EP3634930A1 - 1,1,1,2,3,3-hexafluoropropane de haute pureté, son procédé de fabrication et utilisation - Google Patents

1,1,1,2,3,3-hexafluoropropane de haute pureté, son procédé de fabrication et utilisation

Info

Publication number
EP3634930A1
EP3634930A1 EP18726195.3A EP18726195A EP3634930A1 EP 3634930 A1 EP3634930 A1 EP 3634930A1 EP 18726195 A EP18726195 A EP 18726195A EP 3634930 A1 EP3634930 A1 EP 3634930A1
Authority
EP
European Patent Office
Prior art keywords
hfc
hfo
weight
pentafluoropropene
cis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18726195.3A
Other languages
German (de)
English (en)
Inventor
Laurent Wendlinger
Dominique Deur-Bert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP3634930A1 publication Critical patent/EP3634930A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/395Separation; Purification; Stabilisation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a process for producing high purity 1,1,1,2,3,3-hexafluoropropane and a composition containing mainly 1,1,1,2,3,3-hexafluoropropane, suitable for use as a cleaning agent in the semiconductor industry.
  • 1,1,1,2,3,3-Hexafluoropropane is a hydrofluorocarbon and has been described as a raw material for the manufacture of 1,1,1,2,3-pentafluoropropene or as an intermediate in the manufacture of 1,1,1,2,3-pentafluoropropane and / or 1,1,1,2-tetrafluoropropene.
  • HFC-236ea is a hydrofluorocarbon and has been described as a raw material for the manufacture of 1,1,1,2,3-pentafluoropropene or as an intermediate in the manufacture of 1,1,1,2,3-pentafluoropropane and / or 1,1,1,2-tetrafluoropropene.
  • 1,1,1,2,3,3-hexafluoropropane can be prepared by catalytic hydrogenation of hexafluoropropene.
  • 1,1,1,2,3,3-Hexafluoropropane may also be prepared by a process in which at least one tetrafluorochloropropene is obtained from the chlorofluorination of 1,1,1,2,2-pentafluoro-3, 3-dichloropropane (HCFC-225ca) and / or 1,1,2,2,3-pentafluoro-1,3-dichloropropane (HCFC-225cb) with hydrogen in the presence of an oxide catalyst metallic.
  • 1,1,1,2,3,3-hexafluoropropane can be prepared by reaction of 1,2,3,3,3-pentafluoropropene (HFO-1225ye) with hydrogen fluoride at a temperature of high temperature, on a catalyst selected from the group consisting of aluminum fluoride, fluorinated aluminum oxide, aluminum fluoride-supported metals, fluorinated aluminum oxide supported metals and catalysts comprising trivalent chromium .
  • the present application has for first object a method of manufacturing 1,1,1,2,3,3-hexafluoropropane of high purity.
  • the method according to the present invention comprises providing a stream comprising at most 99% by weight of 1,1,1,2,3,3-hexafluoropropane and then treating said stream to give a composition comprising at least 99.4% by weight of HFC-236ea, and not more than 0.6% by weight of at least one compound selected from hexafluoropropene, cis / trans-1,2,3,3,3-pentafluoropropene (HFO-1225ye (Z / E)), 1,1,3,3,3-pentafluoropropene (HFO -1225zc), 1,1,2,3,3-pentafluoropropene (HFO-1225yc), 2,3,3,3-tetrafluoropropene (HFO-1234yf), cis / trans-, 3,3,3 tetrafluoropropene (HFO-1234ze (Z / E)), 3,3,3-trifluoropropene (HFO-1243zf), 1,1,1,2,3,3,
  • the stream comprising at most 99% by weight of 1,1,1,2,3,3-hexafluoropropane can be obtained from any method for preparing 1,1,1,2,3,3-hexafluoropropane.
  • the method of catalytic hydrogenation of hexafluoropropene is preferred.
  • condensation there may be mentioned condensation, evaporation, decantation, absorption, washing, liquid-liquid extraction.
  • photochlorination distillation, for example extractive distillation, azeotropic distillation, adsorption on solid and more particularly adsorption on molecular sieve, alumina or activated carbon and membrane separation.
  • the present invention more particularly relates to a process for producing 1,1,1,2,3,3-hexafluoropropane comprising (i) at least one step of hydrogenation of hexafluoropropene (HFP) to give a stream comprising 1,1,1,2,3,3-hexafluoropropane, optionally unreacted hexafluoropropene, unreacted hydrogen, cis / trans-1,2,3,3,3-pentafluoropropene (HFO-1225ye) (Z / E)), 1,1,3,3,3-pentafluoropropene (HFO-1225zc), 1,1,2,3,3-pentafluoropropene (HFO-1225yc), 2,3,3, 3-tetrafluoropropene (HFO-1234yf), cis / trans-1, 3,3,3-tetrafluoropropene (HFO-1234ze (Z / E)), 3,3,3-trifluoropropene (HFO-12
  • the separation and / or purification steps may be chosen from the following:
  • Adsorption for example on activated alumina and / or molecular sieve
  • the separation and / or purification steps may comprise at least one adsorption step, preferably on activated alumina and / or molecular sieve and at least one distillation step.
  • the separation and / or purification steps may comprise (a) at least one step of removing the HF by adsorption on activated alumina or by membrane separation, and / or (b) at least one elimination step water adsorption on molecular sieve with a pore size of between 3 and 5, and / or (c) at least one distillation step.
  • the separation and / or purification steps comprise successively (a) at least one HF removal step, (b) at least one water removal step and (c) at least one distillation step.
  • the distillation step (c) may be carried out by a distillation column which makes it possible to obtain the purified HFC-236ea at the top of the column and to recover heavy compounds at the bottom of the column or by a distillation column which makes it possible to recover light compounds at the top of the column, the purified HFC-236ea lateral withdrawal of this column and heavy compounds at the bottom of this column.
  • HFC-236ea can undergo a final purification (d) on a molecular sieve having a pore size greater than or equal to 4.
  • the distillation step (c) can be carried out at a pressure of between 1 and 15 bar absolute, advantageously between 3 and 10 bar absolute.
  • the distillation step (c) can also be carried out by the use of two distillation columns.
  • the first distillation column can be used to remove light compounds such as for example HFP, HFO-1234yf, HFO-1243zf, HFO-1225ye (Z / E), HFO-1234ze (Z / E), HFO-1225zc, HFC -227ea, HFC-236fa, HFC-254eb, cyclo-HFP while the second distillation column can be used to remove heavy compounds such as for example HFC-245fa, HFC-245eb, HFO-356mff (Z / E) , HFC-254fb.
  • the purified HFC-236ea is thus obtained at the top of the second distillation column.
  • these two distillation columns or the distillation column with side withdrawal can be advantageously replaced by a single column of walled
  • the HF (a) removal step may be carried out by washing with water optionally followed by washing with a solution of sodium hydroxide or potassium hydroxide to neutralize the traces of residual acidity.
  • the step of removing the HF (a) may be preceded by a step (aO) for photochlorination of the olefins present in the HFC-236ea.
  • the step of removing the HF (a) will very preferably be a wash with an aqueous solution to absorb not only the HF but also the HCI formed and the residual Cl 2 during the photochloration step.
  • the photochloration step (aO) may be carried out in the liquid phase or in the gas phase in a photochlorination reactor equipped with a lamp and a transparent window.
  • a mixture of chlorine and the stream comprising HFC-236ea, containing unsaturated fluorinated products is introduced into the photochlorination reactor.
  • the reaction is carried out in the gas phase and the resulting stream, containing HFC-236ea and chlorofluorinated saturated products, is directly sent to the next purification step.
  • the hydrogenation step is carried out in the presence of a catalyst.
  • metals such as Pd, Ru, Pt, Rh, Ir, Fe, Co, Ni, Cu, Ag, Re, Os, Au, Ge, Te optionally supported.
  • support there may be mentioned in particular carbon, alumina, fluorinated alumina, AlF3, oxides, oxyfluorides and fluorides of Cr, Ti, Zr, Mg, Zn, silica and silicon carbide.
