1998-04-20 2000-04-05 Robert Bosch Gmbh Unite de demarrage et d'entrainement pour moteur a combustion interne d'un vehicule
AU1148700A (en) * 1998-09-09 2000-03-27 Luk Lamellen Und Kupplungsbau Gmbh Drive train
JP2003529477A (ja) * 1998-10-02 2003-10-07 ルーク ラメレン ウント クツプルングスバウ ベタイリグングス コマンディートゲゼルシャフト 自動車
DE10209514B4 (de) * 2001-03-30 2016-06-09 Schaeffler Technologies AG & Co. KG Antriebsstrang
DE10327306A1 (de) * 2003-06-18 2005-01-05 Daimlerchrysler Ag Verfahren zum Betreiben einer Antriebseinheit eines Kraftfahrzeugs
DE102004023673B4 (de) 2004-05-13 2017-12-14 Volkswagen Ag Verfahren zur Steuerung des Antriebsstranges eines Hybridfahrzeugs
JP4341611B2 (ja) * 2005-11-09 2009-10-07 日産自動車株式会社 ハイブリッド車両のエンジン再始動制御装置
JP4466514B2 (ja) * 2005-09-08 2010-05-26 日産自動車株式会社 ハイブリッド車両のエンジン始動制御装置
JP4341610B2 (ja) * 2005-11-09 2009-10-07 日産自動車株式会社 ハイブリッド車両のエンジン再始動制御装置
JP4325615B2 (ja) * 2005-12-12 2009-09-02 日産自動車株式会社 ハイブリッド車両のエンジン停止制御装置
JP5247000B2 (ja) * 2005-12-21 2013-07-24 日産自動車株式会社 車両のコースト減速制御装置
JP4462208B2 (ja) * 2006-02-28 2010-05-12 日産自動車株式会社 ハイブリッド車両の発進時エンジン始動制御装置
WO2007102762A1 (fr) * 2006-03-09 2007-09-13 Volvo Technology Corporation Groupe motopropulseur hybride
JP2007261442A (ja) * 2006-03-29 2007-10-11 Nissan Motor Co Ltd ハイブリッド車両の運転モード遷移制御装置
JP4743121B2 (ja) * 2006-03-29 2011-08-10 日産自動車株式会社 車両の衝突時ブレーキ配分制御装置
JP5103992B2 (ja) * 2006-05-29 2012-12-19 日産自動車株式会社 ハイブリッド車両の制御装置及びハイブリッド車両の制御方法。
DE102007045367A1 (de) * 2007-09-22 2009-04-02 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Antriebsstrangs
DE102007050235A1 (de) * 2007-10-20 2009-04-23 Zf Friedrichshafen Ag Antriebssystem für ein Fahrzeug
EP2219919B1 (fr) * 2007-12-17 2011-11-30 ZF Friedrichshafen AG Procédé et dispositif pour commander un mode de marche extra-lente d'un véhicule à entraînement hybride
JP4685146B2 (ja) * 2008-09-24 2011-05-18 ジヤトコ株式会社 ハイブリッド車両の制御装置
JP5080525B2 (ja) * 2009-03-30 2012-11-21 ジヤトコ株式会社 ハイブリッド車両の制御装置
DE102009024530A1 (de) * 2009-06-06 2010-12-09 Bayerische Motoren Werke Aktiengesellschaft Antriebsstrang für Hybridfahrzeuge
JP5419627B2 (ja) * 2009-10-09 2014-02-19 ジヤトコ株式会社 ハイブリッド車両の制御装置
KR101297039B1 (ko) * 2009-10-14 2013-08-14 닛산 지도우샤 가부시키가이샤 차량의 제어 장치
MX2013000753A (es) * 2010-07-21 2013-03-08 Nissan Motor Dispositivo de control para vehiculo hibrido.
JP5581915B2 (ja) * 2010-09-06 2014-09-03 日産自動車株式会社 ハイブリッド車両の制御装置
CN103370246B (zh) * 2010-10-22 2015-12-16 日产自动车株式会社 混合动力车辆的控制装置
JP5832736B2 (ja) * 2010-10-26 2015-12-16 日産自動車株式会社 ハイブリッド車両のエンジン始動制御装置
JP5786216B2 (ja) * 2010-11-02 2015-09-30 ジヤトコ株式会社 ハイブリッド車両
BR112013012308A2 (pt) * 2010-11-18 2016-08-23 Dti Group Bv método de arranque e dispositivo de arranque para ligar um motor de combustão e/ou movimentar um veículo
DE102010063092A1 (de) * 2010-12-15 2011-06-30 Bayerische Motoren Werke Aktiengesellschaft, 80809 Hybridantrieb
JP5465197B2 (ja) * 2011-02-03 2014-04-09 ジヤトコ株式会社 ハイブリッド車両の制御装置
DE102011075512A1 (de) * 2011-05-09 2012-11-15 Zf Friedrichshafen Ag Verfahren zur Steuerung eines Hybridantriebsstrangs eines Kraftfahrzeugs
JP5807560B2 (ja) * 2011-07-06 2015-11-10 アイシン・エィ・ダブリュ株式会社 制御装置
EP2762351A4 (fr) * 2011-09-26 2015-11-18 Honda Motor Co Ltd Dispositif de propulsion pour véhicule
CN104053926B (zh) * 2012-01-20 2016-03-09 丰田自动车株式会社 车辆用振动降低装置
US9108632B2 (en) * 2012-05-04 2015-08-18 Ford Global Technologies, Llc Methods and systems for operating a driveline clutch
EP2928743B1 (fr) * 2012-12-07 2017-01-18 Volvo Truck Corporation Procédé permettant de démarrer un moteur d'un véhicule hybride
US10131345B2 (en) * 2012-12-25 2018-11-20 Nissan Motor Co., Ltd. Hybrid vehicle control device
WO2015037504A1 (fr) * 2013-09-13 2015-03-19 ジヤトコ株式会社 Unité de commande pour véhicule hybride
KR101459474B1 (ko) * 2013-10-07 2014-11-20 현대자동차 주식회사 4륜 구동 하이브리드 차량용 변속장치
DE102016202138A1 (de) * 2016-02-12 2017-08-17 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Anlassen einer Verbrennungskraftmaschine sowie Antriebsstrang für ein Kraftfahrzeug
DE102016202828A1 (de) 2016-02-24 2017-08-24 Bayerische Motoren Werke Aktiengesellschaft Antriebssystem für ein Hybridfahrzeug sowie Verfahren zum Betreiben eines solchen Antriebssystems
DE102016214148A1 (de) * 2016-08-01 2018-02-01 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Ausstieg aus einer Rekuperationsphase in einem Parallelhybridfahrzeug
EP3343017A1 (fr) * 2016-12-27 2018-07-04 Volvo Car Corporation Procédé et système pour démarrer un moteur à combustion interne d'un véhicule hybride et véhicule hybride comportant un tel système de démarrage
DE102017205942A1 (de) * 2017-04-06 2018-10-11 Bayerische Motoren Werke Aktiengesellschaft Antriebsvorrichtung mit einer Kupplungseinrichtung, Antriebssystem mit dieser Antriebsvorrichtung und Verfahren zum Betrieb des Antriebsystems

