EP3632566A1 - Circuit microfluidique - Google Patents

Circuit microfluidique Download PDF

Info

Publication number
EP3632566A1
EP3632566A1 EP19201464.5A EP19201464A EP3632566A1 EP 3632566 A1 EP3632566 A1 EP 3632566A1 EP 19201464 A EP19201464 A EP 19201464A EP 3632566 A1 EP3632566 A1 EP 3632566A1
Authority
EP
European Patent Office
Prior art keywords
drops
microchannel
trapping
fluid
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19201464.5A
Other languages
German (de)
English (en)
Other versions
EP3632566B1 (fr
Inventor
Charles Baroud
Rémi DANGLA
François GALLAIRE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Ecole Polytechnique
Original Assignee
Centre National de la Recherche Scientifique CNRS
Ecole Polytechnique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Ecole Polytechnique filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3632566A1 publication Critical patent/EP3632566A1/fr
Application granted granted Critical
Publication of EP3632566B1 publication Critical patent/EP3632566B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0652Sorting or classification of particles or molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/089Virtual walls for guiding liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/086Passive control of flow resistance using baffles or other fixed flow obstructions

Definitions

  • the present invention relates to a microfluidic circuit comprising at least one microchannel in which a first fluid flows serving for the displacement of drops or bubbles of at least one second fluid.
  • a microfluidic circuit is described in the document WO 2006/018490 on behalf of the applicants.
  • This is made of a suitable material such as for example PDMS (poly-dimethylsiloxane) comprising microchannels typically having a width of approximately 100 ⁇ m and a depth of approximately 50 ⁇ m, in which very low flow rates can be passed d '' a fluid such as air, water, oil, reagents, etc.
  • PDMS poly-dimethylsiloxane
  • a laser beam whose wavelength is not absorbed by the material constituting the circuit, is focused on the interface of a first fluid flowing in a microchannel and of a second fluid present at least locally in this microchannel, to force or stop the flow of the first fluid in the microchannel, to split it into drops, to mix it with the second fluid, etc., focusing the laser beam on the fluid interface creating a temperature gradient along of this interface and causing a movement of fluids by thermocapillary convection.
  • this technology has been used to treat drops in a microfluidic circuit comprising at least one microchannel traversed by the drops.
  • the method used consists in causing a laser beam to act on the interface of these drops in a carrier fluid or on the interface of the drops in contact, in order to sort the drops, to form nano-drops from a drop of larger size or to merge drops in contact and cause reactions between the fluids contained in these drops.
  • the subject of the invention is another process for treating drops in a microfluidic circuit, which can optionally be used in combination with the prior treatment techniques described above.
  • the invention provides a microfluidic circuit comprising at least one microchannel for the flow of a first fluid transporting drops or bubbles of at least one second fluid, characterized in that the height of the microchannel is dimensioned to crush the drops or bubbles during their movement, and in that the microchannel comprises at least one channel, extending at least partly in the direction of flow of the first fluid or a zone for trapping drops or bubbles, this zone or channel having a height greater than that of the microchannel, so that at least some of the drops or bubbles of the second fluid in the microchannel are attracted and guided in the channel or in the trapping zone.
  • the surface energy of the drop is lower the smaller its external surface.
  • the minimum energy is therefore obtained by a drop of spherical shape and increases continuously as the drop moves away from this shape.
  • the surface energy can be calculated for a drop of known volume, for any position in the microchannel. Thus, we can predict whether or not the drop will be guided by a given channel by comparing the forces at play.
  • a drop placed in the microchannel and crushed has a large external surface. This drop thus naturally seeks to reduce its external surface, which causes it to migrate to the greater height channel when it arrives at a branch between the microchannel and the channel.
  • the drops are thus attracted to the channel and are displaced along it by the first fluid.
  • the drop remains trapped in the channel as long as the viscous driving force, in the normal direction to the local direction of the channel and exerted by the first fluid on the drop, is less than that necessary to deform the drop and restore it to its crushed shape.
  • This phenomenon is thus influenced by several parameters, such as the viscosity of the carrier fluid and that of the fluid of the drops, the size of the drop, the speed of the carrier fluid, the interfacial tension, the geometry of the channel, the thickness of the microchannel, etc.
  • the microchannel is delimited by two parallel walls, and the channel is formed by a groove of at least one of the walls of the microchannel, or between two parallel ribs of one of the walls of the microchannel.
  • bubbles or drops of at least two different types are transported by the first fluid and the channel constitutes a means of separation or sorting of the bubbles or drops, only those of a first type being guided in the channel.
  • the drops which are attracted to the channel are those for which the viscous force exerted by the first fluid on each drop is less than that necessary to deform the drop and restore it to its crushed shape.
  • the drops which flow in the direction of the carrier fluid without following the channel are those for which the viscous force exerted by the first fluid on the drop is greater than that necessary to deform the drop and restore its shape crushed.
  • the bubbles or the drops of different types have different sizes, viscosities, or surface tensions, which makes it possible to separate them from each other.
  • the channel comprises at least two successive parts of different height and / or width, a part of greater width and / or height being followed by a part of smaller width and / or height, in the direction of flow of the first fluid.
  • This type of channel makes it easy to separate two types of bubbles or drops. For example, bubbles of high viscosity or of large size will flow only along the very high part of the channel before being driven out of the channel by the carrier fluid, while bubbles with lower viscosity or smaller will flow not only along the high-rise portion of the channel but also along its low-rise portion.
  • the circuit comprises channels of different width and / or of different inclination with respect to the flow of the first fluid, which also makes it possible to be able to discriminate different types of bubbles or drops.
  • the circuit comprises zones for trapping drops or bubbles, formed by an enlargement of the cross section of the drops or bubbles in the microchannel or in a said channel, or by a local modification of the surface energy. microchannel and / or channel.
  • the circuit can include trapping zones in the microchannel, even in the absence of the channel. The drops or bubbles transported by the carrier fluid are then trapped in the trapping zones placed on their trajectory.
  • these trapping zones can be smaller than the size of the drops or bubbles to be trapped.
  • trapping zones can be adapted to a single type of bubble and / or can only contain a defined number of bubbles, for example one or two bubbles.
  • the trapping zones make it possible to immobilize one or more drops, which makes it possible for example to examine them using a microscope and / or to follow the progress of a reaction within a zone during a period of important time.
  • At least some of the trapping zones can be independent of each other.
  • At least some of the trapping zones are connected in series or in parallel by the microchannel or by the aforementioned channels.
  • the trap can be manufactured in such a way that the presence of a drop in it forces the following drops to continue their journey, in order to fill the traps located downstream.
  • a trapped drop is stationary but its content continues to be set in motion by the flow of the carrier fluid. In this way, the contents of the drop can be mixed even when it is stationary.
  • Such a phenomenon can in particular play an important role in the field of biological incubation or for the establishment of a chemical reaction.
  • the jump of one or more drops from one trapping zone to another may cause, by cascade effect, the movement of the trapped drops in the zones located in downstream.
  • obstacles are formed downstream of certain trapping zones to retain in these zones the bubbles or the drops which have been attracted to them.
  • At least one channel comprises means for slowing down or accelerating the bubbles or drops present in the channel, these means for slowing down or accelerating being formed by variations in width or height of the channel, or by rails or ribs of the walls of the corresponding microchannel, formed along the desired zones of deceleration or acceleration.
  • the circuit comprises means for forming parallel trains of drops or bubbles of different nature in a microchannel comprising parallel means of introducing drops or bubbles of different nature into the microchannel, and channels formed in this microchannel from the introduction means to guide the drops or bubbles leaving each introduction means to a predetermined area of the microchannel.
  • Each type of drop is thus brought to a predefined location in the microchannel. It is then possible to have series of drops of known nature at different levels of the microchannel.
  • the figure 1 shows schematically a first embodiment of a microcircuit 1 according to the invention.
  • the microcircuit 1 is formed in a plate of a suitable material such as for example PDMS (poly-dimethylsiloxane) by use of a common technique of flexible lithography, as is known from the aforementioned prior art.
  • a suitable material such as for example PDMS (poly-dimethylsiloxane)
  • One or more microchannels 2 can be formed on the surface of the plate, on which a glass microscope slide is stuck, for example.
  • the microchannel 2 has a rectangular section, the width L of which is defined by its horizontal transverse dimension, that is to say in the plane of the microcircuit 1, and the height h of which is defined by its dimension in the vertical direction, that is to say in a direction perpendicular to the plane of the microcircuit 1.
  • a groove 3 of rectangular or square section is formed in one of the two horizontal walls 4 which delimit the microchannel 2.
  • a second groove could be formed in the opposite horizontal wall, opposite the first 4.
  • the groove 3 thus forms a channel of larger section than the rest of the microchannel 2.
  • a first fluid called the carrier fluid, circulates in the microchannel 2, in the direction indicated by the arrow F, carrying with it drops 5 of a second fluid, of a different nature from the first fluid.
  • the second fluid may be in the form of drops or bubbles, without modifying the operation of the invention.
  • the drops 5 flowing in the narrow area of the microchannel are crushed.
  • they meet a channel 3 they take a less flattened shape there, for example a spherical or quasi-spherical shape, requiring less surface energy than the crushed form. It should be noted that the drops can remain crushed while being guided by the channel.
  • the determining criterion is that the surface energy of the drop in the channel is smaller than that outside the channel, the sphere corresponding to the minimum of this energy.
  • the drops can be larger or smaller than channel 3.
  • the figure 2 illustrates an alternative embodiment of the invention in which the groove defining the channel 3 has a concave or rounded shape.
  • FIG. 3 Another alternative embodiment is shown in figure 3 , in which one of the horizontal walls 4 is provided with two parallel ribs 6, spaced from one another, directed towards the inside of the microchannel 2 and delimiting between them a channel 3.
  • the drops 5 crushed between the top of the ribs 6 and the opposite wall 8, are directed either towards the channel 3, or in the other zones of the microchannel 2 located on either side of the ribs 6. In these zones , the drops 5 can find a spherical or quasi-spherical shape and therefore a lower surface energy. In this way, the ribs form barriers allowing to separate certain drops from the others.
  • the figure 4 represents, in top view, the shape of a channel 3.
  • the channel 3 comprises at least one part 9 extending along the axis A of the microchannel and therefore along the axis F of fluid flow carrier, at least a portion 10 extending obliquely to the aforementioned axis A, and / or at least a portion 11 of sinusoidal shape.
  • the trajectory of the drops 5 circulating along the channel 3 has a component according to the direction of flow of the carrier fluid, so that the drops 5 are always entrained by the carrier fluid, from upstream to downstream of channel 3 and microchannel 2.
  • the travel time of the drops 5 in the microchannel 2 is greater. In this way, the contents of the drops 5 can be observed using a microscope for a longer period of time, without the need to change the observation area over time.
  • the figure 5 illustrates a network of channels comprising a central channel 12 extending in the direction of the microchannel 2, on either side of which extend several auxiliary channels 13.