  • the amount of metals present in the catalyst, when it is supported, may be between 0.001 and 10% by weight, preferably between 0.001 and 0.2% by weight.
  • the hydrogenation step is advantageously carried out in the presence of the Pd supported on alumina, preferably in the polymorphic alpha form.
  • the hydrogenation step may be carried out both in the liquid phase and in the gas phase.
  • the gas phase is however preferred.
  • the hydrogenation step is preferably carried out in the presence of hydrogen, advantageously with a molar ratio of hydrogen / HFP of between 1 and 50, and especially of between 2 and 15.
  • the hydrogenation step is preferably carried out at a temperature of between 50 and 200 ° C, preferably between 80 and 120 ° C.
  • the temperature at the inlet of the reactor of the hydrogenation stage is between 30 and 100 ° C., advantageously between 40 and 80 ° C.
  • the contact time of the hydrogenation step defined as the ratio of the volume of the catalytic bed to the flow rate of the total flow under normal conditions of temperature and pressure, is preferably between 0.1 s and 20 s and advantageously between 0.5 and 5 s.
  • the hydrogenation stage is preferably carried out at an absolute pressure of between 0.5 and 20 bar and advantageously of between 1 and 5 bar.
  • the hydrogenation step is carried out in the presence of a diluent which can be co-introduced with the reagents in the reaction medium.
  • the diluent is an inert gas that does not react under the conditions of the hydrogenation step.
  • diluent mention may be made of nitrogen, helium or argon.
  • the molar ratio of the diluent / reagents at the inlet of the reactor of the hydrogenation stage can be between 100: 1 and 1: 1, preferably between 10: 1 and 1: 1, advantageously between 5: 1 and 1 1.
  • the diluent may be the hydrogenation product which is HFC-236ea.
  • a portion of the gaseous effluent from the reactor comprising HFC-236ea, unreacted hydrogen and optionally unreacted hexafluoropropene, 1,1,1,2,3-pentafluoropropane (HFC-236ea 245eb) and 1,1,1,2-tetrafluoropropane (HFC-254eb) is recycled and the other part of the gaseous effluent from the reactor is subjected to a separation step and / or purification.
  • the gas stream comprising the recycle loop and the reagents can be preheated before introduction into the reactor.
  • an adiabatic reactor is preferably used.
  • the portion of the gaseous effluent recycled to the reactor preferably represents at least 90% by volume of all the effluent at the outlet of the reactor, advantageously at least 93% by volume. In a particularly preferred manner, the portion of the effluent recycled to the reactor represents between 94 and 98% by volume of the total effluent at the outlet of the reactor.
  • the flow at the end of the hydrogenation step may be subjected to a condensation step under conditions such that the unreacted hydrogen is not condensed and a portion of HFC-236ea formed in the step (i) is condensed.
  • the condensation step is carried out at a temperature of between 0 and 50 ° C. and at a pressure of between 0.5 and 20 bar absolute, advantageously between 1 and 5 bar absolute.
  • the condensation step is carried out under conditions such that between 1 and 30% of HFC-236ea at the outlet of the reactor is condensed and advantageously between 2 and 10% is condensed.
  • the uncondensed fraction is then recycled to the hydrogenation step (i) after any heating.
  • the condensed fraction is then evaporated before being sent to the separation and / or purification step described above.
  • the stream comprising predominantly HFC-236ea can be subjected to at least one washing step to reduce the HF content.
  • the residual presence of water may also render it unsuitable for use in the semiconductor industry.
  • the subject of the present invention is also a composition comprising at least 99.4% by weight of HFC-236ea, and at most 0.6% by weight of at least one compound chosen from hexafluoropropene, cis / trans-l , 2,3,3,3-pentafluoropropene (HFO-1225ye (Z / E)), 1,1,3,3,3-pentafluoropropene (HFO-1225zc), 1,1,2,3,3- pentafluoropropene (HFO-1225yc), 2,3,3,3-tetrafluoropropene (HFO-1234yf), cis / trans-1, 3,3,3-tetrafluoropropene (HFO-1234ze (Z / E)), 3 , 3,3-trifluoropropene (HFO-1243zf), 1,1,1,2,3,3,3-peptafluoropropane (HFC-227ea), 1,1,1,3,3,3-hexafluoropropan
  • the composition comprises at least 99.4%, preferably 99.9% by weight, advantageously 99.99% by weight, or even 99.995% by weight of HFC-236ea and at most 0.1%. by weight of HF, preferably at most 1 ppm of HF and advantageously at most 0.1 ppm of HF.
  • the composition comprises at least 99.4%, preferably 99.9% by weight, advantageously 99.99% by weight, or even 99.995% by weight of HFC-236ea and at most 190 ppm of water, preferably at most 10 ppm of water and preferably at most 1 ppm of water.
  • the composition comprises at least 99.4%, preferably 99.9% by weight, advantageously 99.99% by weight, or even 99.995% by weight of HFC-236ea and at most 5 ppm of hydrogen, preferably at most 1 ppm of hydrogen, more preferably at most 0.3 ppm of hydrogen and advantageously at most 0.1 ppm of hydrogen.
  • the composition comprises at least 99.4%, preferably 99.9% by weight, advantageously 99.99% by weight, or even 99.995% by weight of HFC-236ea and at most 3500 ppm of nitrogen, preferably at most 150 ppm nitrogen, more preferably at most 70 ppm nitrogen and preferably at most 5 ppm nitrogen.
  • the composition comprises at least 99.4%, preferably 99.9% by weight, advantageously 99.99% by weight, or even 99.995% by weight of HFC-236ea and at most 1000 ppm of oxygen, preferably at most 20 ppm oxygen, more preferably at most 10 ppm oxygen and preferably at most 2 ppm oxygen.
  • the composition comprises at least 99.4%, preferably
  • HFC-236ea at most 125 ppm of CO 2 , preferably at most 20 ppm of CO 2 , more preferably at most 5 ppm of C0 2 and advantageously at most 2 ppm of C0 2 .
  • the composition comprises at least 99.4%, preferably 99.9% by weight, advantageously 99.99% by weight, or even 99.995% by weight of HFC-236ea and at most 90 ppm of CO preferably at most 15 ppm CO, more preferably at most 3 ppm CO and advantageously at most 1.5 ppm CO.
  • the composition comprises at least 99.4%, preferably 99.9% by weight, advantageously 99.99% by weight, or even 99.995% by weight of HFC-236ea, at most 190 ppm. water and at most 0.1% by weight of HF, preferably at most 10 ppm of water and at most 1 ppm of HF and advantageously at most 1 ppm of water and at most 0.1 ppm of HF.
  • composition according to the invention may furthermore comprise at most 1000 ppm, preferably at most 100 ppm and advantageously at most 10 ppm of at least one compound chosen from hexafluoropropene, cis / trans-1, 2,3,3,3-pentafluoropropene (HFO-1225ye (Z / E)), 1,1,3,3,3-pentafluoropropene (HFO-1225zc), 1,1,2,3 , 3-pentafluoropropene (HFO-1225yc) and 3,3,3-trifluoropropene (HFO-1243zf) and at most 5000 ppm, preferably at most 500 ppm and advantageously at most 50 ppm of at least one compound selected from hexafluorocyclopropane (cyclo-C3F 6 ) and octafluorocyclobutane (cyclo-C 4 F 8 ).
  • composition according to the invention may furthermore comprise at most 6000 ppm, preferably at most 3000 ppm and advantageously at most 1000 ppm of total organic impurities.
  • Table 2 summarizes the composition in% by weight of fractions 2 to 11).
  • Fractions of purity> 99.7% are pooled and dried by passing through a 4 ⁇ molecular sieve to form a final batch.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Detergent Compositions (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

La présente invention concerne un procédé de fabrication du 1,1,1,2,3,3-hexafluoropropane de haute pureté et une composition renfermant principalement du 1,1,1,2,3,3-hexafluoropropane, apte à être utilisée comme agent de nettoyage dans l'industrie des semi-conducteurs.

