EP3617449B1 - Drehschiebervakuumpumpe - Google Patents

Drehschiebervakuumpumpe Download PDF

Info

Publication number
EP3617449B1
EP3617449B1 EP19215663.6A EP19215663A EP3617449B1 EP 3617449 B1 EP3617449 B1 EP 3617449B1 EP 19215663 A EP19215663 A EP 19215663A EP 3617449 B1 EP3617449 B1 EP 3617449B1
Authority
EP
European Patent Office
Prior art keywords
rotary vane
vacuum pump
vane vacuum
accordance
circular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19215663.6A
Other languages
English (en)
French (fr)
Other versions
EP3617449A3 (de
EP3617449A2 (de
Inventor
Thomas Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Priority to EP19215663.6A priority Critical patent/EP3617449B1/de
Publication of EP3617449A2 publication Critical patent/EP3617449A2/de
Publication of EP3617449A3 publication Critical patent/EP3617449A3/de
Application granted granted Critical
Publication of EP3617449B1 publication Critical patent/EP3617449B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/106Stators; Members defining the outer boundaries of the working chamber with a radial surface, e.g. cam rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/10Manufacture by removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/30Geometry of the stator

Definitions

  • the present invention relates to a rotary vane vacuum pump according to the preamble of claim 1.
  • a rotary vane vacuum pump is in DE 10 2010 026 031 A1 and the WO 2006/036598 A2 disclosed.
  • the US 986 502 A , the EP 0 099 412 A1 and the U.S. 4,515,514A disclose rotary vane compressors having a pump chamber that deviates from a circular shape in cross section.
  • Known rotary vane vacuum pumps have a circular-cylindrical pump chamber or one with a circular cross-section.
  • the central axis of the circular cylinder is arranged parallel to the axis of rotation of the rotor and is radially spaced from it. Due to its circular shape, such a pump chamber can easily be manufactured with good tolerances, for example by drilling a hole in a housing body for the pump chamber.
  • the invention is based on the finding that the circular cross section in the known rotary vane vacuum pumps is advantageous in terms of manufacturing technology. However, it has been shown that from the point of view of vacuum technology, a shape of the cross section that deviates from the circular shape is advantageous, in particular the Pump performance and pumping speed significantly improved.
  • the pump chamber can be of oval cross-section, for example, and/or have various part-circular peripheral regions.
  • the cross section deviating from a circular shape according to the invention is measured in a plane perpendicular to the axis of rotation of the rotor or a cylinder axis of the pump chamber.
  • the pumping chamber of a rotary vane vacuum pump is generally cylindrical and is formed by a projection of its cross section which runs parallel to the axis of rotation of the rotor.
  • the term “cylindrical” thus refers to a shape having an arbitrarily shaped cross-section projected along a cylinder axis.
  • the pumping space is generally understood to be that space which is swept over by the at least one slide during the pumping operation or during the rotation of the rotor.
  • recesses or pockets which can be arranged, for example, in the area of the inlet and/or outlet, do not belong to the pump chamber if they do not extend over the entire axial length of the slide or slides or the pump chamber.
  • the cross section deviates from the circular shape due to a bulge.
  • the cross section has a part-circular, first peripheral area and a second peripheral area that deviates from the circular shape of the first.
  • the first peripheral area is therefore in particular designed essentially like a partial area of the circumference of the pump chamber of known rotary vane vacuum pumps, namely partially circular.
  • the second peripheral region can, for example, itself be designed in the shape of a part circle or have another, in particular complex, shape.
  • the cross section can have a part-circular, first peripheral region and a part-circular, second peripheral region, which is arranged radially offset from the first.
