EP3633107B1 - Véhicule d'entretien de pistes et procédé de fonctionnement d'un véhicule d'entretien de pistes - Google Patents

Véhicule d'entretien de pistes et procédé de fonctionnement d'un véhicule d'entretien de pistes Download PDF

Info

Publication number
EP3633107B1
EP3633107B1 EP19198833.6A EP19198833A EP3633107B1 EP 3633107 B1 EP3633107 B1 EP 3633107B1 EP 19198833 A EP19198833 A EP 19198833A EP 3633107 B1 EP3633107 B1 EP 3633107B1
Authority
EP
European Patent Office
Prior art keywords
piste
vehicle
topography
coordinate system
coordinates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19198833.6A
Other languages
German (de)
English (en)
Other versions
EP3633107A1 (fr
Inventor
Peter Betz
Olivier Hargoaa
Michael Kuhn
Jens Rottmair
Jonathan Zimmermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kassbohrer Gelandefahrzeug AG
Kaessbohrer Gelaendefahrzeug AG
Original Assignee
Kassbohrer Gelandefahrzeug AG
Kaessbohrer Gelaendefahrzeug AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=68051647&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3633107(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kassbohrer Gelandefahrzeug AG, Kaessbohrer Gelaendefahrzeug AG filed Critical Kassbohrer Gelandefahrzeug AG
Publication of EP3633107A1 publication Critical patent/EP3633107A1/fr
Application granted granted Critical
Publication of EP3633107B1 publication Critical patent/EP3633107B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01HSTREET CLEANING; CLEANING OF PERMANENT WAYS; CLEANING BEACHES; DISPERSING OR PREVENTING FOG IN GENERAL CLEANING STREET OR RAILWAY FURNITURE OR TUNNEL WALLS
    • E01H4/00Working on surfaces of snow or ice in order to make them suitable for traffic or sporting purposes, e.g. by compacting snow
    • E01H4/02Working on surfaces of snow or ice in order to make them suitable for traffic or sporting purposes, e.g. by compacting snow for sporting purposes, e.g. preparation of ski trails; Construction of artificial surfacings for snow or ice sports ; Trails specially adapted for on-the-snow vehicles, e.g. devices adapted for ski-trails