Description

1,1,1,2,3,3-hexafluoropropane de haute pureté, son procédé de fabrication et utilisation
La présente invention concerne un procédé de fabrication du 1,1,1,2,3,3-hexafluoropropane de haute pureté et une composition renfermant principalement du 1,1,1,2,3,3- hexafluoropropane, apte à être utilisée comme agent de nettoyage dans l'industrie des semiconducteurs.
Le 1,1,1,2,3,3-hexafluoropropane (HFC-236ea) est un hydrofluorocarbure et a été décrit comme matière première pour fabriquer du 1,1,1,2,3-pentafluoropropène ou comme intermédiaire dans la fabrication du 1,1,1,2,3-pentafluoropropane et/ou du 1,1,1,2- tetrafluoropropène. On peut citer notamment les documents US 5679875, US 539600, US
8359964 et US 8389779).
Le 1,1,1,2,3,3-hexafluoropropane peut notamment être préparé par hydrogénation catalytique de l'hexafluoropropène.
II peut également être préparé par pyrolyse à haute température du chlorodifluorométhane
(CHCIF2) en présence de 1,1,1,2-tetrafluoroéthane. On peut citer par exemple le document WO
1996029296.
Le 1,1,1,2,3,3-hexafluoropropane peut aussi être préparé selon un procédé au cours lequel au moins un tétrafluorochloropropène est obtenu à partir de la déchlorofluoration du 1,1,1,2,2- pentafluoro-3,3-dichloropropane (HCFC-225ca) et/ou du l,l,2,2,3-pentafluoro-l,3- dichloropropane (HCFC-225cb) avec de l'hydrogène en présence d'un catalyseur constitué d'un oxyde métallique. Puis le(s) tétrafluorochloropropène(s) produit(s) (l,l,l,2-tetrafluoro-3-chloro- 2-propene (HCFO-1224yd), l,l,2,3-tetrafluoro-l-chloro-2-propene (HCFO-1224ye) et 1,1,2,3- tetrafluoro-3-chloro-l-propene (HCFO-1224yc)) est ou sont ensuite fluoré(s) en présence d'un catalyseur pour conduire au HFC-236ea. On peut citer par exemple les documents US 5532418.
Enfin, selon US 5563304, le 1,1,1,2,3,3-hexafluoropropane peut être préparé par réaction du 1,2,3,3,3-pentafluoropropène (HFO-1225ye) avec du fluorure d'hydrogène à une température élevée, sur un catalyseur choisi dans le groupe comprenant le fluorure d'aluminium, l'oxyde d'aluminium fluoruré, des métaux à support fluorure d'aluminium, des métaux à support oxyde d'aluminium fluoruré et des catalyseurs comprenant du chrome trivalent.
La présente demande a pour premier objet un procédé de fabrication du 1,1,1,2,3,3- hexafluoropropane de haute pureté.
Le procédé selon la présente invention comprend la fourniture d'un flux comprenant au plus 99 % en poids du 1,1,1,2,3,3-hexafluoropropane puis le traitement dudit flux pour donner une composition comprenant au moins 99,4 % en poids du HFC-236ea, et au plus 0,6% en poids d'au moins un composé choisi parmi l'hexafluoropropène, du cis/trans-l,2,3,3,3-pentafluoropropène (HFO-1225ye(Z/E)), du 1,1,3,3,3-pentafluoropropène (HFO-1225zc), du 1,1,2,3,3- pentafluoropropène (HFO-1225yc), du 2,3,3,3-tetrafluoropropène (HFO-1234yf), du cis/trans- l,3,3,3-tetrafluoropropène(HFO-1234ze(Z/E)), du 3,3,3-trifluoropropène (HFO-1243zf), du 1,1,1,2,3,3,3-peptafluoropropane (HFC-227ea), du 1,1,1,3,3,3-hexafluoropropane (HFC-236fa), du 1,1,1,3,3-pentafluoropropane (HFC-245fa), du 1,1,1,2,3-pentafluoropropane (HFC-245eb), du 1,1,1,2-tetrafluoropropane (HFC-254eb), du 1,1,1,3-tetrafluoropropane (HFC-254fb), du 1,1,1- trifluoropropane (HFC-263fb), du 1,1,2-trifluoroéthane (HFC-143), du hexafluorocyclopropane (cyclo-C3F6), du octafluorocyclobutane (cyclo-C4F8), du cis/trans-l,l,l,4,4,4-hexafluoro-2-butène (HFO-356mff(Z/E)), de l'eau, de l'hydrogène, de l'azote, de l'oxygène, du C02, du CO et de THF. Ce traitement comprend au moins une étape de séparation et/ou purification.
Le flux comprenant au plus 99 % en poids du 1,1,1,2,3,3-hexafluoropropane peut être obtenu à partir de toute méthode de préparation du 1,1,1,2,3,3-hexafluoropropane. On préfère toutefois, la méthode d'hydrogénation catalytique de l'hexafluoropropène.
Comme séparation, on peut citer la condensation, l'évaporation, la décantation, l'absorption, le lavage, l'extraction liquide-liquide.
Comme purification, on peut citer la photochloration, la distillation, par exemple la distillation extractive, la distillation azéotropique, l'adsorption sur solide et plus particulièrement adsorption sur tamis moléculaire, alumine ou charbon actif et la séparation membranaire
La présente invention a plus particulièrement pour objet, un procédé de fabrication du 1,1,1,2,3,3-hexafluoropropane comprenant (i) au moins une étape d'hydrogénation de l'hexafluoropropène (HFP) pour donner un flux comprenant du 1,1,1,2,3,3-hexafluoropropane, éventuellement de l'hexafluoropropène non réagi, de l'hydrogène non réagi, du cis/trans- 1,2,3,3,3-pentafluoropropène (HFO-1225ye(Z/E)), du 1,1,3,3,3-pentafluoropropène (HFO- 1225zc), du 1,1,2,3,3-pentafluoropropène (HFO-1225yc), du 2,3,3,3-tetrafluoropropène (HFO- 1234yf), du cis/trans-l,3,3,3-tetrafluoropropène(HFO-1234ze(Z/E)), du 3,3,3-trifluoropropène (HFO-1243zf), du 1,1,1,2,3,3,3-peptafluoropropane (HFC-227ea), du 1,1,1,3,3,3- hexafluoropropane (HFC-236fa), du 1,1,1,3,3-pentafluoropropane (HFC-245fa), du 1,1,1,2,3- pentafluoropropane (HFC-245eb), du 1,1,1,2-tetrafluoropropane (HFC-254eb), du 1,1,1,3- tetrafluoropropane (HFC-254fb), du 1,1,1-trifluoropropane (HFC-263fb), du 1,1,2-trifluoroéthane (HFC-143), du hexafluorocyclopropane (cyclo-C3F6), du octafluorocyclobutane (cyclo-C4F8), du cis/trans-l,l,l,4,4,4-hexafluoro-2-butène (HFO-356mff(Z/E)), de l'eau et de THF ;(ii) au moins une étape de séparation et/ou de purification pour donner une composition comprenant au moins 99,4 % en poids du HFC-236ea, et au plus 0,6% en poids d'au moins un composé choisi parmi l'hexafluoropropène, du cis/trans-l,2,3,3,3-pentafluoropropène (HFO-1225ye(Z/E)), du 1,1,3,3,3-pentafluoropropène (HFO-1225zc), du 1,1,2,3,3-pentafluoropropène (HFO-1225yc), du 2,3,3,3-tetrafluoropropène (HFO-1234yf), du cis/trans-l,3,3,3-tetrafluoropropène(HFO- 1234ze(Z/E)), du 3,3,3-trifluoropropène (HFO-1243zf), du 1,1,1,2,3,3,3-peptafluoropropane (HFC-227ea), du 1,1,1,3,3,3-hexafluoropropane (HFC-236fa), du 1,1,1,3,3-pentafluoropropane (HFC-245fa), du 1,1,1,2,3-pentafluoropropane (HFC-245eb), du 1,1,1,2-tetrafluoropropane (HFC- 254eb), du 1,1,1,3-tetrafluoropropane (HFC-254fb), du 1,1,1-trifluoropropane (HFC-263fb), du 1,1,2-trifluoroéthane (HFC-143), du hexafluorocyclopropane (cyclo-C3F6), du octafluorocyclobutane (cyclo-C4F8), du cis/trans-l,l,l,4,4,4-hexafluoro-2-butène (HFO- 356mff(Z/E)), de l'eau, de l'hydrogène, de l'azote, de l'oxygène, du C02, du CO et de l'HF.
Les étapes de séparation et/ou purification peuvent être choisies parmi les suivantes :
- Adsorption, par exemple sur alumine activée et/ou tamis moléculaire
- Distillation,
- Séparation membranaire,
- Lavage à l'eau,
- La photochloration.
Les étapes de séparation et/ou purification peuvent comprendre au moins une étape d'adsorption, de préférence sur alumine activée et/ou tamis moléculaire et au moins une étape de distillation.
De préférence, les étapes de séparation et/ou purification peuvent comprendre (a) au moins une étape d'élimination de l'HF par adsorption sur alumine activée ou par séparation membranaire, et/ou (b) au moins une étape d'élimination de l'eau par adsorption sur tamis moléculaire dont la taille des pores est comprise entre 3Â et 5Â, et/ou (c) au moins une étape de distillation.