  • Each auxiliary channel 13 extends from the central channel 12 and leads to new to the latter, like diversion channels.
  • the drops 5 contain for example water and the carrier fluid is paraffin oil, the width of the microchannel 2 is 3 mm, that of the channels 12, 13 is 70 ⁇ m, the heights of the microchannel and channels are 50 ⁇ m and 35 ⁇ m respectively, and the 5 drops flow from left to right in the direction of arrow F.
  • the carrier fluid is paraffin oil
  • the width of the microchannel 2 is 3 mm
  • that of the channels 12, 13 is 70 ⁇ m
  • the heights of the microchannel and channels are 50 ⁇ m and 35 ⁇ m respectively
  • the 5 drops flow from left to right in the direction of arrow F.
  • the figure 6 represents a microchannel 2 in which a first fluid circulates forming a carrier fluid for drops of a first and a second type.
  • the drops of the first type 14 have a larger size than the drops of the second type 15.
  • the microchannel 2 is equipped with a channel 3 extending obliquely from upstream to downstream relative to the direction of circulation of the carrier fluid, represented by the arrow F.
  • the height and / or the width of the channel 3 are adjusted so that the largest drops 14 are carried with the carrier fluid in the direction of arrow F and the smallest drops 15 are drawn into the channel 3, then progress along it, from the 'upstream downstream, being driven by the carrier fluid.
  • the downstream end 16 of the channel 3 is provided with a reduction in its height or its width so that the viscous force exerted by the carrier fluid is greater than that necessary to crush the drops 15, so that the carrier fluid drives them again into the microchannel 2.
  • the drops 14 and 15 thus circulate, downstream of the channel 3, respectively along two axes B and C parallel to the flow of the carrier fluid and spaced from each other.
  • Such a microchannel thus makes it possible to sort two types of drops of different nature.
  • the figure 7 illustrates a microchannel 2 similar to that of the figure 6 , in which the drops of the first type 14 are relatively very viscous and the drops of the second type 15 are relatively not very viscous.
  • the height and / or width of the channel 3 are adjusted so that the more viscous drops 14 are carried with the carrier fluid and that only the less viscous drops 15 are drawn into the channel, then progress along it , from upstream to downstream, being driven by the carrier fluid and leaving the channel 3 at the downstream end thereof.
  • Such a microchannel 2 can also be used to sort drops having different surface tensions.
  • the figure 8 represents a microchannel of the type of those of Figures 6 and 7 , in which the channel successively presents, from upstream to downstream, zones of decreasing height and / or width 17 to 20.
  • Each zone is dimensioned so as to be able to discriminate a particular type of drop.
  • the carrier fluid causes four types of drops of different sizes or viscosities opposite the first zone 17, that is to say the widest and / or deepest zone.
  • the drops of the first type 21, that is to say the largest or the most viscous are entrained through this zone 17 by the carrier fluid, the trajectory of these drops 21 being hardly influenced by the presence of the channel 3.
  • the drops of the second, third and fourth types 22, 23, 24, smaller or less viscous than the first 21, are attracted to the first zone 17 of the channel 3 and follow it from upstream to downstream while being carried away by the carrier fluid, until arriving at the second zone 18, of smaller width and / or height.
  • the second zone 18 is dimensioned so that the drops of the second type 22 cannot penetrate there. These drops 22 are therefore extracted from the channel 3 and then circulate in the microchannel 2, along an axis parallel to the flow of the carrier fluid and spaced from their original axis of circulation.
  • the other zones 19 and 20 of the channel 3 are dimensioned so that the drops of the third type 23 flow successively in the first, second and third zones 17, 18, 19 before escaping out of the channel 3, and that the drops of the fourth type 24 circulate in each of the zones 17 to 20 of the channel 3 before escaping at the downstream end 16 of the channel 3.
  • the drops of each type 21 to 24 circulate, downstream of the channel 3, respectively along parallel axes of circulation and spaced from each other.
  • Such a microchannel therefore makes it possible to sort four types of drops of different nature.
  • the microchannel 2 is formed with four successive channels 3, the inclinations with respect to the flow of the first fluid are becoming smaller,
  • the first channel 3a the most inclined, separates the smallest drops 24,
  • the second channel 3b separates the slightly larger drops 23,
  • the third channel 3c separates the still slightly larger drops 22, and
  • the fourth channel 3d separates the larger drops 21.
  • the microchannel 2 can also be equipped with a channel 3, extending for example along the axis of circulation of the carrier fluid, and provided with a reduction in its width and / or in its height. This reduction can take the form of a step or a discontinuous step, or a progressive form such as that visible in figure 10 .
  • the geometry of the channels can be used as a motor to transport the drops.
  • the invention makes it possible to move the drops in a two-dimensional field, even in the absence of a flow of a carrier fluid.
  • the invention can even be used in order to move drops against the current with respect to the flow of the carrier fluid.
  • the channel 3 can be equipped with a widening zone 26 in step or progressive, so that the drop 5 flowing in the channel 3 is accelerated during the passage of this zone.
  • the braking of the drops 5 can also be obtained ( figure 12 ) by having on either side of the channel 3 in which they circulate, secondary channels 27 having the function of locally increasing the section of the microchannel 2. This has the effect of locally reducing the speed of circulation of the carrier fluid, and, consequently, the speed of circulation of the drops 5.
  • the number, the shape and the position of the secondary channels 27 can be modified as required, the important thing being the local increase in the section of the microchannel.
  • the opposite effect can be obtained by replacing the channels 27 with ribs forming a local decrease in the section of the microchannel 2.
  • the figure 13 represents a microchannel 2 comprising a trapping zone 28 for the drops, formed by a pocket or a cavity 29 formed in the wall of the microchannel 2.
  • the microchannel is not equipped with a channel, the drops transported by the flow of carrier fluid F being trapped in the trapping zone or zones if the latter are in the path of the drops.
  • the trapping zones can be smaller or larger than the drops or bubbles to be trapped, depending on the applications and the nature of the drops or bubbles.
  • the figure 14 represents a channel 3 equipped with a trapping zone 28 for the drops, formed by a pocket or cavity formed on one side of the channel 3, in a wall 4 of the microchannel 2.
  • the pocket 29 is connected to the channel 3 by a mouth 30 and is capable of trapping a predefined number of drops. In the case of figure 13 , this area can only hold a single drop 5.
  • the section of the mouth 30 can be adapted according to the applications. In the case where the mouth 30 has a larger section than that of the channel 3, the drop or drops 5 can be automatically drawn into the trapping zones 28.
  • the mouth 30 has a smaller section or substantially equal to that of the channel 3, it may be necessary to force the drops 5 to enter the trapping zone 28.
  • This can be achieved by any suitable means, by particular using the method described in the documents WO 2006/018490 and WO 2007/138178 and which uses a beam laser directed at the interface between a drop and the carrier fluid or between two drops, in order to influence the displacement of the drops.
  • the drops 5 can be removed from the trapping zones 28 by increasing the flow rate of the carrier fluid, or by forcing the drops 5 to exit using the aforementioned method.
  • the figure 15 shows a channel 3 on either side of which are formed several trapping zones 28, 29, spaced from each other and arranged in staggered rows.
  • Each trapping zone 28, 29 can be dimensioned to trap a predefined number of drops 5, one drop for the case of zones 28 and two drops for the case of zone 31, and / or to trap drops of a particular nature .
  • the microchannel 2 can also be equipped with a network of channels formed by a main channel 3, through which the drops arrive, from which extend one or more derived channels 31 in which are placed obstacles 32 making it possible to retain, at least temporarily, the drops 5 in the corresponding derived channel 31, as seen in the figure 16 . These then form trapping zones.
  • the derived channels 31 may or may not extend downstream of the obstacle 32.
  • the additional channels 31 can be equipped with wetting zones 33.
  • a wetting zone is formed by a zone whose wetting properties of the wall 4 have been modified.
  • the modification of the wetting properties can also be obtained using chemical methods, such as silanization or plasma attack, or even using physical methods, for example by introducing hydrophilic pads to which the drop comes. hang on (fakir effect).
  • the trapping zones can also include elements intended to react with the content of the drops, so as to form microreactors or in order to detect the presence of chemical molecules and / or biochemical in the drop (s) concerned.
  • a DNA sequence can be detected if the complementary sequence is grafted locally on the wall of the corresponding trapping zone.
  • the microchannel comprises for example two parallel channels 34, 35, each intended for the circulation of a particular type of drops 36, 37, from which extend derived channels 31 whose downstream ends form trapping zones 28.
  • the trapping zones 28 are arranged near or adjacent to each other so that a drop of a first type 36 is near or in contact with a drop of a second type 37.
  • the figure 19 represents a microchannel 2 having a channel 3 equipped with several successive trapping zones 28, arranged in series.
  • the trapping zones 28 form a buffer zone T defined by an enlargement of the microchannel and in which the drops 5 pass a determined duration necessary for example to incubate a chemical or biochemical reaction and / or to allow their observation.
  • the trapping zones 28 can also be in matrix arrangement as shown in figure 20 , via a main channel 3 and parallel derived channels 31, each connected to a determined number of trapping zones 28.
  • the figure 21 shows a microchannel 2 comprising means 38 for feeding parallel trains of drops of different nature 21 to 24, parallel means 39 for introducing drops of different nature into the microchannel 2, and channels 3 formed in the microchannel 2 to starting from the introduction means 39 to guide the drops 21 to 24 leaving each introduction means to a predetermined area of the microchannel 2.
  • parallel trains of different drops are formed in the microchannel.
  • microchannels presented above for the treatment of drops in a carrier fluid can also be used for the treatment of bubbles.
  • the invention makes it possible in particular to integrate the preparation of the samples into a microfluidic chip and to bring the samples to the observation points in a simple and robust manner.
  • a microfluidic circuit according to the invention can be applied in the field of biotechnology or “chemi-tech”, but also in the field of fluid display and the observation of reactions in microdrops.
  • microfluidic circuit could be presented in a format which has now become standard, such as “Micro-Arrays” or biochips, for example DNA or protein chips, or even cell culture chips.
  • biochips consist of a matrix of zones where the surface is functionalized with biomolecules, the size and the distance between these zones being approximately the same size as the microfluidic drops and the channels.
  • the invention makes it possible to bring specific drops, the content of which is known, to the functionalized sites and to bring them into contact with the surface in order to produce the hybridization which will allow biological measurement. In this way, the invention makes it possible to interface the biochip technology with the advantages of handling fluids in microfluidics.
  • the trajectory of the drops can be actively modified, using a laser, in order to bring the drops into a trap or into a determined area of a microchannel.
  • such a method can also be used to direct a drop from one channel to another, for example to choose between different trajectories that the drop could follow.
  • the wavelength of the laser should be chosen so that it is absorbed by the carrier fluid.
  • the carrier fluid may, if necessary, contain a dye (black ink for example) absorbing the wavelength of the laser.
  • the local heating of the carrier fluid using the laser in a channel or close to it, attracts the drop in this channel. Heating can also be carried out at the interface between the drop and the carrier fluid in order to attract the drop in a given channel.
  • the laser can be positioned in order to block the advance of a drop and divert it into another channel.
  • Heating can also be applied locally or globally using electrical heating elements.
  • such absorption can be done either directly by the material constituting the microchannel, or by depositing in the microchannel or in the channel a layer or a particle of a material absorbing laser radiation.
  • the dielectrophoresis forces can also be used to influence the trajectory of the drops, or to trap drops.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Micromachines (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