Definitions

  • the invention relates to a piste maintenance vehicle with at least one piste maintenance device for processing a piste and a method for operating such a piste maintenance vehicle.
  • Such a snow groomer is from DE 100 45 524 A1 known and has a snow grooming device in the form of a rear-mounted snow blower with a downstream smoothing device.
  • the piste care device is intended for processing a snow-covered ski or snowboard piste.
  • the piste maintenance vehicle has a camera which—seen in the direction of travel of the piste maintenance vehicle—detects a piste section of the piste that is downstream of the piste maintenance device and is therefore finished.
  • a signal processing unit is provided, by means of which an image of the runway section captured by the camera is evaluated.
  • a control device is also provided, by means of which a setting parameter of the snow blower can be left unchanged or changed depending on the evaluation of the captured image.
  • the detection device has a GPS system and a ground penetrating radar (GPR).
  • the GPS system is set up to collect position data.
  • the GPR is set up to record a snow depth below the snow groomer vehicle.
  • the snow grooming device can be controlled depending on the position and snow depth data recorded by the recording device.
  • the object of the invention is to provide a method and a snow grooming vehicle of the type mentioned at the outset, which enable even better snow grooming.
  • This object is achieved by providing a method according to the invention with the features of claim 1 and a snow groomer vehicle according to the invention with the features of claim 6 .
  • the method according to the invention for operating a piste maintenance vehicle has the following steps: a) detecting an actual topography of a piste section of the piste upstream of the same in the forward direction of travel of the piste maintenance vehicle; b) determining at least one difference value between coordinates of the actual topography and coordinates of a reference topography of the runway; and c) driving the at least one Snow grooming device depending on the at least one determined differential value.
  • existing changes in the topography of the piste which can be caused for example by snowfall, melting or transport, can of course be detected before driving on a piste section to be processed and taken into account when controlling the piste maintenance device.
  • the piste grooming device can be controlled in a predictive manner, so to speak, and improved piste grooming in terms of the quality of the piste can ultimately be achieved.
  • Step a) includes the recording of the actual topography of the slope section upstream of the snow groomer.
  • the piste section is thus recorded by measurement before it is driven on with the piste maintenance vehicle and thus before it is processed by means of the piste maintenance device.
  • the upstream section of the runway is scanned without contact using fundamentally known measuring methods for recording the surroundings.
  • the actual topography of the runway can be stored or temporarily stored, for example in the form of a data-based actual surface model, and can thus be made available for consideration in further method steps.
  • Step b) includes a comparison between the recorded actual topography and the reference topography of the runway.
  • the reference topography describes the surface of the runway to be processed in relation to a reference condition.
  • This reference state can, for example, be a target state to be created by processing the runway.
  • the reference state can be a snow-free state of the runway, for example, so that the reference topography describes a snow-free surface state of the runway.
  • the reference topography can describe a condition of the runway that preceded the intended maintenance.
  • the reference topography can represent the surface of the runway the previous day.
  • the reference topography can be in the form of a data-based surface model, for example.
  • the difference value between the coordinates of the actual topography and the coordinates of the reference topography thus represents a geometric deviation between the actual state and the reference state of the runway surface. If the reference topography relates to a condition that precedes the piste maintenance, the difference value describes a geometric change in the piste surface over time and thus, for example, a change in snow depth if the piste is a snow piste.
  • Step c) includes the activation of the snow grooming device depending on the previously performed comparison between the actual topography and the reference topography.
  • the manipulated variable can be, for example, a contact pressure, a processing speed, a height or inclination setting or the like of the snow grooming device.
  • the piste maintenance device is preferably in the form of a front-mounted device arranged at the front—in relation to the forward direction of travel of the piste maintenance vehicle.
  • the method according to the invention is suitable in a particularly advantageous manner for operating a snow grooming vehicle for the maintenance of ski or snowboard slopes with a snow grooming device in the form of a front-mounted device arranged on the front in the forward direction of travel, such as a clearing blade, a halfpipe or quarterpipe tiller, a park blade for shaping fun parks or the like.
  • a snow grooming device in the form of a front-mounted device arranged on the front in the forward direction of travel, such as a clearing blade, a halfpipe or quarterpipe tiller, a park blade for shaping fun parks or the like.
  • step a) further comprises the steps: a1) detecting the coordinates of the actual topography in relation to a local vehicle coordinate system assigned to the snow groomer; a2) detecting a position and an attitude of the snow groomer vehicle and thus of the local vehicle coordinate system in relation to a global reference coordinate system on which the coordinates of the reference topography are based; and a3) transforming the recorded coordinates of the actual topography into the reference coordinate system depending on the determined position and the location of the vehicle coordinate system.
  • This refinement of the invention makes it possible, in particular, to record the actual topography starting from the snow groomer. In this way, in particular, stationarily arranged detection devices for detecting the actual topography can be dispensed with. This is particularly advantageous if the piste to be maintained is a ski or snowboard piste, since any detection devices arranged stationary on the piste can represent an obstacle and thus a potential safety risk for skiers or snowboarders moving on the piste.
  • Step a1) includes a metrological determination of the coordinates describing the actual topography of the piste surface, starting from the piste maintenance vehicle.
  • a detection device arranged on the snow groomer can be provided for this purpose.
  • the coordinates of the actual topography are thus recorded in relation to the local vehicle coordinate system.
  • the vehicle coordinate system is changeable in terms of its position and location depending on the driving condition and moves over the slope together with the snow grooming vehicle.
  • the recorded in step a1) coordinates of the actual topography - in relation to a stationary imaginary reference coordinate system - by the driving condition-related position and / or position change of the snow groomer superimposed or falsified.
  • step a2) includes detecting the position and location of the snow groomer vehicle in relation to a global reference coordinate system on which the coordinates of the reference topography are based.
  • the global reference coordinate system is an imaginary stationary reference coordinate system.
  • the current position of the snow groomer vehicle and thus of the local vehicle coordinate system can be determined, for example, using GPS positioning.
  • the spatial position of the snow groomer or of the local vehicle coordinate system can be detected, for example, by means of a sensor system suitable for this purpose, which preferably can have inertial sensors that are known in principle.
  • Step a3) includes a coordinate transformation that is fundamentally known as such and thus establishes a relationship between the coordinates of the actual topography recorded in step a1) and the global reference coordinate system. Once this relationship has been established, the at least one differential value can be determined directly in step b) in a simple manner.
  • the difference value is a difference between a height coordinate of the actual topography and a height coordinate of the reference topography.
  • the difference value describes, for example, a snow depth difference between an actual state and a reference state of the slope surface.
  • This snow height difference can result, for example, from snowfall or snow transport based on a reference state of the slope surface determined the previous day.
  • the difference in snow depth can describe a deviation of the actual state from a reference and thus target state of the piste surface to be established by means of the piste maintenance device.
  • the activation of the at least one piste maintenance device includes changing a position and/or a location of the piste maintenance device relative to the determined actual topography.
  • the position and/or position represent a control variable of the snow grooming device. If the snow grooming device is, for example, a clearing blade arranged at the front, the position can be a lifting position and the position can be an inclination of the clearing blade relative to the surface of the slope.
  • the method has the step: d) Displaying the determined actual topography in the form of a virtual terrain model.
