EP3658695B1 - High-temperature nickel based alloy - Google Patents

High-temperature nickel based alloy Download PDF

Info

Publication number
EP3658695B1
EP3658695B1 EP18752680.1A EP18752680A EP3658695B1 EP 3658695 B1 EP3658695 B1 EP 3658695B1 EP 18752680 A EP18752680 A EP 18752680A EP 3658695 B1 EP3658695 B1 EP 3658695B1
Authority
EP
European Patent Office
Prior art keywords
nickel
base
alloy according
max
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18752680.1A
Other languages
German (de)
French (fr)
Other versions
EP3658695A1 (en
Inventor
Jürgen Kiese
Nicole De Boer
Heike Hattendorf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VDM Metals International GmbH
Original Assignee
VDM Metals International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VDM Metals International GmbH filed Critical VDM Metals International GmbH
Publication of EP3658695A1 publication Critical patent/EP3658695A1/en
Application granted granted Critical
Publication of EP3658695B1 publication Critical patent/EP3658695B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades

Definitions

  • the invention relates to a high temperature nickel-based alloy.
  • the material C263 (Nicrofer 5120 CoTi) is used, among other things, as a material for heat shields in turbochargers or car engines.
  • the heat shield separates the compressor from the turbine side within the turbocharger and the hot exhaust gas flows directly against it. Since the exhaust gas temperatures, especially in gasoline engines, are getting higher and higher, the components can fail, for example in the form of deformations, which leads to a considerable drop in the performance of the turbocharger.
  • the exhaust gas temperatures can be up to 1,050 ° C, with the temperatures arriving at the heat shield being around 900 to 950 ° C. At these temperatures, the C263 material is no longer creep resistant.
  • the general composition of the material C263 is given as follows (in% by weight): Cr 19.0 - 21.0%, Fe max. 0.7%, C 0.04 - 0.08%, Mn max. 0 , 6%, Si max.0.4%, Cu max.0.2%, Mo 5.6 - 6.1%, Co 19.0 - 21.0%, Al 0.3 - 0.6%, Ti 1.9 - 2.4%, P max.0.015%, S max.0.007%, B max.0.005%.
  • an austenitic nickel-chromium-cobalt-molybdenum-tungsten alloy can be found, containing (in% by mass) C 0.05-0.10%, Cr 21-23%, Co 10-15%, Mo 10-11 %, Al 1.0 - 1.5%, W 5.1 - 8.0%, Y 0.01 - 0.1%, B 0.001 - 0.01%, Ti max. 0.5%, Si max 0.5%, Fe max. 2%, Mn max. 0.5%, Ni remainder including unavoidable impurities caused by melting.
  • the material can be used for compressors and turbochargers of internal combustion engines, components of steam turbines, components of gas and steam turbine power plants.
  • the EP 1 466 027 B1 discloses a high-temperature-resistant and corrosion-resistant Ni-Co-Cr alloy, containing (in% by weight): Cr 23.5-25.5%, Co 15.0-22.0%, Al 0.2-2.0 %, Ti 0.5-2.5%, Nb 0.5-2.5%, up to 2.0% Mo, up to 1.0% Mn, Si 0.3-1.0%, up to 3 , 0% Fe, up to 0.3% Ta, up to 0.3% W, C 0.005 - 0.08%, Zr 0.01 - 0.3%, B 0.001 to 0.01%, up to 0.05% rare earths as misch metal, Mg + Ca 0.005 - 0.025%, optionally up to 0.05% Y, balance Ni and impurities.
  • the material can be used in the temperature range between 530 and 820 ° C as an exhaust valve for diesel engines and pipes for steam boilers.
  • the invention is based on the object of changing a material based on C263 with regard to its composition in such a way that the stability of the strength-increasing phase is shifted towards higher temperatures. At the same time, it must be ensured that the stability limits of other phases (e.g. Eta phase) are shifted to lower temperatures. Furthermore, an attempt should be made to activate additional hardening mechanisms.
  • the nickel-based alloy according to the invention should preferably be usable for components which are exposed to component temperatures above 700 ° C, preferably> 900 ° C, in particular> 950 ° C.
  • the goal, namely to shift the gamma prime phase to higher temperatures, is achieved, while at the same time the stability of other phases, lower than gamma prime, and towards lower temperatures can also be realized.
  • the components mentioned are all used in hot and highly stressed atmospheres, with permanent component temperatures, in some cases above 900 ° C, being given.
  • oxygen-containing atmospheres for example from car or truck engines, engines or gas turbines.
  • the alloy according to the invention has a high heat resistance and creep rupture strength, while at the same time also having a high temperature corrosion resistance (e.g. in the case of exhaust gases).
  • the alloy according to the invention is also fatigue-resistant at high temperatures, in particular above 900.degree.
  • the sum of Ti + Al (in% by weight) is at least 1%. In certain applications it can be useful if the sum of Ti + Al (in% by weight) is at least 1.5%, in particular at least 2%.
  • the Ti / Al ratio should be a maximum of 3.5, in particular a maximum of 2.0.
  • the high-temperature nickel-based alloy according to the invention can preferably be used for large-scale production (> 1 t).
  • the solution annealing was carried out at 1,150 ° C. for 30 minutes with subsequent water quenching.
  • Precipitation hardening was carried out at temperatures of 800, 850, 900 or 950 ° C. for 4/8/16 hours with subsequent water quenching.
  • the variants 250575 to 250577 showed a very high level of hardness compared to the prior art, respectively the variants 250573 and 250574. This means that the strength-increasing phase (here gamma prime) is still stable.
  • the material is produced in a medium-frequency induction furnace and then cast as a continuous cast in slab form.
  • the slabs are then remelted into further slabs (or bars) in the electroslag remelting furnace.
  • the respective slab is then hot-rolled to produce strip material with a thickness of approx. 6 mm. This is followed by a cold rolling process of the strip material to a final thickness of approx. 0.4 mm.
  • the product shape according to the VAR can be a slab or a bar.
  • the deformation can be done by rolling or forging.
  • VIM - ESU VIM - ESU
  • Forming by forging or rolling is also conceivable here.
  • illustration 1 shows the creep strain of various materials as a function of time at a typical application temperature of 900 ° C and a load of 60 Mpa.
  • the materials C-263 standard (Nicrofer 5120 CoTi), C-264 variant 76 (batch 250576) and C-264 variant 77 (batch 250577) are shown.
  • the other two variants both show service lives of approx. 400 hours and approx. 550 hours, respectively.
  • Variants 76 and 77 show improved service lives, which in the operating state lead to higher creep resistance and thus to significantly less component deformation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Exhaust Silencers (AREA)
  • Supercharger (AREA)