L'invention concerne un circuit microfluidique (1) comprenant au moins un microcanal (2) d'écoulement d'un premier fluide transportant des gouttes (5) ou de bulles d'au moins un deuxième fluide, le microcanal (2) étant délimité par deux parois (4, 8), le microcanal (2) ayant une section transversale perpendiculaire à la direction d'écoulement du premier fluide de hauteur (h) définie entre les deux parois du microcanal (2), la hauteur (h) du microcanal (2) étant dimensionnée pour écraser les gouttes (5) ou les bulles lors de leur déplacement, le circuit étant caractérisé en ce que le microcanal (2) comporte une zone de piégeage de gouttes ou de bulles, cette zone de piégeage (28) ayant une hauteur (hc) supérieure à celle (h) du microcanal (2), de façon à ce qu'au moins certaines des gouttes (5) ou des bulles du deuxième fluide dans le microcanal soient piégées dans la zone de piégeage placée sur leur trajectoire.

Description

  • La présente invention concerne un circuit microfluidique comprenant au moins un microcanal dans lequel s'écoule un premier fluide servant au déplacement de gouttes ou de bulles d'au moins un deuxième fluide.
  • Un circuit microfluidique est décrit dans le document WO 2006/018490 au nom des demandeurs. Celui-ci est réalisé dans un matériau approprié tel par exemple que du PDMS (poly-dimethylsiloxane) comportant des microcanaux ayant typiquement une largeur d'environ 100µm et une profondeur d'environ 50µm, dans lesquels on peut faire passer des débits très faibles d'un fluide tel que de l'air, de l'eau, de l'huile, des réactifs, etc.
  • Un faisceau laser dont la longueur d'onde n'est pas absorbée par le matériau constitutif du circuit, est focalisé sur l'interface d'un premier fluide s'écoulant dans un microcanal et d'un second fluide présent au moins localement dans ce microcanal, pour forcer ou arrêter l'écoulement du premier fluide dans le microcanal, pour le fractionner en gouttes, pour le mélanger au second fluide, etc., la focalisation du faisceau laser sur l'interface des fluides créant un gradient de température le long de cette interface et provoquant un mouvement des fluides par convection thermocapillaire.
  • Comme cela est connu du document WO 2007/138178 , également au nom des demandeurs, cette technologie a été utilisée afin de traiter des gouttes dans un circuit microfluidique comprenant au moins un microcanal parcouru par les gouttes. Le procédé utilisé consiste à faire agir un faisceau laser sur l'interface de ces gouttes dans un fluide porteur ou sur l'interface des gouttes en contact, pour faire des tris de gouttes, former des nano-gouttes à partir d'une goutte de taille supérieure ou pour fusionner des gouttes en contact et provoquer des réactions entre les fluides contenus dans ces gouttes.
  • L'invention a pour objet un autre procédé de traitement des gouttes dans un circuit microfluidique, pouvant éventuellement être utilisé en combinaison avec les techniques de traitement antérieures décrites ci-dessus.
  • A cet effet, l'invention propose un circuit microfluidique comprenant au moins un microcanal d'écoulement d'un premier fluide transportant des gouttes ou de bulles d'au moins un deuxième fluide, caractérisé en ce que la hauteur du microcanal est dimensionnée pour écraser les gouttes ou les bulles lors de leur déplacement, et en ce que le microcanal comporte au moins un chenal, s'étendant au moins en partie dans la direction d'écoulement du premier fluide ou une zone de piégeage de gouttes ou de bulles, cette zone ou le chenal ayant une hauteur supérieure à celle du microcanal, de façon à ce qu'au moins certaines des gouttes ou des bulles du deuxième fluide dans le microcanal soient attirées et guidées dans le chenal ou dans la zone de piégeage.
  • Dans le cas d'une goutte plongée dans un fluide, l'énergie de surface de la goutte est d'autant plus faible que sa surface externe est petite. L'énergie minimale est donc obtenue par une goutte de forme sphérique et augmente de façon continue au fur et à mesure que la goutte s'éloigne de cette forme. L'énergie de surface peut être calculée pour une goutte d'un volume connu, pour n'importe quelle position dans le microcanal. Ainsi, on peut prédire si la goutte sera ou non guidée par un chenal donné en comparant les forces en jeu.
  • Une goutte placée dans le microcanal et écrasée présente une surface externe importante. Cette goutte cherche ainsi naturellement à réduire sa surface externe, ce qui l'amène à migrer vers le chenal de plus grande hauteur lorsqu'elle arrive à un embranchement entre le microcanal et le chenal.
  • Les gouttes sont ainsi attirées par le chenal et sont déplacées le long de celui-ci par le premier fluide.
  • Dans le cas où la direction du chenal n'est pas parallèle à la direction de l'écoulement du premier fluide (fluide porteur) dans le microcanal, la goutte reste prisonnière du chenal tant que la force d'entraînement visqueuse, dans la direction normale à la direction locale du chenal et exercée par le premier fluide sur la goutte, est inférieure à celle nécessaire pour déformer la goutte et lui redonner sa forme écrasée.
  • Ce phénomène est ainsi influencé par plusieurs paramètres, tels que la viscosité du fluide porteur et celle du fluide des gouttes, la taille de la goutte, la vitesse du fluide porteur, la tension interfaciale, la géométrie du chenal, l'épaisseur du microcanal, etc.
  • Bien entendu, il est possible d'utiliser indifféremment des gouttes ou des bulles, sans modification sur le fonctionnement de l'invention.
  • Selon une caractéristique de l'invention, le microcanal est délimité par deux parois parallèles, et le chenal est formé par une rainure d'au moins l'une des parois du microcanal, ou entre deux nervures parallèles d'une des parois du microcanal.
  • Avantageusement, des bulles ou des gouttes d'au moins deux types différents sont transportées par le premier fluide et le chenal constitue un moyen de séparation ou de tri des bulles ou des gouttes, seules celles d'un premier type étant guidées dans le chenal.
  • Comme décrit précédemment, les gouttes qui sont attirés par le chenal sont celles pour lesquelles la force visqueuse exercée par le premier fluide sur chaque goutte est inférieure à celle nécessaire pour déformer la goutte et lui redonner sa forme écrasée.
  • A l'inverse, les gouttes qui s'écoulent dans la direction du fluide porteur sans suivre le chenal sont celles pour lesquelles la force visqueuse exercée par le premier fluide sur la goutte est supérieure à celle nécessaire pour déformer la goutte et lui redonner sa forme écrasée.
  • En conséquence, des gouttes de grande taille ou très visqueuses seront moins enclines à suivre la trajectoire du chenal que des gouttes de faible taille ou peu visqueuses.
  • Selon une possibilité de l'invention, les bulles ou les gouttes de types différents ont des tailles, des viscosités, ou des tensions de surface différentes, ce qui permet de les séparer les unes des autres.
  • Dans un mode de réalisation, le chenal comporte au moins deux parties successives de hauteur et/ou de largeur différente, une partie de largeur et/ou de hauteur plus grande étant suivie d'une partie de largeur et/ou de hauteur plus faible, dans le sens de l'écoulement du premier fluide.
  • Ce type de chenal permet de séparer facilement deux types de bulles ou de gouttes. A titre d'exemple, des bulles à forte viscosité ou de grande taille vont s'écouler uniquement le long de la partie de forte hauteur du chenal avant d'être chassées hors du chenal par le fluide porteur, alors que des bulles à plus faible viscosité ou de plus faible taille s'écouleront non seulement le long de la partie de forte hauteur du chenal mais également le long de sa partie de faible hauteur.
  • Selon une autre caractéristique de l'invention, le circuit comprend des chenaux de largeur différente et/ou d'inclinaison différente par rapport à l'écoulement du premier fluide, ce qui permet également de pouvoir discriminer différents types de bulles ou de gouttes.
  • Avantageusement, le circuit comprend des zones de piégeage de gouttes ou de bulles, formées par un agrandissement de la section de passage des gouttes ou des bulles dans le microcanal ou dans un chenal précité, ou encore par une modification locale de l'énergie de surface du microcanal et/ou du chenal.
  • Le circuit peut comprendre des zones de piégeage dans le microcanal, même en l'absence du chenal. Les gouttes ou les bulles transportées par le fluide porteur sont alors piégées dans les zones de piégeage placées sur leur trajectoire.
  • Par ailleurs, ces zones de piégeage peuvent être plus petites que la taille des gouttes ou des bulles à piéger.
  • Ces zones de piégeage peuvent être adaptées à un seul type de bulles et/ou ne peuvent contenir qu'un nombre défini de bulles, par exemple une ou deux bulles.
