EP3636811B1 - Verfahren zum überprüfen eines montagezustands eines spinnrotors einer offenendspinnvorrichtung sowie offenendspinnvorrichtung - Google Patents

Verfahren zum überprüfen eines montagezustands eines spinnrotors einer offenendspinnvorrichtung sowie offenendspinnvorrichtung Download PDF

Info

Publication number
EP3636811B1
EP3636811B1 EP19202310.9A EP19202310A EP3636811B1 EP 3636811 B1 EP3636811 B1 EP 3636811B1 EP 19202310 A EP19202310 A EP 19202310A EP 3636811 B1 EP3636811 B1 EP 3636811B1
Authority
EP
European Patent Office
Prior art keywords
rotor
axial
spinning
bearing
spinning rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19202310.9A
Other languages
English (en)
French (fr)
Other versions
EP3636811A1 (de
EP3636811A9 (de
Inventor
Matthias Lauer
Markus Kübler
Bernd Loos
Constantin RIEGER
Peter Dirnberger
Andreas Josef Pröll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maschinenfabrik Rieter AG
Original Assignee
Maschinenfabrik Rieter AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maschinenfabrik Rieter AG filed Critical Maschinenfabrik Rieter AG
Publication of EP3636811A1 publication Critical patent/EP3636811A1/de
Publication of EP3636811A9 publication Critical patent/EP3636811A9/de
Application granted granted Critical
Publication of EP3636811B1 publication Critical patent/EP3636811B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H4/00Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques
    • D01H4/04Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques imparting twist by contact of fibres with a running surface
    • D01H4/08Rotor spinning, i.e. the running surface being provided by a rotor
    • D01H4/12Rotor bearings; Arrangements for driving or stopping
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H4/00Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques
    • D01H4/42Control of driving or stopping
    • D01H4/44Control of driving or stopping in rotor spinning