Description

Die Erfindung betrifft eine Hochtemperatur-Nickelbasislegierung.The invention relates to a high temperature nickel-based alloy.

Der Werkstoff C263 (Nicrofer 5120 CoTi) kommt unter anderem als Werkstoff für Hitzeschilde in Turboladern oder Automotoren zur Anwendung. Der Hitzeschild trennt innerhalb des Turboladers die Verdichte- von der Turbinenseite und wird direkt vom heißen Abgas angeströmt. Da die Abgastemperaturen, insbesondere in den Otto-Motoren, immer höher werden, kann es zum Versagen der Bauteile, beispielsweise in Form von Deformationen kommen, was zu einem beträchtlichen Leistungsabfall des Turboladers führt.The material C263 (Nicrofer 5120 CoTi) is used, among other things, as a material for heat shields in turbochargers or car engines. The heat shield separates the compressor from the turbine side within the turbocharger and the hot exhaust gas flows directly against it. Since the exhaust gas temperatures, especially in gasoline engines, are getting higher and higher, the components can fail, for example in the form of deformations, which leads to a considerable drop in the performance of the turbocharger.

Die Abgastemperaturen können bis zu 1.050°C betragen, wobei die am Hitzeschild ankommenden Temperaturen bei etwa 900 bis 950°C liegen. Bei diesen Temperaturen ist der C263-Werkstoff nicht mehr kriechfest. Die allgemeine Zusammensetzung des Werkstoffs C263 wird wie folgt (in Gew.-%) widergegeben: Cr 19,0 - 21,0 %, Fe max. 0,7 %, C 0,04 - 0,08 %, Mn max. 0,6 %, Si max. 0,4 %, Cu max. 0,2 %, Mo 5,6 - 6,1 %, Co 19,0 - 21,0 %, Al 0,3 - 0,6 %, Ti 1,9 - 2,4 %, P max. 0,015 %, S max. 0,007 %, B max. 0,005 %.The exhaust gas temperatures can be up to 1,050 ° C, with the temperatures arriving at the heat shield being around 900 to 950 ° C. At these temperatures, the C263 material is no longer creep resistant. The general composition of the material C263 is given as follows (in% by weight): Cr 19.0 - 21.0%, Fe max. 0.7%, C 0.04 - 0.08%, Mn max. 0 , 6%, Si max.0.4%, Cu max.0.2%, Mo 5.6 - 6.1%, Co 19.0 - 21.0%, Al 0.3 - 0.6%, Ti 1.9 - 2.4%, P max.0.015%, S max.0.007%, B max.0.005%.

Der DE 100 52 023 C1 ist eine austenitische Nickel-Chrom-Kobalt-Molybdän-Wolfram-Legierung zu entnehmen, beinhaltend (in Masse-%) C 0,05 - 0,10 %, Cr 21 - 23 %, Co 10 - 15 %, Mo 10 - 11 %, Al 1,0 - 1,5 %, W 5,1 - 8,0 %, Y 0,01 - 0,1 %, B 0,001 - 0,01 %, Ti max. 0,5 %, Si max. 0,5 %, Fe max. 2 %, Mn max. 0,5 %, Ni Rest einschließlich unvermeidbarer erschmelzungsbedingter Verunreinigungen. Der Werkstoff kann eingesetzt werden für Verdichter und Turbolader von Verbrennungskraftmaschinen, Bauteilen von Dampfturbinen, Bauteilen von Gas- und Dampfturbinenkraftwerken.Of the DE 100 52 023 C1 an austenitic nickel-chromium-cobalt-molybdenum-tungsten alloy can be found, containing (in% by mass) C 0.05-0.10%, Cr 21-23%, Co 10-15%, Mo 10-11 %, Al 1.0 - 1.5%, W 5.1 - 8.0%, Y 0.01 - 0.1%, B 0.001 - 0.01%, Ti max. 0.5%, Si max 0.5%, Fe max. 2%, Mn max. 0.5%, Ni remainder including unavoidable impurities caused by melting. The material can be used for compressors and turbochargers of internal combustion engines, components of steam turbines, components of gas and steam turbine power plants.

