EP3670684B1 - Alliage d'entropie élevée résistant à l'usure et sa préparation - Google Patents

Alliage d'entropie élevée résistant à l'usure et sa préparation Download PDF

Info

Publication number
EP3670684B1
EP3670684B1 EP18382941.5A EP18382941A EP3670684B1 EP 3670684 B1 EP3670684 B1 EP 3670684B1 EP 18382941 A EP18382941 A EP 18382941A EP 3670684 B1 EP3670684 B1 EP 3670684B1
Authority
EP
European Patent Office
Prior art keywords
alloy
high entropy
preferably equal
cast
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18382941.5A
Other languages
German (de)
English (en)
Other versions
EP3670684A1 (fr
Inventor
Fernando Santos
Ana Magaña
David García
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casa Maristas Azterlan
Original Assignee
Casa Maristas Azterlan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casa Maristas Azterlan filed Critical Casa Maristas Azterlan
Priority to EP18382941.5A priority Critical patent/EP3670684B1/fr
Publication of EP3670684A1 publication Critical patent/EP3670684A1/fr
Application granted granted Critical
Publication of EP3670684B1 publication Critical patent/EP3670684B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/005Alloys based on nickel or cobalt with Manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/22Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for drills; for milling cutters; for machine cutting tools
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the present invention is encompassed within the sector of metallurgical industry. Particularly, it relates to a new high entropy alloy with a good balance between corrosion resistance and wear resistance, useful in different applications such as cutting tools, high temperature heat exchange applications and high wear resistance components in machinery for construction and mining.
  • the high entropy alloy comprises a dual microstructure. This alloy may be submitted to a hardening heat treatment by which its hardness is improved proportionally to the quantity of one of the main chemical elements (Si).
  • the present invention also relates to a method for its preparation and to the casting of it for manufacturing parts for use in diverse industries.
  • Tool steels, manganese steels and white cast iron are currently used alloys to achieve high wear resistant properties by different microstructure related aspects.
  • Tool steels are high alloyed steels with the main requirement of high hardness which are used to build up hand tools or cutting tools mainly for machining.
  • Manganese steels have between 5 and 15 wt.% of manganese, and these are used for manufacturing mining wear resisting elements such as shot blasting cabins, mills and drills.
  • White cast iron are high carbon content alloys with 1.8-4 wt.% carbon and 10-20 wt.% chrome and are used in high wear resisting elements for use in similar applications than the manganese steels.
  • Tool steels, manganese steels and white cast iron may be submitted to an annealing heat treatment at about 700-1000 °C to increase their toughness.
  • annealing heat treatment at about 700-1000 °C to increase their toughness.
  • components of tool steel, manganese steel or white cast iron are submitted to a hardening heat treatment, cracks are prone to appear in the component due to their low ductility and the high stresses accumulated because of the high cooling speed required in the heat treatment process, to avoid perlite and carbides formation. This crack generation reduces their service life significantly.
  • CN 104 233 003 A discloses a high mangenese Ni-Cr alloy.
  • High entropy alloys are well known alloys with solid solution hardening mechanism of different elements in the range of near to equiatomic proportion minimizing the quantity of different phases.
  • the present invention provides new high entropy alloys as cast and new high entropy alloys after their heat treatment, methods for their preparation and their use as defined in the appending claims. Examples of these alloys are presented in figure 5 (for example: alloy V is equivalent in atomic proportion to Cr 0.5 MnSiNi 2 and alloy VI equivalent to Cr 0.5 MnSi 0.75 Ni 2 )
  • the high entropy alloys of the present invention show advantageously high hardness and high wear resistance, and at the same time also good corrosion resistance.
