EP3650703B1 - Vakuumpumpe und verfahren zur schmierung einer solchen - Google Patents

Vakuumpumpe und verfahren zur schmierung einer solchen Download PDF

Info

Publication number
EP3650703B1
EP3650703B1 EP19210279.6A EP19210279A EP3650703B1 EP 3650703 B1 EP3650703 B1 EP 3650703B1 EP 19210279 A EP19210279 A EP 19210279A EP 3650703 B1 EP3650703 B1 EP 3650703B1
Authority
EP
European Patent Office
Prior art keywords
lubricant
pump
motor
vacuum pump
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19210279.6A
Other languages
English (en)
French (fr)
Other versions
EP3650703A1 (de
Inventor
Sebastian Oberbeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Priority to EP19210279.6A priority Critical patent/EP3650703B1/de
Publication of EP3650703A1 publication Critical patent/EP3650703A1/de
Application granted granted Critical
Publication of EP3650703B1 publication Critical patent/EP3650703B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/40Pumps with means for venting areas other than the working chamber, e.g. bearings, gear chambers, shaft seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor

Definitions

  • the present invention relates to a vacuum pump according to the preamble of claim 1 and a method according to the preamble of claim 14.
  • Such vacuum pumps and methods are in US Pat EP 0 451 708 A2 , DE 10 2014 106 315 A1 , U.S. 4,652,214 A and WO 2018/177249 A1 disclosed.
  • an oil supply for the purpose of lubrication leads from the oil tank via bores into the end shields, which delimit the pump chamber in the axial direction.
  • Plain bearings for a rotor shaft of a pump body are introduced into these end shields. These plain bearings are supplied with lubricant via bores due to the negative pressure that occurs in the pump chamber during pumping operation.
  • the shaft is sealed off from the motor with a radial shaft seal.
  • the disadvantage here is that such a radial shaft sealing ring wears out over time and loses its tightness. As a result, lubricating oil, for example, can be lost from a lubricant circuit. This endangers the reliable lubrication of the pump and means a not inconsiderable risk of pollution or contamination for the environment.
  • the invention is based on the idea that a radial shaft sealing ring and generally a seal of the motor against the lubricant can be dispensed with and that the motor is arranged in a space which is directly exposed to the lubricant, namely at least partially, in particular completely, with it during operation , is filled.
  • the wear problems associated with a seal for the motor or a radial shaft sealing ring are thus avoided. These problems are mostly based, in particular in the case of a radial shaft sealing ring, on a dynamic type of seal, namely on a sliding but wear-prone relative movement of a sealing element on a sealing surface.
  • a static seal is preferably provided between the engine compartment and the environment. Static seals typically show significantly less wear than dynamic seals.
  • installation space is also saved, namely at least installation space for the seal.
  • the engine compartment itself can act as a line for the lubricant and thus certain line sections can be dispensed with, which simplifies production and saves installation space.
  • the liquid lubrication can be provided, for example, for the pump body, for a bearing carrying the pump body and / or for a movable conveying element of the pump body, in particular a slide. It can generally preferably be provided that the lubricant is fed to the pump chamber.
  • the lubricant can preferably be oil.
  • the lubricant preferably starting from a supply device, in particular from a lubricant storage space, is guided through the engine compartment to an element to be lubricated.
  • the engine compartment acts like a kind Line between the supply device and the element to be lubricated.
  • the engine compartment can also have a distribution function.
  • the lubricant can, for example, also be guided through the engine compartment to a plurality of elements to be lubricated.
  • the supply device can preferably comprise a lubricant storage space and / or a return.
  • a return can in particular be designed in such a way that at least part of the returned lubricant can be guided through the engine compartment.
  • Elements to be lubricated are in particular the pump body and / or a bearing.
  • a bearing can be provided for the pump body, which is fed and / or supplied with lubricant from the engine compartment.
  • the bearing can preferably be fed directly from the engine compartment, so that preferably no additional lines from the engine compartment to the bearing are necessary.
  • the bearing can be lubricated, for example, in such a way that the lubricant is guided from the engine compartment, in particular directly, through the bearing and into the pump compartment.
  • the bearing can preferably be or comprise a bearing element and / or a sliding bearing. When lubricated, a plain bearing has a particularly high degree of vacuum tightness.
  • the pump body can for example have a rotor body and / or at least one rotary slide valve.
  • the rotor body can, for example, be connected to a rotor shaft and / or formed in one piece.
  • an inlet opening is provided through which a lubricant can enter the pump chamber, the inlet opening preferably being fed with lubricant from the engine compartment.
  • the inlet opening can be spaced from the bearing and / or arranged eccentrically to a rotor shaft.
  • a constriction in particular a nozzle, can be provided at the inlet opening.
  • An inlet opening can preferably be designed as a nozzle.
  • one or more inlet openings can be provided.
  • a first inlet opening can be provided which opens against the pump body, in particular against a rotor body.
  • a first inlet opening can be arranged in such a way that it opens against an end face of the pump body, in particular the rotor body.
  • a first inlet opening can, for example, temporarily open into a guide and / or a recess for a slide, in particular a vacuum pump designed as a rotary slide vacuum pump, during operation.
  • one, in particular a second, inlet opening can be provided which opens into a cavity of the pump chamber and / or into a, in particular closed, delivery volume.
  • One, in particular second, inlet opening can preferably open out on the outer circumference of a rotor or rotor body of the pump body.
  • Lubrication for a bearing and / or for the pump chamber via at least one inlet opening can for example be provided on a side of the pump chamber facing the motor and / or on a side of the pump chamber facing away from the motor.
  • the lubricant can preferably not be passed through the motor chamber, but preferably through a space connected to a bearing, which in particular supplies at least one inlet opening into the pump chamber and / or the bearing with lubricant.
  • a channel is provided which connects the pump chamber and / or the inlet opening to the engine chamber.
  • the channel and / or the inlet opening can be defined, for example, by one or more bores.
  • one or more paths for the lubricant can lead from the engine compartment into the pump compartment.
  • a first path for the lubricant into the pump chamber runs from the engine compartment through a bearing and that a second path for the lubricant from the motor compartment into the pump chamber, in particular through at least one inlet opening, is provided.
  • the second path can preferably have a lower flow resistance than the first path.
  • the second path can in particular have one or more inlet openings.
  • the vacuum pump is designed in such a way that at least essentially all of the air is initially removed from the engine compartment at the beginning of a pumping process.
  • another gas can also be present in the engine compartment and removed accordingly.
  • the air is removed, the engine compartment is filled with lubricant.
  • all of the air can be sucked out of the engine compartment via the pump chamber, in particular via a path via which the lubricant is guided into the pump chamber after the air has been removed. By removing the air, a so-called virtual leak is avoided.
  • a virtual leak refers to an amount of air present in the pump system that can get into the conveying path of the process gas during operation, in particular near the final pressure, and thus worsen the vacuum quality, at least for a short time. In contrast to a "normal" leak, no air penetrates from the environment.
  • a channel between the engine compartment and the pump compartment can, for example, have an upper end which is assigned to the engine compartment and / or which is at a highest Place of the engine compartment is arranged. This is an easy way to avoid a virtual leak. Since air is lighter than the liquid lubricant, this ensures that the air present in the engine compartment is initially discharged from this via the duct. In particular, the air enters the pump chamber and is conveyed to the outlet of the vacuum pump by the pump body.
  • an end of the channel assigned to the engine compartment can be arranged above a rotor shaft and / or above a bearing.
  • An inlet opening into the pump chamber can preferably be arranged below the end of the channel assigned to the motor, in particular at the level of a rotor shaft and / or a bearing.
  • the lubricant can be guided through the engine compartment up to the end of the channel associated with the engine compartment and down through the channel to the inlet opening into the pump chamber.
  • the end of the channel can be defined, for example, by a bore, which in particular runs transversely to a next channel section and / or parallel to a rotor axis.
  • the channel and / or the at least one inlet opening can preferably be defined in a component which carries a bearing element, is a bearing plate, delimits the pump chamber, in particular axially, is a housing component and / or is a structural component.
  • no seal is provided between the motor or the motor compartment and a bearing provided for the pump body.
  • the engine or engine compartment and bearing can preferably be arranged immediately adjacent.
  • a radial shaft sealing ring is provided between the motor and the bearing.
  • no radial shaft sealing ring can be provided between the motor or engine compartment and bearing and / or no radial shaft sealing ring at all.
  • the vacuum pump can be designed to convey the lubricant by negative pressure in the pump chamber relative to a pressure prevailing in a supply device and / or the engine room, in particular through the engine room. At least essentially atmospheric pressure preferably prevails in the engine compartment or in the provision device.
  • An access of the lubricant to the pump chamber is preferably dimensioned so small that the pressure of the engine chamber or the supply device is not communicated directly to the pump chamber, but rather that only an advantageous amount of Lubricant gets into the pump chamber.