Die EP 1 466 027 B1 offenbart eine hochtemperaturfeste und korrosionsbeständige Ni-Co-Cr-Legierung, beinhaltend (in Gew.-%): Cr 23,5 - 25,5 %, Co 15,0 - 22,0 %, Al 0,2 - 2,0 %, Ti 0,5 - 2,5 %, Nb 0,5 - 2,5 %, bis zu 2,0 % Mo, bis zu 1,0 % Mn, Si 0,3 - 1,0 %, bis 3,0 % Fe, bis zu 0,3 % Ta, bis 0,3 % W, C 0,005 - 0,08 %, Zr 0,01 - 0,3 %, B 0,001 bis 0,01 %, bis zu 0,05 % Seltene Erden als Mischmetall, Mg + Ca 0,005 - 0,025 %, optional bis 0,05 % Y, Rest Ni und Verunreinigungen. Der Werkstoff ist im Temperaturbereich zwischen 530 und 820°C einsetzbar als Auspuffventil für Dieselmotoren sowie Rohre für Dampfkessel.the EP 1 466 027 B1 discloses a high-temperature-resistant and corrosion-resistant Ni-Co-Cr alloy, containing (in% by weight): Cr 23.5-25.5%, Co 15.0-22.0%, Al 0.2-2.0 %, Ti 0.5-2.5%, Nb 0.5-2.5%, up to 2.0% Mo, up to 1.0% Mn, Si 0.3-1.0%, up to 3 , 0% Fe, up to 0.3% Ta, up to 0.3% W, C 0.005 - 0.08%, Zr 0.01 - 0.3%, B 0.001 to 0.01%, up to 0.05% rare earths as misch metal, Mg + Ca 0.005 - 0.025%, optionally up to 0.05% Y, balance Ni and impurities. The material can be used in the temperature range between 530 and 820 ° C as an exhaust valve for diesel engines and pipes for steam boilers.

In der US 6,258,317 B1 wird eine für Bauteile von Gasturbinen für Temperaturen bis 750°C einsetzbare Legierung beschrieben, beinhaltend (in Gew.-%): Co 10 - 24 %, Cr 23,5 - 30 %, Mo 2,4 - 6 %, Fe 0 - 9 %, Al 0,2 - 3,2 %, Ti 0,2 - 2,8 %, Nb 0,1 - 2,5 %, Mn 0 - 2 %, bis 0,1 % Si, Zr 0,01 - 0,3 %, B 0,001 - 0,01 %, C 0,005 - 0,3 %, W 0 - 0,8 %, Ta 0 - 1 %, Rest Ni und unvermeidbare Verunreinigungen.In the US 6,258,317 B1 describes an alloy that can be used for components of gas turbines for temperatures up to 750 ° C, containing (in% by weight): Co 10 - 24%, Cr 23.5 - 30%, Mo 2.4 - 6%, Fe 0 - 9%, Al 0.2-3.2%, Ti 0.2-2.8%, Nb 0.1-2.5%, Mn 0-2%, up to 0.1% Si, Zr 0.01 - 0.3%, B 0.001 - 0.01%, C 0.005 - 0.3%, W 0 - 0.8%, Ta 0 - 1%, remainder Ni and unavoidable impurities.

Der Erfindung liegt die Aufgabe zugrunde, einen Werkstoff auf Basis von C263 hinsichtlich seiner Zusammensetzung so zu verändern, dass die Stabilität der festigkeitssteigernden Phase zu höheren Temperaturen hin verschoben wird. Gleichzeitig ist darauf zu achten, dass die Stabilitätsgrenzen anderer Phasen (z.B. Eta-Phase) zu geringeren Temperaturen verschoben wird. Des Weiteren soll versucht werden, zusätzliche Härtungsmechanismen zu aktivieren.The invention is based on the object of changing a material based on C263 with regard to its composition in such a way that the stability of the strength-increasing phase is shifted towards higher temperatures. At the same time, it must be ensured that the stability limits of other phases (e.g. Eta phase) are shifted to lower temperatures. Furthermore, an attempt should be made to activate additional hardening mechanisms.

Diese Aufgabe wird gelöst durch eine Hochtemperatur-Nickelbasislegierung bestehend aus (in Gew.-%): C 0,04 - 0,1 % S max. 0,01 % N max. 0,05 % Cr 24 - 28 % Mn max. 0,3 % Si max. 0,3 % Mo 1 - 6 % Ti 0,5 - 3 % Nb 0,001 - 0,1 % Cu max. 0,2 % Fe 0,1 - 0,7 % P max. 0,015 % Al 0,5 - 2 % Mg max. 0,01 % Ca max. 0,01 % V 0,01 - 0,5 % Zr max. 0,1 % W 0,2 - 2 % Co 17 - 21 % B max. 0,01 % O max. 0,01 % Ni Rest sowie erschmelzungsbedingte Verunreinigungen This problem is solved by a high-temperature nickel-based alloy consisting of (in% by weight): C. 0.04 - 0.1% S. max. 0.01% N max. 0.05% Cr 24-28% Mn max. 0.3% Si max. 0.3% Mon 1 - 6% Ti 0.5-3% Nb 0.001 - 0.1% Cu max. 0.2% Fe 0.1-0.7% P. max. 0.015% Al 0.5-2% Mg max. 0.01% Approx max. 0.01% V 0.01 - 0.5% Zr max. 0.1% W. 0.2-2% Co 17-21% B. max. 0.01% O max. 0.01% Ni Remainder as well as impurities caused by the melting

Vorteilhafte Weiterbildungen der erfindungsgemäßen Legierung sind den Unteransprüchen zu entnehmen.Advantageous further developments of the alloy according to the invention can be found in the subclaims.