  • the virtual terrain model can be displayed as a two-dimensional or three-dimensional terrain model of the upstream runway section. By viewing the terrain model a vehicle driver of the piste maintenance vehicle receives additional information that can be particularly helpful in the event of impaired visibility due to the weather or the time of day.
  • the displayed virtual terrain model can in particular allow the snow groomer to recognize obstacles in front of it in the forward direction of travel.
  • the virtual terrain model can indicate whether the upstream section of the piste has already been maintained or not.
  • the actual topography is preferably displayed in relation to the global reference coordinate system.
  • step d) includes displaying the virtual terrain model using a screen and/or a head-up display and/or data glasses.
  • the snow groomer according to the invention can be operated according to the above-described method or is set up to carry out the above-described method and has: a detection device, which is set up to detect an actual topography of a slope section of the slope upstream of the same in the forward direction of travel of the snow groomer; a determination device which is connected to the detection device and is set up to determine at least one difference value between coordinates of the actual topography and coordinates of a reference topography of the runway; and a control device which is connected to the determination device and is set up to control the at least one snow groomer device as a function of the at least one determined difference value.
  • the detection device is arranged on the piste maintenance vehicle in such a way that the upstream section of the piste can be measured using the detection device.
  • the detection device preferably has a sensor system for optical or acoustic scanning of the slope surface. Such sensor systems are generally known as such in the field of environmental detection.
  • the detection device is set up in particular to carry out step a) of the method according to the invention.
  • the determination device is used in particular for a data-based comparison between the actual topography and the reference topography.
  • the reference topography can, for example, be stored in a data-based manner in an electronic storage unit assigned to the determination devices and used as a basis for comparison with the actual topography data can be accessed.
  • the determination device is set up in particular to carry out step b) of the method according to the invention.
  • the control device is used to control the slope grooming device. At least one manipulated variable of the snow grooming device can be changed by means of the control device.
  • the snow grooming device is preferably designed in the form of a front-mounted implement arranged at the front with respect to the forward direction of travel.
  • the control device is set up in particular to carry out step c) of the method according to the invention.
  • the detection device is set up to detect the coordinates of the actual topography in relation to a local vehicle coordinate system assigned to the snow groomer vehicle, and the detection device is designed to detect a position and a location of the snow groomer vehicle and thus the local vehicle coordinate system in relation to the coordinates set up the global reference coordinate system on which the reference topography is based, and the determination device is set up for transforming the detected coordinates of the actual topography into the reference coordinate system depending on the determined position and location of the vehicle coordinate system.
  • the detection device is thus set up in particular to carry out steps a1) and a2).
  • the determination device is set up in particular to carry out step a3) of the method.
  • reference is made to the disclosure in connection with the aforementioned steps a1), a2) and a3) of the method, which applies correspondingly to this embodiment of the snow groomer according to the invention.
  • the detection device has a lidar system, which is arranged oriented in the forward travel direction in such a way that the runway section in front of the snow groomer can be measured using the lidar system.
  • Lidar systems are generally known as such in the field of metrological environment detection.
  • the lidar system is used for optical scanning of the piste surface using a laser and thus for recording the actual topography of the piste surface.
  • the detection device has a GPS unit that is set up to detect the position of the snow groomer in relation to the reference coordinate system
  • the detection device has a position measuring unit that is set up to detect the position of the snow groomer in relation to the reference coordinate system is.
  • the GPS unit is therefore used for satellite-based localization of the snow groomer and thus of the vehicle coordinate system.
  • the position measuring unit is used to detect the spatial position of the snow groomer and for this purpose preferably has at least one inertial sensor, which is fundamentally known as such, for measuring angles.
  • the GPS unit and the position measuring unit can therefore be used to establish a relationship between the local vehicle coordinate system, on which the acquisition of the actual topography is based, and the global reference coordinate system, on which the coordinates of the reference topography are based.
  • the determination device has a processor unit which is set up for data-based transformation of the detected coordinates of the actual topography into the global reference coordinate system and for calculating the at least one difference value between the transformed coordinates of the actual topography and the coordinates of the reference topography is.
  • the processor unit is therefore used for computer-aided evaluation of the measured values or data recorded by the recording device.
  • the snow grooming device has a clearing blade arranged at the front--in relation to the forward direction of travel--where the control device is set up to control the clearing blade with regard to a change in a position and/or location of the clearing blade relative to the actual topography.
  • the position is preferably a lifting position and the position is preferably a longitudinal and/or transverse inclination of the clearing blade relative to the surface of the runway.
  • a display device which is set up to display the determined actual topography in the form of a virtual terrain model.
  • the display device serves in particular as a type of visual support for a vehicle driver of the snow groomer when visibility is limited due to the weather or the time of day.
  • the virtual terrain model that can be displayed by the display device, which can be displayed as a two-dimensional or three-dimensional model, the vehicle driver receives additional information in relation to the runway section ahead.
  • the virtual terrain model can reveal obstacles or that the slope section has already been maintained.
  • the display device has a screen and/or a head-up display and/or data glasses.
  • a snow groomer 1 is provided in the form of a snow cat for grooming a ski or snowboard slope.
  • the snow groomer 1 has a structural design that is fundamentally known as such, with an elongated vehicle support frame 2, a chain drive 3 arranged on the underside of the vehicle support frame 2, a driver's cab 4 arranged in a front area on the vehicle support frame 2, and two snow groomer devices 5 and 6 on.
  • the chain drive 3 and the two snow grooming devices 5 and 6 are driven hydraulically in a manner that is basically known, with the operating energy required for this being provided by a central diesel unit that is not shown in any more detail.
  • the snow grooming device 6 arranged at the rear is detachably arranged on a rear implement carrier, not designated in any more detail, which can be changed in terms of height and inclination relative to the vehicle support frame 2 by means of hydraulic adjusting elements.
  • the snow grooming device 6 has a snow blower 7 and a downstream smoothing device 8, which is also referred to as a finisher.
  • the construction of the slope maintenance device 6 is known in principle.
  • the snow grooming device arranged at the front is designed in the present case in the form of a plow blade 5, which is supported on the vehicle support frame 2 by means of hydraulic actuating cylinders 9, 10 and can be lifted and pivoted relative to the same.
  • the piste grooming device 5 is basically known as such, so that there is no need to go into more detail about the further functioning and structural design.
  • the snow groomer 1 has a control device 11, which is based on 1 block diagram is shown schematically simplified.
  • the control device 11 is used to control the hydraulic actuating cylinders 9, 10 for changing the position and position of the clearing blade 5, which should be illustrated by means of a signal line, which is not designated in any more detail and is indicated by dashed lines.
  • the control device can alternatively or additionally be set up to control the snow grooming device 6 arranged at the rear.
  • the snow groomer 1 also has a detection device 12 and a determination device 13 .
  • the detection device 12 is connected to the determination device 13 via a signal line, not designated in any more detail, and the latter is connected to the control device 11 by means of a signal line, not designated in any more detail.
  • the signal lines can be wireless or wired.
  • the slope grooming vehicle 1 can be seen in a schematic operating state when processing a slope 15 covered with snow 14 .
  • the piste maintenance vehicle 1 moves along a forward travel direction V over the piste 15, with the piste 15 being treated with the piste maintenance device 5 and/or the piste maintenance device 6.
  • runway 15 has an actual topography TI.
