EP3670689B1 - Heat-resistant aluminium alloy - Google Patents

Heat-resistant aluminium alloy Download PDF

Info

Publication number
EP3670689B1
EP3670689B1 EP18214766.0A EP18214766A EP3670689B1 EP 3670689 B1 EP3670689 B1 EP 3670689B1 EP 18214766 A EP18214766 A EP 18214766A EP 3670689 B1 EP3670689 B1 EP 3670689B1
Authority
EP
European Patent Office
Prior art keywords
alloy according
max
alloy
variant
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18214766.0A
Other languages
German (de)
French (fr)
Other versions
EP3670689A1 (en
EP3670689C0 (en
Inventor
Stuart Wiesner
Fabian NIKLAS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aluminium Rheinfelden Alloys GmbH
Original Assignee
Aluminium Rheinfelden Alloys GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminium Rheinfelden Alloys GmbH filed Critical Aluminium Rheinfelden Alloys GmbH
Priority to EP18214766.0A priority Critical patent/EP3670689B1/en
Priority to PCT/EP2019/080431 priority patent/WO2020126198A1/en
Publication of EP3670689A1 publication Critical patent/EP3670689A1/en
Application granted granted Critical
Publication of EP3670689B1 publication Critical patent/EP3670689B1/en
Publication of EP3670689C0 publication Critical patent/EP3670689C0/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent

Definitions

  • the invention relates to an alloy for casting components based on aluminum, magnesium, copper and silicon, in particular for use in vehicle components subject to thermal stress. Furthermore, the invention is directed to a component cast from the alloy according to the invention, this component preferably being a cylinder head and a cylinder head which comprises the alloy according to the invention.
  • a trend in lightweight construction in the automotive industry is the construction of internal combustion engines with high performance and small installation space. In this way, the design of hybrid drives in particular is made easier.
  • the cylinder head plays a crucial role here: the exhaust valves have the highest thermal load, and the connecting web between the valves is particularly at risk because high thermal loads occur here. Due to the desired higher charging of the engines, the components are exposed to ever higher temperatures.
  • AlSi alloys are usually used for thermally stressed components, with high-temperature strength being achieved by alloying copper.
  • copper also increases the tendency to hot crack in AlSi10 or AlSi7 alloys and has a negative effect on castability.
  • Applications that require particular high-temperature strength are mainly found in the area of cylinder heads Automobile construction, see e.g FJ Feikus, "Optimization of aluminum-silicon casting alloys for cylinder heads", Giesserei-Praxis, 1999, issue 2, pp. 50-57 .
  • the EP 1 757709 B1 The applicant himself discloses a heat-resistant aluminum alloy of the AlMgSi type with good long-term heat resistance for the production of thermally and mechanically stressed cast components.
  • the object of the invention is to provide an alloy composition for an alloy for casting components which avoids at least one disadvantage of the alloys known from the prior art.
  • the preferred casting process is chill casting, e.g. in the variant of gravity casting, low-pressure casting and tilting crucible casting.
  • this object is achieved by an alloy for casting components based on aluminum-magnesium-copper-silicon-manganese, consisting of: Mg 5.0 to 9.5% by weight Cu 3.0 to 7.5% by weight Si 1.5 to 4.7% by weight Mn 0.1 to 1.0% by weight Ni max. 2% by weight Fe max. 1% by weight Zr max. 0.5% by weight Be up to 500 ppm Ti up to 0.5% by weight Sr max. 0.8% by weight P max. 500 ppm.
  • the alloy according to the invention contains 5.8 to 8.5% by weight of magnesium.
  • the alloy according to the invention contains 1.7 to 4.7% by weight of silicon, preferably 1.7 to 3.4% by weight of silicon.
  • the alloy according to the invention contains 3.2 to 7.5% by weight of copper.
  • the alloy according to the invention contains 3.2 to 5.5% by weight of copper.
  • the alloy according to the invention contains 3.4 to 5.5% by weight of copper.
  • the alloy according to the invention contains 0.2 - 0.7% by weight of manganese.
  • the alloy according to the invention contains 0.4 - 0.7% by weight of manganese.
  • the alloy according to the invention contains a maximum of 0.5% by weight of nickel.
  • the alloy according to the invention contains a maximum of 0.3% by weight of zirconium.
  • the alloy according to the invention contains a maximum of 100 ppm beryllium.
  • the alloy according to the invention contains a maximum of 0.1% by weight of titanium.
  • the alloy according to the invention contains a maximum of 50 ppm phosphorus.
  • a component is cast from the alloy according to the invention, preferably the casting process is a chill casting process.
  • the invention also includes a cylinder head cast from the alloy according to the invention.
  • a cylinder head comprises the alloy according to the invention.
  • the alloy according to the invention meets the requirements for high-temperature strength and castability better than all alloys previously on the market.
  • the alloy according to the invention is based on an alloy system AlMgCuSi, which in the variant according to the invention has not yet been used in casting alloys for automobile construction.
  • the chemical composition With the help of phase simulation calculations, it was determined that no rapid jumps in volume change occurred during solidification. This leads to stress-free and therefore hot-crack-free cast components. The practical verification was carried out using the star mold, which is designed to cause such hot cracks.
  • An innovation is the addition of copper, which makes it possible to achieve higher strength in the temperature range of 250 to 300 °C and better castability.
  • the magnesium-silicon ratio was chosen to achieve a high proportion of Mg2Si eutectic. This reduces the melting temperature and the castability is significantly better than without Si components.
  • a phase simulation showed that Al2Cu phases can be avoided in favor of phases containing AIMgCu.
  • the phase simulation was carried out using the JMatPro software (version 8.0, Sente Software). According to this calculation, Al2Cu2Mn3 and Al2CuMg are formed in the equilibrium state. Avoiding Al2Cu phases has a positive effect on the corrosion resistance of the alloy according to the invention. It is known from the prior art that alloys with a high copper content, including alloys with a Cu content of several percent understand, are susceptible to corrosion. With the alloy according to the invention it was found that this is not the case.
  • Manganese contributes to increasing strength to a limited extent and can transform brittle AlFeSi beta phases into more harmless AIMnFeSi alpha phases.
  • Zirconium can provide limited strength improvement and finer grain. This effect can be enhanced by combining it with molybdenum.
  • Titanium-boron alloys can be used with finer grains, such as those known under the trade names TiBloy or TiBor.
  • TiBloy is manufactured on the Al-Ti-B basis in a ratio Ti: B ⁇ 2.2: 1, where the sum of Ti and B is a maximum of 1.9 (wt.)%.
  • TiBor exists in various compositions, Ti:B ratios of 5%:1% or 1.7%:1.4% are common. If the phosphorus content is too high, the alloy becomes brittle. Strontium only has a limited influence on the alloy properties and does not improve the structure.
  • compositions of 5 alloys A, B, C, D and E are compared below.
  • Variant A represents an alloy of the AlSi10Mg type that is widely used in the production of cylinder heads
  • variant B is a typical example of an alloy as described in the patent EP1757709 B1
  • Variants C to E represent design variants of the alloy according to the invention: variant C with approximately 3.5% by weight of copper, variant D with approximately 5% by weight of copper and variant E with approximately 6% by weight of copper.
  • the information is in% by weight.
  • the mechanical characteristics (Rm, Rp 0.2 , A5) were determined using four AD alloys. The samples were produced using gravity casting in a French mold, Mg Fe Si Mn Cu Zn Variant A (Standard) 0.42 0.53 9.83 0.83 0.10 0.19 Variant B (Standard) 7.09 0.08 2.99 0.68 0.00 0.01 Variant C 7.12 0.08 3.01 0.62 3.47 0.01 Variant D 7.24 0.09 2.92 0.61 5.10 0.01 Variant E 5.93 0.09 2.97 0.67 6.09 0.01 Ti b Sr P Be Variant A (Standard) 0.09 0.000 0.022 0.001 0.000 Variant B (Standard) 0.08 0.000 0.0002 0.002 Variant C 0.08 0.002 0.0006 0.004 Variant D 0.08 0.001 0.0007 0.004 Variant E 0.07 0.000 0.0005 0.003
  • the alloys A to E described were subjected to the following T6 heat treatments.
  • the following table shows the mechanical characteristics Rm, Rp 0.2 , A5 in condition T6, measured at the specified temperatures 20°C, 250°C and 300°C. These were previously aged for 500 hours at 20°C, 250°C and 300°C. The average values from 5 tensile tests are shown. 20°C 250°C 300°C Leg.
  • alloy variant C showed the highest strengths at 250 and 300 °C. What is particularly striking is the yield strength Rp 0.2 at 250 °C, which is around three times higher than that of standard alloy A.
  • the castability and the tendency to hot cracking were determined for the alloy compositions A, B known from the prior art and for the compositions according to the invention using a star mold.
  • a star mold In a star mold, several rods of different lengths extend from the sprue and are arranged in a star shape. There are thickenings at their ends so that they cannot contract. The mechanical stresses occurring in the bars are then proportional to the length of the bars. The longest non-cracked bar can then be used to determine the tendency to hot cracks. The results are compared in the table below.
  • the melt temperature in all tests was 750 °C, the mold temperature was 250 °C (+/- 5 °C). At the beginning of the tests, the molds were heated to 250 °C and introduced with at least 10 castings.
  • variant C was shown to be well castable. In this series of tests, no hot cracks were found in any of the 6 samples produced (a total of six samples were produced per test). Casting and mold temperatures as well as all other casting parameters were deliberately kept constant for all alloys.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Mold Materials And Core Materials (AREA)

Description

TECHNISCHES GEBIETTECHNICAL FIELD

Die Erfindung betrifft eine Legierung zum Giessen von Bauteilen auf der Basis von Aluminium, Magnesium, Kupfer und Silizium, insbesondere für den Einsatz in Fahrzeugbauteilen mit thermischer Belastung. Des Weiteren richtet sich die Erfindung auf ein Bauteil gegossen aus der erfindungsgemässen Legierung, wobei es sich bei diesem Bauteil vorzugsweise um einen Zylinderkopf handelt und einen Zylinderkopf, welcher die erfindungsgemässe Legierung umfasst.The invention relates to an alloy for casting components based on aluminum, magnesium, copper and silicon, in particular for use in vehicle components subject to thermal stress. Furthermore, the invention is directed to a component cast from the alloy according to the invention, this component preferably being a cylinder head and a cylinder head which comprises the alloy according to the invention.