  • This embodiment combines in a simple way the production engineering advantages of a partially circular cross section with the vacuum engineering advantage that the pump capacity, in particular the pumping speed, can be improved.
  • the offset can in particular be a horizontal offset.
  • both peripheral areas have a radius, the offset having a size ratio to the radius of at least one of the peripheral areas, in particular of both peripheral areas, of at least 0.1 and/or at most 0.3. This allows the pumping speed of the pump to be significantly increased.
  • the deviation can preferably be arranged on the inlet side.
  • a bulge and/or a second peripheral area can be arranged on the inlet side.
  • the inlet of the pump chamber can preferably open into the deviation, the bulge and/or the second peripheral area.
  • the arrangement on the inlet side makes it easier for the gas to be pumped to flow into the pump chamber, as a result of which the pumping effect, in particular the pumping speed, is improved.
  • the cross section deviates from the circular shape of a part-circular peripheral section by at least 1 mm and/or at most 10 mm.
  • the cross section can deviate from the circular shape by at least 2 mm and/or at most 6 mm.
  • this deviation is measured as the radial distance between the edge of the actual cross-section and that part of the edge of the circular shape which, due to the deviation, is no longer part of the actual cross-section.
  • the rotor can have a plurality of slides.
  • the rotor has at least two slides which are formed separately from one another and are arranged opposite one another. These slides are preferably supported against each other, for example by means of a spring. Separate slides can particularly advantageously follow the shape of the pump chamber. Sliders that act in opposite directions can alternatively be designed in one piece, for example, or generally connected to one another.
  • the rotary vane vacuum pump is designed in multiple stages. In this case, only a first stage in the conveying direction has a pump chamber which has a cross section that deviates from a circular shape. In this way, the manufacturing advantage of the circular cross-section can be retained in the one or more other stages, with the first stage, ie the suction stage, being able to provide a particularly good suction capacity.
  • the object of the invention is also generally achieved by a method for producing a rotary vane vacuum pump of the type described above. Furthermore, the object of the invention is achieved by a method for producing a rotary vane vacuum pump as described above, as described in claim 11.
  • producing the pump chamber includes that a first bore is made in a housing body for the pump chamber and that the pump chamber is widened by machining in a radial direction, starting from the bore.
  • a particularly good pump output can thus be provided in a manner that is simple in terms of production technology. Due to the radial expansion, one remains in particular part-circular peripheral portion of the bore or the pump chamber exist. In particular, therefore, the pump chamber is widened in a direction facing away from a part-circular peripheral section.
  • the first bore forms, in particular, a part-circular peripheral area of the finished pump chamber.
  • the pump chamber can be expanded, for example, by milling and/or drilling.
  • a second bore can be introduced into the housing body radially offset relative to the first bore.
  • the axes of the two bores therefore run parallel to one another and are spaced apart from one another in the radial direction.
  • the offset ie the distance between the two axes, can in principle be chosen arbitrarily and is chosen in particular as a function of the size of the diameter of the bores.
  • the offset can preferably be at least 1 mm, in particular at least 2 mm, and/or at most 10 mm, in particular at most 6 mm.
  • the bores each have a diameter and the diameters differ from one another by at most 5 mm.
  • the bores particularly preferably have at least essentially the same diameter.
  • FIG. 1 shows a rotary vane vacuum pump 10 of the prior art and serves to briefly illustrate its known principle of operation.
  • a housing body 12 is shown defining an inlet 14 and an outlet 16 .