  • the actual topography TI has hills, troughs, gradient transitions and the like.
  • This actual topography TI is to be distinguished from an imaginary reference topography TR of the runway 15.
  • the reference topography TR in the present case relates to a condition of the runway 15 that is not covered with snow 14.
  • the reference - Topography TR alternatively relate to a more or less covered with snow 14 state of the runway 15 at a previous time.
  • the reference topography TR can be Snow grooming vehicle 1 to be produced target state of the runway 15 and thus describe a kind of target surface or target design.
  • the detection device 12 is set up to detect the actual topography TI of a runway section 16 upstream of the snow groomer 1 in relation to the forward direction of travel V.
  • the detection device 12 has a lidar system 17 for this purpose.
  • the lidar system 17 is used for laser-assisted metrological scanning of the runway 15, the basic functioning of lidar systems being known as such, so that there is no need to go into further detail here.
  • the lidar system 17 is oriented in the forward direction of travel V, so that the runway section 16 upstream of the snow groomer 1 can be measured using the lidar system 17 .
  • the runway 15 is optically scanned line by line, with the driving movement of the snow groomer 1 in the forward travel direction V causing this line-by-line scanning to advance along the runway 15 .
  • the determination device 13 connected to the detection device 12 ( 1 ) is set up to determine a geometric deviation between the actual topography TI and the reference topography TR.
  • the determination device 13 has a processor unit 18 ( 1 ), which is set up for data-based evaluation of the actual topography TI and the reference topography TR detected by the detection device 12 .
  • the reference topography TR is in the form of a data-based surface model in a memory unit 19 ( 1 ) deposited.
  • the determination device 13 determines at least one difference value D between coordinates X2, Y2, Z2 of the actual topography TI and coordinates X1, Y1, Z1 of the reference topography TR.
  • the difference value D can represent, for example, a scalar or a vectorial deviation between the actual topography TI and the reference topography TR.
  • the control device 11 (connected to the determination device 13 1 ) is set up to control the hydraulic actuating cylinders 9, 10 of the clearing blade 5 as a function of the difference value D. i.e. the clearing blade 5 is controlled by the control device 11 as a function of the previously determined deviation between the actual topography TI and the reference topography TR of the runway 15 .
  • the reference topography TR describes the runway 15 that is not covered with snow 14, so that the difference value D describes a current snow depth, as a function of which the clearing blade 5 can be controlled.
  • the detection device 12 and in particular the lidar system 17 are arranged on the snow groomer 1, the above-described detection of the actual topography TI takes place in relation to a mobile local vehicle coordinate system K′ assigned to the snow groomer 1 . i.e. Put simply, the metrological detection of the runway 15 is overlaid by the driving movements of the snow groomer 1 . Due to this superimposition, a relationship between coordinates X2′, Y2′, Z2′ of runway 15 and coordinates X1, Y1, Z1 of reference topography TR, detected by detection device 12 and related to vehicle coordinate system K′, cannot easily be established. This is because the latter are related to a global reference coordinate system K in the present case.
  • the global reference coordinate system K can also be referred to as the GPS coordinate system.
  • the detection device 12 is set up to detect a position S and a position L of the snow groomer 1—and thus of the vehicle coordinate system K′—in relation to the reference coordinate system K.
  • FIG. the detection device 12 has a GPS unit 20 and a position measurement unit 21 .
  • the GPS unit 20 interacts in a fundamentally known manner with a fundamentally known differential GPS positioning system 22 , 23 which has a plurality of positioning satellites 22 and a reference unit 23 .
  • the reference unit 23 is stationarily arranged at a position that is known in relation to the reference coordinate system K in the vicinity of the runway 15 and is used to determine correction data that enable the position S to be detected with improved accuracy. Since the basic structure and mode of operation of differential GPS positioning systems is known, it does not need to be discussed in more detail here.
  • the position measuring unit 21 is set up to detect the position L of the snow groomer 1 or the vehicle coordinate system K′.
  • the position measuring unit 21 can have, for example, at least one inertial sensor, not designated in any more detail, for detecting a longitudinal and/or transverse inclination of the snow groomer 1 .
  • Such inertial sensors for inclination measurement are known in principle as such.
  • the position S and position L determined in this way can be used as a basis for a coordinate transformation of the coordinates X2′, Y2′, Z2′ of the actual topography TI into the reference coordinate system K determined by means of the lidar system 17 .
  • the processor unit 18 is responsible for such a transformation of the coordinates of the actual topography TI into the Reference coordinate system K set up. i.e. the coordinates X2′, Y2′, Z2′ detected by means of the lidar system 17 are converted into the data X2, Y2, Z2 relating to the reference coordinate system K by means of the processor unit 18 using fundamentally known geometric transformation relationships.
  • the difference value D is calculated by the processor unit 18 on the basis of the transformation described above.
  • the difference value D is a difference between the height coordinate Z2 and the height coordinate Z1 of the actual or reference topography TI or TR.
  • the difference value D describes an absolute height of the snow 14 above the snow-free ground of the runway 15.
  • the control unit 11 controls the clearing blade 5 with regard to a change in a position SR and/or a location LR of the clearing blade 5 relative to the determined actual Topography TI on.
  • the position SR is a lifting position and the position LR is in the present case a longitudinal and/or transverse inclination of the clearing blade 5 relative to the surface of the runway 15.
  • the snow groomer 1 also has a display device 24 which is set up to display the ascertained actual topography TI in the form of a virtual terrain model G.
  • the display device 24 is connected to the determination device 13 by means of a signal line indicated by dashed lines.
  • the determination device 13 is set up to determine the virtual terrain model G on the basis of the actual topography TI determined by means of the lidar system 17 in relation to the global reference coordinate system K.
  • the virtual terrain model G can be displayed using the display device 24 in the form of a two-dimensional and/or three-dimensional surface model of the runway section 16 upstream.
  • the virtual terrain model G can identify obstacles located on the runway section 16 .
  • the display device 24 serves in particular as a type of visual support for a vehicle driver of the snow groomer 1 in the case of limited visibility due to the weather and/or the time of day.
  • the display device 24 has a head-up display 25, which is arranged to display the virtual terrain model G in the area of a windshield (not identified in more detail) of the snow groomer 1.
  • the display device 24 can have a screen and/or data glasses as an alternative or in addition to the head-up display 25 .
  • a first step a the actual topography TI of the same upstream in the forward direction V of the snow groomer 1 Runway section 16 of runway 15 is detected. In the present case, this is done using the lidar system 17 of the detection device 12.
  • the at least one difference value D between the coordinates X2, Y2, Z2 of the actual topography TI and the coordinates X1, Y1, Z1 of the reference topography TR of runway 15 determined. In the present case, this takes place by means of the processor unit 18.
  • at least one of the snow grooming devices 5, 6 is activated as a function of the difference value D. In the present case, this is done by means of the control device 11, with the front slope maintenance device 5 being activated.
  • step a1) the coordinates X2′, Y2′, Z2′ of the actual topography TI are first recorded in relation to the local vehicle coordinate system K′. This is because the detection device 12 or the lidar system 17 are movably attached to the snow groomer 1 together with the same.
  • step a2) the position S and the orientation L of the snow groomer 1—and thus of the local vehicle coordinate system K′—are recorded in relation to the reference coordinate system K on which the coordinates X1, Y1, Z1 of the reference topography TR are based.
  • the position and position are detected by means of the GPS unit 20 and the position measuring unit 21 of the detection device 12.
  • the coordinates X2′, Y2′, Z2′ of the actual topography TI are entered into the reference coordinate system K depending on the determined position S and the location L transformed.
  • this coordinate transformation takes place by means of the processor unit 18 of the determination device 13, with transformation relationships that are fundamentally known as such being used as a basis.
  • step d) of the basis 3 clarified method the previously determined actual topography in the form of the virtual terrain model G is displayed. In the embodiment shown, this is done by means of the head-up display 25.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Harvester Elements (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Cleaning Of Streets, Tracks, Or Beaches (AREA)