Avantageusement, les étapes de séparation et/ou purification comprennent successivement (a) au moins une étape d'élimination d'HF, (b) au moins une étape d'élimination d'eau et (c) au moins une étape de distillation.
L'étape de distillation (c) peut être réalisée par une colonne de distillation qui permet d'obtenir le HFC-236ea purifié en tête de colonne et de récupérer des composés lourds en pied de colonne ou par une colonne de distillation qui permet de récupérer des composés légers en tête de colonne, le HFC-236ea purifié en soutirage latéral de cette colonne et des composés lourds en pied de cette colonne.
A l'issu de l'étape de distillation, le HFC-236ea peut subir une ultime purification (d) sur tamis moléculaire présentant une taille de pores supérieure ou égale à 4Â.
L'étape de distillation (c) peut être réalisée à une pression comprise entre 1 et 15 bar absolu, avantageusement entre 3 et 10 bar absolu. L'étape de distillation (c) peut aussi être réalisée par l'emploi de deux colonnes de distillation. La première colonne de distillation peut être utilisée pour éliminer les composés légers tels que par exemple HFP, HFO-1234yf, HFO-1243zf, HFO-1225ye(Z/E), HFO-1234ze(Z/E), HFO- 1225zc, HFC-227ea, HFC-236fa, HFC-254eb, le cyclo-HFP tandis que la seconde colonne de distillation peut être utilisée pour éliminer les composés lourds tels que par exemple HFC-245fa, HFC-245eb, HFO-356mff(Z/E), HFC-254fb. Le HFC-236ea purifié est ainsi obtenu en tête de la seconde colonne de distillation. Optionnellement, ces deux colonnes de distillation ou la colonne de distillation avec soutirage latéral peuvent être avantageusement remplacées par une seule colonne de distillation à paroi (divided wall column) qui offre à la fois des économies de capital et d'énergie.
Selon un autre mode de réalisation préféré, l'étape d'élimination de l'HF (a) peut être réalisée par un lavage à l'eau optionnellement suivi par un lavage avec une solution de soude ou de potasse pour neutraliser les traces d'acidité résiduelles.
Selon un autre mode de réalisation préférentiel, l'étape d'élimination de l'HF (a) peut être précédée par une étape (aO) de photochloration des oléfines présentes dans le HFC-236ea. Dans ce cas, l'étape d'élimination de l'HF (a) sera très préférentiel lement un lavage par une solution aqueuse permettant d'absorber non seulement l'HF mais aussi l'HCI formé et le Cl2 résiduel au cours de l'étape de photochloration.
L'étape (aO) de photochloration peut être réalisée en phase liquide ou en phase gaz dans un réacteur de photochloration équipé d'une lampe et d'une fenêtre transparente. Un mélange de chlore et le flux comprenant du HFC-236ea, contenant des produits fluorés insaturés est introduit dans le réacteur de photochloration. De façon préférentielle, la réaction est effectuée en phase gaz et le flux issu, contenant le HFC-236ea et les produits saturés chlorofluorés, est directement envoyé à l'étape suivante de purification.
De préférence, l'étape d'hydrogénation est mise en œuvre en présence d'un catalyseur.
Comme catalyseur, on peut citer notamment des métaux tels que Pd, Ru, Pt, Rh, Ir, Fe, Co, Ni, Cu, Ag, Re, Os, Au, Ge, Te éventuellement supporté. Comme support, on peut citer notamment le carbone, l'alumine, l'alumine fluoré, AIF3, les oxydes, les oxyfluorures et les fluorures de Cr, Ti, Zr, Mg, Zn, la silice et le carbure de silicium.
La quantité de métaux présents dans le catalyseur, lorsque celui-ci est supporté, peut être comprise entre 0,001 et 10 % en poids, de préférence comprise entre 0,001et 0,2 % en poids.
L'étape d'hydrogénation est avantageusement mise en œuvre en présence du Pd supporté sur alumine, de préférence sous la forme polymorphique alpha.
L'étape d'hydrogénation peut être mise en œuvre aussi bien en phase liquide qu'en phase gaz. La phase gaz est toutefois préférée. L'étape d'hydrogénation est de préférence mise en œuvre en présence d'hydrogène, avantageusement avec un rapport molaire hydrogène / HFP compris entre 1 et 50, et tout particulièrement compris entre 2 et 15.
L'étape d'hydrogénation est de préférence mise en œuvre à une température comprise entre 50 et 200°C, de préférence comprise entre 80 et 120°C.
De préférence, la température à l'entrée du réacteur de l'étape d'hydrogénation est comprise entre 30 et 100° C, avantageusement comprise entre 40 et 80° C.
Le temps de contact de l'étape d'hydrogénation, défini comme le rapport du volume du lit catalytique sur le débit volumique du flux total dans les conditions normales de température et de pression, est de préférence comprise entre 0,1 s et 20 s et avantageusement comprise entre 0,5 et 5 s.
L'étape d'hydrogénation est de préférence mise en œuvre à une pression absolue comprise entre 0,5 et 20 bar et avantageusement comprise entre 1 et 5 bar.
De préférence, l'étape d'hydrogénation est mise en œuvre en présence d'un diluant qui peut être co-introduit avec les réactifs dans le milieu réactionnel. Le diluant est un gaz inerte qui ne réagit pas dans les conditions de l'étape d'hydrogénation. Comme diluant, on peut citer l'azote, l'hélium ou l'argon.
Le rapport molaire du diluant/réactifs à l'entrée du réacteur de l'étape d'hydrogénation peut être compris entre 100 :1 et 1 :1, de préférence entre 10 :1 et 1 :1, avantageusement entre 5 : 1 et 1 :1.
Le diluant peut être le produit d'hydrogénation qui est le HFC-236ea. Dans ce cas, une partie de l'effluent gazeux issu du réacteur comprenant du HFC-236ea, de l'hydrogène non réagi et éventuellement de l'hexafluoropropène non réagi, du 1,1,1,2,3-pentafluoropropane (HFC- 245eb) et du 1,1,1,2-tetrafluoropropane (HFC-254eb) est recyclé et l'autre partie de l'effluent gazeux issu du réacteur est soumis à une étape de séparation et/ou purification.
Le flux gazeux comprenant la boucle de recyclage et les réactifs peuvent être préchauffés avant introduction dans le réacteur.
Selon le procédé de l'invention on utilise, de préférence un réacteur adiabatique.
La partie de l'effluent gazeux recyclée au réacteur représente, de préférence au moins 90% en volume de la totalité de l'effluent à la sortie du réacteur, avantageusement au moins 93% en volume. De façon particulièrement préférée, la partie de l'effluent recyclée au réacteur représente entre 94 et 98% en volume de l'effluent total à la sortie du réacteur. Le flux à l'issue de l'étape d'hydrogénation peut être soumis à une étape de condensation dans des conditions telles que l'hydrogène non réagi n'est pas condensé et qu'une partie d'HFC- 236ea formé à l'étape (i) est condensé.
De préférence, l'étape de condensation est mise en œuvre à une température comprise entre 0 et 50°C et à une pression comprise entre 0,5 et 20 bar absolu, avantageusement entre 1 et 5 bars absolu.
De préférence, l'étape de condensation est mise en œuvre dans des conditions telles qu'entre 1 et 30 % d'HFC-236ea en sortie du réacteur est condensé et avantageusement entre 2 et 10 % est condensé.
La fraction non condensée est ensuite recyclée à l'étape d'hydrogénation (i) après un éventuel chauffage.