STAND DER TECHNIKSTATE OF THE ART

Ein Trend im Leichtbau in der Automobilindustrie besteht in der Konstruktion von Verbrennungskraftmaschinen mit hoher Leistung und kleinem Bauraum. Auf diese Weise wird insbesondere die Konstruktion von Hybridantrieben erleichtert. Der Zylinderkopf spielt hierbei eine entscheidende Rolle: An den Auslassventilen besteht die höchste thermische Belastung, der Verbindungssteg zwischen den Ventilen ist besonders gefährdet, da hier hohe thermische Belastungen auftreten. Durch die gewünschte, höhere Aufladung der Motoren sind die Bauteile immer höheren Temperaturen ausgesetzt.A trend in lightweight construction in the automotive industry is the construction of internal combustion engines with high performance and small installation space. In this way, the design of hybrid drives in particular is made easier. The cylinder head plays a crucial role here: the exhaust valves have the highest thermal load, and the connecting web between the valves is particularly at risk because high thermal loads occur here. Due to the desired higher charging of the engines, the components are exposed to ever higher temperatures.

Für thermisch beanspruchte Bauteile werden heute üblicherweise AlSi-Legierungen eingesetzt, wobei die Warmfestigkeit durch Zulegieren von Kupfer erreicht wird. Kupfer erhöht bei AlSi10- oder AlSi7-Legierungen allerdings auch die Warmrissneigung und wirkt sich negativ auf die Giessbarkeit aus. Anwendungen, bei denen insbesondere Warmfestigkeit gefordert wird, findet man hauptsächlich im Bereich der Zylinderköpfe im Automobilbau, siehe z.B. F. J. Feikus, "Optimierung von Aluminium-Silizium-Gusslegierungen für Zylinderköpfe", Giesserei-Praxis, 1999, Heft 2, S. 50-57 .Today, AlSi alloys are usually used for thermally stressed components, with high-temperature strength being achieved by alloying copper. However, copper also increases the tendency to hot crack in AlSi10 or AlSi7 alloys and has a negative effect on castability. Applications that require particular high-temperature strength are mainly found in the area of cylinder heads Automobile construction, see e.g FJ Feikus, "Optimization of aluminum-silicon casting alloys for cylinder heads", Giesserei-Praxis, 1999, issue 2, pp. 50-57 .

Die EP 1 757709 B1 der Anmelderin selbst offenbart eine warmfeste Aluminiumlegierung vom Typ AlMgSi mit guter Dauerwarmfestigkeit zur Herstellung thermisch und mechanisch beanspruchter Gussbauteile.The EP 1 757709 B1 The applicant himself discloses a heat-resistant aluminum alloy of the AlMgSi type with good long-term heat resistance for the production of thermally and mechanically stressed cast components.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Aufgabe der Erfindung ist es, eine Legierungszusammensetzung für eine Legierung zum Giessen von Bauteilen zur Verfügung zu stellen, welche mindestens einen Nachteil von den aus dem Stand der Technik bekannten Legierungen vermeidet.The object of the invention is to provide an alloy composition for an alloy for casting components which avoids at least one disadvantage of the alloys known from the prior art.

Bevorzugtes Giessverfahren ist der Kokillenguss, z.B. in der Variante des Schwerkraftgiessens, des Niederdruckgiessens und des Kipptiegelgiessens.The preferred casting process is chill casting, e.g. in the variant of gravity casting, low-pressure casting and tilting crucible casting.

Erfindungsgemäss wird diese Aufgabe gelöst durch eine Legierung zum Giessen von Bauteilen auf Basis von Aluminium-Magnesium-Kupfer-Silizium-Mangan, bestehend aus: Mg 5,0 bis 9,5 Gew.% Cu 3,0 bis 7,5 Gew.% Si 1,5 bis 4,7 Gew.% Mn 0,1 bis 1,0 Gew.% Ni max. 2 Gew.% Fe max. 1 Gew.% Zr max. 0,5 Gew.% Be bis 500 ppm Ti bis 0,5 Gew.% Sr max. 0,8 Gew.% P max. 500 ppm. According to the invention, this object is achieved by an alloy for casting components based on aluminum-magnesium-copper-silicon-manganese, consisting of: Mg 5.0 to 9.5% by weight Cu 3.0 to 7.5% by weight Si 1.5 to 4.7% by weight Mn 0.1 to 1.0% by weight Ni max. 2% by weight Fe max. 1% by weight Zr max. 0.5% by weight Be up to 500 ppm Ti up to 0.5% by weight Sr max. 0.8% by weight P max. 500 ppm.

Wahlweise noch bis 0,5 Gew.% der Elemente Zn, Cr, Mo, V, Hf, Ca, Ga, B und der Rest Aluminium und unvermeidbare Verunreinigungen.Optionally up to 0.5% by weight of the elements Zn, Cr, Mo, V, Hf, Ca, Ga, B and the rest aluminum and unavoidable impurities.

Ausführungsvarianten der erfindungsgemässen Legierung sind in den abhängigen Ansprüchen wiedergegeben.Versions of the alloy according to the invention are set out in the dependent claims.

In einer Ausführungsform enthält die erfindungsgemässe Legierung 5,8 bis 8,5 Gew.% Magnesium.In one embodiment, the alloy according to the invention contains 5.8 to 8.5% by weight of magnesium.

In einer weiteren Ausführungsform enthält die erfindungsgemässe Legierung 1,7 bis 4,7 Gew.% Silizium, vorzugsweise 1,7 bis 3,4 Gew.% Silizium.In a further embodiment, the alloy according to the invention contains 1.7 to 4.7% by weight of silicon, preferably 1.7 to 3.4% by weight of silicon.