Claims (11)

  1. Procédé de fonctionnement d'un véhicule d'entretien de pistes (1) avec au moins un dispositif d'entretien de pistes (5, 6) pour le traitement d'une piste (15), comprenant les étapes suivantes :
    a) détecter une topographie réelle (TI) d'un tronçon de piste (16) de la piste (15) en amont du véhicule d'entretien de pistes (1) en sens de marche avant (V) du véhicule d'entretien de pistes par un dispositif de détection (12) prévu sur le véhicule d'entretien de pistes ;
    b) déterminer au moins une valeur de différence (D) entre coordonnées (X2, Y2, Z2) de la topographie réelle (TI) et coordonnées (X1, Y1, Z1) d'une topographie de référence (TR) de la piste (15) ; et
    c) actionner l'au moins un dispositif d'entretien de pistes (5, 6) en fonction de l'au moins une valeur de différence (D) ;
    dans lequel l'étape a) comporte les étapes suivantes :
    a1) détecter coordonnées (X2', Y2', Z2') de la topographie réelle (TI) par rapport à un système de coordonnées de véhicule local (K') attribué au véhicule d'entretien de pistes (1) ;
    a2) détecter une position (S) et une localisation (L) du véhicule d'entretien de pistes (1) et ainsi du système de coordonnées de véhicule local (K') par rapport à un système de coordonnées de repère global (K) sous-jacent aux coordonnées (X1, Y1, Z1) de la topographie de référence (TR), la position (S) étant détectée par géolocalisation GPS, et la localisation (L) étant détectée par une mesure d'une inclinaison longitudinale et/ou une inclinaison transversale du véhicule d'entretien de pistes (1), et
    a3) transformer les coordonnées détectées (X2', Y2', Z2') de la topographie réelle (TI) dans le système de coordonnées de repère (K) en fonction de la position (S) et de la localisation (L) déterminée du système de coordonnées de véhicule (K').
  2. Procédé selon la revendication 1, dans lequel la valeur de différence est une différence (D) entre une coordonnée de hauteur (Z2) de la topographie réelle (TI) et une coordonnée de hauteur (Z1) de la topographie de référence (TR).
  3. Procédé selon l'une des revendications précédentes, dans lequel l'actionnement de l'au moins un dispositif d'entretien de pistes (5, 6) comporte varier une position (SR) et/ou une localisation (LR) du dispositif d'entretien de pistes (5, 6) par rapport à la topographie réelle (TI) déterminée.
  4. Procédé selon l'une des revendications précédentes, comprenant l'étape :
    d) présenter la topographie réelle (TI) déterminée sous forme d'un modèle de terrain (G) virtuel.
  5. Procédé selon la revendication 4, dans lequel l'étape d) comprend une présentation du modèle de terrain (G) au moyen d'un écran et/ou d'un affichage tête haute (25) et/ou d'un visiocasque.
  6. Véhicule d'entretien de pistes (1) pour réalisation d'un procédé selon l'une des revendications précédentes, avec au moins un dispositif d'entretien de pistes (5, 6) pour le traitement d'une piste (15), comprenant :
    - un dispositif de détection (12) configuré pour détecter une topographie réelle (TI) d'un tronçon de piste (16) de la piste (15) en amont du véhicule d'entretien de pistes (1) en sens de marche avant (V) du véhicule d'entretien de pistes ;
    - un dispositif de détermination (13) connecté au dispositif de détection (12) et configuré pour déterminer au moins une valeur de différence (D) entre coordonnées (X2, Y2, Z2) de la topographie réelle (TI) et coordonnées (X1, Y1, Z1) d'une topographie de référence (TR) de la piste (15) ; et
    - un dispositif de commande (11) connecté au dispositif de détermination (13) et configuré pour commander l'au moins un dispositif d'entretien de pistes (5, 6) en fonction de l'au moins une valeur de différence (D) déterminée ;
    - dans lequel le dispositif de détection (12) est configuré pour détecter coordonnées (X2', Y2', Z2') de la topographie réelle (TI) par rapport à un système de coordonnées de véhicule local (K') attribué au véhicule d'entretien de pistes (1),
    - dans lequel le dispositif de détection (12) est configuré pour détecter une position (S) et une localisation (L) du véhicule d'entretien de pistes (1) et ainsi du système de coordonnées de véhicule local (K') par rapport à un système de coordonnées de repère global (K) sous-jacent aux coordonnées (X1, Y1, Z1) de la topographie de référence (TR),
    - dans lequel le dispositif de détermination (13) est configuré pour transformer les coordonnées détectées (X2', Y2', Z2') de la topographie réelle (TI) dans le système de coordonnées de repère (K) en fonction de la position (S) et de la localisation (L) déterminée du système de coordonnées de véhicule (K'),
    - et dans lequel le dispositif de détection (12) comporte une unité GPS (20) configurée pour détecter la position (S) du véhicule d'entretien de pistes (1) par rapport au système de coordonnées de repère (K), et comporte une unité de mesure de position (21) configurée pour détecter la localisation (L) du véhicule d'entretien de pistes (1) par rapport au système de coordonnées de repère (K) au moyen d'une mesure d'une inclinaison longitudinale et/ou d'une inclinaison transversale du véhicule d'entretien de pistes (1).
  7. Véhicule d'entretien de pistes (1) selon la revendication 6, caractérisé en ce que le dispositif de détection (12) comporte un système lidar (17) arrangé et orienté en sens de marche avant (V) de telle manière que le tronçon de piste (16) en amont du véhicule d'entretien de pistes (1) peut être détecté par métrologie.
  8. Véhicule d'entretien de pistes (1) selon la revendication 6 ou 7, caractérisé en ce que le dispositif de détermination (13) comporte une unité de processeur (18) configurée pour une transformation sur la base de données des coordonnées de véhicule détectées (X2', Y2', Z2') de la topographie réelle (TI) dans le système de coordonnées de repère global (K) et pour un calcul de l'au moins une valeur de différence (D) entre les coordonnées (X2, Y2, Z2) transformées de la topographie réelle (TI) et les coordonnées (X1, Y1, Z1) de la topographie de référence (TR).
  9. Véhicule d'entretien de pistes (1) selon l'une des revendications 6 à 8, caractérisé en ce que le dispositif d'entretien de pistes comporte une lame de déblayage (5) disposée sur le front - par rapport au sens de marche avant (V) - dans lequel le dispositif de commande (11) est configuré pour commander la lame de déblayage (5) en ce qui concerne une variation d'une position (SR) et/ou d'une localisation (LR) de la lame de déblayage (5) par rapport à la topographie réelle (TI).
  10. Véhicule d'entretien de pistes (1) selon l'une des revendications 6 à 9, caractérisé en ce qu'un dispositif d'affichage (24) est prévu et configuré pour présenter la topographie réelle (TI) déterminée sous forme d'un modèle de terrain (G) virtuel.
  11. Véhicule d'entretien de pistes (1) selon la revendication 10, caractérisé en ce que le dispositif d'affichage (24) comporte un écran et/ou un affichage tête haute (25) et/ou un visiocasque.
EP19198833.6A 2018-10-05 2019-09-23 Véhicule d'entretien de pistes et procédé de fonctionnement d'un véhicule d'entretien de pistes Active EP3633107B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018217049.5A DE102018217049A1 (de) 2018-10-05 2018-10-05 Pistenpflegefahrzeug und Verfahren zum Betreiben eines Pistenpflegefahrzeugs