Definitions

  • the present invention relates to a method for checking an assembly state of a spinning rotor, which comprises a rotor shaft with a shoulder and a rotor cup detachably connected to the rotor shaft.
  • the spinning rotor is mounted in a magnetic bearing in an open-end spinning device that can be closed at the front with a cover element.
  • the magnetic bearing has means for adjusting an axial position of the rotor shaft, means for detecting the axial position and at least one front axial safety bearing for the shoulder of the rotor shaft.
  • Spinning rotors of today's open-end spinning machines are often stored in magnetic bearings due to the high speeds of well over 100,000 1 / min. These are advantageous compared to purely mechanical bearings at very high speeds, since they have only low friction losses and are hardly susceptible to wear. They can be designed both as passive bearings with permanent magnets and as active bearings with regulated electromagnets. A contactless mounting in the radial and axial direction is only possible with passive mountings, however. If passive magnetic bearings are used in open-end spinning devices, they are generally used for radial bearings. So that the spinning rotor also maintains a predetermined operating position in the axial direction, passive magnetic bearings are provided with an additional position control for the axial position.
  • both the radial position and the axial position of the spinning rotor are permanently recorded and controlled accordingly.
  • Both the position control with passive magnetic bearings and the actively regulated magnetic bearings are dependent on a constant power supply.
  • mechanical safety bearings provided.
  • the present invention is concerned with both types of magnetic bearings.
  • An open-end spinning device with a passive magnetic bearing and a position control for the axial position (central position control) is for example from the DE 10 2006 030 187 A1 known.
  • Magnetic bearings of this type each contain a front and a rear position with magnetic devices, that is to say either permanent magnets, actively controllable electromagnets or a combination of the two. A part of these magnetic devices is fixed on the rotating rotor shaft of the spinning rotor and interacts with stationary magnetic devices which are fixed on the bearing housing of the spinning rotor. The assembly and dismantling of such a spinning rotor is therefore associated with considerable effort. In order to be able to replace the rotor cup quickly, for example when it is worn or when a lot is changed, it is detachably connected to the rotor shaft by means of a coupling device.
  • a spinning rotor with a coupling device is from the EP 2 832 903 B1 known.
  • the coupling device is designed as a plug-in coupling, in which the rotor cup can be plugged into the rotor shaft or can be slipped onto it. With such plug-in couplings, it can happen that the rotor cup is not pushed far enough onto the rotor shaft or is inserted into it, so that the coupling length is too short. The running behavior of the spinning rotor and also the spinning results are impaired by such a faulty assembly.
  • a correct assembly state of the spinning rotor ie the correct axial position of the rotor cup with respect to the rotor shaft, is also essential from a safety point of view, because the rotor cup could become detached from the rotor shaft during operation.
  • the object of the present invention is therefore to propose a method for checking the assembled state of a spinning rotor. Furthermore, a corresponding open-end spinning device is to be proposed.
  • the spinning rotor is mounted in a magnetic bearing in an open-end spinning device that can be closed at the front with a cover element.
  • the spinning rotor has a rotor shaft with a shoulder and a rotor cup detachably connected to the rotor shaft.
  • the magnetic bearing includes means for adjusting an axial position of the rotor shaft, means for detecting the axial position and at least one front safety bearing for the shoulder of the rotor shaft.
  • a first distance is defined between the shoulder of the rotor shaft and the front backup bearing for a regular axial operating position of the spinning rotor.
  • the spinning rotor is moved axially in the direction of the front backup bearing until it reaches an axial stop.
  • a first travel path of the spinning rotor between the regular axial operating position and the axial stop is recorded and compared with the first distance.
  • the spinning rotor is started when the first travel path is equal to the previously defined first distance. The starting of the spinning rotor, however, is prevented if the determined travel path is smaller than the previously defined first distance.
  • a corresponding open-end spinning device which can be closed at the front with a cover element, has a control device which is designed to carry out the method.
  • the invention is based on the idea that the spinning rotor accommodated in its regular axial operating position in the magnetic bearing can only be moved by the full travel path, i.e. the first distance between the shoulder of the rotor shaft and the front backup bearing, against the front backup bearing when it is in a correct assembly state. Since in this case the rotor cup is in its correct axial position with respect to the rotor shaft, the spinning rotor can be moved from its regular axial operating position in the direction of the front axial backup bearing until it strikes it.
  • the axial stop which limits the travel of the spinning rotor, is thus formed in this case by the front axial safety bearing.
  • the travel path of the spinning rotor or of the rotor shaft therefore also corresponds exactly to the previously defined distance between the shoulder of the rotor shaft and the front backup bearing.
  • the spinning rotor is in a faulty state of assembly, d. H. if the rotor cup is not completely pushed onto or inserted into the rotor shaft, the spinning rotor has a greater axial length. If this spinning rotor is now moved in the direction of the front axial backup bearing, the spinning rotor, due to its greater length, strikes the edge of the rotor cup against the cover element of the open-end spinning device before the shoulder of the rotor shaft has reached the front axial backup bearing.
  • the axial stop which limits the travel of the spinning rotor, is in this case not formed by the axial backup bearing, but by the cover element. The travel between the regular operating position and the axial stop is therefore shorter than the first distance between the regular operating position and the front axial backup bearing.
  • the entire method can be carried out in an automated manner with the aid of components which are part of the magnetic bearing or the open-end spinning device anyway. Since no additional components are required, the method and the open-end spinning device can also be implemented in a correspondingly cost-effective manner. It is also particularly advantageous that the method can be carried out completely automatically. In an advantageous manner, the starting of an incorrectly assembled spinning rotor is prevented, which also ensures the safety of the operating personnel.
  • the cover element of the open-end spinning device is first closed and the spinning rotor is moved into its regular axial operating position. Only then is the spinning rotor moved in the direction of the front axial backup bearing until it reaches the axial stop.
  • This means that the magnetic bearing is activated after the open-end spinning device is closed and the spinning rotor is brought into its regular axial operating position. From this it is then moved with the means for adjusting the axial position of the rotor shaft in the direction of the front axial backup bearing until it reaches the axial stop.
  • the spinning rotor is first moved in the direction of the front backup bearing until it reaches the axial stop and only then is the cover element of the open-end spinning device closed and the spinning rotor moved into the regular axial operating position.
  • the magnetic bearing is activated before the open-end spinning device is closed and the spinning rotor is moved as far as the axial stop. Then becomes the open-end spinning device closed with the cover element, the entire spinning rotor is displaced backwards in the axial direction by the cover element.
  • the cover element forms the axial stop
  • the spinning rotor is correctly installed, the front axial retainer bearing forms the axial stop. If, after the open-end spinning device has been closed, the spinning rotor is moved from the axial stop into its regular axial operating position, the assembly state of the spinning rotor can again be deduced from the movement path.
  • the spinning rotor before the spinning rotor is started, the spinning rotor is additionally moved in the direction of a rear axial backup bearing until it strikes the rear axial backup bearing with a rear bearing surface.
  • the magnetic bearing has a rear axial retainer bearing and the rotor shaft has a rear bearing surface for abutment against the rear retainer bearing.
  • Further information regarding the operational readiness of the open-end spinning device can be obtained from the travel path between the rear axial safety bearing and a reference point, for example the regular axial operating position or the front axial safety bearing. For example, it can be deduced from this that there is soiling or damage in the storage.
  • a second distance is preferably defined between the rear bearing surface of the rotor shaft and the rear backup bearing and the spinning rotor is moved between the regular axial operating position and the rear backup bearing.
  • a second travel path of the spinning rotor is recorded. The recorded second travel path is then compared with the second distance between the regular axial operating position and the rear backup bearing. From a deviation of the determined second travel path from the defined second distance, conclusions can be drawn about damage and / or soiling of the rear axial backup bearing.
  • the open-end spinning device has an output device which can be activated in the event of such a deviation from the control device. This enables the operating personnel to quickly recognize that the open-end spinning device in question has not been put into operation and, if necessary, why.
  • the first travel path and / or the second travel path are determined before the spinning rotor is started each time.
  • errors that have occurred after the first successful start-up can also be reliably detected.
  • the spinning rotor is no longer checked again after a stop due to a normal, automatic maintenance process.
  • Such normal maintenance processes are, for example, piecing after a thread break or a cleaner cut, after cleaning the rotor or even after changing the bobbin.
  • the determination of the first travel path and / or the second travel path could, for example, also be carried out at regular intervals after a specific number of maintenance operations in each case, or it could even be limited to the initial start-up after a lot change.
  • the coupling device of the spinning rotor comprises a locking device. At least the unintentional loosening of the coupling device after the correct assembly of the spinning rotor, for example during operation, can be avoided in this way.