In einer weiteren Ausführungsform enthält die erfindungsgemässe Legierung 3,2 bis 7,5 Gew.% Kupfer.In a further embodiment, the alloy according to the invention contains 3.2 to 7.5% by weight of copper.

In einer weiteren Ausführungsform enthält die erfindungsgemässe Legierung 3,2 bis 5,5 Gew.% Kupfer.In a further embodiment, the alloy according to the invention contains 3.2 to 5.5% by weight of copper.

In einer weiteren Ausführungsform enthält die erfindungsgemässe Legierung 3,4 bis 5,5 Gew.% Kupfer.In a further embodiment, the alloy according to the invention contains 3.4 to 5.5% by weight of copper.

In einer weiteren Ausführungsform der erfindungsgemässen Legierung enthält diese 0,2 - 0,7 Gew.% Mangan.In a further embodiment of the alloy according to the invention, it contains 0.2 - 0.7% by weight of manganese.

In einer weiteren Ausführungsform enthält die erfindungsgemässe Legierung 0,4 - 0,7 Gew.% Mangan.In a further embodiment, the alloy according to the invention contains 0.4 - 0.7% by weight of manganese.

In einer weiteren Ausführungsform enthält die erfindungsgemässe Legierung max. 0,5 Gew.% Nickel.In a further embodiment, the alloy according to the invention contains a maximum of 0.5% by weight of nickel.

In einer weiteren Ausführungsform enthält die erfindungsgemässe Legierung max. 0,3 Gew.% Zirkon.In a further embodiment, the alloy according to the invention contains a maximum of 0.3% by weight of zirconium.

In einer weiteren Ausführungsform enthält die erfindungsgemässe Legierung max. max. 100 ppm Beryllium.In a further embodiment, the alloy according to the invention contains a maximum of 100 ppm beryllium.

In einer weiteren Ausführungsform enthält die erfindungsgemässe Legierung max. 0,1 Gew.% Titan.In a further embodiment, the alloy according to the invention contains a maximum of 0.1% by weight of titanium.

In einer weiteren Ausführungsform enthält die erfindungsgemässe Legierung max. 50 ppm Phosphor.In a further embodiment, the alloy according to the invention contains a maximum of 50 ppm phosphorus.

Ferner wird ein Bauteil aus der erfindungsgemässen Legierung gegossen, vorzugsweise handelt es sich beim Giessverfahren um ein Kokillengussverfahren.Furthermore, a component is cast from the alloy according to the invention, preferably the casting process is a chill casting process.

Die Erfindung umfasst ebenfalls einen Zylinderkopf gegossen aus der erfindungsgemässen Legierung.The invention also includes a cylinder head cast from the alloy according to the invention.

Des Weiteren umfasst ein Zylinderkopf die erfindungsgemässe Legierung.Furthermore, a cylinder head comprises the alloy according to the invention.

Es konnte festgestellt werden, dass die erfindungsgemässe Legierung die Anforderungen an die Warmfestigkeit und die Giessbarkeit besser erfüllt als alle bisher auf dem Markt befindliche Legierungen. Die erfindungsgemässe Legierung beruht auf einem Legierungssystem AlMgCuSi, welches in der erfindungsgemässen Variante bislang nicht in Gusslegierungen für den Automobilbau eingesetzt wurde. Die chemische Zusammensetzung wurde mit Hilfe von Phasensimulationsrechnungen o eingestellt, dass sich bei der Erstarrung keine rapiden Volumenänderungssprünge auftreten. Dies führt zu spannungsfreien und damit warmrissfreien Gussbauteilen. Die praktische Verifizierung erfolgte mittels der Sternkokille, die darauf ausgelegt ist, solche Warmrisse hervorzurufen.It was found that the alloy according to the invention meets the requirements for high-temperature strength and castability better than all alloys previously on the market. The alloy according to the invention is based on an alloy system AlMgCuSi, which in the variant according to the invention has not yet been used in casting alloys for automobile construction. The chemical composition With the help of phase simulation calculations, it was determined that no rapid jumps in volume change occurred during solidification. This leads to stress-free and therefore hot-crack-free cast components. The practical verification was carried out using the star mold, which is designed to cause such hot cracks.

Eine Neuerung ist die Zugabe von Kupfer, wodurch höhere Festigkeiten im Temperaturbereich von 250 bis 300 °C und eine bessere Giessbarkeit erreicht werden konnte.An innovation is the addition of copper, which makes it possible to achieve higher strength in the temperature range of 250 to 300 °C and better castability.

Das Magnesium-Silizium-Verhältnis wurde gewählt, um einen hohen Anteil von Mg2Si-Eutektikum zu erreichen. Dadurch sinkt die Schmelztemperatur und die Giessbarkeit ist deutlich besser als ohne Si-Anteile.The magnesium-silicon ratio was chosen to achieve a high proportion of Mg2Si eutectic. This reduces the melting temperature and the castability is significantly better than without Si components.