Also Published As

Publication number Publication date
CN110382274A (zh) 2019-10-25
WO2019038394A1 (fr) 2019-02-28
US20200208600A1 (en) 2020-07-02
DE102017214787A1 (de) 2019-02-28
US11359593B2 (en) 2022-06-14
MX2019011722A (es) 2019-11-21
ZA201906627B (en) 2020-09-30
CN110382274B (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
DE102005021801B4 (de) Verfahren zur Steuerung eines aktiven Motorhalts eines Hybridelektrofahrzeugs
DE102010037678B4 (de) Verfahren zum Steuern des Starts des Motors eines Kraftfahrzeugs
DE102008053505B4 (de) Verfahren zur Steuerung eines Hybridantriebsstrangs eines Kraftfahrzeuges
EP2349801B1 (fr) Procédé et dispositif pour le démarrage d'un véhicule hybride
EP2665632B1 (fr) Procédé et dispositif permettant de faire fonctionner un dispositif d'entraînement
EP2393699B1 (fr) Procédé d'accouplement d'un moteur à combustion interne d'une transmission hybride parallèle
DE112010002304T5 (de) Fahrzeugssteuerungsvorrichtung
DE102011085201A1 (de) Vorrichtung für einen Antriebsstrang eines Hybridfahrzeugs, Antriebsstrang und Verfahren zum Betreiben derselben
DE102010037677A1 (de) Verfahren zum Steuern des Starts eines Motors in einem Kraftfahrzeug
EP2884083A1 (fr) Procédé destiné au démarrage d'un moteur à combustion interne d'un véhicule automobile et véhicule automobile
EP1953059A1 (fr) Procédé de fonctionnement de la transmission d'un véhicule hybride
DE102014200253B4 (de) Verfahren zum Starten einer Verbrennungskraftmaschine eines Hybridfahrzeuges und Hybridfahrzeug
DE102008027658A1 (de) Verfahren zum Starten einer Brennkraftmaschine eines Hybridfahrzeugs
DE102009054468A1 (de) Verfahren zum Betreiben eines Antriebsstrangs
DE102016214148A1 (de) Verfahren zum Ausstieg aus einer Rekuperationsphase in einem Parallelhybridfahrzeug
DE102016203260A1 (de) Verfahren zum Starten eines Verbrennungsmotors eines Hybridfahrzeugs und Steuereinheit zum Betreiben des Verfahrens
DE102011085151A1 (de) Verfahren zum Betreiben eines Kraftfahrzeugs sowie Antriebssystem eines Kraftfahrzeugs
DE102012220478A1 (de) Verfahren sowie Steuerungseinrichtung zum Betreiben eines Hybridfahrzeugs
WO2013083336A1 (fr) Dispositif de commande d'un véhicule hybride et procédé pour exploiter ce dernier
DE102015214551A1 (de) Verfahren und Vorrichtung zur Steuerung eines Wiederstartes eines Verbrennungsmotors bei einem Austritt eines mit einem Schaltgetriebe ausgebildeten Fahrzeuges aus einem Segelbetrieb
EP3672821A1 (fr) Démarrage par impulsions dans une chaîne cinématique hybride
DE102011085395A1 (de) Verfahren zum Betreiben eines Kraftfahrzeugs sowie Antriebssystem eines Kraftfahrzeugs
DE102016203434A1 (de) Verfahren zur Adaption eines Greifpunkts einer Trennkupplung für ein Fahrzeug
DE102014200087A1 (de) Verfahren zum Betreiben eines Kraftfahrzeugs mit manuellem Getriebe
WO2018086892A1 (fr) Procédé permettant de faire fonctionner une chaîne cinématique hybride et chaîne cinématique hybride

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210518

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230503

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20230428