Die erfindungsgemäße Nickelbasislegierung soll bevorzugt einsetzbar sein für Bauteile, die Bauteiltemperaturen oberhalb von 700°C, vorzugsweise > 900°C, insbesondere > 950°C, ausgesetzt sind. Das Ziel, nämlich die Gamma-Prime-Phase hin zu höheren Temperaturen zu verschieben, wird erreicht, wobei gleichzeitig die Stabilität anderer Phasen, geringer als Gamma-Prime, und hin zu niedrigen Temperaturen ebenfalls realisiert werden kann.The nickel-based alloy according to the invention should preferably be usable for components which are exposed to component temperatures above 700 ° C, preferably> 900 ° C, in particular> 950 ° C. The goal, namely to shift the gamma prime phase to higher temperatures, is achieved, while at the same time the stability of other phases, lower than gamma prime, and towards lower temperatures can also be realized.

Im Folgenden werden wesentliche Anwendungsfälle der Legierung angesprochen:

  • Automotive
    • Abgasanlagen
    • Turbolader
    • Sonden
    • Ventile
    • Rohre
    • Hochtemperatur-Filter oder Teile davon
    • Dichtungen
    • Federelemente
  • Fliegende oder stationäre Turbinen
    • Schaufeln
    • Leitflächen
    • Sonden
    • Rohre
    • Cones
    • Gehäuse
  • Kraftwerke
    • Rohre
    • Sonden
    • Ventile
    • Schmiedeteile
    • Turbinen
    • Turbinengehäuse
In the following, essential applications of the alloy are addressed:
  • Automotive
    • Exhaust systems
    • turbocharger
    • Probes
    • Valves
    • Tube
    • High temperature filters or parts thereof
    • Seals
    • Spring elements
  • Flying or stationary turbines
    • Shovels
    • Baffles
    • Probes
    • Tube
    • Cones
    • casing
  • Power plants
    • Tube
    • Probes
    • Valves
    • Forgings
    • Turbines
    • Turbine housing

Die genannten Bauteile werden samt und sonders in heißen und hochbelasteten Atmosphären eingesetzt, wobei dauerhafte Bauteiltemperaturen, zum Teil oberhalb von 900°C, gegeben sind. Darüber hinaus sind sauerstoffhaltige Atmosphären, beispielsweise aus Pkw- oder Lkw-Motoren, Triebwerken oder Gasturbinen, gegeben.The components mentioned are all used in hot and highly stressed atmospheres, with permanent component temperatures, in some cases above 900 ° C, being given. In addition, there are oxygen-containing atmospheres, for example from car or truck engines, engines or gas turbines.

Die erfindungsgemäße Legierung hat eine hohe Warm- und Zeitstandsfestigkeit, wobei gleichzeitig auch eine hohe Temperaturkorrosionsbeständigkeit (z.B. bei Abgasen) gegeben ist.The alloy according to the invention has a high heat resistance and creep rupture strength, while at the same time also having a high temperature corrosion resistance (e.g. in the case of exhaust gases).

Die erfindungsgemäße Legierung ist darüber hinaus ermüdungsfest bei hohen Temperaturen, insbesondere oberhalb von 900°C.The alloy according to the invention is also fatigue-resistant at high temperatures, in particular above 900.degree.

Mögliche Produktformen sind:

  • Band
  • Blech
  • Draht
  • Stange
  • Schmiedeteile
  • Pulver für additive Fertigung (z.B. 3D-Druck) und klassische Pulver (z.B. Sintern)
  • Rohre (geschweißt oder nahtlos)
Possible product forms are:
  • tape
  • sheet
  • wire
  • pole
  • Forgings
  • Powder for additive manufacturing (e.g. 3D printing) and classic powder (e.g. sintering)
  • Tubes (welded or seamless)

Folgende Elemente können zur Optimierung der gewünschten Parameter, wie nachstehend angegeben, variiert werden (in Gew.-%): Cr 24 - 26 % Mo 2 - 6 %, insbesondere 4 - 6 % Mo 1,5 - 2,5 % Ti 0,5 - 2,5 %, insbesondere 1,5 - 2,5 % Al 0,5 - 1,5 % V 0,01 - 0,2 % W 0,2 - 1,5 %, insbesondere 0,5 - 1,5 % Co 18,5 - 21 % The following elements can be varied as indicated below to optimize the desired parameters (in% by weight): Cr 24-26% Mon 2 - 6%, especially 4 - 6% Mon 1.5-2.5% Ti 0.5-2.5%, especially 1.5-2.5% Al 0.5 - 1.5% V 0.01 - 0.2% W. 0.2-1.5%, especially 0.5-1.5% Co 18.5-21%

Von Vorteil ist, wenn die Summe Ti + Al (in Gew.-%) min. 1 % beträgt. In bestimmten Einsatzfällen kann es zweckmäßig sein, wenn die Summe Ti + Al (in Gew.-%) min. 1,5 %, insbesondere min. 2 %, beträgt.It is advantageous if the sum of Ti + Al (in% by weight) is at least 1%. In certain applications it can be useful if the sum of Ti + Al (in% by weight) is at least 1.5%, in particular at least 2%.