In der erfindungsgemässen Kombination von Magnesium, Kupfer und Silizium konnte eine gute Giessbarkeit und geringe Warmrissneigung erreicht werden. Bei Cu-Gehalten zwischen 3,2 und 5,5 Gew.% konnte eine bessere Formfüllung und geringere Tendenz zur Warmrissneigung bei gleichzeitig hoher Warmfestigkeit um 250 °C festgestellt werden. Bei noch höherem Kupfergehalt sank die Festigkeit (insbesondere die Dehngrenze) zwar, lag aber noch auf einem sehr hohen Niveau.In the combination of magnesium, copper and silicon according to the invention, good castability and a low tendency to hot cracking could be achieved. With Cu contents between 3.2 and 5.5% by weight, better mold filling and a lower tendency to hot cracking were found, while at the same time high heat strength around 250 °C. With an even higher copper content, the strength (particularly the yield strength) decreased, but was still at a very high level.

In einer Phasensimulation konnte gezeigt werden, dass Al2Cu-Phasen vermieden werden können zugunsten von AIMgCu-haltigen Phasen. Die Phasensimulation wurde mit der Software JMatPro vorgenommen (Version 8.0, Sente Software). Gemäss dieser Berechnung bilden sich im Gleichgewichtszustand Al2Cu2Mn3 und Al2CuMg. Eine Vermeidung von Al2Cu-Phasen wirkt sich positiv auf die Korrosionsbeständigkeit der erfindungsgemässen Legierung aus. Aus dem Stand der Technik ist bekannt, dass hoch-kupferhaltigen Legierungen, darunter sind Legierungen mit einem Cu-gehalt von mehreren Prozent zu verstehen, korrosionsanfällig sind. Bei der erfindungsgemässen Legierung konnte festgestellt werden, dass dies nicht der Fall ist.A phase simulation showed that Al2Cu phases can be avoided in favor of phases containing AIMgCu. The phase simulation was carried out using the JMatPro software (version 8.0, Sente Software). According to this calculation, Al2Cu2Mn3 and Al2CuMg are formed in the equilibrium state. Avoiding Al2Cu phases has a positive effect on the corrosion resistance of the alloy according to the invention. It is known from the prior art that alloys with a high copper content, including alloys with a Cu content of several percent understand, are susceptible to corrosion. With the alloy according to the invention it was found that this is not the case.

Mangan trägt in Grenzen zur Festigkeitssteigerung bei und kann spröde AlFeSi-Betaphasen in harmlosere AIMnFeSi-Alphaphasen umformen.Manganese contributes to increasing strength to a limited extent and can transform brittle AlFeSi beta phases into more harmless AIMnFeSi alpha phases.

Zirkon kann in begrenztem Umfang zu einer Verbesserung der Festigkeit und feinerem Korn führen. Dieser Effekt kann durch eine Kombination mit Molybdän verstärkt werden.Zirconium can provide limited strength improvement and finer grain. This effect can be enhanced by combining it with molybdenum.

Weitere Elemente sind möglich, aber nicht zwingend notwendig. Beryllium verringert die Oxidationsneigung der Schmelze. Kornfeiner können Titan-Bor Legierung eingesetzt werden, wie beispielsweise unter dem Handelsnamen TiBloy oder TiBor bekannt. TiBloy wird auf der Al-Ti-B-Basis hergestellt in einem Verhältnis Ti : B < 2,2 : 1, wobei die Summe von Ti und B max. 1,9 (Gew.-)% beträgt. TiBor existiert in verschiedenen Zusammensetzungen, üblich sind Verhältnisse Ti : B von 5 % : 1 % oder 1,7 % : 1,4 %. Ein zu hoher Phosphorgehalt führt zu einer Versprödung der Legierung. Strontium beeinflusst die Legierungseigenschaften nur begrenzt, eine Veredelung des Gefüges tritt nicht ein.Other elements are possible, but not absolutely necessary. Beryllium reduces the melt's tendency to oxidize. Titanium-boron alloys can be used with finer grains, such as those known under the trade names TiBloy or TiBor. TiBloy is manufactured on the Al-Ti-B basis in a ratio Ti: B < 2.2: 1, where the sum of Ti and B is a maximum of 1.9 (wt.)%. TiBor exists in various compositions, Ti:B ratios of 5%:1% or 1.7%:1.4% are common. If the phosphorus content is too high, the alloy becomes brittle. Strontium only has a limited influence on the alloy properties and does not improve the structure.

Es ist möglich, die erfindungsgemässe Legierung mit Recyclingmaterial herzustellen. Geeignet hierfür ist hochwertiges Recyclingmaterial und die Verwendung eines bewährten Kipp-Trommelofens zum Schmelzen der Legierung.It is possible to produce the alloy according to the invention using recycled material. High-quality recycled material and the use of a proven tilting drum furnace to melt the alloy are suitable for this.

VergleichsbeispieleComparative examples

Im Folgenden sind die Zusammensetzungen von 5 Legierungen A, B, C, D und E gegenübergestellt. Variante A stellt eine in der Produktion von Zylinderköpfen weit verbreitete Legierung vom Typ AlSi10Mg dar, Variante B ist ein typisches Beispiel für eine Legierung wie beschrieben im Patent EP1757709 B1 . Die Varianten C bis E stellen Ausführungsvarianten der erfindungsgemässe Legierung dar: Variante C mit ca. 3,5 Gew.% Kupfer, Variante D mit ca. 5 Gew.% Kupfer und Variante E mit ca. 6 Gew.% Kupfer.The compositions of 5 alloys A, B, C, D and E are compared below. Variant A represents an alloy of the AlSi10Mg type that is widely used in the production of cylinder heads, variant B is a typical example of an alloy as described in the patent EP1757709 B1 . Variants C to E represent design variants of the alloy according to the invention: variant C with approximately 3.5% by weight of copper, variant D with approximately 5% by weight of copper and variant E with approximately 6% by weight of copper.