Publications (2)

Publication Number Publication Date
EP3633107A1 EP3633107A1 (fr) 2020-04-08
EP3633107B1 true EP3633107B1 (fr) 2022-03-30

Family

ID=68051647

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19198833.6A Active EP3633107B1 (fr) 2018-10-05 2019-09-23 Véhicule d'entretien de pistes et procédé de fonctionnement d'un véhicule d'entretien de pistes

Country Status (4)

Country Link
US (2) US11970828B2 (fr)
EP (1) EP3633107B1 (fr)
CA (1) CA3056646C (fr)
DE (1) DE102018217049A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022205371B3 (de) 2022-05-30 2023-08-10 Kässbohrer Geländefahrzeug Aktiengesellschaft Pistenpflegefahrzeug und Verfahren zum Betreiben eines Pistenpflegefahrzeugs

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800010464A1 (it) * 2018-11-20 2020-05-20 Prinoth Spa Veicolo battipista con funzioni automatizzate e metodo per controllare un veicolo battipista
IT201800010490A1 (it) * 2018-11-21 2020-05-21 Prinoth Spa Veicolo cingolato per piste da sci e metodo di visualizzazione di informazioni per tale veicolo cingolato
IT202000011272A1 (it) * 2020-05-15 2021-11-15 Veicolo battipista e metodo per controllare un veicolo battipista
DE102021201598A1 (de) 2021-02-19 2022-08-25 Kässbohrer Geländefahrzeug Aktiengesellschaft Pistenraupe mit wenigstens einem Pistenbearbeitungsgerät
DE102021211674A1 (de) * 2021-10-15 2023-04-20 Kässbohrer Geländefahrzeug Aktiengesellschaft Computergestütztes Verfahren zur Pflege einer Schneepiste sowie computergestütztes System zur Durchführung des Verfahrens
IT202100033116A1 (it) * 2021-12-30 2023-06-30 Prinoth Spa Veicolo cingolato e metodo di localizzazione di un veicolo cingolato
KR20240038492A (ko) 2022-09-16 2024-03-25 이충도 수의사와 농장주 매칭 시스템 및 방법