  • the high entropy alloys of the invention withstand, for example, working conditions in high wear requiring operations in mines, or working conditions of cutting tools and hand tools in construction.
  • the alloys are also able to withstand these extreme working conditions in the presence of corrosive solutions, such as salt water, acid and basic environments in general.
  • the indicated Vickers hardness values correspond to surface or nucleus hardness values, measured according to the method described under Examples. Also percentages are always, unless otherwise stated, expressed by weight with respect to the total weight of the alloy.
  • This high entropy alloy as cast of the invention comprises a dual microstructure conformed by two different FCC (Face Center Cubic) phases that can be seen with different colour: dark grey and light grey in scanning electron microscope (SEM), and which will be hereinafter referred to as the dark grey phase and the light grey phase.
  • FCC Fe Center Cubic
  • SEM scanning electron microscope
  • EDS Energy Dispersive Spectrometer
  • the two phases present in this high entropy alloy as cast generate sever distortions in the crystalline network, which advantageously result in an increase in wear resistance compared with single phase alloys.
  • Figure 1 shows the scanning electron microscope (SEM) image of a particular high entropy alloy as cast of the invention, herein referred to as alloy VI as cast, in which about 50% of each phase coexists; after heat treatment, as shown in Figure 2 , the amount of dark grey phase has increased its proportion to around 75 %.
  • SEM scanning electron microscope
  • Figure 3 and Figure 4 show each the result of the chemical composition of each of the two phases shown in Figure 1 and Figure 2 , as determined by EDS composition analysis: the light grey phase has a composition as seen in Figure 4 , with higher nickel content and lower content of Si, Mn and Cr than the dark grey phase; and the dark grey phase has a composition as seen in Figure 3 .
  • the Fe amount is about the same in both phases.
  • the hardness of the high entropy alloy as cast of the invention surprisingly increases exponentially with an increasing content of Si in the alloy composition. In this sense the hardness of the high entropy alloy of the invention can be tuned according to the need in each particular case.
  • Figure 5 is a graphic showing the hardness evolution of the following exemplary high entropy alloys of the invention, as cast (discontinuous line) and after heat treatment (continuous line), which chemical compositions are the following: Table 1 Alloy composition Si (wt.%) Mn (wt.%) Cr (wt.%) Ni (wt.%) Fe (wt.%) Hardeness As cast HV Hardeness Heat treated HV I 0.34 19.2 17.9 62.3* 0.26 159 175 II 4.33 19.5 11.2 64.1* 0.87 313 345 III 5.7 19.9 9.06 64.4* 0.94 371 427 IV 6.33 18.4 10.3 59.2* 5.77 310 393 V 8.83 19.4 10.6 59.2* 1.97 581 581 VI 12 23.2 10.6 53.2* 1.00 720 1009 * This wt. % includes unavoidable impurities.
  • the graphic shows how the hardness of the high entropy alloys as cast of the invention increases with increasing amount of Si in the composition.
  • this increase in hardness with increasing amount of Si is reflected by an increase in the corresponding dark grey phase of each of the alloys.
  • the Si amount in the high entropy alloy as cast composition is comprised between 4 and 20 wt. %, preferably between 6 and 20 wt. %, more preferably between 8 and 20 wt. %, even more preferably between 10 and 20wt. % or between 12 and 20wt. %, still more preferably between 14 and 20wt. % or between 16 and 20wt. %, or between 18 and 20 wt. %.
  • the Si amount is between 4 and 16 wt. %, or for example between 6 and 14wt. %, or preferably between 8 and 13wt. %, or between 9 and 12 wt. %.
  • the present invention also provides a further high entropy alloy, referred herein to as the heat-treated high entropy alloy of the invention which consists of the same chemical composition as the alloy as cast of the invention and which presents higher hardness than the corresponding high entropy alloy as cast.
  • the Cr amount is comprised between 8 to 19wt. %, or for example between 9 and 15wt. %, preferably between 10 and 11wt. %.
  • the Mn amount is comprised between 13 to 22wt. %, or for example between 15 and 20wt. %. In some preferred embodiments the Mn amount is between 19 and 24wt. %.
  • the Ni amount is comprised between 45 and 70wt. %, or for example between 50 and 67wt. %, preferably between 53 and 65wt. %.