Die Angaben verstehen sich in Gew.%. Anhand von vier Legierungen A-D wurden die mechanischen Kennwerte (Rm, Rp0.2, A5) ermittelt. Die Proben wurden mittels Schwerkraftguss herstellt in einer französischen Kokille, Mg Fe Si Mn Cu Zn Variante A (StdT) 0,42 0,53 9,83 0,83 0,10 0,19 Variante B (StdT) 7,09 0,08 2,99 0,68 0,00 0,01 Variante C 7,12 0,08 3,01 0,62 3,47 0,01 Variante D 7,24 0,09 2,92 0,61 5,10 0,01 Variante E 5,93 0,09 2,97 0,67 6,09 0,01 Ti B Sr P Be Variante A (StdT) 0,09 0,000 0,022 0,001 0,000 Variante B (StdT) 0,08 0,000 0,000 0,0002 0,002 Variante C 0,08 0,002 0,000 0,0006 0,004 Variante D 0,08 0,001 0,000 0,0007 0,004 Variante E 0,07 0,000 0,000 0,0005 0,003 The information is in% by weight. The mechanical characteristics (Rm, Rp 0.2 , A5) were determined using four AD alloys. The samples were produced using gravity casting in a French mold, Mg Fe Si Mn Cu Zn Variant A (Standard) 0.42 0.53 9.83 0.83 0.10 0.19 Variant B (Standard) 7.09 0.08 2.99 0.68 0.00 0.01 Variant C 7.12 0.08 3.01 0.62 3.47 0.01 Variant D 7.24 0.09 2.92 0.61 5.10 0.01 Variant E 5.93 0.09 2.97 0.67 6.09 0.01 Ti b Sr P Be Variant A (Standard) 0.09 0.000 0.022 0.001 0.000 Variant B (Standard) 0.08 0.000 0.000 0.0002 0.002 Variant C 0.08 0.002 0.000 0.0006 0.004 Variant D 0.08 0.001 0.000 0.0007 0.004 Variant E 0.07 0.000 0.000 0.0005 0.003

Erzielte ResultateResults achieved

Die beschriebenen Legierungen A bis E wurden folgenden T6 Wärmebehandlungen unterzogen. Lösungsglühen Warmauslagerung Variante A (StdT) 6h-530°C+WA 3h-210°C Variante B (StdT) 3h-480°C+1 5h-520°C+WA 2h-170°C Variante C 3h-480°C + 15h-520°C +WA 2h-170°C Variante D 3h-480°C + 15h-520°C +WA 2h-170°C Variante E 16h-500°C+WA 2h-170°C (WA = Wasserabschreckung) The alloys A to E described were subjected to the following T6 heat treatments. Solution annealing Hot aging Variant A (Standard) 6h-530°C+WA 3h-210°C Variant B (Standard) 3h-480°C+1 5h-520°C+WA 2h-170°C Variant C 3h-480°C + 15h-520°C +WA 2h-170°C Variant D 3h-480°C + 15h-520°C +WA 2h-170°C Variant E 16h-500°C+WA 2h-170°C (WA = water quenching)

In der nachfolgenden Tabelle sind die mechanische Kennwerte Rm, Rp0,2, A5 im Zustand T6, gemessen bei den angegebenen Temperaturen 20°C, 250°C und 300°C dargestellt. Zuvor wurden diese 500 h bei 20°C, 250°C und 300°C ausgelagert. Dargestellt sind jeweils der Mittelwerte aus 5 Zugprüfungen. 20 °C 250 °C 300 °C Leg. Rm [MPa] RP0,2 [MPa] A5 [Gew. %] Rm [MPa] RP0,2 [MPa] A5 [Gew. %] Rm [MPa] RP0,2 [MPa] A5 [Gew. %] A (StdT) 300 185 4,0 74 57 20 49 38 30,3 B (StdT) 241 135 2,2 128 92 40,1 84 63 50,5 C 307 291 0,3 164 163 1,2 96 71 18,5 D 281 266 0,2 166 133 4,3 93 68 1 1,4 The following table shows the mechanical characteristics Rm, Rp 0.2 , A5 in condition T6, measured at the specified temperatures 20°C, 250°C and 300°C. These were previously aged for 500 hours at 20°C, 250°C and 300°C. The average values from 5 tensile tests are shown. 20°C 250°C 300°C Leg. Rm [MPa] RP 0.2 [MPa] A 5 [wt. %] Rm [MPa] RP 0.2 [MPa] A 5 [wt. %] Rm [MPa] RP 0.2 [MPa] A 5 [wt. %] A (hrd) 300 185 4.0 74 57 20 49 38 30.3 B (StdT) 241 135 2.2 128 92 40.1 84 63 50.5 C 307 291 0.3 164 163 1.2 96 71 18.5 D 281 266 0.2 166 133 4.3 93 68 1 1.4

Wie aus der Tabelle zu entnehmen, zeigte die Legierungsvariante C die höchsten Festigkeiten bei 250 und 300 °C. Besonders auffällig ist die gegenüber der Standardlegierung A etwa dreimal so hohe Dehngrenze Rp0,2 bei 250 °C .As can be seen from the table, alloy variant C showed the highest strengths at 250 and 300 °C. What is particularly striking is the yield strength Rp 0.2 at 250 °C, which is around three times higher than that of standard alloy A.