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016560A2 (fr) 1999-11-30 2001-03-08 Bombardier Inc. Procede et dispositif servant a mesurer la profondeur de la neige
US20020116122A1 (en) 2001-02-13 2002-08-22 Toshihide Satonaka System and method for maintaining a ski slope using snowmaking apparatuses
US20020162668A1 (en) 2001-03-16 2002-11-07 Carlson David S. Blade control apparatuses and methods for an earth-moving machine
US20090069987A1 (en) 2007-09-12 2009-03-12 Topcon Positioning Systems, Inc. Automatic Blade Control System with Integrated Global Navigation Satellite System and Inertial Sensors
EP2071281A1 (fr) 2007-12-10 2009-06-17 ViewServe AB Système et procédé pour la surveillance du niveau variable d'enneigement
JP2013033426A (ja) 2011-08-03 2013-02-14 Jochi:Kk 除雪支援システム及び除雪車
US20150240453A1 (en) 2014-02-21 2015-08-27 Caterpillar Inc. Adaptive Control System and Method for Machine Implements
US20160024757A1 (en) 2013-04-10 2016-01-28 Komatsu Ltd. Construction management device for excavation machinery, construction management device for excavator, excavation machinery, and construction management system
US20160170090A1 (en) 2014-12-12 2016-06-16 Caterpillar Of Australia Pty. Ltd. Determining Terrain Model Error
WO2018097971A1 (fr) 2016-11-22 2018-05-31 Left Hand Robotics, Inc. Systèmes autonomes et procédés de traitement de chemin
US20180245311A1 (en) 2015-10-05 2018-08-30 Komatsu Ltd. Construction management system, construction management method, and management device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3416246C1 (de) * 1984-05-02 1985-10-24 Ski-Data Computer-Handelsgesellschaft mbH, St. Leonhard, Grödig Vorrichtung zur Steuerung der Bewegungen der Planierwerkzeuge von Pistenpraeparierfahrzeugen
US5925085A (en) * 1996-10-23 1999-07-20 Caterpillar Inc. Apparatus and method for determining and displaying the position of a work implement
FR2789770B1 (fr) * 1999-02-12 2001-03-23 Gtm Construction Procede de realisation utilisant un systeme de positionnement global
SE518500C2 (sv) * 2000-02-03 2002-10-15 Mcs Multi Cat System Ab Snöbearbetningsanordning och aggregat
DE10045524B4 (de) * 2000-09-13 2004-05-27 Kässbohrer Geländefahrzeug AG Pistenpflegevorrichtung, Pistenpflegefahrzeug und Verfahren zum Betreiben einer Pistenpflegevorrichtung
DE10253412A1 (de) * 2002-11-08 2004-05-27 Kässbohrer Geländefahrzeug AG Verfahren zur Steuerung eines Pistenpflegefahrzeugs und Pistenpflegefahrzeug
AT500147B1 (de) * 2003-02-20 2007-01-15 Riepler Bernhard Ing Gps unterstütztes pistenpflegefahrzeug
ITMI20070188U1 (it) * 2007-05-25 2008-11-26 Rolic Invest Sarl Veicolo battipista
US9050725B2 (en) * 2007-10-24 2015-06-09 Caterpillar Inc. Tool control system based on anticipated terrain
NZ570113A (en) * 2008-07-25 2011-03-31 John Featherstone Melville An apparatus for forming a terrain feature
DE102010007603A1 (de) * 2010-02-05 2011-08-11 Kässbohrer Geländefahrzeug AG, 88471 Arbeitsfahrzeug
US20140278696A1 (en) * 2013-03-15 2014-09-18 Deere & Company Methods and apparatus to determine work paths for machines
DE102016212326A1 (de) * 2016-07-06 2018-01-11 Robert Bosch Gmbh Verfahren zur Verarbeitung von Sensordaten für eine Position und/oder Orientierung eines Fahrzeugs
JPWO2017119517A1 (ja) * 2017-01-13 2018-01-11 株式会社小松製作所 作業機械の制御システム、作業機械、作業機械の制御方法、及びナビゲーションコントローラ
JP7103796B2 (ja) * 2018-01-31 2022-07-20 株式会社小松製作所 作業機械
JP7418948B2 (ja) * 2018-03-28 2024-01-22 株式会社小松製作所 作業車両の制御システム、方法、及び作業車両
JP7236810B2 (ja) * 2018-03-28 2023-03-10 株式会社小松製作所 作業車両の制御システム、方法、及び作業車両
IT201800010464A1 (it) * 2018-11-20 2020-05-20 Prinoth Spa Veicolo battipista con funzioni automatizzate e metodo per controllare un veicolo battipista
US10612202B1 (en) * 2019-03-13 2020-04-07 Charles M. Jones Snow discharge diverter

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016560A2 (fr) 1999-11-30 2001-03-08 Bombardier Inc. Procede et dispositif servant a mesurer la profondeur de la neige
US20020116122A1 (en) 2001-02-13 2002-08-22 Toshihide Satonaka System and method for maintaining a ski slope using snowmaking apparatuses
US20020162668A1 (en) 2001-03-16 2002-11-07 Carlson David S. Blade control apparatuses and methods for an earth-moving machine
US20090069987A1 (en) 2007-09-12 2009-03-12 Topcon Positioning Systems, Inc. Automatic Blade Control System with Integrated Global Navigation Satellite System and Inertial Sensors
EP2071281A1 (fr) 2007-12-10 2009-06-17 ViewServe AB Système et procédé pour la surveillance du niveau variable d'enneigement
JP2013033426A (ja) 2011-08-03 2013-02-14 Jochi:Kk 除雪支援システム及び除雪車
US20160024757A1 (en) 2013-04-10 2016-01-28 Komatsu Ltd. Construction management device for excavation machinery, construction management device for excavator, excavation machinery, and construction management system
US20150240453A1 (en) 2014-02-21 2015-08-27 Caterpillar Inc. Adaptive Control System and Method for Machine Implements
US20160170090A1 (en) 2014-12-12 2016-06-16 Caterpillar Of Australia Pty. Ltd. Determining Terrain Model Error
US20180245311A1 (en) 2015-10-05 2018-08-30 Komatsu Ltd. Construction management system, construction management method, and management device
WO2018097971A1 (fr) 2016-11-22 2018-05-31 Left Hand Robotics, Inc. Systèmes autonomes et procédés de traitement de chemin