  • Les zones de piégeage permettent d'immobiliser une ou plusieurs gouttes, ce qui permet par exemple de les examiner à l'aide d'un microscope et/ou de suivre le déroulement d'une réaction au sein d'une zone pendant une période de temps importante.
  • Au moins certaines des zones de piégeage peuvent être indépendantes les unes des autres.
  • Alternativement, au moins certaines des zones de piégeage sont reliées en série ou en parallèle par le microcanal ou par des chenaux précités.
  • Le piège peut être fabriqué de façon à ce que la présence d'une goutte dans celui-ci force les gouttes suivantes à continuer leur cheminement, afin de remplir les pièges situés en aval.
  • Une goutte piégée est stationnaire mais son contenu continue d'être mis en mouvement par l'écoulement du fluide porteur. De cette façon, le contenu de la goutte peut être mélangé même lorsque celle-ci est stationnaire. Un tel phénomène peut notamment jouer un rôle important dans le domaine de l'incubation biologique ou pour la mise en place d'une réaction chimique.
  • Il est ainsi possible d'apporter des gouttes à proximité l'une de l'autre ou en contact l'une avec l'autre, afin de les fusionner et initier une réaction chimique, ou de comparer leur contenu.
  • Dans le cas de zones de piégeage reliées en série les unes aux autres, le saut d'une ou plusieurs gouttes d'une zone de piégeage à une autre peut entraîner, par effet de cascade, le mouvement des gouttes piégées dans les zones situées en aval.
  • Selon une autre caractéristique de l'invention, des obstacles sont formés en aval de certaines zones de piégeage pour retenir dans ces zones les bulles ou les gouttes qui y ont été attirées.
  • Avantageusement, au moins un chenal comprend des moyens de ralentissement ou d'accélération des bulles ou gouttes présentes dans le chenal, ces moyens de ralentissement ou d'accélération étant formés par des variations de largeur ou de hauteur du chenal, ou par des rails ou des nervures des parois du microcanal correspondant, formés le long des zones de ralentissement ou d'accélération souhaitées.
  • Selon une autre caractéristique de l'invention, le circuit comprend des moyens de formation de trains parallèles de gouttes ou de bulles de nature différente dans un microcanal comprenant des moyens parallèles d'introduction des gouttes ou des bulles de nature différente dans le microcanal, et des chenaux formés dans ce microcanal à partir des moyens d'introduction pour guider les gouttes ou les bulles sortant de chaque moyen d'introduction jusqu'à une zone prédéterminée du microcanal.
  • Chaque type de goutte est ainsi amené à un endroit prédéfini du microcanal. Il est alors possible de disposer des séries de gouttes de nature connue à différents niveaux du microcanal.
  • L'invention sera mieux comprise et d'autres détails, caractéristiques et autres avantages de l'invention apparaîtront à la lecture de la description suivante faite à titre d'exemple non limitatif en référence aux dessins annexés dans lesquels :
    • la figure 1 est une vue schématique représentant la section du microcanal ;
    • les figures 2 et 3 sont des vues correspondant à la figure 1, représentant deux autres formes de réalisation de l'invention ;
    • la figure 4 représente, en vue de dessus, un microcanal équipé d'un chenal ;
    • la figure 5 représente, en vue de dessus, un microcanal équipé d'un réseau de chenaux ;
    • les figures 6 à 9 sont des vues de dessus d'un microcanal selon différentes formes de réalisation de l'invention visant à séparer des gouttes de natures différentes ;
    • la figure 10 est une vue de dessus d'un microcanal équipé d'un chenal comportant des moyens de ralentissement des gouttes ;
    • la figure 11 est une vue de dessus d'un microcanal équipé d'un chenal comportant des moyens d'accélération des gouttes ;
    • la figure 12 est une vue de dessus d'un microcanal équipé d'un chenal principal et de chenaux annexes visant à ralentir les gouttes du chenal principal ;
    • la figure 13 est vue de dessus d'un microcanal équipé d'une zone de piégeage de bulles, en l'absence de chenal ;
    • les figures 14 et 15 sont des vues de dessus d'un chenal équipé de zones de piégeage de bulles ;
    • la figure 16 est une vue de dessus d'un réseau de chenaux comportant des obstacles ;
    • la figure 17 est une vue de dessus d'un réseau de chenaux comportant des zones mouillantes ;
    • la figure 18 est une vue de dessus de chenaux formant des microréacteurs ;
    • la figure 19 est une vue de dessus d'un microcanal comportant un chenal équipé de zones de piégeage disposées en série ;
    • la figure 20 est une vue de dessus d'un réseau matriciel de zones de piégeage.
    • la figure 21 montre un microcanal comportant des moyens d'alimentation de trains parallèles de gouttes de nature différente.
  • La figure 1 représente schématiquement une première forme de réalisation d'un microcircuit 1 selon l'invention.
  • Le microcircuit 1 est formé dans une plaque d'un matériau approprié tel par exemple que du PDMS (poly-dimethylsiloxane) par utilisation d'une technique courante de lithographie souple, comme cela est connu de l'art antérieur précité.
  • Un ou plusieurs microcanaux 2 peuvent être formés à la surface de la plaque, sur laquelle est collée une lame de microscope en verre, par exemple.
  • Comme cela est visible à la figure 1, le microcanal 2 présente une section rectangulaire, dont la largeur L est définie par sa dimension transversale horizontale, c'est-à-dire dans le plan du microcircuit 1, et dont la hauteur h est définie par sa dimension dans le sens vertical, c'est-à-dire suivant une direction perpendiculaire au plan du microcircuit 1.
  • Bien entendu, les termes qui précèdent ne sont utilisés que par référence aux dessins, et restent valables quelle que soit l'orientation du microcircuit.
  • Une rainure 3 à section rectangulaire ou carrée est ménagée dans l'une des deux parois horizontales 4 qui délimitent le microcanal 2. Selon une variante de réalisation de l'invention, une seconde rainure pourrait être ménagée dans la paroi horizontale opposée, en regard de la première 4.
  • La rainure 3 forme ainsi un chenal de plus grande section que le reste du microcanal 2.
  • Un premier fluide, dit fluide porteur, circule dans le microcanal 2, dans le sens indiqué par la flèche F, en entraînant avec lui des gouttes 5 d'un second fluide, de nature différente du premier fluide.
  • Dans ce qui suit, le second fluide peut être sous forme de gouttes ou de bulles, sans modification du fonctionnement de l'invention.
  • Les gouttes 5 s'écoulant dans la zone étroite du microcanal sont écrasées. Lorsqu'elles rencontrent un chenal 3, elles y prennent une forme moins écrasée, par exemple une forme sphérique ou quasi-sphérique, nécessitant moins d'énergie de surface que la forme écrasée. Il est à noter que les gouttes peuvent demeurer écrasées tout en étant guidées par le chenal. Le critère déterminant est que l'énergie de surface de la goutte dans le chenal soit plus petite que celle hors du chenal, la sphère correspondant au minimum de cette énergie.
  • Les gouttes 5 qui rencontrent le chenal 3 circulent alors le long de celui-ci, en étant emportées par le fluide porteur.
  • Les gouttes peuvent être plus grandes ou plus petites que le chenal 3.
  • La figure 2 illustre une variante de réalisation de l'invention dans laquelle la rainure définissant le chenal 3 présente une forme concave ou arrondie.
  • Une autre variante de réalisation est représentée à la figure 3, dans laquelle l'une des parois horizontales 4 est pourvue de deux nervures parallèles 6, espacées l'une de l'autre, dirigées vers l'intérieur du microcanal 2 et délimitant entre elles un chenal 3.
  • De cette manière, les gouttes 5 écrasées entre le sommet des nervures 6 et la paroi opposée 8, sont dirigées soit vers le chenal 3, soit dans les autres zones du microcanal 2 situées de part et d'autre des nervures 6. Dans ces zones, les gouttes 5 peuvent retrouver une forme sphérique ou quasi-sphérique et donc une énergie de surface plus faible. De cette façon, les nervures forment des barrières permettant de séparer certaines gouttes des autres.
  • La figure 4 représente, en vue de dessus, la forme d'un chenal 3. Dans cet exemple, le chenal 3 comprend au moins une partie 9 s'étendant selon l'axe A du microcanal et donc suivant l'axe F d'écoulement du fluide porteur, au moins une partie 10 s'étendant obliquement par rapport à l'axe A précité, et/ou au moins une partie 11 de forme sinusoïdale.
  • Dans chacune des parties précitées, la trajectoire des gouttes 5 circulant le long du chenal 3 présente une composante suivant le sens d'écoulement du fluide porteur, de sorte que les gouttes 5 sont toujours entraînées par le fluide porteur, de l'amont vers l'aval du chenal 3 et du microcanal 2.