  • a pump chamber 18 is formed in the housing body 12, the cross section of which, visible here, is circular or circular-cylindrical.
  • the pump chamber 18 is delimited by a circular-cylindrical inner wall 20 which was produced, for example, by a bore in the housing body 12 .
  • a rotor 22 is arranged in the pump chamber 18 and is driven to rotate according to an arrow 24 by a motor, not shown.
  • the axis of rotation of the rotor 22 is offset relative to the central axis of the circular-cylindrical bore, ie the pump chamber 18 .
  • the rotor 22 is therefore arranged eccentrically in the pump chamber 18 .
  • the rotor 22 includes two slides 26, which are slidably guided in the rotor 22 and are biased by a spring 28 to the outside. As a result, the slides 26 are each held in contact with the inner wall 20 during the rotation of the rotor 22 .
  • closed delivery volumes are repeatedly delivered from the inlet 14 to the outlet 16.
  • a housing body 12 with a pump chamber 18 designed according to the invention is shown in cross section.
  • the pump chamber 18 or its cross section comprises a first peripheral region 30 which is designed in the shape of a part circle. The continuation of its circular shape is indicated by dashed lines.
  • the pump chamber 18 also includes a second peripheral portion 32, which is also here is part-circular and forms a bulge of the pump chamber 18.
  • the cross section of the pump chamber 18 is thus essentially formed by two circles placed one on top of the other but radially offset from one another.
  • a diameter 34 of the circle defining the first peripheral portion 30, shown partially in phantom, is in 1 implied.
  • a width 36 of the pump chamber 18 is indicated, which is in particular a horizontal and/or maximum width.
  • the width 36 is greater than the diameter 34.
  • the part-circular peripheral regions 30 and 32 are arranged and formed in a horizontally offset manner.
  • the difference between the width 36 and the diameter 34 corresponds to the offset when the diameters or radii of the part-circular peripheral regions 30 and 32 are at least essentially the same size.
  • the maximum deviation from the circular shape of the first peripheral area 30 corresponds to the difference between the width 36 and the diameter 34 or the offset of the part-circular peripheral areas 30, 32.
  • the second part-circular peripheral area 32 or the bulge is arranged on the inlet side and the inlet 14 opens into this peripheral area 32 or the bulge.
  • the gas present at the inlet 14 can thus advantageously flow into the pump chamber 18, so that the pumping speed of the pump is significantly increased in comparison to a purely circular pump chamber.
  • the partially circular peripheral areas 30 and 32 can be formed, for example, by two radially offset bores.
  • one of the peripheral areas 30, 32 can be produced by drilling and the other peripheral area by milling or turning.
  • the second peripheral region can also have a different shape, for example an oval shape.
  • the bulge is only provided in a first suction-side stage of several stages of the rotary vane vacuum pump. In particular, further stages are not operated in an "overfilled/clogged” manner. The transfer pressure between two stages increases accordingly.
  • the first stage or suction stage primarily determines the pumping speed of the entire system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Drehschiebervakuumpumpe nach dem Oberbegriff des Anspruchs 1. Eine solche Drehschiebervakuumpumpe ist in der DE 10 2010 026 031 A1 und der WO 2006/036598 A2 offenbart. Die US 986 502 A , die EP 0 099 412 A1 und die US 4 515 514 A offenbaren Drehschieber-Kompressoren mit einem Pumpraum, der im Querschnitt von einer Kreisform abweicht. Bekannte Drehschiebervakuumpumpen weisen einen kreiszylindrischen Pumpraum bzw. einen solchen mit einem kreisförmigen Querschnitt auf. Die Mittelachse des Kreiszylinders ist dabei parallel zur Rotationsachse des Rotors angeordnet und von dieser radial beabstandet. Ein derartiger Pumpraum ist durch seine Kreisform einfach mit guten Toleranzen zu fertigen, beispielsweise indem eine Bohrung in einen Gehäusekörper für den Pumpraum eingebracht wird.
  • Es ist eine Aufgabe der Erfindung, eine Drehschiebervakuumpumpe der eingangs genannten Art mit besonders guter Pumpleistung, insbesondere hohem Saugvermögen, bereitzustellen.