  • the vacuum pump can advantageously be designed to circulate a lubricant supply at least twice and / or at most seven times per minute. In this case, only part, in particular approximately half, of the lubricant flow preferably runs through the engine compartment. In particular, another, in particular residual, part of the lubricant flow can be fed to the pump chamber on a side of the pump chamber opposite the motor. In general, on a side of the pump chamber opposite the motor, lubricant can also be supplied to the pump chamber, for example, also through a bearing and / or through at least one inlet opening, which can preferably be designed in accordance with the motor-side bearing or the motor-side inlet openings.
  • the motor forms a direct drive for the pump body.
  • a rotor of the motor can preferably be arranged on a rotor shaft of the vacuum pump which, in particular, is fixedly or integrally connected to the pump body.
  • the motor can be designed as an integrated motor.
  • a rotor of the motor can for example have at least one permanent magnet.
  • a permanent magnet rotor requires little installation space.
  • the engine compartment can be made relatively small as a result, and the vacuum pump is generally compact as a result.
  • the vacuum pump can generally preferably be designed as a rotary displacement vacuum pump, in particular as a rotary vane vacuum pump. Generally preferred, the vacuum pump can be designed in one or two stages.
  • the object of the invention is also achieved by a method for lubricating a vacuum pump with the features mentioned in the independent claim directed thereto. It is understood that the method according to the invention by the described here Features and embodiments of the vacuum pump according to the invention can be advantageously developed.
  • FIG. 1 to 9 show an embodiment of a vacuum pump 10 according to the invention in different views. They show Fig. 1 and 2 Side views and the Figures 3 to 9 Section views with section planes defined in the Fig. 1 , 2 and 3 are indicated.
  • Fig. 10 FIG. 11 shows a greatly simplified diagram of a lubricant supply system for the vacuum pump 10.
  • Fig. 1 shows the vacuum pump 10 in a side view.
  • the vacuum pump 10 is designed as a rotary vane vacuum pump.
  • an inlet 12 a pump housing 14 and a secondary housing 16 are visible.
  • the pump housing 14 includes the pump-active components of the vacuum pump 10.
  • the secondary housing 16 includes, inter alia, a separator 18 for a lubricant of the vacuum pump 10 and a lubricant storage space 20, which is, for example, in Fig. 3 are visible.
  • the pump housing 14 comprises several housing components, in this embodiment three housing components 22, 24 and 26.
  • the housing component 22 closes a pump chamber 28 which, for example, in Fig. 3 is visible, in the axial direction and carries a bearing element 30 for a rotor shaft 32, see e.g. Fig. 4 .
  • the housing component 18 can also be referred to as a pump cover or end shield.
  • the housing component 24 defines the pump chamber 28 and an inlet 12 as well as an outlet 34 of the vacuum pump 10, for example in FIG Fig. 3 is visible.
  • the housing component 24 can also be referred to as a pump chamber body.
  • the housing component 26 forms a housing for a motor 36 of the vacuum pump 10, which is shown in FIG Fig. 4 is visible and defines an engine compartment 38 in which the engine 36 is located.
  • the housing component 26 can also be referred to as a motor housing.
  • the Fig. 3 shows the vacuum pump 10 in a sectional view, the sectional plane in FIG Fig. 2 indicated as line AA.
  • the sectional plane runs perpendicular to the axis of rotation of the rotor shaft 32.
  • a rotor body 40 which is part of the rotor shaft 32, is visible.
  • the rotor body 40 is essentially circular-cylindrical and is arranged eccentrically in the likewise circular-cylindrical pump chamber 28.
  • a plurality of rotary slides 42 which are slidably mounted in corresponding recesses 44, are arranged on the rotor body 40.
  • the slides 42 are not pretensioned (no springs), but rather are only pressed against an inner wall 46 of the pump chamber 28 by centrifugal forces when the rotor rotates.
  • Alternative designs with resilient elements are possible.
  • a respective slide 42 can also be pretensioned against the inner wall 46 of the pump chamber 28.
  • the ejected process gas or the gas to be conveyed is guided into the secondary housing 16 from the outlet 34. There liquid lubricant comes back into the lubricant storage space 20. Lubricant, which is contained as steam in the process gas, is passed through the separator 18 together with the process gas, as a result of which the lubricant is separated and drips into a lubricant collecting space 49. This process is illustrated below using the Fig. 8 and 9 described in more detail.
  • the lubricant is sucked back into the pump chamber 28, which is under negative pressure.
  • the lubricant from the lubricant reservoir 20 first passes into a channel section 48 which is formed in the housing component 24, and from there is guided back through further channels into the pump chamber 28.
  • An inlet opening 50 for the lubricant, which is connected to the channel section 48, is shown in FIG Fig. 3 visible.
  • the other channels mentioned are in Fig. 3 not visible.
  • the channels and the entire lubricant supply system of the vacuum pump 10 are explained in detail below.
  • the Fig. 4 shows the vacuum pump 10 in a further sectional view.
  • the cutting plane is in Fig. 1 indicated as line BB. It runs through an axis of rotation of the rotor shaft 32.
  • the motor 36 of the vacuum pump 10 comprises a stator 52, which preferably has a plurality of windings, and a rotor 54, which preferably has a plurality of permanent magnets. There is a gap 56 between the stator 52 and the rotor 54.
  • the rotor 54 of the motor 36 is firmly connected to the rotor shaft 32, so that an electromagnetic force exerted by the stator 52 on the rotor 54 is transmitted directly to the rotor shaft 32 .
  • the rotor 54 of the motor 36 rotates in an engine compartment 38 during operation.
  • the motor compartment 38 is at least partially filled with lubricant when the vacuum pump 10 is in operation.
  • the rotor 54 rotates in the lubricant and the gap 56 is filled with lubricant.
  • the rotor shaft 32 On the side of the pump chamber 28 facing the motor 36, the rotor shaft 32 is supported by a bearing element 58 which is designed as a slide bearing. On the side of the pump chamber 28 facing away from the motor 36, the rotor shaft 32 is supported by the bearing element 30, which is also designed as a slide bearing.
  • the bearing element 58 is arranged directly adjacent to the rotor 54 of the motor 36 and adjoins the motor compartment 38 with one axial end. This axial end is therefore exposed to the lubricant in the engine compartment 38. As a result of the negative pressure present in the pump chamber 28, lubricant is sucked from the motor chamber 38 through the bearing element 58 into the pump chamber 28. In this way, in particular, continuous lubrication of the bearing element 58 but also of the pump chamber 28, in particular of the rotor body 40, is ensured.
  • Fig. 4 one end of the channel section 48 is visible, which in its entire length in Fig. 3 is visible.
  • the channel section 48 is connected to a further channel section 60 which divides a flow of lubricant arriving through the channel section 48. Part of the lubricant flow, in particular about half, passes through the channel section 60, in Fig. 4 to the right, into the engine compartment 38. The remainder of the lubricant flow goes into Fig. 4 to the left, to a side of the pump chamber 28 facing away from the motor 36. There, the lubricant is guided through a further channel section 62 into a chamber 64, from where, in a manner similar to that described with reference to the bearing element 58, it passes through the bearing element 30 is sucked through into the pump chamber 28.
  • the Fig. 5 shows a further sectional view of the vacuum pump 10, here with a sectional plane along the line CC of FIG Fig. 1 .
  • This sectional plane also runs through the axis of rotation of the rotor shaft 32.
  • a duct section 66 is visible, which is connected to the engine compartment 38 via a path to be explained in more detail.
  • a first inlet opening 68 and a second inlet opening 70 are connected to the channel section 66, through which the lubricant passes from the channel section 66 into the pump chamber 28 and to the rotor body 40 or the rotary valve 42.
  • the channel section 66 is formed by a bore in the housing component 24, which is closed and sealed by a screw 72.
  • the inlet openings 68 and 70 are also formed by bores. These run transversely to the channel section 66.
  • the channel section 66 is formed in a wall 73 of the housing component 24 which axially delimits the pump chamber 28 and which carries the bearing element 58 and the rotor shaft 32.
  • the wall 73 is formed in one piece with the housing component 24 or with a section of the housing component 24 delimiting the pump chamber 28 in the radial direction.
  • a separate design that is to say a separate motor-side bearing plate, would also be possible.
  • the first inlet opening 68 is arranged in such a way that it opens against an end face of the rotor body 40. It thus supplies the area between the end face of the rotor body 40 and an opposite inner wall of the housing component 24 or the pump chamber 28 with lubricant. On the one hand, this ensures good lubrication. On the other hand, the lubricant forms a thin lubricating film between the end face and the opposite inner wall, which forms a seal against leakage of the process gas. A lubricating film in the bearing element 58 has a similar effect.
  • a recess 44 of the rotor body 40 or a slide 42 is repeatedly arranged opposite the first inlet opening 68.
  • the first inlet opening 68 thus opens into the recess 44, which forms a guide for the rotary slide valve 42.
  • the guide or the recess is also advantageously continuously supplied with lubricant.
  • a second inlet opening 70 is arranged at the radial height of the circumference of the rotor body 40 and opens into a cavity of the pump chamber 28.
  • the second inlet opening 70 is used in particular to lubricate the frictional contact between the rotary valve 42 and the inner wall 46 of the pump chamber 28.
  • the second inlet opening 70 is preferably dimensioned in such a way that the lubricant is distributed through them spraying in the pump chamber 28 and over the rotary slide valve 42. In this way, lubrication can be ensured essentially over the entire axial length of the respective rotary valve 42.
  • a channel section 74 is provided in the housing component 22, which has a function similar to that of the channel section 66.
  • the channel section 74 is formed by a bore in the housing component 22 which is closed and sealed by a screw 78.
  • the inlet openings 50 and 76 are also formed by bores, which here run transversely to the channel section 74 or its bore.
  • the channel section 74 is connected to the space 64.
  • one end of the channel section 62 can be seen as it opens into the space 64.
  • Lubricant located in the space 64 is via the channel section 74 and the inlet openings 50, 76 led into the pump chamber 28.
  • the space 64 is supplied with lubricant from the lubricant reservoir 20 via the channel section 62.