  • Dans le cas d'une partie oblique 10 ou d'une partie sinusoïdale 11 notamment, le temps de parcours des gouttes 5 dans le microcanal 2 est plus important. De cette manière, on peut observer à l'aide d'un microscope le contenu des gouttes 5 pendant une plus longue période, sans avoir besoin de modifier la zone d'observation au cours du temps.
  • La figure 5 illustre un réseau de chenaux comportant un chenal central 12 s'étendant dans la direction du microcanal 2, de part et d'autre duquel s'étendent plusieurs chenaux auxiliaires 13. Chaque chenal auxiliaire 13 s'étend depuis le chenal central 12 et débouche à nouveau dans ce dernier, à la manière de chenaux de dérivation.
  • Dans le cas de la figure 5, les gouttes 5 contiennent par exemple de l'eau et le fluide porteur est de l'huile de paraffine, la largeur du microcanal 2 est de 3 mm, celle des chenaux 12, 13 est de 70 µm, les hauteurs du microcanal et des chenaux sont respectivement de 50 µm et 35 µm, et les gouttes 5 s'écoulent de la gauche vers la droite dans le sens de la flèche F.
  • La figure 6 représente un microcanal 2 dans lequel circule un premier fluide formant un fluide porteur pour des gouttes d'un premier et d'un second types. Les gouttes du premier type 14 présentent une taille plus importante que les gouttes du second type 15.
  • Le microcanal 2 est équipé d'un chenal 3 s'étendant obliquement de l'amont vers l'aval par rapport au sens de circulation du fluide porteur, représenté par la flèche F. La hauteur et/ou la largeur du chenal 3 sont ajustées de façon à ce que les gouttes les plus grandes 14 soient emportées avec le fluide porteur dans le sens de la flèche F et que les gouttes les plus petites 15 soient attirées dans le chenal 3, puis progressent le long de celui-ci, de l'amont vers l'aval, en étant entraînées par le fluide porteur.
  • L'extrémité aval 16 du chenal 3 est pourvue d'une diminution de sa hauteur ou de sa largeur de façon à ce que la force visqueuse exercée par le fluide porteur soit plus importante que celle nécessaire pour écraser les gouttes 15, afin que le fluide porteur les entraîne à nouveau dans le microcanal 2. Les gouttes 14 et 15 circulent ainsi, en aval du chenal 3, respectivement selon deux axes B et C parallèles à l'écoulement du fluide porteur et écartés l'un de l'autre.
  • Un tel microcanal permet ainsi de trier deux types de gouttes de nature différente.
  • La figure 7 illustre un microcanal 2 similaire à celui de la figure 6, dans lequel les gouttes du premier type 14 sont relativement très visqueuses et les gouttes du second type 15 sont relativement peu visqueuses.
  • La hauteur et/ou la largeur du chenal 3 sont ajustées de façon à ce que les gouttes plus visqueuses 14 soient emportées avec le fluide porteur et que seules les gouttes moins visqueuses 15 soient attirées dans le chenal, puis progressent le long de celui-ci, de l'amont vers l'aval, en étant entraînées par le fluide porteur et sortent du chenal 3 à l'extrémité aval de celui-ci.
  • On rappelle que plus la goutte est visqueuse, plus l'effort exercé par le fluide porteur sur la goutte est important, cet effort permettant l'extraction de la goutte hors du chenal.
  • Un tel microcanal 2 peut également servir à trier des gouttes présentant des tensions de surface différentes.
  • La figure 8 représente un microcanal de type de ceux des figures 6 et 7, dans lequel le chenal présente successivement, de l'amont vers l'aval, des zones de hauteur et/ou de largeur décroissantes 17 à 20.
  • Chaque zone est dimensionnée de façon à pouvoir discriminer un type de goutte particulier.
  • Dans le cas représenté à la figure 8, le fluide porteur entraîne quatre types de gouttes de tailles ou de viscosités différentes en regard de la première zone 17, c'est-à-dire la zone la plus large et/ou la plus profonde.
  • Les gouttes du premier type 21, c'est-à-dire les plus grosses ou les plus visqueuses sont entraînées au travers cette zone 17 par le fluide porteur, la trajectoire de ces gouttes 21 n'étant quasiment pas influencée par la présence du chenal 3.
  • Les gouttes du deuxième, du troisième et du quatrième types 22, 23, 24, plus petites ou moins visqueuses que les premières 21, sont attirées par la première zone 17 du chenal 3 et suivent celle-ci de l'amont vers l'aval en étant emportées par le fluide porteur, jusqu'à arriver à la deuxième zone 18, de largeur et/ou de hauteur plus faible.
  • La deuxième zone 18 est dimensionnée de façon à ce que les gouttes du deuxième type 22 ne puissent pas y pénétrer. Ces gouttes 22 sont donc extraites du chenal 3 et circulent ensuite dans le microcanal 2, selon un axe parallèle à l'écoulement du fluide porteur et écarté de leur axe de circulation d'origine.
  • De la même manière que précédemment, les autres zones 19 et 20 du chenal 3 sont dimensionnées de façon à ce que les gouttes du troisième type 23 circulent successivement dans les premières, deuxième et troisième zones 17, 18, 19 avant de s'échapper hors du chenal 3, et que les gouttes du quatrième type 24 circulent dans chacune des zones 17 à 20 du chenal 3 avant de s'échapper à l'extrémité aval 16 du chenal 3.
  • De cette manière, les gouttes de chaque type 21 à 24 circulent, en aval du chenal 3, respectivement suivant des axes de circulation parallèles et écartés les uns des autres.
  • Un tel microcanal permet donc de trier quatre types de gouttes de nature différente.
  • Bien entendu, le nombre de zones différentes du chenal peut être ajusté en fonction des besoins.
  • Il est également possible de séparer plusieurs types de gouttes en ménageant différents chenaux 3 de dimensions et/ou d'inclinaisons différentes dans le microcanal par rapport au sens d'écoulement F du fluide porteur, comme cela est représenté à la figure 9.
  • Dans cette figure, le microcanal 2 est formé avec quatre chenaux successifs 3, dont les inclinaisons par rapport à l'écoulement du premier fluide sont de plus en plus faible, Le premier chenal 3a, le plus incliné, sépare les plus petites gouttes 24, le deuxième canal 3b sépare les gouttes un peu plus grandes 23, le troisième canal 3c sépare les gouttes encore un peu plus grandes 22, et le quatrième canal 3d sépare les gouttes les plus grandes 21.
  • Le microcanal 2 peut également être équipé d'un chenal 3, s'étendant par exemple suivant l'axe de circulation du fluide porteur, et pourvu d'une diminution de sa largeur 25 et/ou de sa hauteur. Cette diminution peut présenter la forme d'un gradin ou d'une marche discontinue, ou encore une forme progressive telle que celle visible en figure 10.
  • De cette façon, une goutte 5 s'écoulant dans le chenal en étant entraînée par le fluide porteur sera freinée lors du passage du rétrécissement 25.
  • Dans le cas où la vitesse du fluide porteur est nulle, la géométrie des chenaux peut être utilisée comme moteur pour transporter les gouttes. De cette façon, l'invention permet de déplacer les gouttes dans un champ bidimensionnel, même en l'absence d'un écoulement d'un fluide porteur. L'invention peut même être utilisée afin de déplacer des gouttes à contre-courant par rapport à l'écoulement du fluide porteur.
  • A l'inverse, comme représenté en figure 11, le chenal 3 peut être équipé d'une zone d'élargissement 26 en gradin ou progressive, de façon à ce que la goutte 5 circulant dans le chenal 3 soit accélérée lors du passage de cette zone.
  • Le freinage des gouttes 5 peut également être obtenu (figure 12) en disposant de part et d'autre du chenal 3 dans lequel elles circulent, des chenaux secondaires 27 ayant pour fonction d'augmenter localement la section du microcanal 2. Ceci a pour effet de diminuer localement la vitesse de circulation du fluide porteur, et, par voie de conséquence, la vitesse de circulation des gouttes 5.
  • Bien entendu, le nombre, la forme et la position des chenaux secondaires 27 peuvent être modifiés en fonction des besoins, l'important étant l'augmentation locale de la section du microcanal. On peut obtenir l'effet inverse en remplaçant les chenaux 27 par des nervures formant une diminution locale de la section du microcanal 2.
  • La figure 13 représente un microcanal 2 comportant une zone de piégeage 28 des gouttes, formée par une poche ou une cavité 29 réalisée dans la paroi du microcanal 2. Dans cette forme de réalisation, le microcanal n'est pas équipé d'un chenal, les gouttes transportées par le flux de fluide porteur F étant piégées dans la ou les zones de piégeage si ces dernières se trouvent sur la trajectoire des gouttes. Les zones de piégeage peuvent être plus petites ou plus grandes que les gouttes ou les bulles à piéger, en fonction des applications et de la nature des gouttes ou des bulles.