  • Diese Aufgabe wird durch eine Drehschiebervakuumpumpe mit den in Anspruch 1 genannten Merkmalen gelöst.
  • Der Erfindung liegt die Erkenntnis zugrunde, dass der kreisförmige Querschnitt bei den bekannten Drehschiebervakuumpumpen zwar fertigungstechnisch vorteilhaft ist. Jedoch hat sich gezeigt, dass aus vakuumtechnischer Sicht eine von der Kreisform abweichenden Form des Querschnitts vorteilhaft ist, insbesondere die Pumpleistung bzw. das Saugvermögen deutlich verbessert. Der Pumpraum kann im Querschnitt z.B. oval ausgebildet sein und/oder verschiedene teilkreisförmige Umfangsbereiche aufweisen. Der erfindungsgemäß von einer Kreisform abweichende Querschnitt wird in einer Ebene senkrecht zur Rotationsachse des Rotors bzw. einer Zylinderachse des Pumpraums gemessen.
  • Der Pumpraum einer Drehschiebervakuumpumpe ist allgemein zylindrisch ausgebildet und durch eine Projektion seines Querschnitts gebildet, die parallel zur Rotationsachse des Rotors verläuft. Im Rahmen der vorliegenden Anmeldung wird zwischen den Begriffen "zylindrisch" und "kreiszylindrisch" differenziert, wobei "kreiszylindrisch" den Sonderfall von "zylindrisch" beschreibt, dass der Querschnitt kreisförmig ist. Der Begriff "zylindrisch" bezieht sich folglich auf eine Form mit einem beliebig geformten Querschnitt, der entlang einer Zylinderachse projiziert ist.
  • Als Pumpraum ist allgemein derjenige Raum zu verstehen, der von dem wenigstens einen Schieber während des Pumpbetriebes bzw. während der Rotation des Rotors überstrichen wird. Insbesondere gehören daher etwa Ausnehmungen oder Taschen, welche zum Beispiel im Bereich von Einlass und/oder Auslass angeordnet sein können, nicht zum Pumpraum, wenn sie sich nicht über die gesamte axiale Länge des oder der Schieber bzw. des Pumpraums erstrecken.
  • Bei einer vorteilhaften Ausführungsform ist vorgesehen, dass der Querschnitt durch eine Ausbuchtung von der Kreisform abweicht.
  • Gemäß einer Weiterbildung weist der Querschnitt einen teilkreisförmigen, ersten Umfangsbereich und einen von der Kreisform des ersten abweichenden, zweiten Umfangsbereich auf. Der erste Umfangsbereich ist also insbesondere im Wesentlichen wie ein Teilbereich des Umfangs des Pumpraums von bekannten Drehschiebervakuumpumpen ausgebildet, nämlich zum Teil kreisförmig.
  • Der zweite Umfangsbereich kann beispielsweise selbst teilkreisförmig ausgebildet sein oder eine andere, insbesondere komplexe, Form aufweisen. Beispielsweise kann der Querschnitt einen teilkreisförmigen, ersten Umfangsbereich und einen teilkreisförmigen, zweiten Umfangsbereich aufweisen, der zu dem ersten radial versetzt angeordnet ist. Diese Ausführungsform verbindet auf einfache Weise die fertigungstechnischen Vorteile eines teilweise kreisförmigen Querschnitts mit dem vakuumtechnischen Vorteil, dass die Pumpleistung, insbesondere das Saugvermögen, verbessert werden kann. Bei dem Versatz kann es sich insbesondere um einen horizontalen Versatz handeln.
  • Gemäß einer weiteren Ausführungsform ist vorgesehen, dass beide Umfangsbereiche einen Radius aufweisen, wobei der Versatz ein Größenverhältnis zum Radius von zumindest einem der Umfangsbereiche, insbesondere von beiden Umfangsbereichen, von wenigstens 0,1 und/oder höchstens 0,3 aufweist. Hiermit lässt sich das Saugvermögen der Pumpe deutlich erhöhen.
  • Die Abweichung kann bevorzugt einlassseitig angeordnet sein. Insbesondere kann eine Ausbuchtung und/oder ein zweiter Umfangsbereich einlassseitig angeordnet sein. Der Einlass des Pumpraums kann bevorzugt in die Abweichung, die Ausbuchtung und/oder den zweiten Umfangsbereich münden. Die einlassseitige Anordnung erleichtert das Einströmen des zu fördernden Gases in den Pumpraum, wodurch die Pumpwirkung, insbesondere das Saugvermögen, verbessert wird.
  • Als besonders vorteilhaft im Hinblick auf die Pumpleistung hat es sich erwiesen, wenn der Querschnitt von der Kreisform eines teilkreisförmigen Umfangsabschnitts um wenigstens 1 mm und/oder höchstens 10 mm abweicht. Besonders bevorzugt kann der Querschnitt von der Kreisform um wenigstens 2 mm und/oder höchstens 6 mm abweichen.
  • Gemessen wird diese Abweichung folglich als der radiale Abstand zwischen dem Rand des tatsächlichen Querschnitts und demjenigen Teil des Randes der Kreisform, der aufgrund der Abweichung nicht mehr Teil des tatsächlichen Querschnitts ist.