  • the locking device has a catching area which is in a correct assembly state when the spinning rotor is being assembled of the spinning rotor ensures. This means that the spinning rotor automatically slips into the correct assembly state as soon as the catching area of the coupling device is reached during assembly of the rotor cup on the rotor shaft. This makes it possible to avoid incorrect assemblies with only minor deviations from the correct assembly state. In comparison to those with large deviations, such faulty assemblies can often neither be detected optically by the operating personnel nor recognized by means of the method described after insertion into the spinning device. The safety of the open-end spinning device can hereby be increased further.
  • Such a locking device with a catch area can be implemented, for example, with an axial clip.
  • the spinning rotor has a minimum gap to the cover element when the shoulder rests on the front safety bearing and when the assembly is correct, and the catch area of the locking device is larger than the minimum gap.
  • the safety of the open-end spinning device can hereby be guaranteed for all incorrect assembly states of the spinning rotor, since larger assembly errors can be recognized by means of the described method and smaller assembly errors can be avoided by the locking device with the catching area.
  • FIG. 1 shows an open-end spinning device 1 in a schematic, sectioned overview.
  • the open-end spinning device 1 can be closed at the front with a cover element 7.
  • a magnetic bearing 6 in which a spinning rotor 2 is rotatably mounted.
  • the spinning rotor 2 is constructed in two parts with a rotor cup 4 and a rotor shaft 3, which are connected by a coupling device 14.
  • the spinning rotor 2 can be set in rotation and held by means of a drive 18.
  • the magnetic bearing 6 includes in the usual way a front radial bearing 6a, a rear radial bearing 6b and, in the present case, a separate axial bearing 6c.
  • the open-end spinning device 1 also includes a control device 15 by means of which the magnetic bearing 6 can be operated and with which, depending on the design of the magnetic bearing 6, at least some of the components of the magnetic bearing 6 are connected for tax purposes (dotted lines).
  • the various designs of such magnetic bearings 6 and their structure are well known and are therefore not explained in more detail.
  • the open-end spinning device 1 shown here has an output device 16 for outputting a signal, which is also connected to the control device 15 for control purposes (dotted line).
  • the magnetic bearing 6 has means 8 for setting the axial position of the spinning rotor 2 or the rotor shaft 3 as well as means 9 for detecting the axial position. In the present case, these are arranged in the region of a rear end of the spinning rotor 2, but a different arrangement would also be conceivable depending on the design of the magnetic bearing 6.
  • the means 9 for detecting the axial position of the spinning rotor 2 contain a sensor coil that reports the detected axial position to the control device 15, and the means 8 for setting the axial position contain a magnetic coil that can be controlled by the control device 15.
  • the means 8 for setting the axial position can also include one or more regulated electromagnets of an active magnetic bearing 6 and the means 9 for detecting the axial position can comprise several position sensors. It is also possible that the means 9 for detecting the absolute position of the spinning rotor 2 are formed in the magnetic bearing 6. To carry out the method, however, it is sufficient if the means 9 are only designed to detect a change in position of the spinning rotor 2 in the axial direction. The actual position of the spinning rotor 2 can nevertheless be deduced from the detected change in position and the control data of the means 8 for setting the axial position.
  • the open-end spinning device 1 has, in a manner known per se, a front axial retainer bearing 10 and a rear axial retainer bearing 12, which enable the rotating and stationary parts to meet the magnetic bearing 6 in the event of a power failure or if vibrations occur.
  • the spinning rotor 2 accordingly has a shoulder 5 which cooperates with the front axial retainer bearing 10.
  • the spinning rotor 2 has a rear bearing surface 13, which in the present case is formed by the rear end of the rotor shaft 3.
  • the spinning rotor 2 In its regular axial operating position 11 (see Figures 2 - 5 ) the spinning rotor 2 is usually in a central position between the two backup bearings 10, 12, which is held by the means 9 for detecting the axial position and the means 8 for adjusting the axial position.
  • FIG Figures 2a, 2b , 3a and 3b A first embodiment of the method for checking an assembly state of a spinning rotor 2 is now based on FIG Figures 2a, 2b , 3a and 3b explained.
  • the cover element 7 of the open-end spinning device 1 is first closed and only then is the spinning rotor 2 moved in the direction of the front axial backup bearing 10.
  • the spinning rotor 2 is shown in its regular axial operating position 11, in which the shoulder 5 of the rotor shaft 3 is at a first distance s0 from the front axial retainer bearing 10.
  • the rear bearing surface 13 likewise has a second distance h0 from the rear axial retainer bearing 12.
  • the spinning rotor 2 is shown here in a correct assembly state, in which the rotor cup 4 is completely slipped onto the rotor shaft 3. If the spinning rotor 2 is in a correct assembly state and in its regular axial operating position 11, then, as shown here, it has a regular gap dimension k0 to the cover element 7 of the open-end spinning device 1.
  • the cover element 7 can include a channel plate or a channel plate adapter that can be inserted into such a channel plate.
  • the magnetic bearing 6 is now activated and the spinning rotor 2 is made to float. Furthermore, the spinning rotor 2 or the rotor shaft 3 by the means 8 for adjusting the
  • Axial position of the rotor shaft 3 is moved in the direction of the front axial backup bearing 10 until it reaches an axial stop.
  • Figure 2b shows the spinning rotor 2 after it has been moved in the direction of the front backup bearing 10 and has reached the axial stop.
  • the first travel path s covered by the spinning rotor 2 was detected or determined by the means 9 for detecting the axial position of the rotor shaft 3. Since the spinning rotor 2 is in a correct assembly state, the shoulder 5 of the rotor shaft 3 can be moved to a stop against the axial retainer bearing 10. The spinning rotor 2 still has a minimum gap dimension km to the cover element 7 even after it has been hit. The axial stop is thus formed by the front axial retainer bearing 10 when the spinning rotor 2 is correctly installed.
  • the control device 15 see Figure 1 ) the first travel distance s is now compared with the first distance s0.
  • the determined first travel s corresponds to the first distance s0 that the shoulder 5 has in the regular axial operating position 11 of the spinning rotor 2 from the front axial retainer bearing 10 .
  • the open-end spinning device 1 can thus be put into operation and the spinning rotor 2 started.
  • FIG 3a shows, however, a spinning rotor 2 in a defective assembly state, in which the rotor cup 4 is not pushed completely onto the rotor shaft 3 or the coupling device 14 is not completely closed.
  • the spinning rotor 2 is also shown in its regular axial operating position 11, in which the shoulder 5 is at the first distance s0 from the front axial retainer bearing 10.
  • the gap dimension k between the spinning rotor 2, more precisely between the open edge of the rotor cup 4 of the spinning rotor 2, and the cover element 7 is, however, reduced compared to the regular gap dimension k0, since the spinning rotor 2 has a greater axial length due to the incorrect assembly state.
  • a second implementation of the method is based on the Figures 4a, 4b and 4c described.
  • the magnetic bearing 6 is first activated and the spinning rotor 2 is moved in the direction of the front axial backup bearing 10 and only then is the cover element 7 closed.
  • FIG 4a shows the open-end spinning device 1 with the cover element 7 still open, the spinning rotor 2 having already been driven against the front axial retainer bearing 10 and being hit against it.
  • the axial stop is thus formed by the front axial safety bearing 10.
  • the spinning rotor 2 is shown in a defective assembly state in which it has a greater axial length.
  • the spinning rotor 2, more precisely the shoulder 5 of the spinning rotor 2 again has the first distance s0 from the regular axial operating position 11, which in the present case is only symbolized by a line.
  • the spinning rotor 2 is transferred from the shifted position (solid lines) into its regular axial operating position 11 (dashed lines).
  • the first travel path s covered here is in turn recorded and compared with the predefined first distance s0. Since the spinning rotor 2 has already been displaced by the cover element 7 due to the incorrect assembly state, the first travel path s in the present example is, however, smaller than the first distance s0 or possibly even negative, namely when the spinning rotor 2 is above its regular axial operating position 11 was also moved in the direction of the rear axial backup bearing 12. From the travel path s which is too small, it can again be concluded that the spinning rotor 2 is in a faulty assembly state.
  • Figure 4c shows, in contrast, the method according to the second embodiment with correctly mounted spinning rotor 2.
  • the spinning rotor 2 is moved before the closing of the cover element 7 up to the stop on the front axial retainer bearing 10.
  • the cover element 7 is now closed (two-dot chain lines). Since the spinning rotor 2 has a correct axial length due to the correct assembly state, it is not displaced by the cover element 7. If, after the cover element 7 has been closed, the spinning rotor 2 is moved from the axial stop, here the front safety bearing 10, to its regular axial operating position 11, the first travel path s therefore corresponds exactly to the predefined, first distance s0.
  • Figure 5 shows a further step which can be carried out both in the method according to the first embodiment and in the method according to the second embodiment.
  • the spinning rotor 2 is thereby driven by the means 8 to adjust the axial position of the spinning rotor 2 or the rotor shaft 3 from its regular axial operating position 11 (dashed lines) in the axial direction against the rear axial retainer bearing 12 until it strikes it (solid lines).
  • the second travel h is detected by means of the means 9 for detecting the axial position and compared with the predefined second distance h0. If the second travel path h is smaller than the second distance h0, it can be concluded from this, for example, that the rear axial backup bearing 12 is available.
  • Figure 6 shows the rear end of the rotor shaft 3 and the rear axial retainer bearing 12 again in a detailed representation. It can be seen that due to contamination 21 of the rear axial backup bearing 12, the spinning rotor 2 or the rotor shaft 3 cannot be moved the full second distance h0, but strikes the contamination 21 after a shorter second travel distance h. If the second travel path h deviates from the second distance h0, the output device 16 ( Figure 1 ) output a signal.
  • the coupling device 14 of the spinning rotor 2 therefore preferably has a locking device 17 with a catching area I.
  • a locking device 17 is in the Figures 7 and 8 shown.
  • the locking device 17 is designed in the form of an axial clip 19.
  • Figure 7 shows a schematic sectional view of the coupling device 14 in a side view
  • Figure 8 shows a sectional detailed representation of the locking device 17 with the catching area I in a side view.