Das Verhältnis Ti/Al soll, einem weiteren Gedanken der Erfindung gemäß, max. 3,5, insbesondere max. 2,0, betragen.According to a further concept of the invention, the Ti / Al ratio should be a maximum of 3.5, in particular a maximum of 2.0.

Durch Reduzierung des Ti/Al-Verhältnisses kann sich kein oder nur wenig Eta-Ni3Ti bilden.By reducing the Ti / Al ratio, little or no Eta-Ni 3 Ti can form.

Die erfindungsgemäße Hochtemperatur-Nickelbasislegierung ist bevorzugt für die großtechnische Erzeugung (> 1 t) einsetzbar.The high-temperature nickel-based alloy according to the invention can preferably be used for large-scale production (> 1 t).

Anhand von Beispielen werden die Vorteile der erfindungsgemäßen Legierung näher erläutert:

  • In Tabelle 1 ist der Stand der Technik (Nicrofer 5120 CoTi - großtechnisch erzeugt) einer gleichartigen Referenzcharge (Labor) sowie mehreren erfindungsgemäßen Legierungszusammensetzungen gegenübergestellt.
  • In Tabelle 2 ist der Stand der Technik (Nicrofer 5120 CoTi - großtechnisch erzeugt) mehreren großtechnisch erzeugten Chargen gegenübergestellt.
    Figure imgb0001
    Figure imgb0002
Tabelle 2 Analyse Warmband Nicrofer 5120 Charge Charge Charge Charge CoTi 335449 334549 334547 334547 Charge 413297 großtechn. erzeugt Analyse Kopf Analyse Fuß Analyse Kopf Analyse Fuß 5200 5200 5100 5100 C 0,049 0,051 0,05 0,051 0,051 S 0,002 0,002 0,002 0,002 0,002 N 0,004 0,008 0,009 0,008 0,01 Cr 19,99 24,9 24,9 24,9 24,9 Ni Rest 51,3313 45,11 45,07 45,12 45,09 Mn 0,01 0,01 0,01 0,01 0,01 Si 0,04 0,06 0,07 0,06 0,05 Mo 5,85 5,82 5,83 5,81 5,83 Ti 2,09 1,69 1,69 1,69 1,69 Nb 0,01 0,02 0,02 0,02 0,02 Cu 0,01 0,01 0,01 0,01 0,01 Fe 0,23 0,53 0,53 0,53 0,53 P 0,002 0,002 0,002 0,002 0,002 Al 0,46 1,08 1,08 1,08 1,08 Mg 0,001 0,003 0,003 0,003 0,003 Pb 0,0002 0,0002 0,0002 0,0002 0,0002 Sn 0,001 0,01 0,01 0,01 0,01 Ca 0,01 0,01 0,01 0,01 0,01 V 0,01 0,07 0,07 0,07 0,07 Zr 0,01 0,02 0,01 0,02 0,02 W 0,01 0,58 0,59 0,59 0,58 Co 19,81 20,01 20,03 20,00 20,03 B 0,003 0,004 0,004 0,004 0,004 As 0,001 0,001 0,001 0,001 0,001 SE 0,0003 Te 0,0001 Bi 0, 0,00003 0,00003 0,00003 0,00003 Ag 0,0001 O 0,005 Ti + Al 2,55 2,77 2,77 2,77 2,77 Ti/Al 4,5435 1,565 1,565 1,565 1,565 The advantages of the alloy according to the invention are explained in more detail using examples:
  • In Table 1, the state of the art (Nicrofer 5120 CoTi - produced on an industrial scale) is compared with an identical reference batch (laboratory) and several alloy compositions according to the invention.
  • In Table 2 the state of the art (Nicrofer 5120 CoTi - produced on a large scale) is compared to several batches produced on a large scale.
    Figure imgb0001
    Figure imgb0002
Table 2 Analysis of hot strip Nicrofer 5120 Batch Batch Batch Batch CoTi 335449 334549 334547 334547 Batch 413297 large-scale generated Analysis head Analysis foot Analysis head Analysis foot 5200 5200 5100 5100 C. 0.049 0.051 0.05 0.051 0.051 S. 0.002 0.002 0.002 0.002 0.002 N 0.004 0.008 0.009 0.008 0.01 Cr 19.99 24.9 24.9 24.9 24.9 Ni rest 51.3313 45.11 45.07 45.12 45.09 Mn 0.01 0.01 0.01 0.01 0.01 Si 0.04 0.06 0.07 0.06 0.05 Mon 5.85 5.82 5.83 5.81 5.83 Ti 2.09 1.69 1.69 1.69 1.69 Nb 0.01 0.02 0.02 0.02 0.02 Cu 0.01 0.01 0.01 0.01 0.01 Fe 0.23 0.53 0.53 0.53 0.53 P. 0.002 0.002 0.002 0.002 0.002 Al 0.46 1.08 1.08 1.08 1.08 Mg 0.001 0.003 0.003 0.003 0.003 Pb 0.0002 0.0002 0.0002 0.0002 0.0002 Sn 0.001 0.01 0.01 0.01 0.01 Approx 0.01 0.01 0.01 0.01 0.01 V 0.01 0.07 0.07 0.07 0.07 Zr 0.01 0.02 0.01 0.02 0.02 W. 0.01 0.58 0.59 0.59 0.58 Co 19.81 20.01 20.03 20.00 20.03 B. 0.003 0.004 0.004 0.004 0.004 As 0.001 0.001 0.001 0.001 0.001 SE 0.0003 Te 0.0001 Bi 0, 0.00003 0.00003 0.00003 0.00003 Ag 0.0001 O 0.005 Ti + Al 2.55 2.77 2.77 2.77 2.77 Ti / Al 4.5435 1.565 1.565 1.565 1.565