  • FIG. 6 A further sectional view of the vacuum pump 10 is shown, the sectional plane along the line in FIG Fig. 2 indicated line DD runs.
  • the cutting plane also runs perpendicular to the axis of rotation of the rotor shaft 32 and in the axial area of the channel section 66, so that it is visible in the longitudinal section.
  • the bores of the inlet openings 68 and 70 extending from the channel section 66 as well as the screw 72 are visible.
  • a further channel section 80 is also visible, which is also designed here as a bore and is closed by a screw 82.
  • the duct section 80 is connected to the duct section 66 and connects it to the engine compartment 38.
  • the duct section 80 is connected to the engine compartment 38 via a further duct section 84.
  • Fig. 7 illustrates, which is a sectional view with the cutting plane according to line EE in Fig. 1 shows.
  • FIG. 8 shows a sectional view of the vacuum pump 10 along the sectional plane FF, which in FIG Fig. 2 is indicated.
  • FIG. 9 shows a sectional view along the cutting plane GG, which in FIG Fig. 3 is indicated.
  • a path of the process gas from the outlet 34 through the secondary housing 16 to the separator 18 is indicated by an arrow 86.
  • the process gas first enters the lubricant storage space 20.
  • Liquid lubricant exiting through the outlet 34 collects directly in the lubricant storage space 20.
  • the lubricant storage space 20 is connected to the engine compartment 38 and the space 64 via the channel section 48.
  • a channel section 88 is visible, which leads to the channel section 48 and, for example, also in FIG Fig. 3 is visible.
  • the process gas is then fed into the separator 18.
  • the separator 18 is designed here as a filter cartridge which, in particular, is exchangeable.
  • The, in particular warm, lubricant mist rises with the process gas into the interior of the separator 18 and condenses there to form drops 90 which penetrate the separator 18. These drip into the lubricant collecting space 49, which in particular is not connected to the lubricant storage space 20 and forms an independent return.
  • a float 92 of a float valve 94 is arranged in the lubricant collecting space 49.
  • the float valve 94 is connected to the pump chamber 28 via a channel section 96.
  • the channel section 96 opens into an inlet area of the pump chamber 28.
  • the channel section 88 and the channel section 48 could also lie in one plane.
  • the pump can in principle also comprise further channel sections, for example for similar or other purposes, which are formed, for example, in at least one of the housing components 22, 24, 26 are.
  • the pump 10 on which the drawings are based has further channel sections which are hidden in the figures for the sake of clarity.
  • FIG. 10 An overview of the lubricant circuit that runs through the lubricant reservoir 20 is provided by the simplified diagram of FIG Fig. 10 , on the basis of which the path of the lubricant through the pump is shown below in a coherent manner.
  • FIG. 10 Reference symbols used correspond to the features as they are in the Figures 1 to 9 were used.
  • a lubricant flow and a circulation of the lubricant is driven by a constantly generated negative pressure in the pump chamber 28 and thus by the pump-active components of the vacuum pump 10.
  • the use of a separate lubricant pump is also possible.
  • the lubricant is guided through a channel section 48 into a channel section 60 in which the lubricant flow is divided.
  • a part, in particular half, of the flow of lubricant is guided into the engine compartment 38 in which the rotor 54 of the engine 36 rotates.
  • the remaining part of the lubricant flow is guided into the space 64 which adjoins the slide bearing 30 on the side of the pump chamber 28 facing away from the motor 36.
  • the engine compartment 38 is therefore filled with lubricant when the vacuum pump 10 is in operation. From the engine compartment 38, the lubricant is guided on the one hand through the bearing element 58 into the pump compartment 28. On the other hand, the lubricant is guided into the pump chamber 28 via channel sections 84, 80, 66 and inlet openings 68 and 70 opening into the pump chamber 28.
  • an end of the channel 84, 80, 66 assigned to the engine compartment 38 is arranged at a highest point of the engine compartment 38. This avoids a virtual leak.
  • the channel section 80 leads down to the channel section 66 or to the inlet openings 68, 70.
  • the engine compartment 38 is in particular not or at least not completely filled with lubricant.
  • a negative pressure is gradually generated in the pump chamber 28.
  • the lubricant is sucked from the lubricant reservoir 20 through the engine compartment 38 into the pump chamber 28.
  • the air is sucked out of the engine compartment 38 and the engine compartment 38 begins to fill with lubricant until this completely fills the engine compartment 38.
  • the flow resistances in the channel 84, 80, 66 on the one hand and the slide bearing 58 on the other hand must be dimensioned accordingly.
  • the flow resistance in the plain bearing 58 is significantly greater than that of the channel 84, 80, 66.
  • the lubricant is guided from the chamber 64 through the bearing element 30 on the one hand and through the channel 74 with its inlet openings 50 and 76 on the other hand into the pump chamber 28.
  • a negative pressure in the pump chamber 28 causes the lubricant to be conveyed by suction.
  • the vacuum pump 10 described here which in particular has an integrated motor 36, dispenses with a radial shaft sealing ring, in particular between motor compartment 38 and pump compartment 28 or bearing element 58.
  • the channel for guiding the lubricant, in particular oil initially leads into the pump compartment body or the housing component 24 and branches from there directly to the lower one Area of the engine compartment 38 and in the direction of the opposite pump cover or bearing plate 22.
  • the motor 36 or the motor compartment 38 is evacuated via this end when the rotor shaft 32 of the pump 10 rotates and lubricant is thus sucked into the motor compartment 38.
  • the lubricant rises in the engine compartment 38 up to the shaft 32 and the slide bearing 58, as a result of which it is supplied with lubricant from the engine side.
  • the lubricant continues to rise to the upper bore or the channel section 84 and from there passes via channel sections 80, 66 or their bores and two inlet openings 68, 70, in particular nozzles, into the pump chamber 28, around the rotor body 40 and the slides 42 there to lubricate.
  • the lubricant comes from the distributor bore, namely the channel section 66, also due to the pressure that is established, via a riser line, namely the channel section 62, to a space 64 upstream of the bearing element 30, which is designed in particular as a slide bearing. From this space 64 leads a similar bore, namely the channel section 74 with two inlet openings 50, 76, in particular nozzles, as on the engine side to the pump chamber 28 the bearing element 30 has passed to reach the pump chamber 28. From there the lubricant is conveyed back by the rotor and slide movement via the outlet 34, namely an exhaust duct, together with the pumped-out process gas via a filter 18 located in the secondary housing 16, which forms a lubricant tank.
  • the size of the channels, bores and inlet openings or nozzles is preferably designed, depending on the size of the pump chamber, so that the lubricant in the lubricant supply is circulated at least 2x and / or not more than 7x per minute at the appropriate speed and the pump is at operating temperature.
  • the motor 36 is designed as a permanent magnet motor and as a result has a relatively small installation space required for a desired output.
  • the engine compartment 38 can be made correspondingly small. This has the advantage that the filling of the engine compartment 38 with lubricant only takes a relatively short time after the pump 10 has been started. This means that complete lubrication of the components to be lubricated is guaranteed particularly early after the start.
  • the gap 56 is completely filled with lubricant during operation.
  • the windings of the stator 52 of the motor 36 are generally preferably separated from the lubricant by a casting compound, in particular epoxy resin.
  • the lubricant is divided by channel sections 48 and 60, which form a distributor for the lubricant, on both axial sides of the pump chamber 28 or between the chamber 64 and the motor chamber 68.
  • the channel sections 48 and 60 or the distributor are arranged in the housing component 24.
  • the lubricant can for example also be guided directly from the lubricant reservoir 20 to the spaces 38 and 64 and in particular not through the housing component 24 or the pump chamber body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Vakuumpumpe nach dem Oberbegriff des Anspruchs 1 sowie ein Verfahren nach dem Oberbegriff des Anspruchs 14. Derartige Vakuumpumpen und Verfahren sind in der EP 0 451 708 A2 , DE 10 2014 106 315 A1 , US 4,652,214 A und WO 2018/177249 A1 offenbart.
  • Bei gängigen Vakuumpumpen, insbesondere einstufigen Drehschiebervakuumpumpen, führt eine Ölversorgung zwecks Schmierung vom Öltank über Bohrungen in die Lagerschilde, die in axialer Richtung den Pumpraum begrenzen. In diesen Lagerschilden sind Gleitlager für eine Rotorwelle eines Pumpkörpers eingebracht. Diese Gleitlager werden über Bohrungen aufgrund des im Pumpraum während des Pumpbetriebes entstehenden Unterdrucks mit Schmiermittel versorgt. Die Welle wird mit einem Radialwellendichtring zum Motor hin abgedichtet. Dabei ist nachteilig, dass ein solcher Radialwellendichtring mit der Zeit verschleißt und seine Dichtheit einbüßt. In der Folge kann zum Beispiel Schmieröl aus einem Schmiermittelkreislauf verloren gehen. Dies gefährdet die zuverlässige Schmierung der Pumpe und bedeutet ein nicht unerhebliches Verschmutzungs- bzw. Kontaminationsrisiko für die Umwelt.
  • Es ist eine Aufgabe der Erfindung, eine Vakuumpumpe der eingangs genannten Art mit guter Betriebssicherheit und/oder verbesserter Schmierung bereitzustellen.
  • Diese Aufgabe wird durch eine Vakuumpumpe mit den in Anspruch 1 genannten Merkmalen gelöst.
  • Der Erfindung liegt der Gedanke zugrunde, dass auf einen Radialwellendichtring und generell auf eine Abdichtung des Motors gegenüber dem Schmiermittel verzichtet werden kann und dass der Motor in einem Raum angeordnet ist, welcher dem Schmiermittel unmittelbar ausgesetzt, nämlich mit diesem im Betrieb zumindest teilweise, insbesondere vollständig, gefüllt ist. Die mit einer Abdichtung für den Motor bzw. einem Radialwellendichtring einhergehenden Verschleißprobleme werden somit vermieden. Diese Probleme basieren meist, insbesondere bei einem Radialwellendichtring, auf einer dynamischen Art der Abdichtung, nämlich auf einer gleitenden aber verschleißbehafteten Relativbewegung eines Dichtelements an einer Dichtfläche. Bei der erfindungsgemäßen Vakuumpumpe ist hingegen bevorzugt eine statische Dichtung zwischen dem Motorraum und der Umgebung vorgesehen. Statische Dichtungen weisen typischerweise einen erheblich geringeren Verschleiß auf als dynamische Dichtungen.