  • the Fe is amount is comprised between 0.2 and 2wt. % or between 2.5 and 4wt. %, or between 4.5 and 5.8wt. %.
  • some high entropy alloys consist of 4 to 20wt. % of Si, 8 to 19wt. % or 9 to 15wt. % or 10 to 11wt. % of Cr, 13wt. % to 22wt. % of Mn, 0.2 to 6wt. % of Fe, the rest being Ni and unavoidable impurities.
  • the high entropy alloys consist of 4 to 20wt. % of Si, 8 to 19wt. % or 9 to 15wt. % or 10 to 11wt. % of Cr, 15 to 20wt. % of Mn, 0.2 to 6wt. % of Fe the rest being Ni and unavoidable impurities.
  • the high entropy alloys consist of 4 to 20wt. % of Si, 8 to 19wt. % or 9 to 15wt. % or 10 to 11wt. % of Cr, 19 to 24wt. % of Mn, 0.2 to 6wt. % of Fe the rest being Ni and unavoidable impurities.
  • the high entropy alloys consist of 6 to 20wt. %, or 8 to 20wt. %, or 10 to 20wt. %, or 14 to 20wt. %, or 16 to 20wt. %, or 18 to 20wt. % of Si, 10wt. % to 11wt. % of Cr, 19wt. % to 24wt. % of Mn, 0.2 to 6wt. % of Fe the rest being Ni and unavoidable impurities.
  • the high entropy alloys consist of 6 to 20wt. %, or 8 to 20wt. %, or 10 to 20wt. %, or 14 to 20wt. %, or 16 to 20wt. %, or 18 to 20wt. % of Si, 10wt. % to 11wt. % of Cr, 13wt. % to 22wt. % of Mn, 0.2 to 6wt. % of Fe, the rest being Ni and unavoidable impurities.
  • the high entropy alloys consist of 6 to 20wt. %, or 8 to 20wt. %, or 10 to 20wt. %, or 14 to 20wt. %, or 16 to 20wt. %, or 18 to 20wt. % of Si, 10wt. % to 11wt. % of Cr, 15wt. % to 20wt. % of Mn, 0.2 to 6wt. % of Fe, the rest being Ni and unavoidable impurities.
  • the high entropy alloys consist of 6 to 20wt. %, or 8 to 20wt. %, or 10 to 20wt. %, or 14 to 20wt. %, or 16 to 20wt. %, or 18 to 20wt. % of Si, 9wt. % to 15wt. % of Cr, 19wt. % to 24wt. % of Mn, 0.2 to 6wt. % of Fe, the rest being Ni and unavoidable impurities.
  • the high entropy alloys consist of 6 to 20wt. %, or 8 to 20wt. %, or 10 to 20wt. %, or 14 to 20wt. %, or 16 to 20wt. %, or 18 to 20wt. % of Si, 9wt. % to 15wt. % of Cr, 13wt. % to 22wt. % of Mn, 0.2 to 6wt. % of Fe, the rest being Ni and unavoidable impurities.
  • the high entropy alloys consist of 6 to 20wt. %, or 8 to 20wt. %, or 10 to 20wt. %, or 14 to 20wt. %, or 16 to 20wt. %, or 18 to 20wt. % of Si, 9wt. % to 15wt. % of Cr, 15wt. % to 20wt. % of Mn, 0.2 to 6wt. % of Fe, the rest being Ni and unavoidable impurities.
  • the high entropy alloys consist of 6 to 20wt. %, or 8 to 20wt. %, or 10 to 20wt. %, or 14 to 20wt. %, or 16 to 20wt. %, or 18 to 20wt. % of Si, 8 to 19wt. % of Cr, 19wt. % to 24wt. % of Mn, 0.2 to 6wt. % of Fe, the rest being Ni and unavoidable impurities.
  • the high entropy alloys consist of 6 to 20wt. %, or 8 to 20wt. %, or 10 to 20wt. %, or 14 to 20wt. %, or 16 to 20wt. %, or 18 to 20wt. % of Si, 8 to 19wt. % of Cr, 13wt. % to 22wt. % of Mn, 0.2 to 6wt. % of Fe, the rest being Ni and unavoidable impurities.
  • the high entropy alloys consist of 6 to 20wt. %, or 8 to 20wt. %, or 10 to 20wt. %, or 14 to 20wt. %, or 16 to 20wt. %, or 18 to 20wt. % of Si, 8 to 19wt. % of Cr, 15wt. % to 20wt. % of Mn, 0.2 to 6wt. % of Fe, the rest being Ni and unavoidable impurities.
  • the high entropy alloys consist of 4 to 16wt. %, or 6 to 14wt. %, or 8 to 13wt. % of Si, 9wt. % to 15wt. % of Cr, 19wt. % to 24wt. % of Mn, 0.2 to 6wt. % of Fe, the rest being Ni and unavoidable impurities.
  • the high entropy alloys consist of 4 to 16wt. %, or 6 to 14wt. %, or 8 to 13wt. % of Si, 9wt. % to 15wt. % of Cr, 13wt. % to 22wt. % of Mn, 0.2 to 6wt. % of Fe, the rest being Ni and unavoidable impurities.
  • the high entropy alloys consist of 4 to 16wt. %, or 6 to 14wt. %, or 8 to 13wt. % of Si, 9wt. % to 15wt. % of Cr, 15wt. % to 20wt. % of Mn, 0.2 to 6wt. % of Fe, the rest being Ni and unavoidable impurities.
  • the high entropy alloys consist of 4 to 16wt. %, or 6 to 14wt. %, or 8 to 13wt. % of Si, 8 to 19wt. % of Cr, 19wt. % to 24wt. % of Mn, 0.2 to 6wt. % of Fe, the rest being Ni and unavoidable impurities.
  • the high entropy alloys consist of 4 to 16wt. %, or 6 to 14wt. %, or 8 to 13wt. % of Si, 8 to 19wt. % of Cr, 13wt. % to 22wt. % of Mn, 0.2 to 6wt. % of Fe, the rest being Ni and unavoidable impurities.
  • the high entropy alloys consist of 4 to 16wt. %, or 6 to 14wt. %, or 8 to 13wt. % of Si, 8 to 19wt. % of Cr, 15wt. % to 20wt. % of Mn, 0.2 to 6wt. % of Fe, the rest being Ni and unavoidable impurities.