  • La figure 14 représente un chenal 3 équipé d'une zone de piégeage 28 des gouttes, formée par une poche ou cavité formée sur un côté du chenal 3, dans une paroi 4 du microcanal 2.
  • La poche 29 est raccordée au chenal 3 par une embouchure 30 et est apte à piéger un nombre prédéfini de gouttes. Dans le cas de la figure 13, cette zone ne permet de contenir qu'une seule goutte 5.
  • La section de l'embouchure 30 peut être adaptée en fonction des applications. Dans le cas où l'embouchure 30 présente une section plus importante que celle du chenal 3, la ou les gouttes 5 peuvent être automatiquement attirées dans les zones de piégeage 28.
  • Dans le cas où l'embouchure 30 présente une section plus faible ou sensiblement égale à celle du chenal 3, il peut être nécessaire de forcer les gouttes 5 à entrer dans la zone de piégeage 28. Ceci peut être réalisé par tout moyen approprié, en particulier à l'aide de la méthode décrite dans les documents WO 2006/018490 et WO 2007/138178 et qui utilise un faisceau laser dirigé sur l'interface entre une goutte et le fluide porteur ou entre deux gouttes, afin d'influer sur le déplacement des gouttes.
  • Les gouttes 5 peuvent être retirées des zones de piégeage 28 en augmentant le débit du fluide porteur, ou en forçant les gouttes 5 à sortir à l'aide de la méthode précitée.
  • La figure 15 représente un chenal 3 de part et d'autre duquel sont formées plusieurs zones de piégeage 28, 29, écartées les unes des autres et agencées en quinconce. Chaque zone de piégeage 28, 29 peut être dimensionnée pour piéger un nombre prédéfini de gouttes 5, une goutte pour le cas des zones 28 et deux gouttes pour le cas de la zone 31, et/ou pour piéger des gouttes d'une nature particulière.
  • Le microcanal 2 peut également être équipé d'un réseau de chenaux formés d'un chenal principal 3, par lequel arrivent les gouttes, à partir duquel s'étendent un ou plusieurs chenaux dérivés 31 dans lesquels sont disposés des obstacles 32 permettant de retenir, au moins temporairement, les gouttes 5 dans le chenal dérivé correspondant 31, comme on le voit à la figure 16. Ceux-ci forment alors des zones de piégeage. Les chenaux dérivés 31 peuvent ou non s'étendrent en aval de l'obstacle 32.
  • Selon une autre variante de réalisation de l'invention, visible en figure 17, les chenaux annexes 31 peuvent être équipés de zones mouillantes 33. Une zone mouillante est formée par une zone dont les propriétés de mouillage de la paroi 4 ont été modifiées.
  • Ceci peut être réalisé par exemple à l'aide d'une goutte d'eau qui est arrêtée ou ralentie dans une zone rendue hydrophile. La modification des propriétés de mouillage peut également être obtenue à l'aide de méthodes chimiques, telles que la silanisation ou l'attaque par plasma, ou encore à l'aide de méthodes physiques, par exemple en introduisant des plots hydrophiles auxquelles la goutte vient s'accrocher (effet fakir).
  • Les zones de piégeage peuvent également comporter des éléments destinés à réagir avec le contenu des gouttes, de façon à former des microréacteurs ou en vue de détecter la présence de molécules chimiques et/ou biochimiques dans la ou les gouttes concernées. A titre d'exemple, une séquence d'ADN peut être détectée si la séquence complémentaire est greffée localement sur la paroi de la zone de piégeage correspondante.
  • Plusieurs gouttes peuvent également être amenées à proximité ou au contact l'une de l'autre comme cela est représenté à la figure 18. Pour cela, le microcanal comporte par exemple deux chenaux parallèles 34, 35, destinés chacun à la circulation d'un type particulier de gouttes 36, 37, à partir desquels s'étendent des chenaux dérivés 31 dont les extrémités aval forment des zones de piégeage 28.
  • Les zones de piégeage 28 sont disposées à proximité ou de manière adjacente l'une par rapport à l'autre de façon à ce qu'une goutte d'un premier type 36 soit à proximité ou au contact d'une goutte d'un second type 37.
  • Il est alors possible de fusionner les deux gouttes 36, 37 et faire réagir leur contenu, ou de comparer leur contenu.
  • La figure 19 représente un microcanal 2 présentant un chenal 3 équipé de plusieurs zones de piégeage successives 28, agencées en série.
  • Lorsqu'une goutte 5 est piégée dans chacune des zones de piégeage 28 et qu'une goutte supplémentaire arrive par le chenal 3, celle-ci déloge la goutte du piège amont qui, elle-même, vient déloger la goutte du piège située directement en aval du précédent. Ceci entraîne, par effet de cascade, le mouvement de toutes les gouttes 5, d'une zone de piégeage 28 à une autre.
  • Les zones de piégeage 28 forment une zone tampon T définie par un élargissement du microcanal et dans laquelle les gouttes 5 passent une durée déterminée nécessaire par exemple pour incuber une réaction chimique ou biochimique et/ou pour permettre leur observation.
  • Les zones de piégeage 28 peuvent également être à disposition matricielle comme représenté en figure 20, par l'intermédiaire d'un chenal principal 3 et de chenaux dérivés 31 parallèles, reliés chacun à un nombre déterminé de zones de piégeage 28.
  • La figure 21 montre un microcanal 2 comportant des moyens d'alimentation 38 de trains parallèles de gouttes de nature différente 21 à 24, des moyens parallèles d'introduction 39 des gouttes de nature différente dans le microcanal 2, et des chenaux 3 formés dans le microcanal 2 à partir des moyens d'introduction 39 pour guider les gouttes 21 à 24 sortant de chaque moyen d'introduction jusqu'à une zone prédéterminée du microcanal 2. On forme ainsi des trains parallèles de gouttes différentes dans le microcanal.
  • Les microcanaux présentés ci-dessus pour le traitement de gouttes dans un fluide porteur sont également utilisables pour le traitement de bulles.
  • L'invention permet notamment d'intégrer la préparation des échantillons dans une puce microfluidique et d'apporter les échantillons vers les points d'observation de façon simple et robuste.
  • Un circuit microfluidique selon l'invention peut être appliqué dans le domaine de la biotechnologie ou de la « chimietech », mais également dans le domaine de l'affichage fluide et de l'observation de réactions dans des microgouttes.
  • Un tel circuit microfluidique pourrait se présenter sous un format aujourd'hui devenu standard, tel que les « Micro-Arrays » ou biopuces, par exemple les puces à ADN ou à protéines, ou encore les puces de culture cellulaire.
  • Ces biopuces sont constituées d'une matrice de zones où la surface est fonctionnalisée avec des biomolécules, la taille et la distance entre ces zones étant d'environ la même taille que les gouttes microfluidiques et les chenaux. L'invention permet d'amener des gouttes particulières, dont le contenu est connu, vers les sites fonctionnalisés et de les amener en contact avec la surface afin de produire l'hybridation qui permettra la mesure biologique. De cette manière, l'invention permet d'interfacer la technologie des biopuces avec les avantages de la manipulation des fluides en microfluidique.
  • Comme indiqué précédemment, la trajectoire des gouttes peut être modifiée de façon active, à l'aide d'un laser, afin d'amener les gouttes dans un piège ou dans une zone déterminée d'un microcanal.
  • Dans le cas d'un microcanal comportant plusieurs chenaux, une telle méthode peut également être utilisée pour diriger une goutte d'un chenal à un autre, par exemple pour choisir entre différentes trajectoires que pourrait suivre la goutte.
  • Pour cela, lorsque les fluides présentent un écoulement thermocapillaire normal, il convient de choisir la longueur d'onde du laser afin qu'elle soit absorbée par le fluide porteur. Le fluide porteur peut, si nécessaire, contenir un colorant (encre noire par exemple) absorbant la longueur d'onde du laser. Dans ce cas, le chauffage local du fluide porteur à l'aide du laser, dans un chenal ou à proximité de celui-ci, attire la goutte dans ce chenal. Le chauffage peut aussi être effectué à l'interface entre la goutte et le fluide porteur afin d'attirer la goutte dans un chenal déterminé.
  • Lorsque les fluides présentent un écoulement thermocapillaire anormal, le laser peut être positionné afin de bloquer l'avancée d'une goutte et la dévier dans un autre chenal.
  • Le chauffage peut également être appliqué localement ou globalement à l'aide d'éléments de chauffage électriques.
  • En outre, dans le cas où les fluides utilisés n'absorbent pas le laser, une telle absorption peut être faite soit directement par le matériau constitutif du microcanal, soit en déposant dans le microcanal ou dans le chenal une couche ou une particule d'un matériau absorbant la radiation laser.
  • Les forces de diélectrophorèse peuvent également être utilisées afin d'influencer la trajectoire des gouttes, ou encore pour piéger des gouttes.