Es wurden jeweils 8 kg pro Schmelze an Ausgangsmaterialien eingesetzt (Tabelle 1). Nach dem Abgießen wurden an den Proben Spektralanalysen vorgenommen. Die Proben wurden anschließend auf 6 mm Dicke gewalzt. Durch weiteres Walzen (mit Zwischenglühung) auf einer Laborwalze wurden die Proben auf 0,4 mm Enddicke gewalzt.In each case 8 kg of starting materials were used per melt (Table 1). Spectral analyzes were carried out on the samples after casting. The samples were then rolled to a thickness of 6 mm. The samples were rolled to a final thickness of 0.4 mm by further rolling (with intermediate annealing) on a laboratory roller.

Die Lösungsglühung erfolgte bei 1.150°C für 30 Min. mit anschließendem Wasserabschrecken.The solution annealing was carried out at 1,150 ° C. for 30 minutes with subsequent water quenching.

Eine Ausscheidungshärtung wurde bei Temperaturen von 800, 850, 900 bzw. 950°C für 4/8/16 h mit anschließendem Wasserabschrecken durchgeführt.Precipitation hardening was carried out at temperatures of 800, 850, 900 or 950 ° C. for 4/8/16 hours with subsequent water quenching.

Die Varianten 250575 bis 250577 zeigten hierbei gegenüber dem Stand der Technik, respektive den Varianten 250573 und 250574, ein sehr hohes Härteniveau. Das bedeutet, dass die festigkeitssteigernde Phase (hier Gamma-Prime) noch stabil ist.The variants 250575 to 250577 showed a very high level of hardness compared to the prior art, respectively the variants 250573 and 250574. This means that the strength-increasing phase (here gamma prime) is still stable.

Für großtechnische Anwendungen (Tabelle 2) wird der Werkstoff in einem Mittelfrequenz-Induktionsofen erzeugt, dann als Strangguss in Brammenform abgegossen. Anschließend werden die Brammen im Elektroschlacke-Umschmelzofen zu weiteren Brammen (respektive Stangen) umgeschmolzen. Danach wird die jeweilige Bramme warmgewalzt, zur Erzeugung von Bandmaterial an Dicken von ca. 6 mm. Daran schließt sich ein Kaltwalzvorgang des Bandmaterials an Enddicke von ca. 0,4 mm an.For large-scale technical applications (Table 2), the material is produced in a medium-frequency induction furnace and then cast as a continuous cast in slab form. The slabs are then remelted into further slabs (or bars) in the electroslag remelting furnace. The respective slab is then hot-rolled to produce strip material with a thickness of approx. 6 mm. This is followed by a cold rolling process of the strip material to a final thickness of approx. 0.4 mm.

Somit liegt nun ein Ausgangsmaterial für Tiefzieh- oder Stanzprodukte vor. Bedarfsweise kann noch produktabhängig ein thermischer Prozess vorgenommen werden.Thus there is now a starting material for deep-drawn or stamped products. If necessary, a thermal process can be carried out depending on the product.

Zur Erzeugung von Bauteilen für die Luftfahrt bietet sich folgender Herstellungsweg an:
VIM - VAR
The following manufacturing method is available for the production of components for aviation:
VIM - VAR

Die Produktform nach dem VAR kann eine Bramme oder eine Stange sein.The product shape according to the VAR can be a slab or a bar.

Die Umformung kann durch Walzen oder Schmieden erfolgen.The deformation can be done by rolling or forging.

Zur Erzeugung von Bauteilen für Kraftwerke oder Automobile bietet sich auch folgender Herstellweg an:
VIM - ESU
The following manufacturing method is also suitable for the production of components for power plants or automobiles:
VIM - ESU

Auch hier sind Umformungen durch Schmieden oder Walzen denkbar.Forming by forging or rolling is also conceivable here.

Abbildung 1 zeigt die Kriechdehnung verschiedener Werkstoffe in Abhängigkeit von der Zeit bei einer typischen Anwendungstemperatur von 900°C sowie einer Belastung von 60 Mpa. Dargestellt sind die Werkstoffe C-263 Standard (Nicrofer 5120 CoTi), C-264 Variante 76 (Charge 250576) sowie C-264 Variante 77 (Charge 250577). illustration 1 shows the creep strain of various materials as a function of time at a typical application temperature of 900 ° C and a load of 60 Mpa. The materials C-263 standard (Nicrofer 5120 CoTi), C-264 variant 76 (batch 250576) and C-264 variant 77 (batch 250577) are shown.

Bei der Standardversion ist erkennbar, dass bei vorgegebener Temperatur und Belastung der Werkstoff nach weniger als 100 h versagt.With the standard version it can be seen that the material fails after less than 100 hours at a given temperature and load.

Die beiden anderen Varianten zeigen beide Standzeiten von ca. 400 h, respektive ca. 550 h.The other two variants both show service lives of approx. 400 hours and approx. 550 hours, respectively.

Die Varianten 76 und 77 zeigen verbesserte Standzeiten, die im Betriebszustand zu einem höheren Kriechwiderstand und somit zu wesentlich geringerer Bauteilverformung führen.Variants 76 and 77 show improved service lives, which in the operating state lead to higher creep resistance and thus to significantly less component deformation.