Die Giessbarkeit und die Warmrissneigung wurden für die nach dem Stand der Technik bekannten Legierungszusammensetzungen A, B und für die erfindungsgemässen Zusammensetzungen mit Hilfe einer Sternkokille ermittelt. Bei einer Sternkokille gehen vom Einguss mehrere unterschiedlich lange Stäbe ab, die sternförmig angeordnet sind. An ihren Enden weisen dies Verdickungen auf, sodass sie sich nicht zusammenziehen können. Die in den Stäben auftretenden mechanischen Spannungen sind dann proportional zur Länge der Stäbe. Aus dem längsten nicht gerissenen Stab kann dann auf die Warmrissneigung geschlossen werden. In der nachfolgenden Tabelle sind die Resultate gegenübergestellt.The castability and the tendency to hot cracking were determined for the alloy compositions A, B known from the prior art and for the compositions according to the invention using a star mold. In a star mold, several rods of different lengths extend from the sprue and are arranged in a star shape. There are thickenings at their ends so that they cannot contract. The mechanical stresses occurring in the bars are then proportional to the length of the bars. The longest non-cracked bar can then be used to determine the tendency to hot cracks. The results are compared in the table below.

Die Schmelzetemperatur lag bei allen Versuchen bei 750 °C, die Kokillentemperatur bei 250 °C (+/- 5 °C). Zu Beginn der Versuche wurden die Kokillen auf 250 °C temperiert und mit mindestens 10 Abgüssen eingefahren.The melt temperature in all tests was 750 °C, the mold temperature was 250 °C (+/- 5 °C). At the beginning of the tests, the molds were heated to 250 °C and introduced with at least 10 castings.

Hier zeigte sich eine gute Giessbarkeit der Variante C. In dieser Versuchsserie konnte bei keiner von 6 hergestellten Proben (Pro Versuch wurden insgesamt sechs Proben hergestellt) Warmrisse gefunden werden. Abguss- und Kokillentemperaturen sowie alle sonstigen Giessparameter wurden bewusst bei allen Legierungen konstant gehalten.Here, variant C was shown to be well castable. In this series of tests, no hot cracks were found in any of the 6 samples produced (a total of six samples were produced per test). Casting and mold temperatures as well as all other casting parameters were deliberately kept constant for all alloys.

Als Warmriss wurde ein Riss gezählt, der mit unbewaffnetem Auge erkennbar war. Die sehr gute Gießbarkeit der Variante A zeigte sich in guter Formfüllung bereits bei kälterer Gießform und sehr geringer Schwindung. Warmrisse Giessbarkeit Abgusstemp. Kokillentemp. Variante A (StdT) 0 von 6 Sehr gut 750°C 250°C Variante B (StdT) 0 von 6 Gut 750°C 250°C Variante C 0 von 6 Gut 750°C 250°C Variante D 1 von 6 Gut 750°C 250°C Variante E 2 von 6 Gut 750°C 250°C A crack that was visible to the naked eye was counted as a warm crack. The very good castability of variant A was demonstrated by good mold filling even with a colder mold and very low shrinkage. Warm cracks Castability Casting temp. Mold temp. Variant A (Standard) 0 out of 6 Very good 750°C 250°C Variant B (Standard) 0 out of 6 Good 750°C 250°C Variant C 0 out of 6 Good 750°C 250°C Variant D 1 of 6 Good 750°C 250°C Variant E 2 out of 6 Good 750°C 250°C

Claims (17)

  1. Alloy based on aluminium-magnesium-copper-silicon-manganese for casting components, consisting of: Mg 5.0 to 9.5 wt.% Cu 3.0 to 7.5 wt.% Si 1.5 to 4.7 wt.% Mn 0.1 to 1.0wt.% Ni max. 2 wt.% Fe max. 1 wt.% Zr max. 0.5 wt.% Be up to 500 ppm Ti up to 0.5 wt.% Sr max. 0.8 wt.% P max. 500 ppm
    optionally up to 0.5 wt.% each of the elements Zn, Cr, Mo, V, Hf, Ca, Ga, B and the remainder aluminium and unavoidable impurities.
  2. Alloy according to claim 1, characterised by 5.8 to 8.5 wt.% magnesium.
  3. Alloy according to any one of the preceding claims, characterised by 1.7 to 4.7 wt.% silicon, preferably 1.7 to 3.4 wt.% silicon.
  4. Alloy according to any one of the preceding claims, characterised by 3.2 to 7.5 wt.% copper.
  5. Alloy according to any one of the preceding claims, characterised by 3.2 to 5.5 wt.% copper.
  6. Alloy according to any one of the preceding claims, characterised by 3.4 to 5.5 wt.% copper.
  7. Alloy according to any one of the preceding claims, characterised by 0.2 - 0.7 wt.% manganese.
  8. Alloy according to any one of the preceding claims, characterised by 0.4 - 0.7 wt.% manganese.
  9. Alloy according to any one of the preceding claims, characterised by max. 0.5 wt.% nickel.
  10. Alloy according to any one of the preceding claims, characterised by max. 0.3 wt.% zirconium.
  11. Alloy according to any one of the preceding claims, characterised by max. 100 ppm beryllium.
  12. Alloy according to any one of the preceding claims, characterised by max. 0.1 wt.% titanium.
  13. Alloy according to any one of the preceding claims, characterised by max. 50 ppm phosphorus.
  14. A component cast from the alloy according to any one of preceding claims 1 to 13.
  15. A cylinder head cast from an alloy according to any one of the preceding claims 1 to 13.
  16. A component according to claim 14 or a cylinder head according to claim 1 5 cast by gravity casting.
  17. A cylinder head comprising an alloy according to any one preceding claims 1-13.
EP18214766.0A 2018-12-20 2018-12-20 Heat-resistant aluminium alloy Active EP3670689B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18214766.0A EP3670689B1 (en) 2018-12-20 2018-12-20 Heat-resistant aluminium alloy
PCT/EP2019/080431 WO2020126198A1 (en) 2018-12-20 2019-11-06 Heat-resistant aluminium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18214766.0A EP3670689B1 (en) 2018-12-20 2018-12-20 Heat-resistant aluminium alloy