  • Der Rotor kann insbesondere mehrere Schieber aufweisen. Gemäß einer weiteren Ausführungsform ist vorgesehen, dass der Rotor wenigstens zwei separat voneinander gebildete Schieber aufweist, die entgegengesetzt zueinander angeordnet sind. Diese Schieber sind bevorzugt gegeneinander abgestützt, beispielsweise mittels einer Feder. Separate Schieber können insbesondere vorteilhaft der Form des Pumpraums folgen. Entgegengesetzt wirksame Schieber können alternativ beispielsweise einteilig ausgebildet oder allgemein miteinander verbunden sein. Erfindungsgemäß ist die Drehschiebervakuumpumpe mehrstufig ausgebildet. Dabei weist lediglich eine in Förderrichtung erste Stufe einen Pumpraum auf, der einen von einer Kreisform abweichenden Querschnitt umfasst. Bei der oder den übrigen Stufen kann hierdurch der fertigungstechnische Vorteil des kreisförmigen Querschnitts beibehalten werden, wobei die erste, also ansaugende Stufe ein besonders gutes Saugvermögen bereitstellen kann.
  • Die Aufgabe der Erfindung wird allgemein auch durch ein Verfahren zur Herstellung einer Drehschiebervakuumpumpe nach vorstehend beschriebener Art gelöst. Ferner wird die Aufgabe der Erfindung gelöst durch ein Verfahren zum Herstellen einer wie oben beschriebenen Drehschiebervakuumpumpe, wie es im Anspruch 11 beschrieben ist. Dabei umfasst ein Herstellen des Pumpraums, dass eine erste Bohrung in einen Gehäusekörper für den Pumpraum eingebracht wird und dass der Pumpraum ausgehend von der Bohrung in einer radialen Richtung spanend erweitert wird. Somit lässt sich auf fertigungstechnisch einfache Weise eine besonders gute Pumpleistung bereitstellen. Durch die radiale Erweiterung bleibt insbesondere ein teilkreisförmiger Umfangsabschnitt der Bohrung bzw. des Pumpraums bestehen. Insbesondere wird also der Pumpraum in einer von einem teilkreisförmigen Umfangsabschnitt abgewandten Richtung erweitert. Die erste Bohrung bildet insbesondere einen teilkreisförmigen Umfangsbereich des fertigen Pumpraums aus. Der Pumpraum kann beispielsweise durch Fräsen und/oder Bohren erweitert werden.
  • Beispielsweise kann eine zweite Bohrung radial versetzt zur ersten Bohrung in den Gehäusekörper eingebracht werden. Die Achsen der beiden Bohrungen verlaufen also parallel zueinander und sind in radialer Richtung voneinander beabstandet. Der Versatz, also der Abstand zwischen den beiden Achsen, kann grundsätzlich beliebig gewählt werden und wird insbesondere in Abhängigkeit von der Größe der Durchmesser der Bohrungen gewählt.
  • Der Versatz kann bevorzugt wenigstens 1 mm, insbesondere wenigstens 2 mm, und/oder höchstens 10 mm, insbesondere höchstens 6 mm, betragen.
  • Gemäß einer Weiterbildung ist vorgesehen, dass die Bohrungen jeweils einen Durchmesser aufweisen und die Durchmesser um höchstens 5 mm voneinander abweichen. Besonders bevorzugt weisen die Bohrungen zumindest im Wesentlichen den gleichen Durchmesser auf.
  • Es versteht sich, dass die hier beschriebenen Verfahren auch durch die Merkmale und Ausführungsformen, die im Zusammenhang mit einer Drehschiebervakuumpumpe beschrieben werden, vorteilhaft weitergebildet werden können, und umgekehrt.
  • Die Erfindung wird nachfolgend lediglich beispielhaft anhand der schematischen Zeichnung erläutert.
  • Fig. 1
    zeigt eine Drehschiebervakuumpumpe des Standes der Technik im Querschnitt.
    Fig. 2
    zeigt einen Pumpraum einer erfindungsgemäßen Drehschiebervakuumpumpe im Querschnitt.
  • Fig. 1 zeigt eine Drehschiebervakuumpumpe 10 des Standes der Technik und dient der kurzen Illustration ihres bekannten Arbeitsprinzips. Es ist ein Gehäusekörper 12 gezeigt, der einen Einlass 14 und einen Auslass 16 definiert. Im Gehäusekörper 12 ist ein Pumpraum 18 ausgebildet, dessen hier sichtbarer Querschnitt kreisförmig ausgebildet ist bzw. der kreiszylindrisch ausgebildet ist. Der Pumpraum 18 ist durch eine kreiszylindrische Innenwand 20 begrenzt, die beispielsweise durch eine Bohrung im Gehäusekörper 12 hergestellt wurde.