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"ROBOTICS AND AUTOMATION HANDBOOK", 2005, CRC PRESS, ISBN: 0-8493-1804-1, article THOMAS R. KURFESS: "ROBOTICS AND AUTOMATION HANDBOOK", pages: 1 - 579
ANONYMOUS: "Progettare No 407", METAL WORK PNEUMATIC, 2017, pages 1 - 84, XP093014666
DEEMS JEFFREY S., PAINTER THOMAS H., FINNEGAN DAVID C.: "Lidar measurement of snow depth: a review", JOURNAL OF GLACIOLOGY, vol. 59, no. 215, 2013, pages 467 - 479, XP093014659
PISTENBULLY: "SNOWsat Snow Depth Measurement and Fleet Management | 2016", YOUTUBE, 7 December 2016 (2016-12-07), XP093014656, Retrieved from the Internet <URL:https://www.youtube.com/watch?v=s_6EMmerCJQ>
ROBERTO FERRARI: "Autonomous driving and operation in agriculture and off highway", MECCATRONICA & SMART FARMING, May 2017 (2017-05-01), Museo Lamborghini, pages 1 - 19, XP093014663

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022205371B3 (de) 2022-05-30 2023-08-10 Kässbohrer Geländefahrzeug Aktiengesellschaft Pistenpflegefahrzeug und Verfahren zum Betreiben eines Pistenpflegefahrzeugs

Also Published As

Publication number Publication date
US20200109532A1 (en) 2020-04-09
EP3633107A1 (fr) 2020-04-08
DE102018217049A1 (de) 2020-04-09
US11970828B2 (en) 2024-04-30
CA3056646C (fr) 2021-12-07
CA3056646A1 (fr) 2020-04-05
US20240150982A1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
EP3633107B1 (fr) Véhicule d&#39;entretien de pistes et procédé de fonctionnement d&#39;un véhicule d&#39;entretien de pistes
EP2002212B1 (fr) Procédé et système pour afficher des indications de navigation
EP3305052B1 (fr) Dispositif de commande, tracteur avec un dispositif de commande et procédé pour un dispositif de commande
EP2936389B1 (fr) Procede et dispositif de determination predictive d&#39;un parametre d&#39;une surface practicable par un vehicule
EP1302076B1 (fr) Dispositif et procede pour surveiller l&#39;environnement d&#39;un objet
WO2019101651A1 (fr) Procédé et dispositif de fonctionnement d&#39;un système mobile
EP3219533B1 (fr) Système de vision pour un véhicule, notamment pour un véhicule utilitaire
EP3095676B1 (fr) Procede de mise a disposition d&#39;un vehicule defini par l&#39;utilisateur
EP2990534B1 (fr) Engin automobile et procede de commande d&#39;un engin automobile
EP1418275B1 (fr) Procédé pour la commande d&#39;un dispositif de damage de pistes et dispositif de damage de pistes
EP1103658B1 (fr) Dispositif et méthode pour contrôler l&#39;effet de compactage par des dispositifs vibrants
DE102008013457A1 (de) Fahrzeugmanövrierhilfen
EP3071460B1 (fr) Procédé pour faire fonctionner un système et un véhicule capables d&#39;une conduite entièrement automatisé
EP3437929A1 (fr) Système de vision à champs de vision / effet d&#39;incrustation de la zone de vision en fonction de la situation de conduite
DE102019126417A1 (de) Sensor für einen motorgrader
DE102006051977B4 (de) Parkassistenzsystem
EP3284649B1 (fr) Assistance au conducteur pour la mise en stationnement d&#39;un véhicule automobile comprenant une remorque attelée à partir de capteurs virtuels
DE102021204257A1 (de) Bodeneingriffswerkzeugsteuersystem und -verfahren
EP3318441A1 (fr) Dispositif d&#39;aide à la conduite d&#39;un véhicule pourvu d&#39;un dispositif de projection
EP3288797B1 (fr) Procédé et système pour commander un système de remplacement de rétroviseur extérieur d&#39;un véhicule dans une zone dans laquelle deux trajectoires se croisent et système de remplacement de rétroviseur extérieur équipé d&#39;un tel système
DE19904097B4 (de) System und Verfahren zum Überwachen eines Bereichs an der Seite eines Fahrzeugs
DE102022205371B3 (de) Pistenpflegefahrzeug und Verfahren zum Betreiben eines Pistenpflegefahrzeugs
AT500147B1 (de) Gps unterstütztes pistenpflegefahrzeug
DE102018213994A1 (de) Verfahren und System zur Bestimmung der Bewegung eines Kraftfahrzeuges
DE102007003014A1 (de) Fahrzeugpositions-Ermittlungsvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200917

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210301

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211105

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ZIMMERMANN, JONATHAN

Inventor name: ROTTMAIR, JENS

Inventor name: KUHN, MICHAEL

Inventor name: HARGOAA, OLIVIER

Inventor name: BETZ, PETER

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1479296

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019003847

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220630

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220630

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220701

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220801

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220730

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502019003847

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

26 Opposition filed

Opponent name: PRINOTH S.P.A.

Effective date: 20230102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220930

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220923

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

R26 Opposition filed (corrected)

Opponent name: PRINOTH S.P.A.

Effective date: 20230102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230918

Year of fee payment: 5

Ref country code: DE

Payment date: 20230921

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230929

Year of fee payment: 5

Ref country code: CH

Payment date: 20231001

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330