  • Letztlich wird durch den gefüllten Motorraum bzw. einen Verzicht auf eine Abdichtung zwischen Motor und Schmiermittel auch Bauraum eingespart, nämlich zumindest Bauraum für die Abdichtung. Zudem kann der Motorraum selbst als Leitung für das Schmiermittel wirken und somit kann auf bestimmte Leitungsabschnitte verzichtet werden, was die Fertigung vereinfacht und Bauraum einspart.
  • Die Flüssigkeitsschmierung kann beispielsweise für den Pumpkörper, für ein den Pumpkörper tragendes Lager und/oder für ein bewegliches Förderelement des Pumpkörpers, insbesondere einen Schieber, vorgesehen sein. Allgemein bevorzugt kann es vorgesehen sein, dass das Schmiermittel dem Pumpraum zugeführt wird. Bei dem Schmiermittel kann es sich bevorzugt um Öl handeln.
  • Gemäß einer Ausführungsform ist vorgesehen, dass das Schmiermittel, bevorzugt ausgehend von einer Bereitstellungseinrichtung, insbesondere von einem Schmiermittelvorratsraum, durch den Motorraum hindurch zu einem zu schmierenden Element geführt ist. Der Motorraum wirkt dabei insbesondere wie eine Art Leitung zwischen der Bereitstellungseinrichtung und dem zu schmierenden Element. Zudem kann dem Motorraum neben einer Leitungsfunktion auch eine Verteilungsfunktion zukommen. Das Schmiermittel kann beispielsweise auch zu mehreren zu schmierenden Elementen durch den Motorraum geführt sein. Die Bereitstellungseinrichtung kann vorzugsweise einen Schmiermittelvorratsraum und/oder eine Rückführung umfassen. Eine Rückführung kann insbesondere derart ausgebildet sein, dass zumindest ein Teil des zurückgeführten Schmiermittels durch den Motorraum geführt werden kann. Zu schmierende Elemente sind insbesondere der Pumpkörper und/oder ein Lager.
  • Es kann beispielsweise ein Lager für den Pumpkörper vorgesehen sein, welches vom Motorraum mit Schmiermittel gespeist und/oder versorgt wird. Bevorzugt kann das Lager unmittelbar vom Motorraum gespeist werden, sodass bevorzugt keine zusätzlichen Leitungen vom Motorraum zum Lager nötig sind. Eine Schmierung des Lagers kann beispielsweise derart ausgebildet sein, dass das Schmiermittel vom Motorraum, insbesondere unmittelbar, durch das Lager hindurch und hinein in den Pumpraum geführt ist. Das Lager kann bevorzugt ein Lagerelement und/oder ein Gleitlager sein oder umfassen. Ein Gleitlager weist im geschmierten Zustand eine besonders hohe Vakuumdichtigkeit auf.
  • Der Pumpkörper kann beispielsweise einen Rotorkörper und/oder wenigstens einen Drehschieber aufweisen. Der Rotorkörper kann beispielsweise mit einer Rotorwelle verbunden und/oder einteilig ausgebildet sein.
  • Bei einer Weiterbildung ist eine Eintrittsöffnung vorgesehen, durch die ein Schmiermittel in den Pumpraum eintreten kann, wobei die Eintrittsöffnung bevorzugt vom Motorraum mit Schmiermittel gespeist wird. Insbesondere kann die Eintrittsöffnung vom Lager beabstandet sein und/oder exzentrisch zu einer Rotorwelle angeordnet sein. An der Eintrittsöffnung kann beispielsweise eine Verengung, insbesondere eine Düse, vorgesehen sein. So kann einerseits die Durchflussmenge an Schmiermittel konstruktiv relativ präzise eingestellt werden. Andererseits kann hierdurch eine gute, insbesondere spritzende, Verteilung des Schmiermittels im Pumpraum erreicht werden. Eine Eintrittsöffnung kann bevorzugt als Düse ausgebildet sein.
  • Generell können z.B. eine oder mehrere Eintrittsöffnungen vorgesehen sein. Zum Beispiel kann eine erste Eintrittsöffnung vorgesehen sein, die gegen den Pumpkörper, insbesondere gegen einen Rotorkörper, mündet. Zum Beispiel kann eine erste Eintrittsöffnung derart angeordnet sein, dass sie gegen eine Stirnfläche des Pumpkörpers, insbesondere Rotorkörpers, mündet. Eine erste Eintrittsöffnung kann beispielsweise im Betrieb zeitweise in eine Führung und/oder eine Ausnehmung für einen Schieber, insbesondere einer als Drehschiebervakuumpumpe ausgebildeten Vakuumpumpe, münden. Alternativ oder zusätzlich kann eine, insbesondere zweite, Eintrittsöffnung vorgesehen sein, die in einen Hohlraum des Pumpraums und/oder in ein, insbesondere abgeschlossenes, Fördervolumen mündet. Eine, insbesondere zweite, Eintrittsöffnung kann bevorzugt am Außenumfang eines Rotors oder Rotorkörpers des Pumpkörpers münden. Insoweit hier eine erste und eine zweite Eintrittsöffnung genannt sind, versteht es sich, dass dies lediglich der einfachen Bezugnahme dient und folglich eine "zweite" Eintrittsöffnung keine "erste" Eintrittsöffnung voraussetzt.
  • Eine Schmierung für ein Lager und/oder für den Pumpraum über wenigstens eine Eintrittsöffnung, z.B. wie vorstehend beschrieben, kann beispielsweise einerseits auf einer dem Motor zugewandten Seite des Pumpraums und/oder auf einer dem Motor abgewandten Seite des Pumpraums vorgesehen sein. Auf der dem Motor abgewandten Seite des Pumpraums kann das Schmiermittel bevorzugt nicht durch den Motorraum, aber bevorzugt durch einen mit einem Lager verbundenen Raum, geführt sein, der insbesondere wenigstens eine Eintrittsöffnung in den Pumpraum und/oder das Lager mit Schmiermittel versorgt.
  • Bei einer weiteren Ausführungsform ist ein Kanal vorgesehen, welcher den Pumpraum und/oder die Eintrittsöffnung mit dem Motorraum verbindet. Der Kanal und/oder die Eintrittsöffnung kann zum Beispiel durch eine oder mehrere Bohrungen definiert sein.
  • Generell können beispielsweise ein oder mehrere Wege für das Schmiermittel von dem Motorraum in den Pumpraum führen. Bei einigen Ausführungsformen ist vorgesehen, dass vom Motorraum ein erster Weg für das Schmiermittel in den Pumpraum durch ein Lager verläuft und dass ein zweiter Weg für das Schmiermittel vom Motorraum in den Pumpraum, insbesondere durch wenigstens eine Eintrittsöffnung, vorgesehen ist. Dabei kann der zweite Weg bevorzugt einen geringeren Strömungswiderstand als der erste Weg aufweisen. Der zweite Weg kann insbesondere eine oder mehrere Eintrittsöffnungen aufweisen.
  • Die Vakuumpumpe ist gemäß der Erfindung derart ausgebildet, dass zu Beginn eines Pumpvorgangs zunächst zumindest im Wesentlichen die gesamte Luft aus dem Motorraum entfernt wird. Anstelle von Luft kann auch ein anderes Gas im Motorraum vorhanden sein und entsprechend entfernt werden. Beim Entfernen der Luft wird der Motorraum mit Schmiermittel gefüllt. Insbesondere kann die gesamte Luft über den Pumpraum aus dem Motorraum gesaugt werden, insbesondere über einen Weg, über welchen nach Entfernen der Luft das Schmiermittel in den Pumpraum geführt wird. Durch das Entfernen der Luft wird ein sogenanntes virtuelles Leck vermieden. Ein virtuelles Leck bezeichnet eine im Pumpsystem vorhandene Luftmenge, die während des Betriebs, insbesondere nahe dem Enddruck, in den Förderweg des Prozessgases gelangen kann und somit die Vakuumqualität zumindest kurzzeitig verschlechtert. Anders als bei einem "normalen" Leck dringt dabei keine Luft aus der Umgebung ein.
  • Ein Kanal zwischen Motorraum und Pumpraum kann beispielsweise ein dem Motorraum zugeordnetes und/oder oberes Ende aufweisen, welches an einer höchsten Stelle des Motorraums angeordnet ist. Dies stellt eine einfache Möglichkeit dar, ein virtuelles Leck zu vermeiden. Da Luft leichter ist als das flüssige Schmiermittel, ist somit sichergestellt, dass zunächst die im Motorraum vorhandene Luft aus diesem über den Kanal abgeführt wird. Insbesondere gelangt dabei die Luft in den Pumpraum und wird durch den Pumpkörper zum Auslass der Vakuumpumpe gefördert. Allgemein bevorzugt kann ein dem Motorraum zugeordnetes Ende des Kanals oberhalb einer Rotorwelle und/oder oberhalb eines Lagers angeordnet sein. Eine Eintrittsöffnung in den Pumpraum kann bevorzugt unterhalb des dem Motor zugeordneten Endes des Kanals angeordnet sein, insbesondere auf Höhe einer Rotorwelle und/oder eines Lagers. Allgemein bevorzugt kann das Schmiermittel durch den Motorraum hoch zum dem Motorraum zugeordneten Ende des Kanals und durch den Kanal herunter zur Eintrittsöffnung in den Pumpraum geführt sein. Das Ende des Kanals kann beispielsweise durch eine Bohrung definiert sein, welche insbesondere quer zu einem nächsten Kanalabschnitt und/oder parallel zu einer Rotorachse verläuft.
  • Der Kanal und/oder die wenigstens eine Eintrittsöffnung kann bevorzugt in einem Bauteil definiert sein, welches ein Lagerelement trägt, ein Lagerschild ist, den Pumpraum, insbesondere axial, begrenzt, ein Gehäusebauteil ist und/oder ein Strukturbauteil ist.
  • Bei einer weiteren Ausführungsform ist vorgesehen, dass zwischen dem Motor oder dem Motorraum und einem für den Pumpkörper vorgesehenen Lager keine Abdichtung vorgesehen ist. Motor bzw. Motorraum und Lager können bevorzugt unmittelbar benachbart angeordnet sein. Im Stand der Technik ist z.B. ein Radialwellendichtring zwischen Motor und Lager vorgesehen. Insbesondere kann bei der erfindungsgemäßen Vakuumpumpe gemäß einem bevorzugten Beispiel kein Radialwellendichtring zwischen Motor oder Motorraum und Lager und/oder überhaupt kein Radialwellendichtring vorgesehen sein.
  • Gemäß einem weiteren Beispiel kann die Vakuumpumpe dazu ausgebildet sein, das Schmiermittel durch Unterdruck im Pumpraum relativ zu einem in einer Bereitstellungseinrichtung und/oder dem Motorraum herrschenden Druck zu fördern, insbesondere durch den Motorraum. Im Motorraum bzw. in der Bereitstellungseinrichtung herrscht bevorzugt zumindest im Wesentlichen atmosphärischer Druck. Ein Zugang des Schmiermittels zum Pumpraum, zum Beispiel durch wenigstens eine Eintrittsöffnung und/oder durch ein Lager, ist bevorzugt so klein dimensioniert, dass der Druck des Motorraums bzw. der Bereitstellungseinrichtung nicht unmittelbar an den Pumpraum kommuniziert wird, sondern dass lediglich eine vorteilhafte Menge an Schmiermittel in den Pumpraum gelangt.
  • Die Vakuumpumpe kann mit Vorteil dazu ausgebildet sein, einen Schmiermittelvorrat wenigstens zweimal und/oder höchstens siebenmal pro Minute umzuwälzen. Dabei verläuft vorzugsweise nur ein Teil, insbesondere etwa die Hälfte, des Schmiermittelstroms durch den Motorraum. Insbesondere kann ein anderer, insbesondere restlicher, Teil des Schmiermittelstroms dem Pumpraum auf einer dem Motor gegenüberliegenden Seite des Pumpraums zugeführt werden. Allgemein kann auf einer dem Motor gegenüberliegenden Seite des Pumpraums Schmiermittel dem Pumpraum beispielsweise ebenfalls durch ein Lager und/oder durch wenigstens eine Eintrittsöffnung zugeführt werden, die bevorzugt entsprechend dem motorseitigen Lager bzw. den motorseitigen Eintrittsöffnungen ausgebildet sein können.
  • Bei einigen Ausführungsformen ist vorgesehen, dass der Motor einen Direktantrieb für den Pumpkörper bildet. Dabei kann bevorzugt ein Rotor des Motors auf einer Rotorwelle der Vakuumpumpe, welche insbesondere mit dem Pumpkörper fest oder einteilig verbunden ist, angeordnet sein. Allgemein bevorzugt kann der Motor als integrierter Motor ausgebildet sein.
  • Ein Rotor des Motors kann beispielsweise wenigstens einen Permanentmagneten aufweisen. Ein Permanentmagnetrotor erfordert wenig Bauraum. Der Motorraum kann hierdurch relativ klein ausgebildet werden und allgemein ist die Vakuumpumpe hierdurch kompakt.
  • Die Vakuumpumpe kann allgemein bevorzugt als Rotationsverdrängervakuumpumpe, insbesondere als Drehschiebervakuumpumpe, ausgebildet sein. Allgemein bevorzugt kann die Vakuumpumpe einstufig oder zweistufig ausgebildet sein.