La fraction condensée est ensuite évaporée avant d'être envoyée à l'étape de séparation et/ou purification décrite précédemment.
Au cours de la réaction d'hydrogénation, on peut observer la coupure de la liaison carbone- fluoré conduisant ainsi à la formation d'une petite quantité HF qui peut être néfaste à l'utilisation du HFC-236ea dans l'industrie des semi-conducteurs.
Après séparation du flux à l'issue de l'étape (i), on peut soumettre le flux comprenant majoritairement du HFC-236ea à au moins une étape de lavage pour réduire la teneur en HF. Toutefois, la présence résiduelle d'eau peut également rendre inapte à son utilisation dans l'industrie des semi-conducteurs.
La présente invention a également pour objet une composition comprenant au moins 99,4 % en poids du HFC-236ea, et au plus 0,6% en poids d'au moins un composé choisi parmi l'hexafluoropropène, du cis/trans-l,2,3,3,3-pentafluoropropène (HFO-1225ye(Z/E)), du 1,1,3,3,3-pentafluoropropène (HFO-1225zc), du 1,1,2,3,3-pentafluoropropène (HFO-1225yc), du 2,3,3,3-tetrafluoropropène (HFO-1234yf), du cis/trans-l,3,3,3-tetrafluoropropène(HFO- 1234ze(Z/E)), du 3,3,3-trifluoropropène (HFO-1243zf), du 1,1,1,2,3,3,3-peptafluoropropane (HFC-227ea), du 1,1,1,3,3,3-hexafluoropropane (HFC-236fa), du 1,1,1,3,3-pentafluoropropane (HFC-245fa), du 1,1,1,2,3-pentafluoropropane (HFC-245eb), du 1,1,1,2-tetrafluoropropane (HFC- 254eb), du 1,1,1,3-tetrafluoropropane (HFC-254fb), du 1,1,1-trifluoropropane (HFC-263fb), du 1,1,2-trifluoroéthane (HFC-143), du hexafluorocyclopropane (cyclo-C3F6), du octafluorocyclobutane (cyclo-C4F8), du cis/trans-l,l,l,4,4,4-hexafluoro-2-butène (HFO- 356mff(Z/E)), de l'eau, de l'hydrogène, de l'azote, de l'oxygène, du C02, du CO et de THF. De préférence, le HFC-236ea est présent dans la composition en quantité supérieure ou égale à 99,9% en poids, avantageusement supérieure ou égale à 99,99% en poids et de manière encore plus préférée, supérieure ou égale à 99,995 % en poids.
Selon un mode de réalisation, la composition comprend au moins 99,4 %, de préférence 99,9 % en poids, avantageusement 99,99% en poids, voire même 99,995 % en poids du HFC- 236ea et au plus 0,1 % en poids d'HF, de préférence au plus 1 ppm d'HF et avantageusement au plus 0,1 ppm d'HF.
Selon un mode de réalisation, la composition comprend au moins 99,4 %, de préférence 99,9 % en poids, avantageusement 99,99% en poids, voire même 99,995 % en poids du HFC- 236ea et au plus 190 ppm d'eau, de préférence au plus 10 ppm d'eau et avantageusement au plus 1 ppm d'eau.
Selon un mode de réalisation, la composition comprend au moins 99,4 %, de préférence 99,9 % en poids, avantageusement 99,99% en poids, voire même 99,995 % en poids du HFC- 236ea et au plus 5 ppm d'hydrogène, de préférence au plus 1 ppm d'hydrogène, plus préférentiel lement au plus 0,3 ppm d'hydrogène et avantageusement au plus 0,1 ppm d'hydrogène.
Selon un mode de réalisation, la composition comprend au moins 99,4 %, de préférence 99,9 % en poids, avantageusement 99,99% en poids, voire même 99,995 % en poids du HFC- 236ea et au plus 3500 ppm d'azote, de préférence au plus 150 ppm d'azote, plus préférentiellement au plus 70 ppm d'azote et avantageusement au plus 5 ppm d'azote.
Selon un mode de réalisation, la composition comprend au moins 99,4 %, de préférence 99,9 % en poids, avantageusement 99,99% en poids, voire même 99,995 % en poids du HFC- 236ea et au plus 1000 ppm d'oxygène, de préférence au plus 20 ppm d'oxygène, plus préférentiellement au plus 10 ppm d'oxygène et avantageusement au plus 2 ppm d'oxygène.
Selon un mode de réalisation, la composition comprend au moins 99,4 %, de préférence
99,9 % en poids, avantageusement 99,99% en poids, voire même 99,995 % en poids du HFC- 236ea et au plus 125 ppm de C02, de préférence au plus 20 ppm de C02, plus préférentiellement au plus 5 ppm de C02 et avantageusement au plus 2 ppm de C02.
Selon un mode de réalisation, la composition comprend au moins 99,4 %, de préférence 99,9 % en poids, avantageusement 99,99% en poids, voire même 99,995 % en poids du HFC- 236ea et au plus 90 ppm de CO, de préférence au plus 15 ppm de CO, plus préférentiellement au plus 3 ppm de CO et avantageusement au plus 1.5 ppm de CO.
Selon un mode préféré de réalisation, la composition comprend au moins 99,4 %, de préférence 99,9 % en poids, avantageusement 99,99% en poids, voire même 99,995 % en poids du HFC-236ea, au plus 190 ppm d'eau et au plus 0,1 % en poids d'HF, de préférence au plus 10 ppm d'eau et au plus 1 ppm d'HF et avantageusement au plus 1 ppm d'eau et au plus 0,1 ppm d'HF.
Quel que soit le mode de réalisation, la composition selon l'invention peut comprendre en outre au plus 1000 ppm, de préférence au plus 100 ppm et avantageusement au plus 10 ppm d'au moins un composé choisi parmi l'hexafluoropropène, du cis/trans-1, 2,3,3,3- pentafluoropropène (HFO-1225ye(Z/E)), du 1,1,3,3,3-pentafluoropropène (HFO-1225zc), du 1,1,2,3,3-pentafluoropropène (HFO-1225yc) et du 3,3,3-trifluoropropène (HFO-1243zf) et au plus 5000 ppm, de préférence au plus 500 ppm et avantageusement au plus 50 ppm d'au moins un composé choisi parmi du hexafluorocyclopropane (cyclo-C3F6) et du octafluorocyclobutane (cyclo- C4F8).
Quel que soit le mode de réalisation, la composition selon l'invention peut comprendre en outre au plus 6000 ppm, de préférence au plus 3000 ppm et avantageusement au plus 1000 ppm d'impuretés totales organiques.
PARTIE EXPERIMENTALE
Essai 1
Dans un équipement de distillation en verre à double enveloppe (refroidi à -20°C), muni d'une colonne "Oldershaw" à environ 10 plateaux théoriques, surmontée d'un condenseur à reflux, on charge 325g d'un mélange (préalablement lavé) comprenant environ 97,8 % en poids de HFC-236ea et ayant la composition suivante :
Tableau 1
Composé Concentration (% poids)
2,3,3,3-tetrafluoropropène (HFO-1234yf) 0,0984
l,3,3,3-tetrafluoropropène(HFO-1234ze) 0,0013
1,1,1,2,3,3,3-peptafluoropropane (HFC-227ea) 0,0117
1,1,1-trifluoropropane (HFC-263fb) 0,0019
1,1,1,3,3,3-hexafluoropropane (HFC-236fa) 0,0246
1,1,1,2-tetrafluoropropane (HFC-254eb) 0,0581
HFC-236ea: 97,8667
1,1,1,3,3-pentafluoropropane (HFC-245fa) 0,4825
1,1,1,2,3-pentafluoropropane (HFC-245eb) 1,3576
1,1,1,4, 4,4-hexafluoro-2-butène (HFO-356mff) 0,0244
1,1,1,3-tetrafluoropropane (HFC-254fb) 0,0728 La distillation est effectuée à pression atmosphérique. Au total 12 fractions sont soutirées avec une température de tête de 10°C.
Le Tableau 2 résume la composition en % poids des fractions 2 à 11).
Les fractions de pureté > 99,7 % sont regroupées et séchées par passage sur un tamis moléculaire de 4Â pour former un lot final.
L'analyse de ce lot final indique une pureté en HFC-236ea > 99,7 % poids avec une teneur en eau de llppm. Aucune trace d'acidité n'est détectée.
Essai 2
On fait passer à température ambiante un flux gazeux comprenant 99,8% poids de HFC- 236ea, 217 ppm d'HF, 27 ppm d'eau à travers un lit (rapport longueur/diamètre=10) de sphères d'alumine HF-200 BASF (sphères 1/8") et un lit de tamis moléculaires de type siliporite présentant une taille des pores de 3Â, pendant 8 heures. Le flux à la sortie est quasi exempt d'HF (< 1 ppm) et d'eau (<10ppm).