Claims (20)

  1. A high temperature nickel-base-alloy composed of (in % by weight): C 0.04 - 0.1 % S max. 0.01 % N max. 0.05 % Cr 24 - 28 % Mn max. 0.3 % Si max. 0.3 % Mo 1 - 6 % Ti 0.5 - 3 % Nb 0.001 - 0.1 % Cu max. 0.2 % Fe 0.1 - 0.7% P max. 0.015 % Al 0.5 - 2 % Mg max. 0.01 % Ca max. 0.01 % V 0.01 - 0.5 % Zr max. 0.1 % W 0.2 - 2 % Co 17 - 21 % B max. 0.01 % O max. 0.01 % Ni rest as well as elaboration dependent impurities.
  2. A nickel-base-alloy according to claim 1, comprising (in % by weight) 24 - 26 % Cr. .
  3. A nickel-base-alloy according to claim 1 or 2, comprising (in % by weight) 2 - 6 % Mo.
  4. A nickel-base-alloy according to claim 1 or 2, comprising (in % by weight) 1.5 - 2.5 % Mo.
  5. A nickel-base-alloy according to claim 1 or 2, comprising (in % by weight) 4 - 6 % Mo.
  6. A nickel-base-alloy according to one of the claims 1 through 5, comprising (in % by weight) 0.5 - 2.5 % Ti.
  7. A nickel-base-alloy according to one of the claims 1 through 5, comprising (in % by weight) 1.5 - 2.5 % Ti.
  8. A nickel-base-alloy according to one of the claims 1 through 7, comprising (in % by weight) 0.5 - 1.5 % Al.
  9. A nickel-base-alloy according to one of the claims 1 through 8, comprising (in % by weight) 0.01 - 0.2 % V.
  10. A nickel-base-alloy according to one of the claims 1 through 9, comprising (in % by weight) 0.5 - 1.5 % W.
  11. A nickel-base-alloy according to one of the claims 1 through 10, wherein the sum Ti + Al (in % by weight) is minimum 1 %.
  12. A nickel-base-alloy according to one of the claims 1 through 11, wherein the sum Ti + Al (in % by weight) is minimum 1.5 %, in particular minimum 2 %.
  13. A nickel-base-alloy according to one of the claims 1 through 12, wherein the ratio Ti/AI is maximum 3.5, in particular maximum 2.0.
  14. A nickel-base-alloy according to one of the claims 1 through 13, usable for building components, which are exposed to building component temperatures of > 700°C, in particular > 900°C, respectively > 950°C.
  15. A nickel-base-alloy according to one of the claims 1 through 14, usable for building components in internal combustion engines.
  16. A nickel-base-alloy according to one of the claims 1 through 15, usable as building components in turbochargers.
  17. A nickel-base-alloy according to one of the claims 1 through 14, usable for building components in flying or stationary turbines, in particular gas turbines.
  18. A nickel-base-alloy according to claim 17, usable for blades or conductor elements in flying or stationary turbines, in particular gas turbines.
  19. A nickel-base-alloy according to one of the claims 1 through 14, usable for building components in power plants.
  20. A nickel-base-alloy according to claim 19, usable for tubes or probes in power plants.
EP18752680.1A 2017-07-28 2018-07-24 High-temperature nickel based alloy Active EP3658695B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017007106.3A DE102017007106B4 (en) 2017-07-28 2017-07-28 High temperature nickel base alloy
PCT/DE2018/100663 WO2019020145A1 (en) 2017-07-28 2018-07-24 High-temperature nickel-base alloy

Publications (2)

Publication Number Publication Date
EP3658695A1 EP3658695A1 (en) 2020-06-03
EP3658695B1 true EP3658695B1 (en) 2021-09-01

Family

ID=63165131

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18752680.1A Active EP3658695B1 (en) 2017-07-28 2018-07-24 High-temperature nickel based alloy

Country Status (9)