  • the high entropy alloys consist of 4 to 16wt. %, or 6 to 14wt. %, or 8 to 13wt. % of Si, 10wt. % to 11wt. % of Cr, 19wt. % to 24wt. % of Mn, 0.2 to 6wt. % of Fe, the rest being Ni and unavoidable impurities.
  • the high entropy alloys consist of 4 to 16wt. %, or 6 to 14wt. %, or 8 to 13wt. % of Si, 10wt. % to 11wt. % of Cr, 13wt. % to 22wt. % of Mn, 0.2 to 6wt. % of Fe, the rest being Ni and unavoidable impurities.
  • the high entropy alloys consist of 4 to 16wt. %, or 6 to 14wt. %, or 8 to 13wt. % of Si, 10wt. % to 11wt. % of Cr, 15wt. % to 20wt. % of Mn, 0.2 to 6wt. % of Fe, the rest being Ni and unavoidable impurities.
  • the high entropy alloys consist of 8 to 13wt. % of Si, 9 to 15wt. % of Cr, 15wt. % to 20wt. % of Mn, 0.2 to 6wt. % of Fe, 53wt. % to 65wt. % of Ni, and unavoidable impurities.
  • the high entropy alloys consist of 8 to 13wt. % of Si, 9 to 15wt. % of Cr, 19wt. % to 24wt. % of Mn, 0.2 to 6wt. % of Fe, 53wt. % to 65wt. % of Ni, and unavoidable impurities.
  • the high entropy alloys present 8 to 13wt. % of Si, 10 to 11wt. % of Cr, 13wt. % to 22wt. % of Mn, 0.2 to 6wt. % of Fe, 53wt. % to 65wt. % of Ni, and unavoidable impurities.
  • the high entropy alloys consist of 6 to 14wt. % of Si, 8 to 19wt. % of Cr, 15wt. % to 20wt. % of Mn, 0.2 to 6wt. % of Fe, 53wt. % to 65wt. % of Ni, and unavoidable impurities.
  • the high entropy alloys consist of 6 to 14wt. % of Si, 9 to 15wt. % of Cr, 19wt. % to 24wt. % of Mn, 0.2 to 6wt. % of Fe, 53wt. % to 65wt. % of Ni, and unavoidable impurities.
  • the high entropy alloys present 6 to 14wt. % of Si, 10 to 11wt. % of Cr, 15wt. % to 20wt. % of Mn, 0.2 to 6wt. % of Fe, 53wt. % to 65wt. % of Ni, and unavoidable impurities.
  • the high entropy alloys consist of 4 to 13wt. % of Si, 9 to 19wt. % of Cr, 18 to 24wt. % of Mn, 0.2 to 6wt. % of Fe, and 53wt. % to 65wt. % of Ni with unavoidable impurities.
  • the high entropy alloys consist of 4 to 12wt. % of Si, 9wt. % to 12wt. % of Cr, 18wt. % to 24wt. % of Mn, 0.5 to 6wt. % of Fe, and 53wt. % to 65wt. % of Ni with unavoidable impurities.
  • the high entropy alloys consist of 8 to 12.5wt. % of Si, 10wt. % to 11wt. % of Cr, 19wt. % to 24wt. % of Mn, 1.0 to 2.0wt. % of Fe, and 53wt. % to 60wt. % of Ni with unavoidable impurities.
  • high entropy alloys consist of one composition selected from the following compositions, and in particular alloy VI and alloy V Alloy composition Si (wt. %) Mn (wt. %) Cr (wt. %) Ni (wt. %) Fe (wt. %) I 0.34 19.2 17.9 62.3* 0.26 II 4.33 19.5 11.2 64.1* 0.87 III 5.7 19.9 9.06 64.4* 0.94 IV 6.33 18.4 10.3 59.2* 5.77 V 8.83 19.4 10.6 59.2* 1.97 VI 12 23.2 10.6 53.2* 1.00 * This wt. % includes unavoidable impurities.
  • the high entropy alloy as cast of the invention can be submitted to a hardening heat treatment rendering a modified high entropy alloy, herein referred to as the heat-treated high entropy alloy, which presents higher hardness compared to the corresponding high entropy alloy as cast.
  • the dark/light phase ratio also increases. The increment of dark phase is evident in Figure 2 .
  • the Si amount in the heat treated high entropy alloy composition is comprised between 4 and 20wt. %, preferably between 6 and 20wt. %, more preferably between 8 and 20wt. %, even more preferably between 10 and 20wt. % or between 12 and 20wt. %, still more preferably between 14 and 20wt. % or between 16 and 20wt. %, or between 18 and 20wt. %.
  • the Si amount is between 4 and 16wt. %, or for example between 6 and 14wt. %, or preferably between 8 and 13wt. %, or between 9 and 12wt. %.
  • Figure 4 shows the hardness evolution of the exemplary heat treated high entropy alloys of the invention (continuous line) which chemical compositions are shown in Table 1 above.
  • the graphic shows how the hardness of the heat-treated high entropy alloys is higher than the hardness of the corresponding high entropy alloys as cast of the same composition. Further, the graphic shows how the hardness of the heat-treated high entropy alloys of the invention increases with increasing amounts of Si in their composition.
  • the comparison of the SEM images of the alloys as cast and the corresponding heat-treated alloys of same composition show an increase in the dark grey phase which is responsible for the hardness increment.
  • Figures 1 and 2 show the increased amount in dark grey phase for the particular case of alloy VI.
  • the hardness was measured according the standard: UNE EN ISO 6507-1:2015 as explained under section Examples.