  • Im Pumpraum 18 ist ein Rotor 22 angeordnet und zur Rotation gemäß einem Pfeil 24 durch einen nicht dargestellten Motor angetrieben. Die Drehachse des Rotors 22 ist gegenüber der Mittelachse der kreiszylindrischen Bohrung, also des Pumpraums 18, versetzt. Der Rotor 22 ist also exzentrisch im Pumpraum 18 angeordnet. Der Rotor 22 umfasst zwei Schieber 26, die im Rotor 22 verschieblich geführt sind und durch eine Feder 28 nach außen hin vorgespannt sind. Hierdurch werden die Schieber 26 jeweils mit der Innenwand 20 während der Rotation des Rotors 22 in Anlage gehalten. Durch Rotation des Rotors 22 zusammen mit den Schiebern 26 werden wiederholt abgeschlossene Fördervolumina vom Einlass 14 zum Auslass 16 gefördert.
  • In Fig. 2 ist ein Gehäusekörper 12 mit einem erfindungsgemäß ausgebildeten Pumpraum 18 im Querschnitt gezeigt. Der Pumpraum 18 bzw. sein Querschnitt umfasst einen ersten Umfangsbereich 30, der teilkreisförmig ausgebildet ist. Die Fortsetzung seiner Kreisform ist gestrichelt angedeutet. Der Pumpraum 18 umfasst außerdem einen zweiten Umfangsbereich 32, der hier ebenfalls teilkreisförmig ausgebildet ist und der eine Ausbuchtung des Pumpraums 18 bildet. Der Querschnitt des Pumpraums 18 ist also im Wesentlichen durch zwei übereinandergelegte aber zueinander radial versetzte Kreise gebildet.
  • Ein Durchmesser 34 des den ersten Umfangsbereich 30 definierenden Kreises, der teilweise gestrichelt dargestellt ist, ist in Fig. 1 angedeutet. Außerdem ist eine Breite 36 des Pumpraums 18 angedeutet, die insbesondere eine horizontale und/oder maximale Breite ist. Die Breite 36 ist größer als der Durchmesser 34. Die teilkreisförmigen Umfangsbereiche 30 und 32 sind horizontal versetzt angeordnet und ausgebildet. Die Differenz zwischen der Breite 36 und dem Durchmesser 34 entspricht dem Versatz, wenn die Durchmesser bzw. Radien der teilkreisförmigen Umfangsbereiche 30 und 32 zumindest im Wesentlichen gleich groß sind. In dieser Ausführungsform entspricht die höchste Abweichung von der Kreisform des ersten Umfangsbereich 30 der Differenz zwischen der Breite 36 und dem Durchmesser 34 bzw. dem Versatz der teilkreisförmigen Umfangsbereiche 30, 32.
  • Der zweite teilkreisförmige Umfangsbereich 32 bzw. die Ausbuchtung ist einlassseitig angeordnet und der Einlass 14 mündet in diesen Umfangsbereich 32 bzw. in die Ausbuchtung. Das am Einlass 14 anstehende Gas kann somit vorteilhaft in den Pumpraum 18 einströmen, sodass das Saugvermögen der Pumpe im Vergleich zu einem rein kreisförmigen Pumpraum deutlich vergrößert ist.
  • Die teilkreisförmigen Umfangsbereiche 30 und 32 können beispielsweise durch zwei radial versetzte Bohrungen ausgebildet werden. Alternativ kann etwa einer der Umfangsbereiche 30, 32 durch eine Bohrung hergestellt werden und der andere Umfangsbereich durch Fräsen oder Drehen. Grundsätzlich kann beispielsweise der zweite Umfangsbereich auch eine andere Form aufweisen, z.B. oval ausgebildet sein.
  • Vakuumtechnisch ist eine Ausbuchtung des Zylinders, in Fig. 2 also der den Umfangsbereich 30 bildenden, zuerst eingebrachten Bohrung, auf der Einlass- bzw. Ansaugseite - wie in Fig. 2 gezeigt - vorteilhaft, da ein größeres Ansaugvolumen realisiert werden kann. In durchgeführten Versuchen konnte beispielsweise durch zwei parallel angeordnete, radial versetzte Bohrungen mit einem Versatz von 2,5 mm bei Bohrungsdurchmessern von jeweils 35,5 mm eine Saugvermögenssteigerung um 20 % realisiert werden. In diesem Versuch wurde der radiale Abstand von 2,5 mm zwischen den beiden Bohrungs-Außenkonturen nicht gesondert nachgearbeitet. Es entstehen nur Unebenheiten im Bereich weniger Hundertstelmillimeter auf diesem, insbesondere sehr kurzen, Übergang zwischen zwei Bogensegmenten mit relativ großen Durchmessern. Eine beliebig komplexere Ausführung der "Unrundheit" ist möglich.
  • Die Ausbuchtung ist nur in einer ersten, ansaugseitigen von mehreren Stufen der Drehschiebervakuumpumpe vorgesehen. Weitere Stufen werden insbesondere nicht "überfüllig/verstopft" betrieben. Der Übergabedruck zwischen zwei Stufen steigt entsprechend. Die erste Stufe oder Ansaugstufe bestimmt überwiegend das Saugvermögen des Gesamtsystems.
  • Bezugszeichenliste
  • 10
    Drehschiebervakuumpumpe
    12
    Gehäusekörper
    14
    Einlass
    16
    Auslass
    18
    Pumpraum
    20
    Innenwand
    22
    Rotor
    24
    Pfeil/Drehrichtung
    26
    Schieber
    28
    Feder
    30
    erster Umfangsbereich
    32
    zweiter Umfangsbereich
    34
    Durchmesser
    36
    Breite