  • the axial clip 19 can be designed, for example, in the form of a snap ring or O-ring, which interacts with a corresponding recess 22 or groove.
  • the catch area I describes the distance to the correctly coupled position in which the rotor cup 4 just snaps into the correctly coupled axial position. This capture area I is preferably larger than the minimum gap dimension km, so that the incorrect assembly states with only slight deviations of the rotor cup 4 from the correct axial position can now also be recognized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Or Twisting Of Yarns (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Überprüfen eines Montagezustands eines Spinnrotors, welcher einen Rotorschaft mit einer Schulter und eine lösbar mit dem Rotorschaft verbundene Rotortasse umfasst. Der Spinnrotor ist in einer Magnetlagerung in einer vorderseitig mit einem Deckelelement verschließbaren Offenendspinnvorrichtung gelagert. Die Magnetlagerung weist Mittel zum Einstellen einer Axialposition des Rotorschafts, Mittel zum Erfassen der Axialposition und wenigstens ein vorderes axiales Fanglager für die Schulter des Rotorschafts auf.
  • Spinnrotoren heutiger Offenendspinnmaschinen werden aufgrund der hohen Drehzahlen von weit über 100.000 1/min häufig in Magnetlagerungen gelagert. Diese sind gegenüber rein mechanischen Lagerungen bei sehr hohen Drehzahlen vorteilhaft, da sie nur geringe Reibungsverluste aufweisen und kaum verschleißanfällig sind. Sie können sowohl als passive Lagerungen mit Permanentmagneten ausgeführt werden als auch als aktive Lagerungen mit geregelten Elektromagneten. Eine berührungslose Lagerung in radialer und axialer Richtung ist nur mit passiven Lagerungen jedoch nicht möglich. Werden bei Offenendspinnvorrichtungen passive Magnetlager eingesetzt, so werden diese in der Regel für die radiale Lagerung verwendet. Damit der Spinnrotor auch in axialer Richtung eine vorgegebene Betriebsposition beibehält, werden passive Magnetlager mit einer zusätzlichen Lageregelung für die Axialposition versehen. Bei aktiv geregelten Magnetlagerungen wird hingegen sowohl die Radialposition als auch die Axialposition des Spinnrotors permanent erfasst und entsprechend geregelt. Sowohl die Lageregelung bei passiven Magnetlagerungen als auch die aktiv geregelten Magnetlagerungen sind von einer ständigen Stromversorgung abhängig. Um im Falle von Störungen eine Beschädigung der Magnetlagerung zu vermeiden, sind daher mechanische Fanglager vorgesehen. Die vorliegende Erfindung befasst sich mit beiden Arten von Magnetlagerungen.
  • Eine Offenendspinnvorrichtung mit einer passiven Magnetlagerung und einer Lageregelung für die Axialposition (Mittellageregelung) ist beispielsweise aus der DE 10 2006 030 187 A1 bekannt.
  • Derartige Magnetlagerungen beinhalten jeweils eine vordere und eine hintere Lagestelle mit Magneteinrichtungen, also entweder Permanentmagneten, aktiv ansteuerbare Elektromagneten oder auch eine Kombination der beiden. Ein Teil dieser Magneteinrichtungen ist dabei am umlaufenden Rotorschaft des Spinnrotors festgelegt und wirkt mit feststehenden Magneteinrichtungen, die am Lagergehäuse des Spinnrotors festgelegt sind, zusammen. Die Montage und der Ausbau eines derartigen Spinnrotors ist daher mit einem erheblichen Aufwand verbunden. Um die Rotortasse beispielsweise bei Verschleiß oder Partiewechsel schnell austauschen zu können, ist diese daher mittels einer Kupplungsvorrichtung lösbar mit dem Rotorschaft verbunden.
  • Ein Spinnrotor mit einer Kupplungsvorrichtung ist aus der EP 2 832 903 B1 bekannt. Die Kupplungsvorrichtung ist als Steckkupplung ausgeführt, bei welcher die Rotortasse in den Rotorschaft einsteckbar oder auf diesen aufsteckbar ist. Bei solchen Steckkupplungen kann es vorkommen, dass die Rotortasse nicht weit genug auf den Rotorschaft aufgesteckt oder in diesen eingesteckt wird und somit die Kupplungslänge zu kurz ist. Das Laufverhalten des Spinnrotors und auch die Spinnergebnisse werden durch eine solche fehlerhafte Montage beeinträchtigt. Zudem ist ein korrekter Montagezustand des Spinnrotors, d. h. die korrekte Axialposition der Rotortasse gegenüber dem Rotorschaft, auch unter sicherheitstechnischen Aspekten unerlässlich, weil sich die Rotortasse im Betrieb von dem Rotorschaft lösen könnte.
  • Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren zur Kontrolle des Montagezustands eines Spinnrotors vorzuschlagen. Weiterhin soll eine entsprechende Offenendspinnvorrichtung vorgeschlagen werden.
  • Die Aufgabe wird gelöst durch ein Verfahren und eine Offenendspinnvorrichtung mit den Merkmalen der unabhängigen Patentansprüche.
  • Bei dem Verfahren zum Überprüfen eines Montagezustands eines Spinnrotors ist der Spinnrotor in einer Magnetlagerung in einer vorderseitig mit einem Deckelelement verschließbaren Offenendspinnvorrichtung gelagert. Der Spinnrotor weist einen Rotorschaft mit einer Schulter und eine lösbar mit dem Rotorschaft verbundene Rotortasse auf. Die Magnetlagerung beinhaltet Mittel zum Einstellen einer Axialposition des Rotorschafts, Mittel zum Erfassen der Axialposition und wenigstens ein vorderes Fanglager für die Schulter des Rotorschafts.
  • Um den Montagezustand des Spinnrotors zu überprüfen, d. h. festzustellen, ob sich die Rotortasse in Bezug auf den Rotorschaft in der korrekten axialen Position befindet, wird für eine reguläre axiale Betriebsposition des Spinnrotors ein erster Abstand zwischen der Schulter des Rotorschafts und dem vorderen Fanglager definiert. Vor einem Starten des Spinnrotors wird der Spinnrotor axial in Richtung des vorderen Fanglagers verfahren, bis er einen axialen Anschlag erreicht. Ein erster Verfahrweg des Spinnrotors zwischen der regulären axialen Betriebsposition und dem axialen Anschlag wird erfasst und mit dem ersten Abstand verglichen. Der Spinnrotor wird gestartet, wenn der erste Verfahrweg gleich dem zuvor definierten, ersten Abstand ist. Das Starten des Spinnrotors wird hingegen verhindert, wenn der ermittelte Verfahrweg kleiner als der zuvor definierte erste Abstand ist.
  • Eine entsprechende Offenendspinnvorrichtung, welche vorderseitig mit einem Deckelelement verschließbar ist, weist eine Steuervorrichtung auf, die zur Durchführung des Verfahrens ausgelegt ist.
  • Der Erfindung liegt der Gedanke zugrunde, dass der in seiner regulären axialen Betriebsposition in der Magnetlagerung aufgenommene Spinnrotor nur dann um den vollen Verfahrweg, also den ersten Abstand zwischen der Schulter des Rotorschafts und dem vorderen Fanglager, gegen das vordere Fanglager verfahren werden kann, wenn er einen korrekten Montagezustand aufweist. Da sich in diesem Fall die Rotortasse in ihrer korrekten axialen Position gegenüber dem Rotorschaft befindet, kann der Spinnrotor aus seiner regulären axialen Betriebsposition in Richtung des vorderen axialen Fanglagers verfahren werden, bis er an dieses anschlägt. Der axiale Anschlag, der den Verfahrweg des Spinnrotors begrenzt, wird somit in diesem Fall durch das vordere axiale Fanglager gebildet. Der Verfahrweg des Spinnrotors bzw. des Rotorschafts entspricht daher auch exakt dem zuvor definierten Abstand zwischen der Schulter des Rotorschafts und dem vorderen Fanglager.
  • Weist hingegen der Spinnrotor einen fehlerhaften Montagezustand auf, d. h. ist die Rotortasse nicht vollständig auf den Rotorschaft aufgeschoben oder in diesen eingesteckt, weist der Spinnrotor eine größere axiale Länge auf. Wird nun dieser Spinnrotor in Richtung des vorderen axialen Fanglagers verfahren, so stößt der Spinnrotor aufgrund der größeren Länge mit dem Rand der Rotortasse an dem Deckelelement der Offenendspinnvorrichtung an, bevor die Schulter des Rotorschafts das vordere axiale Fanglager erreicht hat. Der axiale Anschlag, der den Verfahrweg des Spinnrotors begrenzt, wird in diesem Fall nicht durch das axiale Fanglager, sondern durch das Deckelelement gebildet. Der Verfahrweg zwischen der regulären Betriebsposition und dem axialen Anschlag ist daher kürzer als der erste Abstand zwischen der regulären Betriebsposition und dem vorderen axialen Fanglager.
  • Für die Ermittlung des Verfahrwegs zwischen der regulären axialen Betriebsposition und dem axialen Anschlag ist es unerheblich, ob der Spinnrotor aus der regulären axialen Betriebsposition bis zu dem axialen Anschlag verfahren wird oder umgekehrt von dem axialen Anschlag bis zu der regulären axialen Betriebsposition. Wesentlich ist lediglich, dass der Verfahrweg mit dem zuvor definierten Vergleichsmaß, also dem ersten Abstand zwischen der regulären Betriebsposition und dem vorderen axialen Fanglager, verglichen wird.
  • Vorteilhaft bei dem beschriebenen Verfahren und der beschriebenen Offenendspinnvorrichtung ist es, dass das gesamte Verfahren automatisiert mithilfe von Komponenten durchgeführt werden kann, welche ohnehin Bestandteil der Magnetlagerung bzw. der Offenendspinnvorrichtung sind. Da keinerlei zusätzliche Komponenten erforderlich sind, können das Verfahren und die Offenendspinnvorrichtung auch entsprechend kostengünstig ausgeführt werden. Besonders vorteilhaft ist es weiterhin auch, dass das Verfahren vollständig automatisiert durchgeführt werden kann. In vorteilhafter Weise wird dabei das Starten eines fehlerhaft montierten Spinnrotors verhindert, wodurch auch die Sicherheit des Bedienpersonals sichergestellt wird.
  • Nach einer ersten Ausführung der Erfindung wird vor dem Starten des Spinnrotors zunächst das Deckelelement der Offenendspinnvorrichtung geschlossen und der Spinnrotor in seine reguläre axiale Betriebsposition verfahren. Erst dann wird der Spinnrotor in Richtung des vorderen axialen Fanglagers verfahren, bis er den axialen Anschlag erreicht. Dies bedeutet, dass die Magnetlagerung nach dem Schließen der Offenendspinnvorrichtung aktiviert wird und der Spinnrotor in seine reguläre axiale Betriebsposition gebracht wird. Aus dieser wird er dann mit den Mitteln zum Einstellen der Axialposition des Rotorschafts in Richtung des vorderen axialen Fanglagers verfahren, bis erden axialen Anschlag erreicht.
  • Nach einer alternativen Ausführung des Verfahrens wird hingegen zunächst der Spinnrotor in Richtung des vorderen Fanglagers verfahren, bis er den axialen Anschlag erreicht und erst dann wird das Deckelelement der Offenendspinnvorrichtung geschlossen und der Spinnrotor in die reguläre axiale Betriebsposition verfahren. In diesem Fall wird die Magnetlagerung bereits vor dem Schließen der Offenendspinnvorrichtung aktiviert und der Spinnrotor bis zu dem axialen Anschlag verfahren. Wird dann die Offenendspinnvorrichtung mit dem Deckelelement verschlossen, so wird der gesamte Spinnrotor durch das Deckelelement in axialer Richtung nach hinten verschoben. Somit bildet bei falsch montiertem Spinnrotor das Deckelelement den axialen Anschlag, bei richtig montiertem Spinnrotor bildet hingegen das vordere axiale Fanglager den axialen Anschlag. Wird nun nach dem Schließen der Offenendspinnvorrichtung der Spinnrotor von dem axialen Anschlag in seine reguläre axiale Betriebsposition verfahren, so kann aus dem Verfahrweg wiederum auf den Montagezustand des Spinnrotors geschlossen werden.
  • Nach einer Weiterbildung des Verfahrens wird vor dem Starten des Spinnrotors der Spinnrotor zusätzlich in Richtung eines hinteren axialen Fanglagers verfahren, bis er mit einer hinteren Lagerfläche an dem hinteren axialen Fanglager anschlägt. Die Magnetlagerung weist in diesem Fall ein hinteres axiales Fanglager und der Rotorschaft eine hintere Lagerfläche zum Anschlagen an das hintere Fanglager auf. Aus dem Verfahrweg zwischen dem hinteren axialen Fanglager und einem Bezugspunkt, beispielsweise der regulären axialen Betriebsposition oder dem vorderen axialen Fanglager, können weitere Informationen hinsichtlich der Betriebsbereitschaft der Offenendspinnvorrichtung gewonnen werden. Beispielsweise kann hieraus auf Verschmutzungen oder Beschädigungen in der Lagerung geschlossen werden.