  • the increase in hardness in the alloys of the invention with an increasing amount of Si has been observed to affect whole parts as cast and parts after their heat treatment, as a whole, that is in all their sections, as shown by the tests carried on the surface and in the nucleus of the 30 ⁇ 30 ⁇ 10 mm test samples, at 1-2 mm from the surface and at 27-28 mm towards the inside of the test sample, respectively.
  • the high entropy alloys as cast of the invention show higher hardness values which are in general equal or greater than 650 HV, preferably equal or greater than 670 HV, more preferably equal or greater than 690 HV, still more preferably equal or greater than 710 HV and most preferably equal or greater than 715 HV.
  • the heat treated alloys of the invention show even higher hardness values, which are equal or greater than 730 HV, preferably equal or greater than 775 HV, more preferably equal or greater than 850 HV, still more preferably equal or greater than 900 HV, still more preferably equal or greater than 950 HV, even more preferably equal or greater than 1000 HV, and most preferably equal or greater than 1035 HV.
  • the hardness of the alloy as cast is typically between 650 HV and less than 730 HV, for example between 670 and 710 HV, or for example between 690 and 723 HV.
  • the hardness of the heat-treated alloy is typically between 730 and 1050 HV, for example between 775 and 1035 HV. In other embodiments the hardness of the heat-treated alloy is between 850 and 950 HV, or between 900 and 1000 HV.
  • the invention provides a process for the preparation of the high entropy alloy as cast of the invention which comprises the following steps:
  • the furnace according to a particular embodiment is a conventional furnace like an induction melting furnace.
  • the alloying elements Ni, Cr, Mn, Fe and Si are added to the furnace in step (i) in the following forms:
  • the process of the invention it is necessary to protect the surface of the melt in the furnace with a protective product (slag coagulation flux) to prevent oxidation losses of alloying elements and gas pick-up from the atmosphere. Further, during the process the metal can be covered with a ceramic fibre blanket in order to prevent that hydrogen from the atmosphere dissolves in the molten metal and that also metal oxidations take place.
  • a protective product slag coagulation flux
  • slag molten reaction products
  • oxygen and hydrogen dissolve in the melt due to generated turbulence, which can cause porosity and inclusions. If gases are not removed, they accumulate, and holes appear in the last solidification step.
  • Removal of oxygen is made by adding a deoxidizing product like magnesium.
  • the deoxidizing product is in general introduced in a fixed proportion (e.g. 0.10wt. % by weight in respect of the total weight of molten metal) in the furnace once all the elements have been loaded and are molten.
  • Hydrogen is removed by nitrogen or argon bubbling from the bottom of the furnace by means of a porous plug.
  • a further step for removing slag from the top of the surface in the furnace is carried out by switching it off and leaving the slag floating. Then it is necessary to add slag coagulation flux until slag is thick enough and is removed with the metal stick.
  • the metal Before pouring the melt into the mould the metal must remain molten for a period to allow a correct homogenization of the elements. Typically, time is not less than 10 minutes.
  • the melt is transferred to a pouring ladle and poured in a mould.
  • the melting and pouring temperature are variable depending for example on the thickness of the part to be cast. Usually temperature is in the range of 1300°C-1500°C, for example 1500°C for parts of less than 38 mm thick, and for parts of more than 38 mm thick, 1300°C.
  • the invention in a further aspect relates to a process for manufacturing of the heat-treated high entropy alloy of the invention, which comprises submitting the high entropy alloy as cast of the invention to a heat treatment process.
  • This heat treatment process can be carried out in any conventional manner known to the skilled person in the art and comprises the steps of: submitting the high entropy alloy as cast of the invention to a high temperature and subsequent cooling.