Claims (13)

  1. Drehschiebervakuumpumpe (10) umfassend
    einen Rotor (22) mit wenigstens einem Schieber (26) und
    einen Pumpraum (18), in dem der Rotor (22) angeordnet ist, wobei der Rotor (22) mit dem Schieber (26) zu einer Rotation antreibbar ist, um ein zu förderndes Gas von einem Einlass (14) zu einem Auslass (16) des Pumpraums (18) zu fördern,
    wobei der Pumpraum (18) im Querschnitt von einer Kreisform abweicht,
    dadurch gekennzeichnet,
    dass die Drehschiebervakuumpumpe (10) mehrstufig ausgebildet ist und wobei lediglich eine in Förderrichtung erste Stufe einen Pumpraum (18) mit von einer Kreisform abweichendem Querschnitt aufweist.
  2. Drehschiebervakuumpumpe (10) nach Anspruch 1,
    wobei der Querschnitt durch eine Ausbuchtung von der Kreisform abweicht.
  3. Drehschiebervakuumpumpe (10) nach Anspruch 1 oder 2,
    wobei der Querschnitt einen teilkreisförmigen, ersten Umfangsbereich (30) und einen von der Kreisform des ersten abweichenden, zweiten Umfangsbereich (32) aufweist.
  4. Drehschiebervakuumpumpe (10) nach wenigstens einem der vorstehenden Ansprüche,
    wobei der Querschnitt einen teilkreisförmigen, ersten Umfangsbereich (30) und einen teilkreisförmigen, zweiten Umfangsbereich (32) aufweist, der zu dem ersten radial versetzt angeordnet ist.
  5. Drehschiebervakuumpumpe (10) nach Anspruch 4,
    wobei beide Umfangsbereiche (30, 32) einen Radius aufweisen und wobei der Versatz ein Größenverhältnis zum Radius zumindest eines der Umfangsbereiche von wenigstens 0,1 und höchstens 0,3 aufweist.
  6. Drehschiebervakuumpumpe (10) nach wenigstens einem der vorstehenden Ansprüche,
    wobei die Abweichung einlassseitig angeordnet ist.
  7. Drehschiebervakuumpumpe (10) nach wenigstens einem der Ansprüche 2 bis 6,
    wobei die Ausbuchtung und/oder der zweite Umfangsbereich einlassseitig angeordnet ist.
  8. Drehschiebervakuumpumpe (10) nach wenigstens einem der vorstehenden Ansprüche,
    wobei der Einlass des Pumpraums in die Abweichung, die Ausbuchtung und/oder den zweiten Umfangsbereich (32) mündet.
  9. Drehschiebervakuumpumpe (10) nach wenigstens einem der vorstehenden Ansprüche,
    wobei der Querschnitt einen teilkreisförmigen Umfangsbereich (30) aufweist und von der Kreisform des teilkreisförmigen Umgangsbereichs (30) um wenigstens 2 mm und höchstens 6 mm abweicht.
  10. Drehschiebervakuumpumpe (10) nach wenigstens einem der vorstehenden Ansprüche,
    wobei der Rotor (22) wenigstens zwei separat voneinander gebildete Schieber (26) aufweist, die entgegengesetzt zueinander angeordnet sind.
  11. Verfahren zum Herstellen einer Drehschiebervakuumpumpe (10) nach wenigstens einem der vorstehenden Ansprüche, wobei ein Herstellen des Pumpraums (18) umfasst, dass eine Bohrung in einen Gehäusekörper (12) für den Pumpraum (18) eingebracht wird und dass der Pumpraum (18) ausgehend von der Bohrung in einer radialen Richtung spanend erweitert wird.
  12. Verfahren nach Anspruch 11,
    wobei das Erweitern umfasst, dass eine zweite Bohrung radial versetzt zur ersten Bohrung in den Gehäusekörper (12) eingebracht wird und wobei der Versatz wenigstens 1 mm und höchstens 10 mm beträgt.
  13. Verfahren nach Anspruch 11 oder 12,
    wobei das Erweitern umfasst, dass eine zweite Bohrung radial versetzt zur ersten Bohrung in den Gehäusekörper (12) eingebracht wird und wobei die Bohrungen jeweils einen Durchmesser (34) aufweisen, die um höchstens 5 mm voneinander abweichen.
EP19215663.6A 2019-12-12 2019-12-12 Drehschiebervakuumpumpe Active EP3617449B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19215663.6A EP3617449B1 (de) 2019-12-12 2019-12-12 Drehschiebervakuumpumpe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19215663.6A EP3617449B1 (de) 2019-12-12 2019-12-12 Drehschiebervakuumpumpe