Country Link
US (1) US11193186B2 (en)
EP (1) EP3658695B1 (en)
JP (1) JP6949144B2 (en)
KR (2) KR102534136B1 (en)
CN (1) CN110914463A (en)
BR (1) BR112019022793B1 (en)
DE (1) DE102017007106B4 (en)
ES (1) ES2897323T3 (en)
WO (1) WO2019020145A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020116868A1 (en) * 2019-07-05 2021-01-07 Vdm Metals International Gmbh Nickel-cobalt alloy powder and method of manufacturing the powder
DE102020207910A1 (en) 2020-06-25 2021-12-30 Siemens Aktiengesellschaft Nickel-based alloy, powder, process and component
CN113234964B (en) * 2021-05-19 2021-12-03 山西太钢不锈钢股份有限公司 Nickel-based corrosion-resistant alloy and processing method thereof
EP4241906A1 (en) 2022-03-11 2023-09-13 Siemens Aktiengesellschaft Nickel-based alloy, component, powder and method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA921733A (en) * 1967-10-16 1973-02-27 Special Metals Corporation Nickel base alloy
US3785876A (en) * 1972-09-25 1974-01-15 Special Metals Corp Treating nickel base alloys
US5693159A (en) * 1991-04-15 1997-12-02 United Technologies Corporation Superalloy forging process
US5964091A (en) * 1995-07-11 1999-10-12 Hitachi, Ltd. Gas turbine combustor and gas turbine
US6258317B1 (en) 1998-06-19 2001-07-10 Inco Alloys International, Inc. Advanced ultra-supercritical boiler tubing alloy
WO2001053548A2 (en) 2000-01-24 2001-07-26 Inco Alloys International, Inc. Ni-Co-Cr HIGH TEMPERATURE STRENGTH AND CORROSION RESISTANT ALLOY
AT408665B (en) 2000-09-14 2002-02-25 Boehler Edelstahl Gmbh & Co Kg NICKEL BASE ALLOY FOR HIGH TEMPERATURE TECHNOLOGY
DE10052023C1 (en) 2000-10-20 2002-05-16 Krupp Vdm Gmbh Austenitic nickel-chrome-cobalt-molybdenum-tungsten alloy and its use
DE102011013091A1 (en) 2010-03-16 2011-12-22 Thyssenkrupp Vdm Gmbh Nickel-chromium-cobalt-molybdenum alloy
EP2698215A1 (en) 2012-08-17 2014-02-19 Alstom Technology Ltd Method for manufacturing high temperature steam pipes
DE102013002483B4 (en) * 2013-02-14 2019-02-21 Vdm Metals International Gmbh Nickel-cobalt alloy
JP6201724B2 (en) * 2013-12-19 2017-09-27 新日鐵住金株式会社 Ni-base heat-resistant alloy member and Ni-base heat-resistant alloy material
DE102014001329B4 (en) 2014-02-04 2016-04-28 VDM Metals GmbH Use of a thermosetting nickel-chromium-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and processability
JP6323188B2 (en) * 2014-06-11 2018-05-16 新日鐵住金株式会社 Manufacturing method of Ni-base heat-resistant alloy welded joint
JP6519007B2 (en) * 2015-04-03 2019-05-29 日本製鉄株式会社 Method of manufacturing Ni-based heat resistant alloy welded joint

Also Published As

Publication number Publication date
US20200172997A1 (en) 2020-06-04
JP2020521879A (en) 2020-07-27
DE102017007106B4 (en) 2020-03-26
BR112019022793B1 (en) 2022-12-20
US11193186B2 (en) 2021-12-07
CN110914463A (en) 2020-03-24
EP3658695A1 (en) 2020-06-03
WO2019020145A1 (en) 2019-01-31
KR20200019968A (en) 2020-02-25
BR112019022793A2 (en) 2020-05-26
DE102017007106A1 (en) 2019-01-31
KR102534136B1 (en) 2023-05-18
JP6949144B2 (en) 2021-10-13
KR20220070349A (en) 2022-05-30
ES2897323T3 (en) 2022-02-28

Similar Documents

Publication Publication Date Title
EP3658695B1 (en) High-temperature nickel based alloy
EP2956562B1 (en) Nickel-cobalt alloy
EP2547804B1 (en) Nickel-chromium-cobalt-molybdenum alloy
EP1340825B1 (en) Ni-base alloy, heat-resistant spring made of the alloy, and process for producing the spring
EP2855724B1 (en) Nickel-chromium alloy with good formability, creep strength and corrosion resistance
EP3102710B1 (en) Nickel-chromium-cobalt-titanium-aluminum alloy having good wear resistance, creep resistance, corrosion resistance and processability
DE68915095T2 (en) Nickel-based alloy and process for its manufacture.
EP2855723B1 (en) Nickel-chromium-aluminium alloy with good formability, creep strength and corrosion resistance
EP2480695B1 (en) Method of manufactur an iron-chrome alloy.
EP3994288B1 (en) Method for producing a nickel-cobalt alloy powder
DE102015016729B4 (en) Process for producing a nickel-base alloy
DE112016005830B4 (en) Metal gasket and process for its manufacture
DE2730452A1 (en) NICKEL-CHROME-IRON ALLOY
DE69414529T2 (en) Fe-based superalloy
WO2015117585A2 (en) Hardened nickel-chromium-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and workability
DE69106372T2 (en) ALLOY WITH LOW THERMAL EXPANSION COEFFICIENT AND ITEM PRODUCED FROM IT.
EP1420077B1 (en) Inert material with high hardness for elements used at high temperature
DE4201065A1 (en) METHOD FOR IMPROVING THE BENDING STRENGTH OF SEMI-PRODUCTS FROM COPPER ALLOYS
DE112019001491B4 (en) Ni-BASED ALLOY AND HEAT RESISTANT PLATE MATERIAL OBTAINED USING THE SAME
EP0060577B2 (en) Turbine blade material with high fatigue-corrosion resistance, method of production and use
EP0690140B1 (en) High temperature wrought alloy
EP0264357B1 (en) Heat-resistant austenitic alloy, and process for its manufacture
WO2023208274A1 (en) Method for producing a support film for catalytic converters
DE102023104526A1 (en) Process for producing a carrier film for catalysts

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DE BOER, NICOLE

Inventor name: KIESE, JUERGEN

Inventor name: HATTENDORF, HEIKE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210311

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1426329

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018006878

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211202

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2897323

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220101

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220103

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018006878

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

26N No opposition filed

Effective date: 20220602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220724

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220724

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230724

Year of fee payment: 6

Ref country code: GB

Payment date: 20230721

Year of fee payment: 6

Ref country code: ES

Payment date: 20230927

Year of fee payment: 6

Ref country code: AT

Payment date: 20230720

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230719

Year of fee payment: 6

Ref country code: FR

Payment date: 20230726

Year of fee payment: 6

Ref country code: DE

Payment date: 20230719

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180724