  • Vorzugsweise wird dabei für die reguläre axiale Betriebsposition des Spinnrotors ein zweiter Abstand zwischen der hinteren Lagerfläche des Rotorschafts und dem hinteren Fanglager definiert und der Spinnrotor zwischen der regulären axialen Betriebsposition und dem hinteren Fanglager verfahren. Dabei wird ein zweiter Verfahrweg des Spinnrotors erfasst. Anschließend wird der erfasste zweite Verfahrweg mit dem zweiten Abstand zwischen der regulären axialen Betriebsposition und dem hinteren Fanglager verglichen. Aus einer Abweichung des ermittelten zweiten Verfahrwegs von dem definierten zweiten Abstand kann auf Beschädigungen und/oder Verschmutzungen des hinteren axialen Fanglagers geschlossen werden.
  • Daneben ist es vorteilhaft, wenn bei einer Abweichung des ersten Verfahrwegs von dem ersten Abstand und/oder bei einer Abweichung des zweiten Verfahrwegs von dem zweiten Abstand ein Signal durch die Offenendspinnvorrichtung ausgegeben wird. Die Offenendspinnvorrichtung weist hierzu eine Ausgabeeinrichtung auf, welche bei einer solchen Abweichung von der Steuereinrichtung ansteuerbar ist. Das Bedienpersonal kann hierdurch schnell erkennen, dass und gegebenenfalls auch weshalb die betreffende Offenendspinnvorrichtung nicht in Betrieb gesetzt wurde.
  • Nach einer vorteilhaften Weiterbildung des Verfahrens wird das Ermitteln des ersten Verfahrwegs und/oder das Ermitteln des zweiten Verfahrwegs vor jedem Starten des Spinnrotors durchgeführt. Hierdurch können nach einem Stopp der Offenendspinnvorrichtung auch Fehler, welche nach der erfolgreichen ersten Inbetriebnahme aufgetreten sind, zuverlässig erfasst werden. Denkbar ist es aber auch, dass der Spinnrotor nach einem Stopp aufgrund eines normalen, automatischen Wartungsvorgangs nicht mehr erneut überprüft wird. Derartige normale Wartungsvorgänge sind beispielsweise das Anspinnen nach einem Fadenbruch oder einem Reinigerschnitt, nach der Rotorreinigung oder auch einem Spulenwechsel. Das Ermitteln des ersten Verfahrwegs und/oder des zweiten Verfahrwegs könnte beispielsweise auch turnusmäßig nach jeweils einer bestimmten Anzahl von Wartungsvorgängen durchgeführt werden oder aber sogar auf die Erstinbetriebnahme nach einem Partiewechsel beschränkt bleiben.
  • Bei der Offenendspinnvorrichtung ist es weiterhin vorteilhaft, wenn die Kupplungsvorrichtung des Spinnrotors eine Arretiervorrichtung umfasst. Zumindest das unbeabsichtigte Lösen der Kupplungsvorrichtung nach der korrekten Montage des Spinnrotors, beispielsweise beim Betrieb, kann hierdurch vermieden werden.
  • Vorteilhaft ist es, wenn die Arretiervorrichtung einen Fangbereich aufweist, welcher bei der Montage des Spinnrotors einen korrekten Montagezustand des Spinnrotors sicherstellt. Dies bedeutet, dass der Spinnrotor automatisch in den korrekten Montagezustand rutscht, sobald bei der Montage der Rotortasse an den Rotorschaft der Fangbereich der Kupplungsvorrichtung erreicht wird. Hierdurch ist es möglich, fehlerhafte Montagen mit nur geringfügigen Abweichungen vom korrekten Montagezustand zu vermeiden. Derartige fehlerhafte Montagen können im Vergleich zu solchen mit großen Abweichungen nämlich häufig weder optisch durch das Bedienpersonal erfasst, noch nach dem Einsetzen in die Spinnvorrichtung mittels des beschriebenen Verfahrens erkannt werden. Die Sicherheit der Offenendspinnvorrichtung kann hierdurch weiter erhöht werden. Eine solche Arretiervorrichtung mit einem Fangbereich kann beispielsweise mit einem Axialclip realisiert werden.
  • Um bei nur geringfügig fehlerhaften Montagen eine größtmögliche Sicherheit zu erreichen, ist es vorteilhaft, wenn der Spinnrotor bei Anlage der Schulter an dem vorderen Fanglager und bei korrektem Montagezustand einen Minimalspalt zu dem Deckelelement aufweist und der Fangbereich der Arretiervorrichtung größer ist als der Minimalspalt. Die Sicherheit der Offenendspinnvorrichtung kann hierdurch für alle fehlerhaften Montagezustände des Spinnrotors gewährleistet werden, da größere Montagefehler mittels des beschriebenen Verfahrens erkannt werden können und kleinere Montagefehler durch die Arretiervorrichtung mit dem Fangbereich vermieden werden.
  • Weitere Vorteile der Erfindung sind in den nachfolgenden Ausführungsbeispielen beschrieben. Es zeigen:
  • Figur 1
    eine schematische, geschnittene Seitenansicht einer Offenendspinnvorrichtung mit einer Magnetlagerung und einem Spinnrotor,
    Figur 2a
    eine schematische, geschnittene Seitenansicht eines korrekt montierten Spinnrotors in seiner regulären Betriebsposition,
    Figur 2b
    den korrekt montierten Spinnrotor der Figur 2a, nachdem er an das vordere axiale Fanglager angeschlagen ist,
    Figur 3a
    eine schematische, geschnittene Seitenansicht eines fehlerhaft montierten Spinnrotors in seiner regulären Betriebsposition,
    Figur 3b
    den fehlerhaft montierten Spinnrotor der Figur 3a, nachdem er an das Deckelelement der Spinnvorrichtung angeschlagen ist,
    Figur 4a
    eine schematische, geschnittene Seitenansicht eines fehlerhaft montierten Spinnrotors nach dem Anschlagen an das vordere axiale Fanglager und vor dem Schließen des Deckelelements,
    Figur 4b
    den fehlerhaft montierten Spinnrotor der Figur 4a, nachdem das Deckelelement geschlossen wurde und der Spinnrotor verschoben wurde,
    Figur 4c
    eine schematische, geschnittene Seitenansicht eines korrekt montierten Spinnrotors, nach dem Anschlagen an das vordere axiale Fanglager und vor dem Schließen des Deckelelements,
    Figur 5
    eine schematische, geschnittene Seitenansicht eines Spinnrotors nach dem Anschlagen an das hintere axiale Fanglager,
    Figur 6
    eine geschnittene Detaildarstellung einer hinteren Lagerfläche eines Spinnrotors und eines hinteren axialen Fanglagers,
    Figur 7
    eine geschnittene Detaildarstellung einer Kupplungsvorrichtung eines Spinnrotors mit einer Arretiervorrichtung, sowie
    Figur 8
    eine geschnittene Detaildarstellung einer Arretiervorrichtung mit einem Fangbereich.
  • Bei der nachfolgenden Beschreibung der Figuren werden für Merkmale, die bei den einzelnen Ausführungen bzw. den einzelnen Figuren jeweils identisch oder zumindest vergleichbar sind, gleiche Bezugszeichen verwendet. Einige der Merkmale werden daher nur bei ihrer ersten Erwähnung bzw. nur einmal anhand einer geeigneten Figur erläutert. Sofern diese Merkmale in Verbindung mit den weiteren Figuren nicht nochmals gesondert erläutert werden, entspricht deren Ausgestaltung und/oder Wirkweise der Ausgestaltung und Wirkweise der identischen oder vergleichbaren, beschriebenen Merkmale. Aus Gründen der Übersichtlichkeit ist weiterhin bei mehreren identischen Merkmalen oder Bauteilen in einer Figur meist nur eines oder sind nur wenige dieser identischen Merkmale beschriftet.
  • Figur 1 zeigt eine Offenendspinnvorrichtung 1 in einer schematischen, geschnittenen Übersichtsdarstellung. Die Offenendspinnvorrichtung 1 ist mit einem Deckelelement 7 vorderseitig verschließbar. In der Offenendspinnvorrichtung 1 befindet sich eine Magnetlagerung 6, in welcher ein Spinnrotor 2 drehbar gelagert ist. Der Spinnrotor 2 ist zweiteilig mit einer Rotortasse 4 und einem Rotorschaft 3 ausgebildet, welche durch eine Kupplungsvorrichtung 14 verbunden sind. Mittels eines Antriebs 18 kann der Spinnrotor 2 in Drehung versetzt und gehalten werden. Die Magnetlagerung 6 beinhaltet in üblicher Weise ein vorderes Radiallager 6a, ein hinteres Radiallager 6b sowie vorliegend ein separates Axiallager 6c. Es ist jedoch nicht unbedingt erforderlich, das Axiallager 6c separat von den Radiallagern 6a, 6b auszubilden. Ebenso ist es möglich, dass auch die axiale Lagerung durch die Komponenten der radialen Lagerung bewirkt wird. Mittels der Magnetlagerung 6 wird der Spinnrotor 2 in radialer Richtung und in axialer Richtung in einem Schwebezustand gehalten, wodurch sich ein Lagerspalt 20 ausbildet, und hierdurch gelagert. Die Magnetlagerung 6 kann als aktive Magnetlagerung oder auch als passive Magnetlagerung ausgeführt sein. Die Offenendspinnvorrichtung 1 beinhaltet weiterhin eine Steuervorrichtung 15, mittels der die Magnetlagerung 6 betrieben werden kann und mit der, je nach Ausführung der Magnetlagerung 6, zumindest ein Teil der Komponenten der Magnetlagerung 6 in steuermäßiger Verbindung (gepunktete Linien) steht. Die verschiedenen Ausführungen derartiger Magnetlagerungen 6 sowie deren Aufbau sind hinreichend bekannt und werden daher nicht näher erläutert. Weiterhin weist die vorliegend gezeigte Offenendspinnvorrichtung 1 eine Ausgabeeinrichtung 16 zur Ausgabe eines Signals auf, welche ebenfalls mit der Steuervorrichtung 15 in steuermäßiger Verbindung (gepunktete Linie) steht.
  • Unabhängig von der Ausführung der Magnetlagerung 6 als aktives oder als passives Magnetlager weist die Magnetlagerung 6 Mittel 8 zum Einstellen der Axialposition des Spinnrotors 2 bzw. des Rotorschafts 3 sowie Mittel 9 zum Erfassen der Axialposition auf. Vorliegend sind diese im Bereich eines rückwärtigen Endes des Spinnrotors 2 angeordnet, je nach Ausführung der Magnetlagerung 6 wäre jedoch auch eine andere Anordnung denkbar. Im einfachsten Fall beinhalten die Mittel 9 zum Erfassen der Axialposition des Spinnrotors 2 eine Sensorspule, die die erfasste Axialposition der Steuervorrichtung 15 meldet, und die Mittel 8 zum Einstellen der Axialposition eine durch die Steuervorrichtung 15 ansteuerbare Magnetspule. Ebenso können die Mittel 8 zum Einstellen der Axialposition aber auch einen oder mehrere geregelte Elektromagneten einer aktiven Magnetlagerung 6 und die Mittel 9 zum Erfassen der Axialposition mehrere Positionssensoren umfassen. Dabei ist es auch möglich, dass die Mittel 9 zum Erfassen der absoluten Position des Spinnrotors 2 in der Magnetlagerung 6 ausgebildet sind. Zur Durchführung des Verfahrens ist es jedoch ausreichend, wenn die Mittel 9 lediglich zum Erfassen einer Lageänderung des Spinnrotors 2 in axialer Richtung ausgebildet sind. Aus der erfassten Lageänderung sowie den Steuerdaten der Mittel 8 zum Einstellen der Axialposition kann dennoch auf die tatsächliche Position des Spinnrotors 2 geschlossen werden.
  • Weiterhin weist die Offenendspinnvorrichtung 1 in an sich bekannter Weise ein vorderes axiales Fanglager 10 sowie ein hinteres axiales Fanglager 12 auf, welche das Aufeinandertreffen der rotierenden und der stationären Teile der Magnetlagerung 6 bei Stromausfall oder beim Auftreten von Schwingungen verhindern. Der Spinnrotor 2 weist entsprechend eine Schulter 5 auf, welche mit dem vorderen axialen Fanglager 10 zusammenwirkt. Zum Zusammenwirken mit dem hinteren axialen Fanglager 12 weist der Spinnrotor 2 eine hintere Lagerfläche 13 auf, die vorliegend durch das rückwärtige Ende des Rotorschafts 3 gebildet ist. In seiner regulären axialen Betriebsposition 11 (siehe Figuren 2 - 5) befindet sich der Spinnrotor 2 meist in einer Mittenlage zwischen den beiden Fanglagern 10, 12, die durch die Mittel 9 zum Erfassen der Axialposition und die Mittel 8 zum Einstellen der Axialposition gehalten wird.
  • Eine erste Ausführung des Verfahrens zum Überprüfen eines Montagezustands eines Spinnrotors 2 wird nun anhand der Figuren 2a, 2b, 3a und 3b erläutert. Bei diesem Verfahren wird zunächst das Deckelelement 7 der Offenendspinnvorrichtung 1 geschlossen und erst anschließend der Spinnrotor 2 in Richtung des vorderen axialen Fanglagers 10 verfahren.