  • Die Aufgabe der Erfindung wird außerdem durch ein Verfahren zum Schmieren einer Vakuumpumpe mit den im hierauf gerichteten, unabhängigen Anspruch genannten Merkmalen gelöst. Es versteht sich, dass das erfindungsgemäße Verfahren durch die hier beschriebenen Merkmale und Ausführungsformen der erfindungsgemäßen Vakuumpumpe vorteilhaft weitergebildet werden kann.
  • Die Erfindung wird nachfolgend lediglich beispielhaft anhand der schematischen Zeichnung erläutert.
  • Die Fig. 1 bis 9 zeigen eine Ausführungsform einer erfindungsgemäßen Vakuumpumpe 10 in verschiedenen Ansichten. Dabei zeigen die Fig. 1 und 2 Seitenansichten und die Fig. 3 bis 9 Schnittansichten mit Schnittebenen, die in den Fig. 1, 2 und 3 angedeutet sind. Fig. 10 zeigt ein stark vereinfachtes Schema eines Schmiermittelversorgungsystems der Vakuumpumpe 10.
  • Fig. 1 zeigt die Vakuumpumpe 10 in einer Seitenansicht. Die Vakuumpumpe 10 ist als Drehschiebervakuumpumpe ausgebildet. In Fig. 1 sind insbesondere ein Einlass 12, ein Pumpengehäuse 14 und ein Nebengehäuse 16 sichtbar. Das Pumpengehäuse 14 umfasst die pumpaktiven Komponenten der Vakuumpumpe 10. Das Nebengehäuse 16 umfasst unter anderem einen Abscheider 18 für ein Schmiermittel der Vakuumpumpe 10 und einen Schmiermittelvorratsraum 20, die z.B. in Fig. 3 sichtbar sind.
  • In Fig. 2 ist die Vakuumpumpe 10 in einer Ansicht von oben dargestellt. Das Pumpengehäuse 14 umfasst mehrere Gehäusebauteile, in dieser Ausführungsform drei Gehäusebauteile 22, 24 und 26.
  • Das Gehäusebauteil 22 verschließt einen Pumpraum 28, der z.B. in Fig. 3 sichtbar ist, in axialer Richtung und trägt ein Lagerelement 30 für eine Rotorwelle 32, siehe z.B. Fig. 4. Das Gehäusebauteil 18 kann auch als Pumpendeckel oder Lagerschild bezeichnet werden.
  • Das Gehäusebauteil 24 definiert den Pumpraum 28 und einen Einlass 12 sowie einen Auslass 34 der Vakuumpumpe 10, der z.B. in Fig. 3 sichtbar ist. Das Gehäusebauteil 24 kann auch als Pumpraumkörper bezeichnet werden.
  • Das Gehäusebauteil 26 bildet ein Gehäuse für einen Motor 36 der Vakuumpumpe 10, der z.B. in Fig. 4 sichtbar ist, und definiert einen Motorraum 38, in dem der Motor 36 angeordnet ist. Das Gehäusebauteil 26 kann auch als Motorgehäuse bezeichnet werden.
  • Die Fig. 3 zeigt die Vakuumpumpe 10 in einer Schnittansicht, wobei die Schnittebene in Fig. 2 als Linie A-A angedeutet ist. Die Schnittebene verläuft senkrecht zur Rotationsachse der Rotorwelle 32. Es ist ein Rotorkörper 40 sichtbar, der Teil der Rotorwelle 32 ist. Der Rotorkörper 40 ist im Wesentlichen kreiszylindrisch ausgebildet und exzentrisch in dem ebenfalls kreiszylindrischen Pumpraum 28 angeordnet.
  • An dem Rotorkörper 40 sind mehrere Drehschieber 42 angeordnet, die in entsprechenden Ausnehmungen 44 verschieblich gelagert sind. In der vorliegenden Ausführung sind die Schieber 42 nicht vorgespannt (keine Federn), sondern werden bei Drehung des Rotors lediglich durch Fliehkräfte an eine Innenwand 46 des Pumpraums 28 gedrückt. Alternative Ausführungen mit federnden Elementen sind möglich. So kann ein jeweiliger Schieber 42 beispielsweise auch gegen die Innenwand 46 des Pumpraums 28 vorgespannt sein.
  • In Umfangsrichtung zwischen zwei Drehschiebern 42 werden bei Drehung der Rotorwelle 32 bzw. des Pumpkörpers 40 wiederholt abgeschlossene Fördervolumen vom Einlass 12 zum Auslass 34 gefördert.
  • Vom Auslass 34 wird das ausgestoßene Prozessgas bzw. das zu fördernde Gas in das Nebengehäuse 16 geführt. Dort gelangt flüssiges Schmiermittel zurück in den Schmiermittelvorratsraum 20. Schmiermittel, welches als Dampf im Prozessgas enthalten ist, wird zusammen mit dem Prozessgas durch den Abscheider 18 geführt, wodurch das Schmiermittel abgeschieden wird und in einen Schmiermittelauffangraum 49 tropft. Dieser Vorgang wird unten anhand der Fig. 8 und 9 noch näher beschrieben.
  • Vom Schmiermittelvorratsraum 20 wird das Schmiermittel zurück in den unter Unterdruck stehenden Pumpraum 28 gesaugt. Dabei gelangt das Schmiermittel vom Schmiermittelvorratsraum 20 zunächst in einen Kanalabschnitt 48, der im Gehäusebauteil 24 ausgebildet ist, und wird von dort durch weitere Kanäle zurück in den Pumpraum 28 geführt. Eine Eintrittsöffnung 50 für das Schmiermittel, die mit dem Kanalabschnitt 48 verbunden ist, ist in Fig. 3 sichtbar. Die genannten, weiteren Kanäle sind in Fig. 3 nicht sichtbar. Die Kanäle und das gesamte Schmiermittelversorgungssystem der Vakuumpumpe 10 werden unten noch im Detail erläutert.
  • Die Fig. 4 zeigt die Vakuumpumpe 10 in einer weiteren Schnittansicht. Die Schnittebene ist in Fig. 1 als Linie B-B angedeutet. Sie verläuft durch eine Rotationsachse der Rotorwelle 32.
  • Der Motor 36 der Vakuumpumpe 10 umfasst einen Stator 52, der bevorzugt mehrere Wicklungen aufweist, und einen Rotor 54, der bevorzugt eine Mehrzahl an Permanentmagneten aufweist. Zwischen dem Stator 52 und dem Rotor 54 befindet sich ein Spalt 56. Der Rotor 54 des Motors 36 ist mit der Rotorwelle 32 fest verbunden, sodass eine elektromagnetische Kraft die vom Stator 52 auf den Rotor 54 ausgeübt wird, direkt auf die Rotorwelle 32 übertragen wird.
  • Der Rotor 54 des Motors 36 rotiert im Betrieb in einem Motorraum 38. Erfindungsgemäß ist der Motorraum 38 in Betrieb der Vakuumpumpe 10 zumindest teilweise mit Schmiermittel gefüllt. Insbesondere rotiert der Rotor 54 im Schmiermittel und der Spalt 56 ist mit Schmiermittel gefüllt.
  • Auf der dem Motor 36 zugewandten Seite des Pumpraums 28 ist die Rotorwelle 32 durch ein Lagerelement 58 gelagert, welches als Gleitlager ausgebildet ist. Auf der dem Motor 36 abgewandten Seite des Pumpraums 28 ist die Rotorwelle 32 durch das Lagerelement 30 gelagert, welches ebenfalls als Gleitlager ausgebildet ist.
  • Wie es in Fig. 4 ersichtlich ist, ist das Lagerelement 58 unmittelbar benachbart zum Rotor 54 des Motors 36 angeordnet und grenzt mit einem axialen Ende an den Motorraum 38 an. Dieses axiale Ende ist also dem Schmiermittel im Motorraum 38 ausgesetzt. Durch den im Pumpraum 28 vorhandenen Unterdruck wird Schmiermittel vom Motorraum 38 durch das Lagerelement 58 hindurch in den Pumpraum 28 gesaugt. Somit wird insbesondere eine kontinuierliche Schmierung des Lagerelements 58 aber auch des Pumpraums 28, insbesondere des Rotorkörpers 40, gewährleistet.
  • In Fig. 4 ist ein Ende des Kanalabschnitts 48 sichtbar, welcher in seiner ganzen Länge in Fig. 3 sichtbar ist. Der Kanalabschnitt 48 ist mit einem weiteren Kanalabschnitt 60 verbunden, der einen durch den Kanalabschnitt 48 ankommenden Schmiermittelstrom aufteilt. Ein Teil des Schmiermittelstroms, insbesondere etwa die Hälfte, gelangt durch den Kanalabschnitt 60, in Fig. 4 nach rechts, in den Motorraum 38. Der übrige Teil des Schmiermittelstroms gelangt, in Fig. 4 nach links, zu einer dem Motor 36 abgewandten Seite des Pumpraums 28. Dort ist das Schmiermittel durch einen weiteren Kanalabschnitt 62 in einen Raum 64 geführt, von wo aus es, ähnlich wie es mit Bezug auf das Lagerelement 58 beschrieben wurde, durch das Lagerelement 30 hindurch in den Pumpraum 28 gesaugt wird.
  • Die Fig. 5 zeigt eine weitere Schnittansicht der Vakuumpumpe 10, hier mit Schnittebene entlang der Linie C-C der Fig. 1. Auch diese Schnittebene verläuft durch die Rotationsachse der Rotorwelle 32.
  • In Fig. 5 ist ein Kanalabschnitt 66 sichtbar, der über einen noch näher zu erläuternden Weg mit dem Motorraum 38 verbunden ist. Mit dem Kanalabschnitt 66 sind eine erste Eintrittsöffnung 68 und eine zweite Eintrittsöffnung 70 verbunden, durch die das Schmiermittel von dem Kanalabschnitt 66 in den Pumpraum 28 hinein und zu dem Rotorkörper 40 bzw. den Drehschiebern 42 gelangt.
  • Der Kanalabschnitt 66 ist durch eine Bohrung im Gehäusebauteil 24 gebildet, die hierdurch eine Schraube 72 verschlossen und abgedichtet ist. Die Eintrittsöffnungen 68 und 70 sind ebenfalls durch Bohrungen gebildet. Diese verlaufen quer zum Kanalabschnitt 66.
  • Insbesondere ist der Kanalabschnitt 66 in einer Wand 73 des Gehäusebauteils 24 ausgebildet, welche den Pumpraum 28 axial begrenzt und welche das Lagerelement 58 und die Rotorwelle 32 trägt. Die Wand 73 ist hier einteilig mit dem Gehäusebauteil 24 bzw. mit einem den Pumpraum 28 in radialer Richtung begrenzenden Abschnitt des Gehäusebauteils 24 ausgebildet. Es wäre beispielsweise auch eine separate Ausführung, also ein separates motorseitiges Lagerschild möglich.
  • Die erste Eintrittsöffnung 68 ist derart angeordnet, dass sie gegen eine Stirnfläche des Rotorkörpers 40 mündet. Sie versorgt so den Bereich zwischen der Stirnfläche des Rotorkörpers 40 und einer gegenüberliegenden Innenwand des Gehäusebauteils 24 bzw. des Pumpraums 28 mit Schmiermittel. Somit ist einerseits eine gute Schmierung gewährleistet. Andererseits bildet das Schmiermittel einen dünnen Schmierfilm zwischen der Stirnfläche und der gegenüberliegenden Innenwand, welcher eine Abdichtung gegen eine Leckage des Prozessgases bildet. Ähnlich wirkt ein Schmierfilm im Lagerelement 58.
  • Bei Rotation des Rotorkörpers 40 im Betrieb ist außerdem eine Ausnehmung 44 des Rotorkörpers 40 bzw. ein Schieber 42 wiederholt gegenüberliegend der ersten Eintrittsöffnung 68 angeordnet. Die erste Eintrittsöffnung 68 mündet somit in diesem Betriebszustand in die Ausnehmung 44, welche eine Führung für den Drehschieber 42 bildet. Somit wird die Führung bzw. die Ausnehmung ebenfalls vorteilhaft kontinuierlich mit Schmiermittel versorgt.
  • Eine zweite Eintrittsöffnung 70 ist auf radialer Höhe des Umfangs des Rotorkörpers 40 angeordnet und mündet in einen Hohlraum des Pumpraums 28. Die zweite Eintrittsöffnung 70 dient insbesondere der Schmierung des Reibkontakts zwischen den Drehschiebern 42 und der Innenwand 46 des Pumpraums 28. Die zweite Eintrittsöffnung 70 ist bevorzugt so dimensioniert, dass das Schmiermittel durch sie spritzend im Pumpraum 28 und über die Drehschieber 42 verteilt wird. So kann eine Schmierung im Wesentlichen über die gesamte axiale Länge des jeweiligen Drehschiebers 42 gewährleistet werden.
  • Im Gehäusebauteil 22 ist ein Kanalabschnitt 74 vorgesehen, der eine ähnliche Funktion wie der Kanalabschnitt 66 aufweist. Mit dem Kanalabschnitt 74 sind eine erste Eintrittsöffnung 76 und die zweite Eintrittsöffnung 50, die in Fig. 3 sichtbar ist, verbunden, die entsprechend den Eintrittsöffnungen 68 und 70 angeordnet sind und wirken.
  • Der Kanalabschnitt 74 ist durch eine Bohrung in dem Gehäusebauteil 22 gebildet, die durch eine Schraube 78 verschlossen und abgedichtet ist. Die Eintrittsöffnungen 50 und 76 sind ebenfalls durch Bohrungen gebildet, die hier quer zum Kanalabschnitt 74 bzw. dessen Bohrung verlaufen.
  • Der Kanalabschnitt 74 ist mit dem Raum 64 verbunden. In Fig. 5 ist ein Ende des Kanalabschnitts 62 sichtbar, wie es in den Raum 64 mündet. In dem Raum 64 befindliches Schmiermittel wird über den Kanalabschnitt 74 und die Eintrittsöffnungen 50, 76 in den Pumpraum 28 geführt. Dabei wird der Raum 64 vom Schmiermittelvorratsbehälter 20 über den Kanalabschnitt 62 mit Schmiermittel versorgt.
  • In Fig. 6 ist eine weitere Schnittansicht der Vakuumpumpe 10 gezeigt, wobei die Schnittebene entlang der in Fig. 2 angedeuteten Linie D-D verläuft. Die Schnittebene verläuft zudem senkrecht zur Rotationsachse der Rotorwelle 32 und im axialen Bereich des Kanalabschnitts 66, sodass dieser im Längsschnitt sichtbar ist. Außerdem sind die vom Kanalabschnitt 66 abgehenden Bohrungen der Eintrittsöffnungen 68 und 70 sowie die Schraube 72 sichtbar.