Claims

REVENDICATIONS
1. Procédé de fabrication du 1,1,1,2,3,3-hexafluoropropane de haute pureté comprenant (i) la fourniture d'un flux comprenant au plus 99 % en poids du 1,1,1,2,3,3- hexafluoropropane et (ii) le traitement dudit flux pour donner une composition comprenant au moins 99,4 % en poids du HFC-236ea, et au plus 0,6% en poids d'au moins un composé choisi parmi l'hexafluoropropène, du cis/trans-1, 2,3,3,3- pentafluoropropène (HFO-1225ye(Z/E)), du 1,1,3,3,3-pentafluoropropène (HFO-1225zc), du 1,1,2,3,3-pentafluoropropène (HFO-1225yc), du 2,3,3,3-tetrafluoropropène (HFO- 1234yf), du cis/trans-l,3,3,3-tetrafluoropropène(HFO-1234ze(Z/E)), du 3,3,3- trifluoropropène (HFO-1243zf), du 1,1,1,2,3,3,3-peptafluoropropane (HFC-227ea), du 1,1,1,3,3,3-hexafluoropropane (HFC-236fa), du 1,1,1,3,3-pentafluoropropane (HFC- 245fa), du 1,1,1,2,3-pentafluoropropane (HFC-245eb), du 1,1,1,2-tetrafluoropropane (HFC-254eb), du 1,1,1,3-tetrafluoropropane (HFC-254fb), du 1,1,1-trifluoropropane (H FC- 263fb), du 1,1,2-trifluoroéthane (HFC-143), du hexafluorocyclopropane (cyclo-C3F6), du octafluorocyclobutane (cyclo-C4F8), du cis/trans-1, l,l,4,4,4-hexafluoro-2-butène (HFO- 356mff(Z/E)), de l'eau, de l'hydrogène, de l'azote, de l'oxygène, du C02, du CO et de l'HF, de préférence le traitement comprenant au moins une étape de séparation et/ou purification.
2. Procédé selon la revendication 1 caractérisé en ce qu'il comprend (i) au moins une étape d'hydrogénation, de préférence catalytique, de l'hexafluoropropène pour donner un flux comprenant du 1,1,1,2,3,3-hexafluoropropane, éventuellement de l'hexafluoropropène non réagi, de l'hydrogène non réagi, du cis/trans-1, 2,3,3,3-pentafluoropropène (HFO- 1225ye(Z/E)), du 1,1,3,3,3-pentafluoropropène (HFO-1225zc), du 1,1,2,3,3- pentafluoropropène (HFO-1225yc), du 2,3,3,3-tetrafluoropropène (HFO-1234yf), du cis/trans-l,3,3,3-tetrafluoropropène(HFO-1234ze(Z/E)), du 3,3,3-trifluoropropène (HFO- 1243zf), du 1,1,1,2,3,3,3-peptafluoropropane (HFC-227ea), du 1,1,1,3,3,3- hexafluoropropane (HFC-236fa), du 1,1,1,3,3-pentafluoropropane (HFC-245fa), du 1,1,1,2,3-pentafluoropropane (HFC-245eb), du 1,1,1,2-tetrafluoropropane (HFC-254eb), du 1,1,1,3-tetrafluoropropane (HFC-254fb), du 1,1,1-trifluoropropane (HFC-263fb), du 1,1,2-trifluoroéthane (HFC-143), du hexafluorocyclopropane (cyclo-C3F6), du octafluorocyclobutane (cyclo-C4F8), du cis/trans-1, l,l,4,4,4-hexafluoro-2-butène (HFO- 356mff(Z/E)), de l'eau , de l'azote, de l'oxygène, du C02, du CO et de l'HF ;(ii) au moins une étape de séparation et/ou de purification pour donner une composition comprenant au moins 99,4 % en poids du HFC-236ea, et au plus 0,6% en poids d'au moins un composé choisi parmi l'hexafluoropropène, du cis/trans-l,2,3,3,3-pentafluoropropène (HFO- 1225ye(Z/E)), du 1,1,3,3,3-pentafluoropropène (HFO-1225zc), du 1,1,2,3,3- pentafluoropropène (HFO-1225yc), du 2,3,3,3-tetrafluoropropène (HFO-1234yf), du cis/trans-l,3,3,3-tetrafluoropropène(HFO-1234ze(Z/E)), du 3,3,3-trifluoropropène (HFO- 1243zf), du 1,1,1,2,3,3,3-peptafluoropropane (HFC-227ea), du 1,1,1,3,3,3- hexafluoropropane (HFC-236fa), du 1,1,1,3,3-pentafluoropropane (HFC-245fa), du 1,1,1,2,3-pentafluoropropane (HFC-245eb), du 1,1,1,2-tetrafluoropropane (HFC-254eb), du 1,1,1,3-tetrafluoropropane (HFC-254fb), du 1,1,1-trifluoropropane (HFC-263fb), du 1,1,2-trifluoroéthane (HFC-143), du hexafluorocyclopropane (cyclo-C3F6), du octafluorocyclobutane (cyclo-C4F8), du cis/trans-l,l,l,4,4,4-hexafluoro-2-butène (HFO- 356mff(Z/E)), de l'eau , de l'azote, de l'oxygène, du C02, du CO et de THF.
3. Procédé selon la revendication 1 ou 2 caractérisé en ce que l'étape de séparation est choisie parmi la condensation, l'évaporation, la décantation, l'absorption, le lavage et l'extraction liquide-liquide.
4. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que l'étape de purification est choisie parmi la photochloration, la distillation, de préférence la distillation extractive et/ou la distillation azéotropique, l'adsorption sur solide, de préférence l'adsorption sur tamis moléculaire, alumine ou charbon actif et sur membrane.
5. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le traitement dudit flux comprend au moins une étape d'élimination d'HF, de préférence sur alumine activée, et/ou au moins une étape d'élimination d'eau, de préférence par adsorption sur tamis et avantageusement tamis de 3 à 5 A et/ou au moins une étape de distillation.
6. Procédé selon la revendication 4 ou 5 caractérisé en ce que l'étape de distillation est réalisée par l'emploi de deux colonnes de distillation.
7. Procédé selon la revendication 5 ou 6 caractérisé en ce qu'il comprend une étape de photochloration avant l'étape d'élimination d'HF.
8. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que l'étape d'hydrogénation est mise en œuvre en présence d'un diluant.
Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que à l'issu de l'étape (i) le flux est soumis à une étape de condensation partielle pour conduire à une fraction condensée et une fraction non condensée qui est recyclé à l'étape d'hydrogénation.
Procédé selon la revendication 9 caractérisé en ce que la fraction condensée est évaporé puis soumise à au moins une étape de séparation et/ou purification.
11. Composition comprenant au moins 99,4 % en poids du HFC-236ea, et au plus 0,6% en poids d'au moins un composé choisi parmi l'hexafluoropropène, du 1,1,1,2- tetrafluoropropane, 1,1,1,2,3-pentafluoropropane, de l'eau, de l'HF.
12. Composition comprenant au moins 99,4 % en poids du HFC-236ea, et au plus 0,6% en poids d'au moins un composé choisi parmi l'hexafluoropropène, du cis/trans-1, 2,3,3,3- pentafluoropropène (HFO-1225ye(Z/E)), du 1,1,3,3,3-pentafluoropropène (HFO-1225zc), du 1,1,2,3,3-pentafluoropropène (HFO-1225yc), du 2,3,3,3-tetrafluoropropène (HFO- 1234yf), du cis/trans-l,3,3,3-tetrafluoropropène(HFO-1234ze(Z/E)), du 3,3,3- trifluoropropène (HFO-1243zf), du 1,1,1,2,3,3,3-peptafluoropropane (HFC-227ea), du 1,1,1,3,3,3-hexafluoropropane (HFC-236fa), du 1,1,1,3,3-pentafluoropropane (HFC-
245fa), du 1,1,1,2,3-pentafluoropropane (HFC-245eb), du 1,1,1,2-tetrafluoropropane (HFC-254eb), du 1,1,1,3-tetrafluoropropane (HFC-254fb), du 1,1,1-trifluoropropane (HFC- 263fb), du 1,1,2-trifluoroéthane (HFC-143), du hexafluorocyclopropane (cyclo-C3F6), du octafluorocyclobutane (cyclo-dFs), du cis/trans-1, l,l,4,4,4-hexafluoro-2-butène (HFO- 356mff(Z/E)), de l'eau , de l'azote, de l'oxygène, du C02, du CO et de l'HF.
13. Composition selon la revendication 11 ou 12 caractérisée en ce qu'elle comprend 99,9 % en poids, avantageusement 99,99% en poids, voire même 99,995 % en poids du HFC- 236ea, au plus 190 % ppm et au plus 0,1 % en poids d'HF, de préférence au plus 10 ppm d'eau et au plus 1 ppm d'HF et avantageusement au plus 1 ppm d'eau et au plus 0,1 ppm d'HF.
14. Composition comprenant au moins 99,4 % en poids du HFC-236ea, et au plus 0,6% en poids d'au moins un composé choisi parmi l'hexafluoropropène, du 1,1,3,3,3- pentafluoropropène (HFO-1225zc), du 1,1,2,3,3-pentafluoropropène (HFO-1225yc), du 2,3,3,3-tetrafluoropropène (HFO-1234yf), du cis/trans-l,3,3,3-tetrafluoropropène(HFO- 1234ze(Z/E)), du 3,3,3-trifluoropropène (HFO-1243zf), du 1,1,1,2,3,3,3- peptafluoropropane (HFC-227ea), du 1,1,1,3,3,3-hexafluoropropane (HFC-236fa), du 1,1,1,3,3-pentafluoropropane (HFC-245fa), du 1,1,1,2,3-pentafluoropropane (HFC- 245eb), du 1,1,1,2-tetrafluoropropane (HFC-254eb), du 1,1,1,3-tetrafluoropropane (HFC-
254fb), du 1,1,1-trifluoropropane (HFC-263fb), du 1,1,2-trifluoroéthane (HFC-143), du hexafluorocyclopropane (cyclo-C3F6), du octafluorocyclobutane (cyclo-dFs), du cis/trans- l,l,l,4,4,4-hexafluoro-2-butène (HFO-356mff(Z/E)), de l'eau , de l'azote, de l'oxygène, du C02, du CO et de THF.
EP18726195.3A 2017-06-09 2018-05-30 1,1,1,2,3,3-hexafluoropropane de haute pureté, son procédé de fabrication et utilisation Pending EP3634930A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1755162A FR3067347B1 (fr) 2017-06-09 2017-06-09 1,1,1,2,3,3-hexafluoropropane de haute purete, son procede de fabrication et utilisation
PCT/EP2018/064302 WO2018224381A1 (fr) 2017-06-09 2018-05-30 1,1,1,2,3,3-hexafluoropropane de haute pureté, son procédé de fabrication et utilisation

Publications (1)