  • heat treatment is done in a furnace, such as an electrical resistance non-controlled atmosphere heat treatment furnace.
  • heat treatment can be carried out at temperatures between 400-1250°C.
  • the time the alloy as cast is submitted to heat treatment varies depending on factors like the size of the part, the selected temperature, and is typically from 4 to 60 hours.
  • Cooling media can also vary depending on the cooling rate required, and are for example, cooling inside the furnace, calm air cooling, forced air cooling, cooling in oil, or cooling in water.
  • the heat treatment process is carried out at temperatures between 500 and 1200 °C, more preferably between 700 and 1100 °C, even more preferably between 800 and 1000 °C, and most preferably at about 900°C. It has been shown that temperatures about 900 °C are very effective in the sense that they allow the alloys as cast to arrive to a new thermodynamic equilibrium so that the dark phase (identified in figure 1 for alloy VI with dark grey) is precipitated in higher content generating a higher distortion in the network and thus increasing the resulting hardness and wear resistance of the heat treated high entropy alloy.
  • the invention relates to the use of the as cast and the heat-treated high entropy alloys of the invention for manufacturing parts for use in diverse sectors like machinery for construction, machine tool, hand tool, aeronautic, marine sector, energy generation, oil & gas, and mining.
  • the heat-treated high entropy alloys of the invention are preferably used for their manufacturing.
  • Illustrative, but non-limiting examples of parts of the as cast high entropy alloy or heat-treated high entropy alloy, preferably of the heat-treated high entropy alloy are cutting tools, grinding balls, wear covers, turbine blades, high wear and corrosion resistant valves and pipes, propellers, and movement elements of shot blasting and mining equipment.
  • keel blocks Y2 were prepared using chemically bonded sand moulds, following the standard norm UNE-EN 1563:1998. Keel blocks Y2 were then extracted from the moulds and cleaned by shot blasting.
  • Keel blocks were then cut and test samples for micrographic inspection of rectangular dimensions of approximately 30 ⁇ 30 ⁇ 10 mm were prepared by surface polishing and their microstructures were then analysed with a field emission gun scanning electron microscope (SEM) (Model ULTRA PLUS, Zeiss).
  • SEM field emission gun scanning electron microscope
  • Vickers hardness was determined using test samples of rectangular dimensions of approximately 30 ⁇ 30 ⁇ 10 mm using an INSTROM WOLPER equipment model TESTOR 971/3000. Hardness was determined in the surface and in the nucleus of the test samples: at 1-2 mm from the surface and at 27-28 mm towards the inside of the test sample, respectively.
  • EDS Energy Dispersive Spectrometer (Spectrolab M10 from the company SPECTRO) was used for quantitative chemical analysis of the alloys.
  • Diffraction X- Ray using a diffractometer PANalytical Xpert, equipped with a goniometric vertical copper tube (Bragg-Brentano geometry).
  • the measuring conditions have been:
  • Example 1 Preparation of high entropy alloys of the invention
  • composition of the alloy VI as cast obtained can be seen in Table 2 Table 2 Chemical composition of alloy VI (wt. %) Ni Cr Mn Si Fe Composition 53.2 wt. % * 10.6 wt. % 23.2 wt. % 12.0 wt. % 1wt. % • * This wt.% includes unavoidable impurities.
  • the final composition of the alloy V as cast obtained can be seen in Table 3 Table 3 Chemical composition of alloy V (wt. %) Ni Cr Mn Si Fe Composition 59.2 wt. % * 10.6 wt. % 19.4 wt. % 8.83wt. % 1.97wt. % • * This wt. % includes unavoidable impurities.
  • the SEM images are shown in Figure 1 and 2 where the two different phases are seen and marked with clear grey and a dark grey colour.
  • the two detected phases show different morphology and different chemical compositions.
  • EDS Errgy Dispersive Spectrometer
  • the VI alloy as cast obtained in Example 1 was heat treated and hardness tests were performed before and thereafter.
  • Hardness was determined in the surface and in the nucleus of the as cast alloy and the heat treated alloy by using the 30 x 30 x 10 mm test samples described before and analysing the hardness at 1-2 mm from the surface and at 27-28 mm towards the inside of the test samples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Claims (14)