  • Es ist außerdem ein weiterer Kanalabschnitt 80 sichtbar, der hier ebenfalls als Bohrung ausgebildet und durch eine Schraube 82 verschlossen ist. Der Kanalabschnitt 80 ist mit dem Kanalabschnitt 66 verbunden und verbindet diesen mit dem Motorraum 38. Der Kanalabschnitt 80 ist dazu mit dem Motorraum 38 über einen weiteren Kanalabschnitt 84 verbunden.
  • Wie es in Fig. 6 ersichtlich ist, ist das dem Motorraum 38 zugeordnete Ende des Kanalabschnitts 80 bzw. des Kanalabschnitts 84 relativ weit oben angeordnet. Konkret ist der Kanalabschnitt 84 insbesondere mit seinem dem Motorraum 38 zugeordneten Ende an einer höchsten Stelle des Motorraums 38 angeordnet. Dies ist in Fig. 7 veranschaulicht, die eine Schnittansicht mit Schnittebene gemäß Linie E-E in Fig. 1 zeigt.
  • Aufbau und Funktion des Nebengehäuse 16 und der darin realisierten Schmiermittelrückführung werden nun anhand der Fig. 8 und 9 beschrieben. Dabei zeigt Fig. 8 eine Schnittansicht der Vakuumpumpe 10 entlang der Schnittebene F-F, welche in Fig. 2 angedeutet ist. Fig. 9 zeigt eine Schnittansicht entlang der Schnittebene G-G, welche in Fig. 3 angedeutet ist.
  • In Fig. 9 ist ein Weg des Prozessgases vom Auslass 34 durch das Nebengehäuse 16 zum Abscheider 18 durch einen Pfeil 86 angedeutet. Vom Auslass 34 gelangt das Prozessgas zunächst in den Schmiermittelvorratsraum 20. Durch den Auslass 34 austretendes, flüssiges Schmiermittel sammelt sich dabei direkt im Schmiermittelvorratsraum 20. Der Schmiermittelvorratsraum 20 ist über den Kanalabschnitt 48 mit dem Motorraum 38 und dem Raum 64 verbunden. In Fig. 9 ist ein Kanalabschnitt 88 sichtbar, der zum Kanalabschnitt 48 führt und beispielsweise auch in Fig. 3 sichtbar ist.
  • Das Prozessgas ist anschließend in den Abscheider 18 geführt. Der Abscheider 18 ist hier als eine Filterkartusche ausgebildet, die insbesondere austauschbar ist. Der, insbesondere warme, Schmiermittelnebel steigt mit dem Prozessgas nach oben ins Innere des Abscheiders 18 und kondensiert dort zu Tropfen 90, die den Abscheider 18 durchdringen. Diese tropfen in den Schmiermittelauffangraum 49, der insbesondere nicht mit dem Schmiermittelvorratsraum 20 verbunden ist und eine eigenständige Rückführung bildet.
  • Im Schmiermittelauffangraum 49 ist ein Schwimmer 92 eines Schwimmerventils 94 angeordnet. Das Schwimmerventil 94 ist über einen Kanalabschnitt 96 mit dem Pumpraum 28 verbunden. Insbesondere mündet der Kanalabschnitt 96 in einen Einlassbereich des Pumpraums 28. Bei Erreichen einer bestimmten Menge an Schmiermittel im Schmiermittelauffangraum 49 wird über den Schwimmer 92 das Schwimmerventil 94 geöffnet und das Schmiermittel wird durch den Kanalabschnitt 96 zurück in den Pumpraum 28 geführt und damit dem Schmiermittelkreislauf wieder zugeführt.
  • Grundsätzlich könnten beispielsweise der Kanalabschnitt 88 und der Kanalabschnitt 48 auch in einer Ebene liegen. Außerdem kann die Pumpe grundsätzlich auch weitere Kanalabschnitte, z.B. für ähnliche oder andere Zwecke, umfassen, die beispielsweise in wenigstens einem der Gehäusebauteile 22, 24, 26 ausgebildet sind. Insbesondere weist die den Zeichnungen zugrundeliegende Pumpe 10 weitere Kanalabschnitte auf, die in den Figuren der Übersichtlichkeit halber ausgeblendet sind.
  • Das Schmiermittelversorgungssystem der Vakuumpumpe 10 wurde in seinen Einzelteilen bereits erläutert. Einen Überblick über den Schmiermittelkreislauf, der durch den Schmiermittelvorratsraum 20 verläuft, bietet das vereinfachte Schema der Fig. 10, anhand derer der Weg des Schmiermittels durch die Pumpe nachfolgend zusammenhängend dargelegt wird. Die in Fig. 10 verwendeten Bezugszeichen entsprechen den Merkmalen, wie sie in den Fig. 1 bis 9 verwendet wurden.
  • Ein Schmiermittelstrom und ein Umwälzen des Schmiermittels wird durch einen konstant erzeugten Unterdruck im Pumpraum 28 und somit durch die pumpaktiven Komponenten der Vakuumpumpe 10 angetrieben. Der Einsatz einer separaten Schmiermittelpumpe ist ebenfalls möglich.
  • Ausgehend vom Schmiermittelvorratsraum 20 ist das Schmiermittel durch einen Kanalabschnitt 48 in einen Kanalabschnitt 60 geführt, in dem sich der Schmiermittelstrom aufteilt. Ein Teil, insbesondere die Hälfte, des Schmiermittelstroms ist in den Motorraum 38 geführt, in dem der Rotor 54 des Motors 36 rotiert. Der übrige Teil des Schmiermittelstroms ist in den Raum 64 geführt, der an das Gleitlager 30 der dem Motor 36 abgewandten Seite des Pumpraums 28 angrenzt.
  • Der Motorraum 38 ist also im Betrieb der Vakuumpumpe 10 mit Schmiermittel gefüllt. Vom Motorraum 38 wird das Schmiermittel einerseits durch das Lagerelement 58 hindurch in den Pumpraum 28 geführt. Andererseits wird das Schmiermittel über Kanalabschnitte 84, 80, 66 und in den Pumpraum 28 mündende Eintrittsöffnungen 68 und 70 in den Pumpraum 28 geführt.
  • Wie in Fig. 10 angedeutet, ist ein dem Motorraum 38 zugeordnetes Ende des Kanals 84, 80, 66 an einer höchsten Stelle des Motorraums 38 angeordnet. Hierdurch wird ein virtuelles Leck vermieden. Ausgehend von diesem Ende bzw. dem Kanalabschnitt 84 führt der Kanalabschnitt 80 herunter zum Kanalabschnitt 66 bzw. zu den Eintrittsöffnungen 68, 70.
  • Vor dem Start der Vakuumpumpe 10 ist der Motorraum 38 insbesondere nicht oder zumindest nicht vollständig mit Schmiermittel gefüllt. Durch Starten der Vakuumpumpe 10, nämlich durch den Beginn einer Rotation der Rotorwelle 32, wird nach und nach ein Unterdruck im Pumpraum 28 erzeugt. Durch diesen Unterdruck wird das Schmiermittel ausgehend vom Schmiermittelvorratsraum 20 durch den Motorraum 38 hindurch in den Pumpraum 28 gesaugt. Durch Starten der Vakuumpumpe 10 wird also die Luft aus dem Motorraum 38 herausgesaugt und der Motorraum 38 beginnt, sich mit Schmiermittel zu füllen, bis dieses den Motorraum 38 vollständig füllt. Es versteht sich, dass die Strömungswiderstände in dem Kanal 84, 80, 66 einerseits und dem Gleitlager 58 andererseits entsprechend dimensioniert sein müssen. Insbesondere ist der Strömungswiderstand im Gleitlager 58 deutlich größer als derjenige des Kanals 84, 80, 66.
  • Auf der dem Motor 36 bzw. dem Motorraum 38 abgewandten Seite des Pumpraums 28 ist das Schmiermittel ausgehend vom Raum 64 durch das Lagerelement 30 einerseits und durch den Kanal 74 mit seinen Eintrittsöffnungen 50 und 76 andererseits in den Pumpraum 28 geführt. Auch hier bewirkt ein Unterdruck im Pumpraum 28 ein Fördern des Schmiermittels durch Ansaugen.
  • Die hier beschriebene Vakuumpumpe 10, welche insbesondere einen integrierten Motor 36 aufweist, verzichtet auf einen Radialwellendichtring, insbesondere zwischen Motorraum 38 und Pumpraum 28 bzw. Lagerelement 58. Der Kanal zur Führung des Schmiermittels, insbesondere Öl, führt zunächst in den Pumpraumkörper bzw. das Gehäusebauteil 24 und verzweigt von dort direkt in den unteren Bereich des Motorraums 38 und in Richtung des gegenüberliegenden Pumpendeckels bzw. Lagerschilds 22. Im oberen Bereich des Motorraumes 38 befindet sich ein dem Motorraum 38 zugeordnetes Ende eines Kanals 84, 80, 66, der zum Pumpraum 28 führt. Über dieses Ende wird der Motor 36 bzw. der Motorraum 38 bei Drehung der Rotorwelle 32 der Pumpe 10 evakuiert und so Schmiermittel in den Motorraum 38 gesaugt. Das Schmiermittel steigt nach dem Start der Pumpe 10 im Motorraum 38 bis zur Welle 32 und dem Gleitlager 58, wodurch dieses mit Schmiermittel von der Motorseite versorgt wird. Das Schmiermittel steigt weiter bis zur oberen Bohrung bzw. dem Kanalabschnitt 84 und gelangt von dort über Kanalabschnitte 80, 66 bzw. deren Bohrungen und zwei Eintrittsöffnungen 68, 70, insbesondere Düsen, in den Pumpraum 28, um dort den Rotorkörper 40 und die Schieber 42 zu schmieren. Auf der Gegenseite gelangt das Schmiermittel aus der Verteilerbohrung, nämlich dem Kanalabschnitt 66, ebenfalls aufgrund des sich einstellenden Drucks über eine Steigleitung, nämlich den Kanalabschnitt 62, zu einem dem Lagerelement 30, welches insbesondere als Gleitlager ausgebildet ist, vorgelagerten Raum 64. Von diesem Raum 64 führt eine ähnliche Bohrung, nämlich der Kanalabschnitt 74 mit zwei Eintrittsöffnungen 50, 76, insbesondere Düsen, wie auf der Motorseite zum Pumpraum 28. Durch diese Bohrung 74 wird der nötige Unterdruck im Gleitlagerraum 64 erzeugt, um das Schmiermittel anzusaugen und schließlich, nachdem es das Lagerelement 30 passiert hat, in den Pumpraum 28 zu gelangen. Von dort wird das Schmiermittel durch die Rotor- und Schieberbewegung über den Auslass 34, nämlich einen Auspuffkanal, zusammen mit dem abgepumpten Prozessgas über einen im Nebengehäuse 16, welches einen Schmiermitteltank bildet, befindlichen Filter 18 zurückgefördert. Die Größe der Kanäle, Bohrungen und Eintrittsöffnungen bzw. Düsen wird in Abhängigkeit von der Größe des Pumpraumes bevorzugt so ausgelegt, dass das im Schmiermittelvorrat befindliche Schmiermittel bei entsprechender Drehzahl und betriebswarmer Pumpe mindestens 2x und/oder nicht mehr als 7x pro Minute umgewälzt wird.
  • Der Motor 36 ist, wie schon angedeutet, als Permanentmagnetmotor ausgebildet und weist hierdurch einen relativ kleinen nötigen Bauraum für eine gewünschte Leistung auf. Entsprechend klein lässt sich der Motorraum 38 ausführen. Dies hat den Vorteil, dass das Füllen des Motorraums 38 mit Schmiermittel nach dem Start der Pumpe 10 nur eine relativ kurze Zeit benötigt. Das heißt, dass eine vollständige Schmierung der zu schmierenden Komponenten besonders früh nach dem Start gewährleistet ist.
  • Der Spalt 56 ist im Betrieb vollständig mit Schmiermittel gefüllt. Die Wicklungen des Stators 52 des Motors 36 sind allgemein bevorzugt durch eine Vergussmasse, insbesondere Epoxidharz, vom Schmiermittel getrennt.
  • In der gezeigten Ausführungsform der Vakuumpumpe wird das Schmiermittel durch Kanalabschnitte 48 und 60, die einen Verteiler für das Schmiermittel bilden, auf beide axialen Seiten des Pumpraums 28 bzw. auf den Raum 64 und den Motorraum 68 aufgeteilt. Die Kanalabschnitte 48 und 60 bzw. der Verteiler sind im Gehäusebauteil 24 angeordnet. Alternativ oder grundsätzlich auch zusätzlich kann das Schmiermittel beispielsweise auch direkt vom Schmiermittelvorratsraum 20 zu den Räumen 38 und 64 und insbesondere nicht durch das Gehäusebauteil 24 bzw. den Pumpraumkörper geführt sein.
  • Bezugszeichenliste
  • 10
    Vakuumpumpe
    12
    Einlass
    14
    Pumpengehäuse
    16
    Nebengehäuse
    18
    Abscheider
    20
    Schmiermittelvorratsraum
    22
    Gehäusebauteil
    24
    Gehäusebauteil
    26
    Gehäusebauteil
    28
    Pumpraum
    30
    Lagerelement
    32
    Rotorwelle
    34
    Auslass
    36
    Motor
    38
    Motorraum
    40
    Rotorkörper
    42
    Drehschieber
    44
    Ausnehmung
    46
    Innenwand
    48
    Kanalabschnitt
    49
    Schmiermittelauffangraum
    50
    Eintrittsöffnung
    52
    Stator des Motors
    54
    Rotor des Motors
    56
    Spalt
    58
    Lagerelement
    60
    Kanalabschnitt
    62
    Kanalabschnitt
    64
    Raum
    66
    Kanalabschnitt
    68
    Eintrittsöffnung
    70
    Eintrittsöffnung
    72
    Schraube
    73
    Wand
    74
    Kanalabschnitt
    76
    Eintrittsöffnung
    78
    Schraube
    80
    Kanalabschnitt
    82
    Schraube
    84
    Kanalabschnitt
    86
    Pfeil/Weg des Prozessgases
    88
    Kanalabschnitt
    90
    Tropfen
    92
    Schwimmer
    94
    Schwimmerventil
    96
    Kanalabschnitt