  • In Figur 2a ist der Spinnrotor 2 in seiner regulären axialen Betriebsposition 11 dargestellt, in der die Schulter 5 des Rotorschafts 3 einen ersten Abstand s0 zu dem vorderen axialen Fanglager 10 aufweist. Ebenso weist die hintere Lagerfläche 13 einen zweiten Abstand h0 zu dem hinteren axialen Fanglager 12 auf. Der Spinnrotor 2 ist hier in einem korrekten Montagezustand gezeigt, in dem die Rotortasse 4 vollständig auf den Rotorschaft 3 aufgesteckt ist. Befindet sich der Spinnrotor 2 in einem korrekten Montagezustand sowie in seiner regulären axialen Betriebsposition 11, so weist er wie vorliegend dargestellt ein reguläres Spaltmaß k0 zu dem Deckelelement 7 der Offenendspinnvorrichtung 1 auf. Das Deckelelement 7 kann dabei eine Kanalplatte oder auch einen in eine solche Kanalplatte einsetzbaren Kanalplattenadapter beinhalten. Vor einem Starten des Spinnrotors 2 wird nun die Magnetlagerung 6 aktiviert und der Spinnrotor 2 zum Schweben gebracht. Weiterhin wird der Spinnrotor 2 bzw. der Rotorschaft 3 durch die Mittel 8 zum Einstellen der
  • Axialposition des Rotorschafts 3 in Richtung des vorderen axialen Fanglagers 10 bewegt, bis er einen axialen Anschlag erreicht.
  • Figur 2b zeigt den Spinnrotor 2, nachdem er in Richtung des vorderen Fanglagers 10 bewegt wurde und den axialen Anschlag erreicht hat. Der von dem Spinnrotor 2 zurückgelegte erste Verfahrweg s wurde dabei durch die Mittel 9 zum Erfassen der Axialposition des Rotorschafts 3 erfasst bzw. ermittelt. Da der Spinnrotor 2 sich in einem korrekten Montagezustand befindet, kann die Schulter 5 des Rotorschafts 3 auf Anschlag gegen das axiale Fanglager 10 gefahren werden. Der Spinnrotor 2 weist auch nach dem Anschlagen noch immer ein Minimalspaltmaß km zu dem Deckelelement 7 auf. Der axiale Anschlag wird somit bei korrektem montiertem Spinnrotor 2 durch das vordere axiale Fanglager 10 gebildet. Durch die Steuervorrichtung 15 (siehe Figur 1) wird nun der erste Verfahrweg s mit dem ersten Abstand s0 verglichen. Da bei korrektem Montagezustand der Spinnrotor 2 auf Block gegen das vordere axiale Fanglager 10 gefahren werden kann, entspricht der ermittelte erste Verfahrweg s dem ersten Abstand s0, den die Schulter 5 in der regulären axialen Betriebsposition 11 des Spinnrotors 2 zu dem vorderen axialen Fanglager 10 aufweist. Die Offenendspinnvorrichtung 1 kann somit in Betrieb gesetzt und der Spinnrotor 2 gestartet werden.
  • Figur 3a zeigt hingegen einen Spinnrotor 2 in einem fehlerhaften Montagezustand, bei welchem die Rotortasse 4 nicht vollständig auf den Rotorschaft 3 aufgeschoben ist bzw. die Kupplungsvorrichtung 14 nicht vollständig geschlossen ist. Der Spinnrotor 2 ist ebenfalls in seiner regulären axialen Betriebsposition 11 dargestellt, in der die Schulter 5 den ersten Abstand s0 zu dem vorderen axialen Fanglager 10 aufweist. Das Spaltmaß k zwischen dem Spinnrotor 2, genauer gesagt zwischen dem offenen Rand der Rotortasse 4 des Spinnrotors 2, und dem Deckelelement 7 ist jedoch gegenüber dem regulären Spaltmaß k0 verringert, da der Spinnrotor 2 aufgrund des fehlerhaften Montagezustandes eine größere axiale Länge aufweist.
  • Wird nun der Spinnrotor 2 durch die Mittel 8 zum Einstellen der Axialposition in Richtung des vorderen axialen Fanglagers 10 bewegt, so stößt der Spinnrotor 2 mit der Rotortasse 4 an dem Deckelelement 7 an, bevor die Schulter 5 das vordere axiale Fanglager 10 erreicht. Figur 3b zeigt den Spinnrotor 2, nachdem er in Richtung des vorderen axialen Fanglagers 10 bewegt wurde und an das Deckelelement 7 angeschlagen ist. Somit bildet im Falle eines fehlerhaften Montagezustands des Spinnrotors 2 das Deckelelement 7 den axialen Anschlag. Der vom Spinnrotor 2 von der regulären axialen Betriebsposition 11 bis zum Erreichen des axialen Anschlags, hier des Deckelelements 7, zurückgelegte erste Verfahrweg s wird wiederum durch die Mittel 9 zum Erfassen der Axialposition ermittelt und mit dem ersten Abstand s0 verglichen. Da nun der erste Verfahrweg s kleiner ist als der erste Abstand s0, kann auf einen fehlerhaften Montagezustand des Spinnrotors 2 geschlossen werden und das Starten des Spinnrotors 2 wird aus Sicherheitsgründen verhindert. Ist auf diese Weise eine axiale Fehlposition der Rotortasse 4 erkannt worden, so wird dies vorzugsweise mittels der Ausgabeeinrichtung 16 (Figur 1) angezeigt.
  • Eine zweite Ausführung des Verfahrens wird anhand der Figuren 4a, 4b und 4c beschrieben. Bei diesem Verfahren wird zunächst die Magnetlagerung 6 aktiviert und der Spinnrotor 2 in Richtung des vorderen axialen Fanglagers 10 verfahren und erst danach das Deckelelement 7 geschlossen.
  • Figur 4a zeigt die Offenendspinnvorrichtung 1 mit noch geöffnetem Deckelelement 7, wobei der Spinnrotor 2 bereits gegen das vordere axiale Fanglager 10 gefahren wurde und an diesem angeschlagen ist. Der axiale Anschlag ist somit bei diesem Verfahren durch das vordere axiale Fanglager 10 gebildet. Der Spinnrotor 2 ist vorliegend in einem fehlerhaften Montagezustand gezeigt, in dem er eine größere axiale Länge aufweist. Der Spinnrotor 2, genauer gesagt die Schulter 5 des Spinnrotors 2, weist zur regulären axialen Betriebsposition 11, die vorliegend lediglich durch einen Strich symbolisiert ist, wiederum den ersten Abstand s0 auf. Wird nun das Deckelelement 7 geschlossen, so kontaktiert dieses den fehlerhaft montiertem Spinnrotor und schiebt ihn in Richtung seiner regulären axialen Betriebsposition 11 zurück, wie durch die Strichzweipunktlinien dargestellt.
  • Wie nun in Figur 4b dargestellt, wird nach dem Schließen des Deckelelements 7 der Spinnrotor 2 aus der verschobenen Position (ausgezogene Linien) in seine reguläre axiale Betriebsposition 11 (gestrichelte Linien) überführt. Der dabei zurückgelegte erste Verfahrweg s wird wiederum erfasst und mit dem vorgegebenen ersten Abstand s0 verglichen. Da aufgrund des fehlerhaften Montagezustands der Spinnrotor 2 zuvor bereits von dem Deckelelement 7 verschoben wurde, ist der erste Verfahrweg s im vorliegenden Beispiel jedoch kleiner als der erste Abstand s0 oder gegebenenfalls sogar negativ, nämlich dann, wenn der Spinnrotor 2 über seine reguläre axiale Betriebsposition 11 hinaus in Richtung des hinteren axialen Fanglagers 12 verschoben wurde. Aus dem zu kleinen Verfahrweg s kann somit wiederum auf einen fehlerhaften Montagezustand des Spinnrotors 2 geschlossen werden.
  • Figur 4c zeigt demgegenüber das Verfahren nach der zweiten Ausführung bei korrektem montiertem Spinnrotor 2. Wie zu Figur 4a beschrieben, wird der Spinnrotor 2 vor dem Schließen des Deckelelements 7 bis auf Anschlag an das vordere axiale Fanglager 10 verfahren. Das Deckelelement 7 wird nun geschlossen (Strichzweipunktlinien). Da der Spinnrotor 2 aufgrund des korrekten Montagezustands eine korrekte axiale Länge aufweist, wird er nicht durch das Deckelelement 7 verschoben. Wird nun nach dem Schließen des Deckelelements 7 der Spinnrotor 2 von dem axialen Anschlag, hier dem vorderen Fanglager 10, in seine reguläre axiale Betriebsposition 11 verfahren, so entspricht der erste Verfahrweg s deshalb exakt dem vordefinierten, ersten Abstand s0.
  • Figur 5 zeigt einen weiteren Schritt, der sowohl bei dem Verfahren nach der ersten Ausführung als auch bei dem Verfahren nach der zweiten Ausführung durchgeführt werden kann. Der Spinnrotor 2 wird dabei durch die Mittel 8 zum Einstellen der Axialposition des Spinnrotors 2 bzw. des Rotorschafts 3 aus seiner regulären axialen Betriebsposition 11 (gestrichelte Linien) in axialer Richtung gegen das hintere axiale Fanglager 12 verfahren, bis er an diesem anschlägt (ausgezogene Linien). Der zweite Verfahrweg h wird dabei mittels der Mittel 9 zum Erfassen der Axialposition erfasst und mit dem vordefinierten zweiten Abstand h0 verglichen. Ist der zweite Verfahrweg h kleiner als der zweite Abstand h0, so kann daraus beispielsweise auf eine Verfügung des hinteren axialen Fanglagers 12 geschlossen werden. Dabei ist es unerheblich, ob das Verfahren gegen das hintere axiale Fanglager 12 vor dem Verfahren in Richtung des vorderen axialen Fanglagers 10 durchgeführt wird oder danach. Weiter ist es natürlich auch denkbar, den Spinnrotor 2 direkt aus der vorderen Anschlagsposition, in welcher er entweder an das vordere axiale Fanglager 10 oder an das Deckelelement 7 angeschlagen ist, bis an das hintere axiale Fanglager 12 zu verfahren oder umgekehrt.
  • Figur 6 zeigt das hintere Ende des Rotorschafts 3 sowie das hintere axiale Fanglager 12 noch einmal in einer Detaildarstellung. Dabei ist ersichtlich, dass aufgrund von Verschmutzung 21 des hinteren axialen Fanglagers 12 der Spinnrotor 2 bzw. der Rotorschaft 3 nicht um den vollen zweiten Abstand h0 verfahren werden kann, sondern bereits nach einem kürzeren zweiten Verfahrweg h an der Verschmutzung 21 anschlägt. Bei einer Abweichung des zweiten Verfahrwegs h von dem zweiten Abstand h0 wird wiederum vorzugsweise durch die Ausgabeeinrichtung 16 (Figur 1) ein Signal ausgegeben.
  • Mittels der beschriebenen Verfahren lassen sich die meisten fehlerhaften Montagezustände des Spinnrotors 2 erkennen. Wie allerdings aus Figur 2b hervorgeht, weist der Spinnrotor 2 auch bei korrektem Montagezustand noch einen Minimalspalt km zu dem Deckelelement 7 auf, wenn er an das vordere axiale Fanglager 10 angeschlagen ist. Ein fehlerhafter Montagezustand, bei dem die Abweichung der axialen Position der Rotortasse 4 kleiner ist als der Minimalspalt km kann daher mittels der beschriebenen Verfahren nicht erkannt werden. Der Spinnrotor 2 kann vielmehr trotz der geringfügig fehlerhaften Montage bis auf Anschlag an das vordere axiale Fanglager 10 verschoben werden.
  • Vorzugsweise weist daher die Kupplungsvorrichtung 14 des Spinnrotors 2 eine Arretiervorrichtung 17 mit einem Fangbereich I auf. Eine solche Arretiervorrichtung 17 ist in den Figuren 7 und 8 dargestellt. Vorliegend ist die Arretiervorrichtung 17 in Form eines Axialclips 19 ausgebildet. Figur 7 zeigt dabei eine schematische Schnittdarstellung der Kupplungsvorrichtung 14 in einer Seitenansicht und Figur 8 zeigt eine geschnittene Detaildarstellung der Arretiervorrichtung 17 mit dem Fangbereich I in einer Seitenansicht. Der Axialclip 19 kann beispielsweise in Form eines Sprengrings oder O-Rings, der mit einer entsprechenden Ausnehmung 22 oder Nut zusammenwirkt, ausgeführt sein. Der Fangbereich I beschreibt dabei den Abstand zur korrekt gekuppelten Position, in dem die Rotortasse 4 gerade noch in die korrekt gekuppelte Axialposition einschnappt. Dieser Fangbereich I ist vorzugsweise größer als das Minimalspaltmaß km, sodass nun auch die fehlerhaften Montagezustände mit nur geringfügigen Abweichungen der Rotortasse 4 von der korrekten Axialposition erkannt werden können.
  • Die vorliegende Erfindung ist nicht auf die dargestellten und beschriebenen Ausführungsbeispiele beschränkt. Abwandlungen im Rahmen der Patentansprüche sind ebenso möglich wie eine Kombination der Merkmale, auch wenn diese in unterschiedlichen Ausführungsbeispielen dargestellt und beschrieben sind.
  • Bezugszeichenliste
  • 1
    Offenendspinnvorrichtung
    2
    Spinnrotor
    3
    Rotorschaft
    4
    Rotortasse
    5
    Schulter
    6
    Magnetlagerung
    6a vorderes Radiallager
    6b hinteres Radiallager
    6c Axiallager
    7
    Deckelelement
    8
    Mittel zum Einstellen der Axialposition
    9
    Mittel zum Erfassen der Axialposition
    10
    vorderes axiales Fanglager
    11
    reguläre axiale Betriebsposition
    12
    hinteres axiales Fanglager
    13
    hintere Lagerfläche
    14
    Kupplungsvorrichtung
    15
    Steuervorrichtung
    16
    Ausgabeeinrichtung
    17
    Arretiervorrichtung
    18
    Antrieb
    19
    Axialclip
    20
    Lagerspalt
    21
    Verschmutzung
    22
    Ausnehmung
    s0
    erster Abstand
    s
    erster Verfahrweg
    h0
    zweiter Abstand
    h
    zweiter Verfahrweg
    k0
    reguläres Spaltmaß
    km
    Minimalspaltmaß
    k
    Spaltmaß
    l
    Fangbereich