Publications (3)

Publication Number Publication Date
EP3670689A1 EP3670689A1 (en) 2020-06-24
EP3670689B1 true EP3670689B1 (en) 2023-10-18
EP3670689C0 EP3670689C0 (en) 2023-10-18

Family

ID=64755236

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18214766.0A Active EP3670689B1 (en) 2018-12-20 2018-12-20 Heat-resistant aluminium alloy

Country Status (2)

Country Link
EP (1) EP3670689B1 (en)
WO (1) WO2020126198A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115287510A (en) * 2022-08-12 2022-11-04 柳州市永固门窗有限公司 Corrosion-resistant aluminum alloy
CN116103558A (en) * 2022-12-29 2023-05-12 宁国东方碾磨材料股份有限公司 Nonferrous metal alloy casting and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1757709B1 (en) * 2005-08-22 2007-10-17 ALUMINIUM RHEINFELDEN GmbH Heat resistant aluminium alloy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5300118B2 (en) * 2007-07-06 2013-09-25 日産自動車株式会社 Aluminum alloy casting manufacturing method
KR101238944B1 (en) * 2010-10-15 2013-03-04 한국기계연구원 A Aluminum Casting Alloy and A Manufacturing Method therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1757709B1 (en) * 2005-08-22 2007-10-17 ALUMINIUM RHEINFELDEN GmbH Heat resistant aluminium alloy

Also Published As

Publication number Publication date
WO2020126198A1 (en) 2020-06-25
EP3670689A1 (en) 2020-06-24
EP3670689C0 (en) 2023-10-18

Similar Documents

Publication Publication Date Title
EP1564308B1 (en) Casting of an aluminium alloy
EP1757709B1 (en) Heat resistant aluminium alloy
EP3176275B1 (en) Aluminium-silicon die casting alloy method for producing a die casting component made of the alloy, and a body component with a die casting component
DE602004008934T2 (en) AL-SI-CU ALUMINUM ALLOY FORMING HIGH WARM PROOF RESISTANCE
EP1718778B1 (en) Material based on an aluminum alloy, method for the production thereof and its use
DE102007023323B4 (en) Use of an Al-Mn alloy for high-temperature products
EP3159422B1 (en) Alloy for pressure die casting
AT502310A1 (en) AN AL-ZN-MG-CU ALLOY
EP2735621A1 (en) Aluminium die casting alloy
DE102017114162A1 (en) HIGH STRENGTH AND HIGH CRYAN RESISTANT ALUMINUM ALLOY ALLOYS AND HPDC MOTOR BLOCKS
DE102019205267B3 (en) Die-cast aluminum alloy
DE102018130544A1 (en) HIGH-TEMPERATURE ALUMINUM ALLOY ALLOY FOR CYLINDER HEADS
EP3670689B1 (en) Heat-resistant aluminium alloy
WO2004003244A1 (en) Al/cu/mg/ag alloy with si, semi-finished product made from such an alloy and method for production of such a semi-finished product
DE102006032699B4 (en) Aluminum alloy and its use for a cast component, in particular a motor vehicle
EP1215295B1 (en) Precipitation-hardening aluminium alloy and part thereof
DE102013002632B4 (en) Aluminum-silicon diecasting alloy and method of making a die cast component
EP1972696B1 (en) Use of a cast aluminium alloy for the production of cylinder heads in combustion engines
DE102012108590A1 (en) casting
EP3810818B1 (en) Aluminum alloy, method for producing an engine component, engine component, and use of an aluminum alloy to produce an engine component
EP2021521B1 (en) Magnesium-based alloy
EP1234893B1 (en) Cast alloy of the type AlMgSi
DE102019202676B4 (en) Cast components with high strength and ductility and low tendency to hot crack
EP3172350B1 (en) Piston for a combustion engine, process for its manufacture and the use of an aluminium alloy for a bearing element of a combustion engine
DE102009032588A1 (en) Method for producing a cast component from an aluminum casting alloy, comprises subjecting the cast component after the casting without solution annealing to a heat treatment for two to five hours

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210202

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

19U Interruption of proceedings before grant

Effective date: 20210630

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20220401

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALUMINIUM RHEINFELDEN ALLOYS GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230523

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018013467

Country of ref document: DE

U01 Request for unitary effect filed

Effective date: 20231115

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20231121

P04 Withdrawal of opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231117

U20 Renewal fee paid [unitary effect]

Year of fee payment: 6

Effective date: 20240124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240218

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240119

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240118

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018