Claims (14)

  1. Vakuumpumpe (10), insbesondere Drehschiebervakuumpumpe, umfassend:
    einen Pumpraum (28), in dem mittels eines Pumpkörpers (40, 42) ein zu förderndes Gas von einem Einlass (12) zu einem Auslass (34) förderbar ist;
    einen Motor (36) zum Antrieb des Pumpkörpers (40, 42), wobei der Motor (36) in einem Motorraum (38) angeordnet ist; und
    eine Flüssigkeitsschmierung;
    wobei die Flüssigkeitsschmierung derart ausgebildet ist, dass der Motorraum (38) im Betrieb der Vakuumpumpe (10) zumindest teilweise mit Schmiermittel gefüllt ist,
    dadurch gekennzeichnet,
    dass die Vakuumpumpe (10) derart ausgebildet ist, dass zu Beginn eines Pumpvorgangs zunächst zumindest im Wesentlichen die gesamte Luft oder ein anderes Gas aus dem Motorraum (38) entfernt wird, wobei der Motorraum (38) mit Schmiermittel gefüllt wird.
  2. Vakuumpumpe (10) nach Anspruch 1,
    wobei das Schmiermittel ausgehend von einer Bereitstellungseinrichtung (20) durch den Motorraum (38) hindurch zu einem zu schmierenden Element (40, 42, 58) geführt ist.
  3. Vakuumpumpe (10) nach Anspruch 1 oder 2,
    wobei ein Lager (58) für den Pumpkörper (40, 42) vorgesehen ist, welches vom Motorraum (38) mit Schmiermittel gespeist wird.
  4. Vakuumpumpe (10) nach wenigstens einem der vorstehenden Ansprüche, wobei eine Eintrittsöffnung (68, 70) vorgesehen ist, durch die ein Schmiermittel in den Pumpraum (28) eintreten kann, wobei die Eintrittsöffnung (68, 70) vom Motorraum (38) mit Schmiermittel gespeist wird.
  5. Vakuumpumpe (10) nach Anspruch 4,
    wobei ein Kanal (66, 80, 84) vorgesehen ist, welcher die Eintrittsöffnung (68, 70) mit dem Motorraum (38) verbindet.
  6. Vakuumpumpe (10) nach wenigstens einem der vorstehenden Ansprüche, wobei vom Motorraum (38) ein erster Weg für das Schmiermittel in den Pumpraum (28) durch ein Lager (58) verläuft und ein zweiter Weg (66, 80, 84) für das Schmiermittel vom Motorraum (38) in den Pumpraum (28) vorgesehen ist, wobei bevorzugt der zweite Weg einen geringeren Strömungswiderstand als der erste Weg aufweist.
  7. Vakuumpumpe (10) nach wenigstens einem der vorstehenden Ansprüche, wobei ein Kanal (66, 80, 84) zwischen Motorraum (38) und Pumpraum (28) ein dem Motorraum (38) zugeordnetes Ende aufweist, welches an einer höchsten Stelle des Motorraums (38) angeordnet ist.
  8. Vakuumpumpe (10) nach wenigstens einem der vorstehenden Ansprüche, wobei zwischen dem Motor (36) oder dem Motorraum (38) und einem für den Pumpkörper vorgesehenen Lager (58) keine Abdichtung vorgesehen ist.
  9. Vakuumpumpe (10) nach wenigstens einem der vorstehenden Ansprüche, wobei die Vakuumpumpe (10) dazu ausgebildet ist, das Schmiermittel durch Unterdruck im Pumpraum (28) relativ zu einem in einer Bereitstellungseinrichtung (20) und/oder dem Motorraum (38) herrschenden Druck zu fördern.
  10. Vakuumpumpe (10) nach wenigstens einem der vorstehenden Ansprüche, wobei die Vakuumpumpe (10) dazu ausgebildet ist, einen Schmiermittelvorrat wenigstens zweimal und/oder höchstens siebenmal pro Minute umzuwälzen.
  11. Vakuumpumpe (10) nach wenigstens einem der vorstehenden Ansprüche, wobei der Motor (36) einen Direktantrieb für den Pumpkörper (40, 42) bildet.
  12. Vakuumpumpe (10) nach wenigstens einem der vorstehenden Ansprüche, wobei ein Rotor (54) des Motors (36) wenigstens einen Permanentmagneten aufweist.
  13. Vakuumpumpe (10) nach wenigstens einem der vorstehenden Ansprüche, wobei die Vakuumpumpe (10) einstufig oder zweitstufig ausgebildet ist.
  14. Verfahren zum Schmieren einer Vakuumpumpe (10), welche einen Pumpraum (28), in dem mittels eines Pumpkörpers (40, 42) ein zu förderndes Gas von einem Einlass (12) zu einem Auslass (34) förderbar ist, und einen Motor (36) zum Antrieb des Pumpkörpers (40, 42) umfasst, wobei der Motor (36) in einem Motorraum (38) angeordnet ist,
    wobei ein flüssiges Schmiermittel bereitgestellt wird, und
    wobei der Motorraum (38) zumindest teilweise mit Schmiermittel gefüllt wird,
    dadurch gekennzeichnet,
    dass zu Beginn eines Pumpvorgangs zunächst zumindest im Wesentlichen die gesamte Luft oder ein anderes Gas aus dem Motorraum (38) entfernt wird, wobei der Motorraum (38) mit Schmiermittel gefüllt wird.
EP19210279.6A 2019-11-20 2019-11-20 Vakuumpumpe und verfahren zur schmierung einer solchen Active EP3650703B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19210279.6A EP3650703B1 (de) 2019-11-20 2019-11-20 Vakuumpumpe und verfahren zur schmierung einer solchen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19210279.6A EP3650703B1 (de) 2019-11-20 2019-11-20 Vakuumpumpe und verfahren zur schmierung einer solchen