Publications (3)

Publication Number Publication Date
EP3617449A2 EP3617449A2 (de) 2020-03-04
EP3617449A3 EP3617449A3 (de) 2020-08-12
EP3617449B1 true EP3617449B1 (de) 2022-02-09

Family

ID=68887350

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19215663.6A Active EP3617449B1 (de) 2019-12-12 2019-12-12 Drehschiebervakuumpumpe

Country Status (1)

Country Link
EP (1) EP3617449B1 (de)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US986502A (en) * 1908-05-02 1911-03-14 Amandus Charles Roessler Rotary compressor.
JPS5827895A (ja) * 1981-08-12 1983-02-18 Hitachi Ltd ベ−ン形回転機
WO1983001818A1 (en) * 1981-11-11 1983-05-26 Maruyama, Teruo Compressor
US7674096B2 (en) * 2004-09-22 2010-03-09 Sundheim Gregroy S Portable, rotary vane vacuum pump with removable oil reservoir cartridge
DE102010026031A1 (de) * 2010-07-03 2012-01-05 Mahle International Gmbh Drehschieberpumpe

Also Published As

Publication number Publication date
EP3617449A3 (de) 2020-08-12
EP3617449A2 (de) 2020-03-04

Similar Documents

Publication Publication Date Title
WO2018007120A1 (de) Blutpumpe zur herzunterstützung
DE3800324C2 (de)
EP1948939A1 (de) Radialverdichter-laufrad
DE102017110759B4 (de) Scroll-Verdichter für eine Fahrzeugklimaanlage
EP1934479A1 (de) Flügelzellenpumpe
EP3617449B1 (de) Drehschiebervakuumpumpe
WO2019086065A1 (de) Generativ gefertigter zwischenkanal zur anordnung zwischen einem niederdruckverdichter und einem hochdruckverdichter, sowie entsprechendes fertigungsverfahren
DE4143466C2 (de) Steuerscheibe für Flügelzellenpumpe
EP3158204A1 (de) Radialverdichterlaufrad und zugehöriger radialverdichter
DE3616579C2 (de)
DE19626211C2 (de) Flügelzellenpumpe
EP3224480B1 (de) Verdichter mit einem dichtkanal
DE19711448C2 (de) Flügelzellenverdichter
DE4016865C2 (de) Flügelzellenverdichter mit verstellbarer Leistung
EP1477682B1 (de) Flüssigkeitsringgaspumpe
EP2342465B1 (de) Seitenkanalgebläse, insbesondere sekundärluftgebläse für eine verbrennungskraftmaschine
EP2587065B1 (de) Flüssigkeitsringverdichter
DE2654991C3 (de) Drehschieberkompressor
DE10339765B4 (de) Exzenterpumpe
DE2616262A1 (de) Fluegel-rotationspumpe oder -kompressor
EP1541871B1 (de) Seitenkanalpumpstufe
DE19645586A1 (de) Rotationskolbenmaschine
EP4257524A1 (de) Zellenrad und zellenradschleuse mit einem derartigen zellenrad
EP3227560B1 (de) Verdichter mit einem dichtkanal
DE20200839U1 (de) Zweistufige Flüssigkeitsringpumpe in Blockbauweise

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F04C 25/02 20060101ALI20200706BHEP

Ipc: F04C 18/344 20060101ALI20200706BHEP

Ipc: F01C 21/10 20060101AFI20200706BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201210

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210319

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210930

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1467628

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019003397

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220609

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220509

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220510

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019003397

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20221110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221212

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231228

Year of fee payment: 5

Ref country code: CZ

Payment date: 20231206

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20191212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240227

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209