  1. Alliage à haute entropie sous la forme d'une coulée consistant en la composition chimique suivante, dans laquelle les pourcentages sont exprimés en poids par rapport au poids total de l'alliage :
    Cr : 5,0 à 20 % en poids
    Mn : 10,0 à 25 % en poids
    Si : 0,3 à 20 % en poids
    Fe : 0,2 à 6,0 % en poids
    P : ≤ 0,03 % en poids
    S : ≤ 0,03 % en poids
    le reste étant du Ni et des impuretés inévitables,
    comprenant une microstructure, mesurée conformément à la description, consistant en une première phase et une deuxième phase, dans laquelle la première phase de cristaux cubiques à faces centrées présente une teneur en Ni plus élevée et des teneurs en Si, Mn et Cr plus faibles que celles de la deuxième phase, et la deuxième phase de cristaux cubiques à faces centrées présente une teneur en Ni plus faible et des teneurs en Si, Mn et Cr plus élevées.
  2. Alliage selon la revendication 1, dans lequel la quantité de Si dans l'alliage est comprise entre 4 et 20 % en poids, de préférence entre 6 et 20 % en poids, mieux encore entre 8 et 20 % en poids, plus particulièrement entre 10 et 20 % en poids ou entre 12 et 20 % en poids, encore plus particulièrement entre 14 et 20 % en poids ou entre 16 et 20 % en poids, ou entre 18 et 20 % en poids.
  3. Alliage selon la revendication 1, dans lequel la quantité de Si est comprise entre 4 et 16 % en poids, ou entre 6 et 14 % en poids, ou de préférence entre 8 et 13 % en poids, ou entre 9 et 12 % en poids.
  4. Alliage selon l'une quelconque des revendications 1 à 3, dans lequel la quantité de Cr est comprise entre 8 et 19 % en poids, ou entre 9 et 15 % en poids, de préférence entre 10 et 11 % en poids.
  5. Alliage selon l'une quelconque des revendications 1 à 4, dans lequel la quantité de Mn est comprise entre 13 et 22 % en poids, ou entre 15 et 20 % en poids, de préférence entre 19 et 24 % en poids.
  6. Alliage selon l'une quelconque des revendications 1 à 5, dans lequel la quantité de Ni est comprise entre 45 et 70 % en poids, ou entre 50 et 67 % en poids, de préférence entre 53 et 65 % en poids.
  7. Alliage selon l'une quelconque des revendications 1 à 6, consistant en 4 à 13 % en poids de Si, 9 à 19 % en poids de Cr, 18 à 24 % en poids de Mn, 0,2 à 6 % en poids de Fe, et 38 % en poids à 68 % en poids de Ni avec des impuretés inévitables.
  8. Alliage selon l'une quelconque des revendications 1 à 7, consistant en 8 à 12,5 % en poids de Si, 10 % en poids à 11 % en poids de Cr, 19 % en poids à 24 % en poids de Mn, 1,0 à 2,0 % en poids de Fe, et 53 % en poids à 60 % en poids de Ni avec des impuretés inévitables.
  9. Alliage selon l'une quelconque des revendications 1 à 8, présentant des valeurs de dureté égales ou supérieures à 650 HV, de préférence égales ou supérieures à 670 HV, mieux encore égales ou supérieures à 690 HV, plus particulièrement égales ou supérieures à 710 HV, et tout spécialement égales ou supérieures à 715 HV.
  10. Procédé pour la préparation de l'alliage à haute entropie sous la forme d'une coulée selon l'une quelconque des revendications précédentes, qui comprend les étapes suivantes :
    (i) introduction dans un four des éléments purs de l'alliage devant être préparé,
    (ii) addition de 0,10 % en poids, par rapport au poids total du métal fondu, de magnésium pour l'élimination de l'oxygène,
    (iii) retrait du laitier,
    (iv) maintien du métal à l'état fondu dans une plage de température allant de 1300 °C à 1500 °C aux fins d'homogénéisation,
    (v) ajustement de la composition chimique,
    (vi) transfert du métal fondu dans une poche de coulée, et
    (vii) versage du métal fondu dans un moule, et
    le procédé comprenant en outre la protection de la surface du métal fondu dans le four avec un flux de coagulation de laitier protecteur, et addition du flux de coagulation de laitier jusqu'à ce que le laitier soit suffisamment épais pour être retiré avec un bâton métallique.
  11. Procédé pour la préparation d'un alliage à haute entropie traité à la chaleur, qui comprend un procédé de traitement à la chaleur qui comprend les étapes de :
    - soumission de l'alliage à haute entropie sous la forme d'une coulée selon l'une quelconque des revendications 1 à 9 à un traitement à la chaleur à une température comprise entre 500 et 1200 °C, et
    - ensuite refroidissement dans de l'air calme
  12. Alliage à haute entropie traité à la chaleur consistant en la composition telle que définie dans l'une quelconque des revendications 1 à 9, présentant des valeurs de dureté égales ou supérieures à 730 HV, de préférence égales ou supérieures à 775 HV, mieux encore supérieures ou égales à 850 HV, plus particulièrement égales ou supérieures à 900 HV, encore plus particulièrement égales ou supérieures à 950 HV, plus particulièrement encore égales ou supérieures à 1000 HV, et tout spécialement égales ou supérieures à 1035 HV, dans lequel la dureté est mesurée conformément à la norme UNE EN ISO 6507-1:2015.
  13. Alliage selon l'une quelconque des revendications 1 à 9 et 12, consistant en une composition choisie parmi les compositions suivantes : Composition d'alliage Si, % en poids Mn, % en poids Cr, % en poids Ni, % en poids Fe, % en poids I 0,34 19,2 17,9 62,3* 0,26 II 4,33 19,5 11,2 64,1* 0,87 III 5,70 19,9 9,06 64,4* 0,94 IV 6,33 18,4 10,3 59,2* 5,77 V 8,83 19,4 10,6 59,2* 1,97 VI 12,0 23,2 10,6 53,2* 1,00 ce pourcentage en poids englobe les inévitables.
  14. Utilisation de l'alliage selon l'une quelconque des revendications 1 à 9 et12 ou 13, pour la fabrication de pièces choisies parmi les machines-outils, les billes de broyage, les revêtements anti-usure, les aubes de turbine, les vannes et tuyaux présentant une forte résistance à la corrosion et à l'usure, les hélices, et les éléments mobiles d'équipements de grenaillage et d'extraction minière.
EP18382941.5A 2018-12-18 2018-12-18 Alliage d'entropie élevée résistant à l'usure et sa préparation Active EP3670684B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18382941.5A EP3670684B1 (fr) 2018-12-18 2018-12-18 Alliage d'entropie élevée résistant à l'usure et sa préparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18382941.5A EP3670684B1 (fr) 2018-12-18 2018-12-18 Alliage d'entropie élevée résistant à l'usure et sa préparation