Publications (2)

Publication Number Publication Date
EP3650703A1 EP3650703A1 (de) 2020-05-13
EP3650703B1 true EP3650703B1 (de) 2021-09-22

Family

ID=68621147

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19210279.6A Active EP3650703B1 (de) 2019-11-20 2019-11-20 Vakuumpumpe und verfahren zur schmierung einer solchen

Country Status (1)

Country Link
EP (1) EP3650703B1 (de)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3420190A1 (de) * 1984-05-30 1985-12-05 Arthur Pfeiffer Vakuumtechnik Wetzlar Gmbh, 6334 Asslar Oelgedichtete rotationsvakuumpumpe
KR950007378B1 (ko) * 1990-04-06 1995-07-10 가부시끼 가이샤 히다찌 세이사꾸쇼 진공펌프
US20140363319A1 (en) * 2013-06-07 2014-12-11 Agilent Technologies, Inc Rotary vane vacuum pump
CN106704185B (zh) * 2017-03-29 2019-03-19 王鸿 抽真空装置及真空设备

Also Published As

Publication number Publication date
EP3650703A1 (de) 2020-05-13

Similar Documents

Publication Publication Date Title
DE2529317C2 (de)
EP1899608B1 (de) Vakuum-drehschieberpumpe
DE4212169C2 (de) Dynamisches Sperrsystem für das Schmieröl der Lager eines Zentrifugalkompressors
EP1766239B1 (de) Einflügelvakuumpumpe
EP3161320B1 (de) Seitenkanalpumpe
EP2557315B1 (de) Wälzlager und vakuumpumpe mit wälzlager
EP2743506B1 (de) Gaspumpe mit abdichtender Ölnut
DE2833167C2 (de)
DE3013006A1 (de) Drehkolbenverdichter
EP0156951A2 (de) Zweiwellen-Vakuumpumpe mit Getrieberaum-Evakuierung
DE3319000A1 (de) Drehkolbenpumpe
DE3220314C2 (de) Zahnradpumpe
DE1503507C3 (de) Flügelzellenverdichter
DE2437932C3 (de) Verfahren und Vorrichtung zum Schmieren der umlaufenden Holmlager in Axialgebläsen
DE19802461C2 (de) Kühlmittelverdichter
DE102014208775A1 (de) Gasflügelpumpe und Verfahren zum Betrieb der Gasflügelpumpe
EP3650703B1 (de) Vakuumpumpe und verfahren zur schmierung einer solchen
WO2021185542A1 (de) Flüssigkeitsgekühlten rotor für einen elektromechanischen energiewandler
DE3605452C2 (de)
DE3320086A1 (de) Lager-schmiereinrichtung
DE4008522C2 (de)
DE2857494A1 (de) Druckoelschmierung fuer eine vakuumpumpe
DE2527238C3 (de) Einrichtung zum Ableiten überschüssigen Öles aus demGetriebegehäuse eines Rotationskolbenverdichters
DE102014207070B4 (de) Pumpe
EP0003572B2 (de) Flügelzellenpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200803

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201008

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210611

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019002341

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1432543

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211015

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220122

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220124

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019002341

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211120

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

26N No opposition filed

Effective date: 20220623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20191120

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231124

Year of fee payment: 5

Ref country code: CZ

Payment date: 20231110

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240129

Year of fee payment: 5