Claims (14)

  1. Circuit micro fluidique (1) comprenant au moins un microcanal (2) d'écoulement d'un premier fluide transportant des gouttes (5) ou de bulles d'au moins un deuxième fluide, le microcanal (2) étant délimité par deux parois (4, 8), le microcanal (2) ayant une section transversale perpendiculaire à la direction d'écoulement du premier fluide de hauteur (h) définie entre les deux parois du microcanal (2), la hauteur (h) du microcanal (2) étant dimensionnée pour écraser les gouttes (5) ou les bulles lors de leur déplacement, le circuit étant caractérisé en ce que le microcanal (2) comporte une zone de piégeage de gouttes ou de bulles, cette zone de piégeage (28) ayant une hauteur (hc) supérieure à celle (h) du microcanal (2), de façon à ce qu'au moins certaines des gouttes (5) ou des bulles du deuxième fluide dans le microcanal soient piégées dans la zone de piégeage placée sur leur trajectoire.
  2. Circuit selon la revendication 1, caractérisé en ce que la zone de piégeage est formée par une cavité (29) réalisée dans une des parois du microcanal de hauteur (hc) plus grande que celle de la section transversale du microcanal (2).
  3. Circuit selon la revendication 1 ou 2, comportant des zones de piégeage (28) de gouttes (5) ou de bulles, formées par une modification locale de l'énergie de surface du microcanal (2), notamment une modification locale des propriétés de mouillage d'une des parois (4, 5) du microcanal (2).
  4. Circuit selon la revendication 2 ou 3, caractérisé en ce qu'au moins certaines des zones de piégeage (28) sont indépendantes les unes des autres.
  5. Circuit selon l'une des revendication 2 ou 3, caractérisé en ce qu'au moins certaines des zones de piégeage (28) sont reliées en série ou en parallèle par le microcanal (2) ou par des chenaux (3).
  6. Circuit selon l'une des revendications 2 à 5, caractérisé en ce que les zones de piégeage comportent des éléments destinés à réagir avec le contenu des gouttes ou des bulles (5).
  7. Circuit selon l'une des revendications 2 à 6, caractérisé en ce que les zones de piégeage sont configurées pour piéger un nombre défini de gouttes, notamment une seule goutte ou deux gouttes.
  8. Procédé de traitement de gouttes ou de bulles dans un circuit microfluidique selon l'une des revendications précédentes comportant les étapes suivantes :
    - faire circuler le premier fluide transportant les gouttes (5) ou les bulles dans le microcanal,
    - piéger au moins une goutte (5) ou une bulle dans au moins une zone de piégeage (25) placées sur sa trajectoire.
  9. Procédé selon la revendication 8, caractérisé en ce que la au moins une zone de piégeage est plus petite que la taille de la au moins une goutte (5) ou une bulle.
  10. Procédé selon la revendication 8, caractérisé en ce que la au moins une zone de piégeage est plus grande que la taille de la au moins une goutte (5) ou une bulle.
  11. Procédé selon l'une quelconque des revendications 8 à 10, caractérisé en ce qu'au moins deux gouttes (5) ou bulles sont piégées dans la ou au moins une zone de piégeage (25).
  12. Procédé selon l'une des revendications 8 à 11, dans lequel la circulation du premier fluide est maintenue dans le microcanal, la ou les gouttes ou la ou les bulles piégées dans la ou les zones de piégeage étant stationnaires et le deuxième fluide dans la ou les gouttes ou la ou les bulles piégées dans la ou les zones de piégeage étant mis en mouvement par la circulation du premier fluide.
  13. Procédé selon l'une des revendications 8 à 12, comportant une étape d'augmentation du débit du premier fluide dans le microcanal de sorte à retirer de la au moins une goutte (5) ou une bulle de la zone de piégeage dans laquelle elle est piégée.
  14. Procédé selon l'une des revendications 8 à 13, comportant l'examen des gouttes ou bulles (5) à l'aide d'un microscope et/ou le suivi du déroulement d'une réaction au sein d'une zone pendant une période de temps importante.
EP19201464.5A 2009-09-29 2010-09-29 Procédé de traitement de gouttes ou de bulles dans un circuit microfluidique Active EP3632566B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0904639A FR2950544B1 (fr) 2009-09-29 2009-09-29 Circuit microfluidique
EP10778686.5A EP2482983B1 (fr) 2009-09-29 2010-09-29 Circuit microfluidique
PCT/FR2010/052051 WO2011039475A1 (fr) 2009-09-29 2010-09-29 Circuit microfluidique

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
PCT/FR2010/052051 Previously-Filed-Application WO2011039475A1 (fr) 2009-09-29 2010-09-29 Circuit microfluidique
EP10778686.5A Division EP2482983B1 (fr) 2009-09-29 2010-09-29 Circuit microfluidique
EP10778686.5A Division-Into EP2482983B1 (fr) 2009-09-29 2010-09-29 Circuit microfluidique

Publications (2)

Publication Number Publication Date
EP3632566A1 true EP3632566A1 (fr) 2020-04-08
EP3632566B1 EP3632566B1 (fr) 2021-11-10

Family

ID=42199939

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19201464.5A Active EP3632566B1 (fr) 2009-09-29 2010-09-29 Procédé de traitement de gouttes ou de bulles dans un circuit microfluidique
EP10778686.5A Active EP2482983B1 (fr) 2009-09-29 2010-09-29 Circuit microfluidique

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP10778686.5A Active EP2482983B1 (fr) 2009-09-29 2010-09-29 Circuit microfluidique

Country Status (8)