Publications (2)

Publication Number Publication Date
EP3670684A1 EP3670684A1 (fr) 2020-06-24
EP3670684B1 true EP3670684B1 (fr) 2023-06-07

Family

ID=65003159

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18382941.5A Active EP3670684B1 (fr) 2018-12-18 2018-12-18 Alliage d'entropie élevée résistant à l'usure et sa préparation

Country Status (1)

Country Link
EP (1) EP3670684B1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112899603B (zh) * 2021-01-14 2023-04-11 湘潭大学 耐熔融锌腐蚀的金属陶瓷涂层及其制备方法
CN113621988B (zh) * 2021-08-11 2022-07-08 东北大学秦皇岛分校 一种高效氧析出高熵非晶氧化物纳米催化剂及其制备方法和应用
CN114032482B (zh) * 2021-11-15 2022-09-23 中国科学院兰州化学物理研究所 一种AlCoCrFeNi高熵合金表面强化方法
CN115491532B (zh) * 2022-11-01 2023-09-05 攀枝花学院 高耐腐蚀高熵合金及其制备方法
CN116237214B (zh) * 2022-12-13 2024-01-26 中国科学院合肥物质科学研究院 一种Al-Y-Cr-Fe-Er-O高熵复合氧化物阻氢涂层及其制备方法
CN115717224B (zh) * 2022-12-27 2024-01-30 南京工程学院 一种改善高熵合金性能的热处理方法
CN117802436B (zh) * 2024-02-29 2024-05-14 北京理工大学 一种高强韧难熔高熵合金的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104233003B (zh) * 2014-08-26 2017-03-01 盐城市鑫洋电热材料有限公司 一种高锰镍铬电阻电热合金及其制备方法

Also Published As

Publication number Publication date
EP3670684A1 (fr) 2020-06-24

Similar Documents

Publication Publication Date Title
EP3670684B1 (fr) Alliage d'entropie élevée résistant à l'usure et sa préparation
CN110551920B (zh) 一种高性能易加工镍基变形高温合金及其制备方法
EP3978640A1 (fr) Procédé de préparation d'un forgeage de disque de turbine en alliage à haute température à base de nickel pour utilisation à haute température
CN111187946A (zh) 一种高铝含量的镍基变形高温合金及制备方法
US3865581A (en) Heat resistant alloy having excellent hot workabilities
CA2508079C (fr) Alliages de magnesium coulables
CN110977245A (zh) 一种球阀堆焊用镍铬钼合金焊丝及其工艺制备方法
CN110983163B (zh) 一种提高多元铁基形状记忆合金双程形状记忆效应的方法
KR101563533B1 (ko) 내고온 부식 특성을 구비한 Ni-Cr-Co계 합금과 그것을 사용해서 표면 개질된 포핏밸브
WO2017183630A1 (fr) Acier
CN112621021A (zh) H0Cr19Ni24Mn7Mo6VN焊丝及其制备方法
EP4083554A1 (fr) Alliage à base de nickel, composant résistant à la chaleur et à la corrosion et composant pour four de traitement thermique
KR20230098875A (ko) 오스테나이트계 스테인리스강대의 제조방법
WO2023062856A1 (fr) Alliage à base de ni ayant d'excellentes propriétés de surface et son procédé de production
CN111235482B (zh) 一种耐高温铝液熔蚀-磨损高硼铸钢材料及其制备方法
CN111394663A (zh) 耐热铁基合金及其制备方法
JP2012052224A (ja) 溶接熱影響部靭性に優れた鋼材
CN114635077A (zh) 一种超级奥氏体不锈钢及其制备方法
US20050158204A1 (en) Method of production of broadside plates for continuous casting molds
EP4166680A1 (fr) Tôle d'acier inoxydable martensitique de type à durcissement par précipitation ayant une excellente résistance à la fatigue
WO2022210651A1 (fr) Fil machine d'acier inoxydable duplex et fil d'acier inoxydable duplex
EP3187605B1 (fr) Alliage de bronze d'aluminium hybride et son procédé de préparation
JP5288674B2 (ja) 鋼組成物、その製造方法および前記組成物から製造される部品特にバルブ
JPH0547611B2 (fr)
KR100414388B1 (ko) 실린더용 고인성 내면 경화재

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201229

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20211005

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220912

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1575187

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018050847

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230907

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1575187

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231009

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018050847

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231229

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

26N No opposition filed

Effective date: 20240308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607