Claims (14)

  1. Verfahren zum Überprüfen eines Montagezustands eines Spinnrotors (2), welcher einen Rotorschaft (3) mit einer Schulter (5) und eine lösbar mit dem Rotorschaft (3) verbundene Rotortasse (4) umfasst und welcher in einer Magnetlagerung (6) in einer vorderseitig mit einem Deckelelement (7) verschließbaren Offenendspinnvorrichtung (1) gelagert ist, wobei die Magnetlagerung (6) Mittel zum Einstellen einer Axialposition des Rotorschafts (3), Mittel zum Erfassen der Axialposition und wenigstens ein vorderes axiales Fanglager (10) für die Schulter (5) des Rotorschafts (3) aufweist, dadurch gekennzeichnet, dass für eine reguläre axiale Betriebsposition (11) des Spinnrotors (2) ein erster Abstand , bezeichnet mit s0, zwischen der Schulter (5) des Rotorschafts (3) und dem vorderen axialen Fanglager (10) definiert wird, dass vor einem Starten des Spinnrotors (2) der Spinnrotor (2) axial in Richtung des vorderen axialen Fanglagers (10) verfahren wird, bis er einen axialen Anschlag erreicht, dass ein erster Verfahrweg , bezeichnet mit s, des Spinnrotors (2) zwischen der regulären axialen Betriebsposition (11) und dem axialen Anschlag erfasst wird und mit dem ersten Abstand verglichen wird und dass der Spinnrotor (2) gestartet wird, wenn s = s0 und das Starten des Spinnrotors (2) verhindert wird, wenn s < s0.
  2. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass zunächst das Deckelelement (7) der Offenendspinnvorrichtung (1) geschlossen wird und der Spinnrotor (2) in seine reguläre axiale Betriebsposition (11) verfahren wird und anschließend der Spinnrotor (2) in Richtung des vorderen axialen Fanglagers (10) verfahren wird, bis er den axialen Anschlag erreicht.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zunächst der Spinnrotor (2) in Richtung des vorderen axialen Fanglagers (10) verfahren wird, bis er den axialen Anschlag erreicht und anschließend das Deckelelement (7) der Offenendspinnvorrichtung (1) geschlossen wird und der Spinnrotor (2) in seine reguläre axiale Betriebsposition (11) verfahren wird.
  4. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass vor dem Starten des Spinnrotors (2) der Spinnrotor (2) in Richtung eines hinteren axialen Fanglagers (12) verfahren wird, bis er mit einer hinteren Lagerfläche (13) an dem hinteren axialen Fanglager (12) anschlägt.
  5. Verfahren nach dem vorherigen Anspruch, dadurch gekennzeichnet, dass für die reguläre axiale Betriebsposition (11) des Spinnrotors (2) ein zweiter Abstand (h0) zwischen der hinteren Lagerfläche (13) des Rotorschafts (3) und dem hinteren axialen Fanglager (12) definiert wird,
    dass der Spinnrotor (2) zwischen der regulären axialen Betriebsposition (11) und dem hinteren axialen Fanglager (12) verfahren wird, wobei ein zweiter Verfahrweg (h) des Spinnrotors (2) erfasst wird, und dass der erfasste zweite Verfahrweg (h) mit dem zweiten Abstand (h0) zwischen der regulären axialen Betriebsposition (11) und dem hinteren axialen Fanglager (12) verglichen wird.
  6. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass bei einer Abweichung des ersten Verfahrwegs von dem ersten Abstand und/oder bei einer Abweichung des zweiten Verfahrwegs (h) von dem zweiten Abstand (h0) ein Signal durch die Offenendspinnvorrichtung (1) ausgegeben wird.
  7. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Ermitteln des ersten Verfahrwegs und/oder das Ermitteln des zweiten Verfahrwegs (h) vor jedem Starten des Spinnrotors (2) durchgeführt wird.
  8. Offenendspinnvorrichtung (1), welche vorderseitig mit einem Deckelelement (7) verschließbar ist, mit einem in einer Magnetlagerung (6) gelagerten Spinnrotor (2), welcher einen Rotorschaft (3) mit einer Schulter (5) und eine mittels einer Kupplungsvorrichtung (14) lösbar mit dem Rotorschaft (3) verbundene Rotortasse (4) umfasst, wobei die Magnetlagerung (6) Mittel zum Einstellen (8) einer Axialposition des Rotorschafts (3), Mittel zum Erfassen (9) der Axialposition und wenigstens ein vorderes axiales Fanglager (10) für die Schulter (5) des Rotorschafts (3) aufweist und mit einer Steuervorrichtung (15), dadurch gekennzeichnet, dass die Steuervorrichtung (15) zur Durchführung des Verfahrens nach einem der vorherigen Ansprüche ausgelegt ist.
  9. Offenendspinnvorrichtung (1) nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Magnetlagerung (6) ein hinteres axiales Fanglager (12) und der Rotorschaft (3) eine hintere Lagerfläche (13) zum Anschlagen an das hintere axiale Fanglager (12) aufweist.
  10. Offenendspinnvorrichtung (1) nach einem der vorherigen Vorrichtungsansprüche, dadurch gekennzeichnet, dass die Offenendspinnvorrichtung (1) eine Ausgabeeinrichtung (16) zur Ausgabe eines Signals beinhaltet, welche bei einer Abweichung des ersten Verfahrwegs von dem ersten Abstand und/oder bei einer Abweichung des zweiten Verfahrwegs (h) von dem zweiten Abstand (h0) von der Steuervorrichtung (15) ansteuerbar ist.
  11. Offenendspinnvorrichtung (1) nach einem der vorherigen Vorrichtungsansprüche, dadurch gekennzeichnet, dass die Kupplungsvorrichtung (14) eine Arretiervorrichtung (17) umfasst.
  12. Offenendspinnvorrichtung (1) nach dem vorherigen Vorrichtungsanspruch, dadurch gekennzeichnet, dass die Arretiervorrichtung (17) einen Fangbereich (I) aufweist, welcher bei der Montage des Spinnrotors (2) einen korrekten Montagezustand des Spinnrotors (2) sicherstellt.
  13. Offenendspinnvorrichtung (1) nach einem der vorherigen Vorrichtungsansprüche 11 oder 12, dadurch gekennzeichnet, dass die Arretiervorrichtung (17) einen Axialclip (19) beinhaltet.
  14. Offenendspinnvorrichtung (1) nach einem der vorherigen Vorrichtungsansprüche 11 bis 13, dadurch gekennzeichnet, dass der Spinnrotor (2) bei Anlage der Schulter (5) an dem vorderen axialen Fanglager (10) und bei korrektem Montagezustand ein Minimalspaltmaß (km) zu dem Deckelelement (7) aufweist und dass der Fangbereich (I) der Arretiervorrichtung größer ist als das Minimalspaltmaß (km).
EP19202310.9A 2018-10-10 2019-10-09 Verfahren zum überprüfen eines montagezustands eines spinnrotors einer offenendspinnvorrichtung sowie offenendspinnvorrichtung Active EP3636811B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018124947.0A DE102018124947A1 (de) 2018-10-10 2018-10-10 Verfahren zum Überprüfen eines Montagezustands eines Spinnrotors einer Offenendspinnvorrichtung sowie Offenendspinnvorrichtung