Country Link
US (1) US9452432B2 (fr)
EP (2) EP3632566B1 (fr)
JP (1) JP5752694B2 (fr)
KR (1) KR101720683B1 (fr)
DE (1) DE10778686T1 (fr)
ES (2) ES2906718T3 (fr)
FR (1) FR2950544B1 (fr)
WO (1) WO2011039475A1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100392316C (zh) * 2006-03-27 2008-06-04 博奥生物有限公司 控制液体在微管路中连续流动的流路结构
US9695390B2 (en) 2010-08-23 2017-07-04 President And Fellows Of Harvard College Acoustic waves in microfluidics
FR2996544B1 (fr) * 2012-10-08 2015-03-13 Ecole Polytech Circuit microfluidique permettant la mise en contact de gouttes de plusieurs fluides, et procede microfluidique correspondant.
FR2996545B1 (fr) 2012-10-08 2016-03-25 Ecole Polytech Procede microfluidique de traitement et d'analyse d'une solution contenant un materiel biologique, et circuit microfluidique correspondant.
KR101410129B1 (ko) * 2012-12-11 2014-06-25 서강대학교산학협력단 액적 병합장치
CN107427788B (zh) 2015-03-16 2021-03-19 卢米耐克斯公司 用于多阶梯通道乳化的仪器和方法
LT3341116T (lt) * 2015-08-27 2022-05-25 President And Fellows Of Harvard College Rūšiavimo naudojant akustines bangas būdas
IL299835A (en) 2015-12-30 2023-03-01 Berkeley Lights Inc Microfluidic devices for optically activated convection and displacement, and their kits and methods
FR3056927B1 (fr) 2016-09-30 2021-07-09 Ecole Polytech Procede microfluidique de manipulation de microgouttes
US11465148B2 (en) 2018-04-16 2022-10-11 Pattern Bioscience, Inc. Methods and apparatus for forming 2-dimensional drop arrays
KR102043161B1 (ko) * 2018-06-07 2019-11-11 한양대학교 산학협력단 미세 액적 병합을 위한 미세 유체 제어 장치 및 이를 이용한 미세 액적의 병합 방법
US10486155B1 (en) 2018-10-22 2019-11-26 Klaris Corporation Vacuum-loaded, droplet-generating microfluidic chips and related methods
CN109825417B (zh) * 2019-03-10 2023-12-29 新羿制造科技(北京)有限公司 一种液滴引导装置
CN114126762B (zh) 2019-04-30 2023-01-03 伯克利之光生命科技公司 用于包封和测定细胞的方法
FR3098128B1 (fr) 2019-07-05 2023-11-17 Commissariat Energie Atomique Dispositif microfluidique comportant une microgoutte présentant une matrice sol-gel.
US11701658B2 (en) 2019-08-09 2023-07-18 President And Fellows Of Harvard College Systems and methods for microfluidic particle selection, encapsulation, and injection using surface acoustic waves
US10953404B1 (en) 2020-04-24 2021-03-23 Pattern Bioscience, Inc. Apparatuses for contactless loading and imaging of microfluidic chips and related methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030196714A1 (en) * 2002-04-17 2003-10-23 Coventor, Inc. Microfluidic system including a bubble valve for regulating fluid flow through a microchannel
US20040180130A1 (en) * 2001-04-24 2004-09-16 Achim Wixforth Method and device for manipulating small amounts of liquid on surfaces
WO2006018490A1 (fr) 2004-07-19 2006-02-23 Centre National De La Recherche Scientifique Circuit microfluidique a composant actif
US20060051214A1 (en) * 2002-08-15 2006-03-09 Tomas Ussing Micro liquid handling device and methods for using it
WO2007138178A2 (fr) 2006-05-30 2007-12-06 Centre National De La Recherche Scientifique Procede de traitement de gouttes dans un circuit microfluidique
CA2716411A1 (fr) * 2008-02-27 2009-09-03 Boehringer Ingelheim Microparts Gmbh Dispositif de separation de plasma

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4233029A (en) * 1978-10-25 1980-11-11 Eastman Kodak Company Liquid transport device and method
AU2003216175A1 (en) * 2002-02-04 2003-09-02 Colorado School Of Mines Laminar flow-based separations of colloidal and cellular particles
US9477233B2 (en) * 2004-07-02 2016-10-25 The University Of Chicago Microfluidic system with a plurality of sequential T-junctions for performing reactions in microdroplets
JP2006058031A (ja) * 2004-08-17 2006-03-02 Hitachi High-Technologies Corp 化学分析装置
US7918244B2 (en) * 2005-05-02 2011-04-05 Massachusetts Institute Of Technology Microfluidic bubble logic devices
US8936945B2 (en) * 2005-11-17 2015-01-20 The Regents Of The University Of Michigan Compositions and methods for liquid metering in microchannels
AU2008237017B2 (en) * 2007-04-10 2013-10-24 Advanced Liquid Logic, Inc. Droplet dispensing device and methods
US8340913B2 (en) * 2008-03-03 2012-12-25 Schlumberger Technology Corporation Phase behavior analysis using a microfluidic platform

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040180130A1 (en) * 2001-04-24 2004-09-16 Achim Wixforth Method and device for manipulating small amounts of liquid on surfaces
US20030196714A1 (en) * 2002-04-17 2003-10-23 Coventor, Inc. Microfluidic system including a bubble valve for regulating fluid flow through a microchannel
US20060051214A1 (en) * 2002-08-15 2006-03-09 Tomas Ussing Micro liquid handling device and methods for using it
WO2006018490A1 (fr) 2004-07-19 2006-02-23 Centre National De La Recherche Scientifique Circuit microfluidique a composant actif
WO2007138178A2 (fr) 2006-05-30 2007-12-06 Centre National De La Recherche Scientifique Procede de traitement de gouttes dans un circuit microfluidique
CA2716411A1 (fr) * 2008-02-27 2009-09-03 Boehringer Ingelheim Microparts Gmbh Dispositif de separation de plasma

Also Published As

Publication number Publication date
FR2950544A1 (fr) 2011-04-01
ES2803402T3 (es) 2021-01-26
EP2482983A1 (fr) 2012-08-08
KR20120082015A (ko) 2012-07-20
JP2013505827A (ja) 2013-02-21
EP2482983B1 (fr) 2020-04-29
US9452432B2 (en) 2016-09-27
FR2950544B1 (fr) 2011-12-09
ES2906718T3 (es) 2022-04-20
DE10778686T1 (de) 2019-12-19
WO2011039475A1 (fr) 2011-04-07
EP3632566B1 (fr) 2021-11-10
US20120315203A1 (en) 2012-12-13
KR101720683B1 (ko) 2017-03-28
JP5752694B2 (ja) 2015-07-22

Similar Documents

Publication Publication Date Title
EP2482983B1 (fr) Circuit microfluidique
EP2127748B1 (fr) Procédé de tri de particules ou d'amas de particules dans un fluide circulant dans un canal
EP2903738B1 (fr) Procédé microfluidique de traitement et d'analyse d'une solution contenant un matériel biologique, et circuit microfluidique correspondant
EP2609993A1 (fr) Dispositif nano et micro fluidique pour la séparation et concentration de particules présentes dans un fluide
EP2021127A2 (fr) Procede de traitement de gouttes dans un circuit microfluidique
FR2931141A1 (fr) Systeme microfluidique et procede pour le tri d'amas de cellules et de preference pour leur encapsulation en continu suite a leur tri
EP2269738A1 (fr) Dispositif pour l'amplification en chaîne thermo-dépendante de séquences d'acides nucléiques cibles
WO2010146261A2 (fr) Systeme microfluidique et procede correspondant pour le transfert d'elements entre phases liquides et utilisation de ce systeme pour extraire ces elements
EP2790834A1 (fr) Système microfluidique 3d à zones emboîtées et réservoir intégré, son procédé de préparation et ses utilisations
FR2826882A1 (fr) Procede de traitement de particules magnetiques et configurations d'aimants permettant la mise en oeuvre de ce procede
WO2017167861A1 (fr) Membranes d'analyse de dispositifs microfluidiques, réalisées en un matériau en fibre de verre
FR2901489A1 (fr) Dispositif microfluidique avec materiau de volume variable
JP2003344260A (ja) 粒子の進行方向制御方法および粒子の進行方向制御装置
EP2678106A1 (fr) Dispositif microfluidique d'extraction a interface liquide-liquide stabilisee
FR2930901A1 (fr) Systeme de distribution de nano-objets et procede associe
EP1429866B1 (fr) Procede et dispositif d'isolement et/ou determination d'un analyte
FR2790683A1 (fr) Dispositif et procede de positionnement d'un liquide
US20220388898A1 (en) Systems and methods related to particle deposition
WO2024200751A1 (fr) Puce microfluidique et procédé pour générer et trier des microgouttes monodispersées à haute fréquence
WO2024008947A1 (fr) Dispositif de tri de fibres par deplacement lateral differencie et procede de tri de fibres
EP3691797A1 (fr) Procede d'assemblage de particules gravitationnel
EP4116429A1 (fr) Procédé d'analyse d'un échantillon pour y détecter la présence d'une forme active d'une espèce biologique
EP3377204A1 (fr) Procede et dispositif de fabrication d'emulsions
EP2858753A1 (fr) Dispositif de fractionnement d'un fluide comportant des particules et d'extraction d'un volume d'interêt
EP3436194A1 (fr) Membranes d'analyse de dispositifs microfluidiques, réalisées en un matériau en fibre de verre

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191004

AC Divisional application: reference to earlier application

Ref document number: 2482983

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201120

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210506

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 2482983

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1445566

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010067820

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2906718

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220310

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220310

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220210

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010067820

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1445566

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220929

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220929

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230921

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231124

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230927

Year of fee payment: 14

Ref country code: CH

Payment date: 20231001

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240927

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240927

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240927

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240927

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240927

Year of fee payment: 15