Publication Number Publication Date
EP3634930A1 true EP3634930A1 (fr) 2020-04-15

Family

ID=59974534

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18726195.3A Pending EP3634930A1 (fr) 2017-06-09 2018-05-30 1,1,1,2,3,3-hexafluoropropane de haute pureté, son procédé de fabrication et utilisation

Country Status (7)

Country Link
US (2) US11254632B2 (fr)
EP (1) EP3634930A1 (fr)
JP (2) JP2020522481A (fr)
KR (1) KR20200016855A (fr)
CN (1) CN110719901A (fr)
FR (1) FR3067347B1 (fr)
WO (1) WO2018224381A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3954674A4 (fr) * 2019-04-10 2023-07-19 Daikin Industries, Ltd. Composition azéotropique ou de type azéotropique comprenant du fluorure d'hydrogène et du 1,1,2-trifluoroéthane, du 1-chloro-2,2-difluoroéthane, ou du 1,2-dichloro-1-fluoroéthane
KR102582730B1 (ko) * 2021-04-07 2023-09-25 (주)후성 플루오르화 시클로프로판 가스의 제조방법 및 이를 포함하는 에칭용 가스 조성물
FR3137845A1 (fr) * 2022-07-12 2024-01-19 Arkema France Procédé de purification du 1,1,1,2,3,3-hexafluoropropane

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US539600A (en) 1895-05-21 Automatic stud-turning machine
JPS56113733A (en) * 1979-12-29 1981-09-07 Daikin Ind Ltd 3-substituted-3-fluoropyruvic acid, its ester, salt and preparation thereof
JPS57164991A (en) * 1981-04-02 1982-10-09 Asahi Chem Ind Co Ltd Production of (omega-fluorosulfonyl)haloaliphatic carboxylic acid fluoride
JPS6470450A (en) * 1987-09-10 1989-03-15 Agency Ind Science Techn Novel nitrogen-containing perfluorocarboxylic fluoride and its preparation
RU94046237A (ru) 1992-06-05 1996-10-27 Дайкин Индастриз Лтд. (JP) Способы производства 1,1,1,2,3-пентафторпропилена и способы производства 1,1,1,2,3-пентафторпропана
JP3369604B2 (ja) 1992-09-04 2003-01-20 ダイキン工業株式会社 1,1,1,2,3,3−ヘキサフルオロプロパンの製造方法及びテトラフルオロクロロプロペンの製造方法
US5563304A (en) 1994-05-26 1996-10-08 E. I. Du Pont De Nemours And Company Production of 1,2-dihydro and 2,2-dihydro hexafluoropropanes and azeotropes thereof with HF
JP3543863B2 (ja) * 1994-12-16 2004-07-21 ダイキン工業株式会社 1,1,1,2,3,3−ヘキサフルオロプロパンの製造方法
FR2731701B1 (fr) 1995-03-17 1997-04-30 Atochem Elf Sa Procede de fabrication de fluoroalcanes
KR100340275B1 (ko) * 1999-11-02 2002-06-12 박호군 디플루오로메탄(HFC-32),펜타플루오로에탄(HFC-125)과1,1,1,2-테트라플루오로에탄(HFC-134a)을포함하는 냉매 혼합물
US7388117B2 (en) * 2005-11-01 2008-06-17 E.I. Du Pont De Nemours And Company Azeotrope compositions comprising 1,2,3,3,3-pentafluoropropene and hydrogen fluoride and uses thereof
US7205444B1 (en) * 2005-11-10 2007-04-17 Honeywell International Inc. 1,1,1,3,3,3-hexafluoropropane purification with photochlorination equipment
JP5439177B2 (ja) * 2006-08-24 2014-03-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 共沸蒸留によってフッ化水素からフルオロオレフィンを分離する方法
US8013194B2 (en) * 2008-03-14 2011-09-06 Honeywell International Inc. Process for the manufacture of fluorinated olefins
ATE548624T1 (de) 2008-05-30 2012-03-15 Diehl Bgt Defence Gmbh & Co Kg Waffensystem mit hülsenloser munition
FR2946645B1 (fr) * 2009-06-12 2011-07-01 Arkema France Procede de fabrication du hexafluoropropane.
FR2948362B1 (fr) 2009-07-23 2012-03-23 Arkema France Procede de preparation de composes fluores
US20110028770A1 (en) * 2009-08-03 2011-02-03 Honeywell International Inc. Hydrogenation catalyst
JP5056963B2 (ja) * 2010-03-31 2012-10-24 ダイキン工業株式会社 含フッ素アルカンの製造方法
JP4952834B2 (ja) * 2010-09-07 2012-06-13 ダイキン工業株式会社 含フッ素化合物からの水分除去方法
CN105107491B (zh) * 2015-08-18 2018-11-02 巨化集团技术中心 一种氢氟烯烃加氢催化剂的制造方法及应用
CN106748636A (zh) * 2016-12-19 2017-05-31 巨化集团技术中心 一种制备1,1,1,2,3,3‑六氟丙烷的方法

Also Published As

Publication number Publication date
KR20200016855A (ko) 2020-02-17
US11254632B2 (en) 2022-02-22
US20220098132A1 (en) 2022-03-31
WO2018224381A1 (fr) 2018-12-13
US11661387B2 (en) 2023-05-30
CN110719901A (zh) 2020-01-21
FR3067347A1 (fr) 2018-12-14
JP2022166103A (ja) 2022-11-01
FR3067347B1 (fr) 2020-07-24
US20200157027A1 (en) 2020-05-21
JP2020522481A (ja) 2020-07-30

Similar Documents

Publication Publication Date Title
JP6959144B2 (ja) 1,1,3,3−テトラクロロプロペンをベースとする組成物
JP5599658B2 (ja) フッ素化化合物の調製方法
US11661387B2 (en) High-purity 1,1,1,2,3,3-hexafluoropropane, method for producing same and use thereof
KR101388042B1 (ko) 통합된 HFC 트랜스-1234ze 제조 공정
EP2729409B1 (fr) Procédé de séparation et récupération du 2,3,3,3-tétrafluoropropène et de l&#39;acide fluorhydrique
CA2395618C (fr) Nouveau procede de preparation du 1,1,1-trifluoro-2,2-dichloroethane
EP3207010B1 (fr) Compositions a base de 1,1,1,2,3-pentachloropropane
EP3519378A1 (fr) Procede de fabrication du 1-chloro-2,2-difluoroethane
FR3096984A1 (fr) 1,1,1,2,3,3-hexafluoropropane de haute pureté, son procédé de fabrication et utilisation
EP3526184A1 (fr) Composition comprenant du 1-chloro-2,2-difluoroethane et du 1,1-dichloroethylene.
EP3207011B1 (fr) Compositions a base de 1,1,1,3,3-pentachloropropane
KR101919265B1 (ko) 2,3,3,3-테트라플루오로프로펜의 제조 방법
JP5338240B2 (ja) フッ化水素の分離方法
WO2020183099A1 (fr) Procédé de production de fluorooléfines
US11505517B2 (en) Method for purifying 1,1,1,2,3-pentafluoropropane and use thereof for obtaining high-purity 2,3,3,3-tetrafluoropropene
US20220281785A1 (en) Purification method for fluoroolefin having structure of =cf2 or =chf, high-purity fluoroolefin, and production method therefor
WO2023213893A1 (fr) Procédé de production du trifluoroéthylène
WO2023047056A1 (fr) Procédé de production et de purification du trifluoroéthylène et composition obtenue à partir de celui-ci
FR2826958A1 (fr) Procede d&#39;obtention d&#39;un hydrofluoroalcane epure

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)