Publications (3)

Publication Number Publication Date
EP3636811A1 EP3636811A1 (de) 2020-04-15
EP3636811A9 EP3636811A9 (de) 2020-06-17
EP3636811B1 true EP3636811B1 (de) 2021-03-17

Family

ID=68242512

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19202310.9A Active EP3636811B1 (de) 2018-10-10 2019-10-09 Verfahren zum überprüfen eines montagezustands eines spinnrotors einer offenendspinnvorrichtung sowie offenendspinnvorrichtung

Country Status (3)

Country Link
EP (1) EP3636811B1 (de)
CN (1) CN111020757B (de)
DE (1) DE102018124947A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117394644A (zh) * 2023-10-11 2024-01-12 陕西京泰纺织化纤(集团)有限公司 一种全自动转杯纺纱机用电机装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005032184A1 (de) * 2005-07-09 2007-01-18 Saurer Gmbh & Co. Kg Verfahren zum Betreiben eines elektromotorischen Antriebs
DE102006030187A1 (de) * 2006-06-30 2008-01-10 Oerlikon Textile Gmbh & Co. Kg Lagereinrichtung für einen Spinnrotor
DE102013108199A1 (de) * 2013-07-31 2015-02-05 Maschinenfabrik Rieter Ag Offenend-Spinnrotor mit einer Rotortasse, einem Rotorschaft sowie einer Kupplungsvorrichtung
DE102014001627B4 (de) * 2014-02-07 2022-03-24 Saurer Spinning Solutions Gmbh & Co. Kg Offenend-Rotorspinnvorrichtung und Verfahren zum Betreiben einer Offenend-Rotorspinnvorrichtung
DE102015111673A1 (de) * 2015-07-17 2017-01-19 Rieter Cz S.R.O. Verfahren zum sicheren Starten und/oder Stoppen eines Rotors einer Rotorspinnmaschine und Rotorspinnmaschine
DE102015016055A1 (de) * 2015-12-11 2017-06-14 Saurer Germany Gmbh & Co. Kg Elektrischer Antrieb und Offenend-Spinneinrichtung mit dem elektrischen Antrieb
DE102016122595A1 (de) * 2016-11-23 2018-05-24 Maschinenfabrik Rieter Ag Rotortasse und Offenend-Spinnrotor mit einer Rotortasse
DE102017103622A1 (de) * 2017-02-22 2018-08-23 Rieter Cz S.R.O. Verfahren zur Lagerung eines Spinnrotors sowie Lagerung, Spinnrotor und Stützlager

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102018124947A1 (de) 2020-04-16
CN111020757A (zh) 2020-04-17
CN111020757B (zh) 2022-11-08
EP3636811A1 (de) 2020-04-15
EP3636811A9 (de) 2020-06-17

Similar Documents

Publication Publication Date Title
DE102005030612B4 (de) Halteeinrichtung für ein Sensorsignal, Verfahren zum Weiterleiten eines Sensorsignals und Computerprogramm
EP0972868A2 (de) Lageranordnung für eine Offenend-Spinnvorrichtung
DE102007028935A1 (de) Verfahren und Vorrichtung zum Starten einer elektrischen Maschine mit einem magnetisch gelagerten Rotor
DE2238610B2 (de) Offen-end-spinnvorrichtung
DE2923511B2 (de) Elektronische Einrichtung zur Überwachung einer Mehrzahl laufender Fäden an einer Textilmaschine
EP3636811B1 (de) Verfahren zum überprüfen eines montagezustands eines spinnrotors einer offenendspinnvorrichtung sowie offenendspinnvorrichtung
DE102014108526A1 (de) Offenendspinnvorrichtung mit einer Zwischenkammer
EP3401619A1 (de) Klima-service-gerät für eine fahrzeugklimaanlage
DE69912711T2 (de) Batterieabkopplungssystem
DE102016104161B4 (de) Verfahren zum Verhindern eines Anhaftens einer Fahrzeugkupplung
DE3529494A1 (de) Schaltungsanordnung umfassend einen mikrocomputer und einen mit diesem im datenaustausch stehenden halbleiter-speicher
DE19650597B4 (de) Auflöseeinrichtung eines Offenend-Spinnaggregates
EP1960852B1 (de) Überwachungseinrichtung für eine Antriebseinrichtung
EP0779017B1 (de) Vorrichtung zum einrücken einer steckbaugruppe in einen baugruppenträger
DE102008040992A1 (de) Saugsystem für eine Offenendspinnmaschine
DE102009048295A1 (de) Offenend-Spinnrotor
DE102013111245B4 (de) Verfahren zur Steuerung der Anspinn- und Abstelloperationen des Garns auf der Arbeitsstelle einer Rotorspinnmaschine sowie Steuersystem einer Rotorspinnmaschine
DE102010017450A1 (de) Garnspeichervorrichtung mit elektromagnetischer Kupplung und Verfahren zur Garnerfassung
EP3305952B1 (de) Verfahren zum betreiben einer offenend-rotorspinneinrichtung und offenend-rotorspinneinrichtung
DE102016213560A1 (de) Vorrichtung und Verfahren zur Betätigung einer Parksperre eines Getriebes eines Kraftfahrzeuges
DE102004032178A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102015102457A1 (de) Verfahren zur Steuerung eines Ansetzprozesses
EP0585603B1 (de) Verfahren zum Betrieb einer Offenend-Spinnvorrichtung
DE102020201074A1 (de) Verfahren zur Ansteuerung eines Aktuators zum Betätigen einer Parksperre in einem Kraftfahrzeug-Getriebe
DE102019110540A1 (de) Verfahren zum Einstellen einer Position eines Aktors nach Unterbrechung einer Spannungsversorgung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200507

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201029

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019001015

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1372329

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210618

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210719

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210717

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019001015

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

26N No opposition filed

Effective date: 20211220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210717

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211009

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211009

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20191009

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231030

Year of fee payment: 5

Ref country code: DE

Payment date: 20231030

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317