EP3611303B1 - Engin de construction autonome et procédé de commande d'un engin de construction autonome - Google Patents

Engin de construction autonome et procédé de commande d'un engin de construction autonome Download PDF

Info

Publication number
EP3611303B1
EP3611303B1 EP19190829.2A EP19190829A EP3611303B1 EP 3611303 B1 EP3611303 B1 EP 3611303B1 EP 19190829 A EP19190829 A EP 19190829A EP 3611303 B1 EP3611303 B1 EP 3611303B1
Authority
EP
European Patent Office
Prior art keywords
construction machine
reference point
determined
orientation
computing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19190829.2A
Other languages
German (de)
English (en)
Other versions
EP3611303A1 (fr
Inventor
Matthias Fritz
Dr. Stefan Wagner
Cyrus Barimani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wirtgen GmbH
Original Assignee
Wirtgen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wirtgen GmbH filed Critical Wirtgen GmbH
Publication of EP3611303A1 publication Critical patent/EP3611303A1/fr
Application granted granted Critical
Publication of EP3611303B1 publication Critical patent/EP3611303B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/001Steering non-deflectable wheels; Steering endless tracks or the like control systems
    • B62D11/003Electric or electronic control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/20Endless-track steering having pivoted bogie carrying track
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/004Devices for guiding or controlling the machines along a predetermined path
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • E01C19/4866Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ with solely non-vibratory or non-percussive pressing or smoothing means for consolidating or finishing
    • E01C19/4873Apparatus designed for railless operation
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • E01C19/4886Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ for forming in a continuous operation kerbs, gutters, berms, safety kerbs, median barriers or like structures in situ, e.g. by slip-forming, by extrusion
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • E01C19/4886Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ for forming in a continuous operation kerbs, gutters, berms, safety kerbs, median barriers or like structures in situ, e.g. by slip-forming, by extrusion
    • E01C19/4893Apparatus designed for railless operation
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/06Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
    • E01C23/08Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for roughening or patterning; for removing the surface down to a predetermined depth high spots or material bonded to the surface, e.g. markings; for maintaining earth roads, clay courts or like surfaces by means of surface working tools, e.g. scarifiers, levelling blades
    • E01C23/085Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for roughening or patterning; for removing the surface down to a predetermined depth high spots or material bonded to the surface, e.g. markings; for maintaining earth roads, clay courts or like surfaces by means of surface working tools, e.g. scarifiers, levelling blades using power-driven tools, e.g. vibratory tools
    • E01C23/088Rotary tools, e.g. milling drums
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C47/00Machines for obtaining or the removal of materials in open-pit mines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/14Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by recording the course traversed by the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory

Definitions

  • the invention relates to a self-propelled construction machine with a machine frame carried by steerable and / or drivable drives and a method for controlling a self-propelled construction machine.
  • Self-propelled construction machines are characterized by the fact that they have a work device arranged on a machine frame for erecting structures on a site or for changing the site.
  • Known self-propelled construction machines include, for example, slipform pavers, road milling machines, recyclers and surface miners.
  • the work equipment includes a milling drum equipped with milling or cutting tools, a milling / mixing rotor or a cutting drum that can be used to remove material from the terrain.
  • the work equipment of slipform pavers is a slipform, which is also known as a concrete trough.
  • the concrete trough can be used to produce structures of various designs, for example concrete protective walls, channels, gutters or curbs.
  • the self-propelled construction machines also have a drive device for executing translatory and / or rotary movements of the construction machine in the area, as well as a control device for controlling the drive device.
  • the drive device of the construction machine is controlled in such a way that a reference point on the construction machine is along a predetermined trajectory (target distance), ie on the trajectory or in a given distance to the trajectory to erect a structure or to change the terrain.
  • a known method for controlling self-propelled construction machines requires the use of a guide wire with which the trajectory or an equidistant to the trajectory is specified.
  • Self-propelled construction machines can also be controlled using a total station for position determination or a global navigation satellite system (GNSS).
  • GNSS global navigation satellite system
  • Data describing the trajectory in the terrain are determined for the automatic control of the construction machine.
  • These data can be coordinates in a two- or three-dimensional coordinate system that is independent of the construction machine.
  • GNSS global navigation satellite system
  • the US 2013/0041549 A1 describes a control device for a vehicle which has a position determination device for determining the position of a reference point (R) related to the vehicle and the orientation ( ⁇ ) of the vehicle in a coordinate system (X, Y, Z) that is independent of the vehicle. That goes US 2013/0041549 A1 based on the problem that conventional control devices determine the deviation of a predetermined position or a predetermined path (trajectory) from a desired position or a desired path, but do not provide any information about the actual position of the vehicle.
  • the US 2013/0041549 A1 describes the combination of a navigation satellite system and an optical navigation system which, in contrast to a GNSS, can be operated without reference.
  • the US 2013/0041549 A1 also discloses various exemplary embodiments in which the optical navigation system is operated in conjunction with a GNSS system or other inertial navigation systems.
  • the US 2013/0041549 A1 inertial navigation systems which include steering angle sensors.
  • the US 2013/0041549 A1 suggests controlling the construction machine with a GNSS system or an inertial navigation system that determines absolute position values and an optical navigation system that determines relative position values, with the optical sensors being able to take over control if the GNSS fails.
  • the invention is based on the object of creating a self-propelled construction machine that can be moved along a trajectory with great accuracy even if the reception of the satellite signals of the global navigation satellite system (GNSS) should be disturbed.
  • Another object of the invention is to provide a method with which a self-propelled construction machine can be moved along a trajectory with great accuracy even if the reception of the satellite signals of the GNSS should be disturbed.
  • the invention is based in particular on the object of ensuring the control of a construction machine even in the event of interference with the reception of the satellite signals of the GNSS so that the construction machine does not have to be stopped.
  • the self-propelled construction machine has a machine frame supported by drives. At least some of the drives, preferably all drives, are drivable and / or steerable drives.
  • the drives can be track drives or wheels.
  • the construction machine can be, for example, a road milling machine, which has a milling / cutting roller equipped with milling or cutting tools, or the construction machine can be a slipform paver, which has a device for shaping flowable material, or the construction machine can be a road paver, which has a Having screed for shaping material.
  • the construction machine can also have devices for adjusting the height of the machine frame or the work device in relation to the surface of the terrain, for example lifting columns to which the drives are attached.
  • the construction machine according to the invention also has a position determination device for determining the position of a reference point on the construction machine in a coordinate system independent of the construction machine and the orientation of the construction machine in a coordinate system independent of the construction machine.
  • the position determination device has at least one navigation satellite system receiver for receiving satellite signals from a global navigation satellite system (GNSS) and a computing unit which is configured in such a way that, on the basis of the satellite signals, the position of a reference point (R) on the construction machine and the data describing the Data describing the orientation of the construction machine can be determined in a coordinate system (X, Y, Z) that is independent of the construction machine.
  • GNSS global navigation satellite system
  • the position determination device can be part of a central control device of the construction machine on which a control program (software) runs in order to control the individual components or assemblies of the construction machine.
  • the position determination device can contain a programmable logic controller (PLC), which can include a microcontroller.
  • PLC programmable logic controller
  • the construction machine has a control device that interacts with the position determination device and is configured in such a way that the steering angles of the steerable drives are set in such a way that the reference point (R) of the construction machine moves along a predetermined trajectory (T), which for example can be described by Cartesian coordinates in a Cartesian coordinate system or polar coordinates in a polar coordinate system or directions and a kilometrage.
  • the trajectory can be a path in space or in a plane. If the trajectory is a three-dimensional trajectory, changes in height can also be taken into account, for example the adjustment of the height of the work equipment in relation to the surface of the terrain.
  • the control device can also be part of a central control device of the construction machine on which a control program (software) runs in order to control the individual components or assemblies of the construction machine.
  • the control device can contain a programmable logic controller (PLC), which can include a microcontroller.
  • PLC programmable logic controller
  • the control device and the position-determining device can be a common central control and computing unit.
  • the construction machine is controlled in normal operation using a global navigation satellite system (GNSS), so that the reference point (R) on the construction machine moves along a predetermined trajectory with high accuracy.
  • GNSS global navigation satellite system
  • the control of the construction machine with the GNSS can include both control in the plane and height control.
  • the altitude control can also be done using a terrestrial system (total station).
  • the control of the construction machine with the GNSS can also include the evaluation of correction signals received from a base station (differential GNSS). Such controls are state of the art.
  • the construction machine provides a special control mode in which the construction machine is not controlled on the basis of the satellite signals of the global navigation satellite system (GNSS). As long as the navigation satellite system receiver receives the satellite signals with sufficient quality, the construction machine can be controlled using the GNSS alone. In the event that the satellite signal receiver no longer receives the satellite signals with sufficient quality, the construction machine can be controlled in the special control mode.
  • GNSS global navigation satellite system
  • the computing unit of the position determination device of the construction machine is configured in such a way that in a control mode in which the construction machine is not controlled on the basis of the satellite signals of the global navigation satellite system, the position (x n , y n , z n ) the reference point (R) related to the construction machine and the orientation ( ⁇ ) of the construction machine in the coordinate system (X, Y, Z) independent of the construction machine is determined on the basis of a kinematic model implemented in the computing unit of the position determination device, which describes the position (P) of the reference point (R) and the orientation ( ⁇ ) in the coordinate system (X, Y, Z) that is independent of the construction machine.
  • the position (P) of the reference point (R) and the orientation ( ⁇ ) of the construction machine are calculated as a function of the steering angles and the speeds of the drives.
  • the position determination device has steering angle sensors assigned to the steerable drives for determining the steering angle and speed sensors assigned to the drivable drives for determining the speeds of the drives, with data transmission means for transmitting the data describing the steering angle and the speeds from the steering angle sensors and the speed sensors to the arithmetic unit are provided as input variables of the kinematic model.
  • the current position of the reference point (R) determined on the basis of the satellite signals of the global navigation satellite system and the current orientation ( ⁇ ) of the construction machine in the coordinate system (X, Y, Z) independent of the construction machine can be continuously read into a memory. If the control is to take place on the basis of the kinematic model, the position (P) of the reference point (R) last read into the memory and the orientation ( ⁇ ) of the construction machine in the control mode on the basis of the kinematic model can be used as the current position ( P) of the reference point (R) and the current orientation ( ⁇ ) of the construction machine can be read from the memory. From the current position and orientation, the new position and orientation can then be determined on the basis of the kinematic model.
  • a preferred embodiment of the construction machine provides that the computing unit of the position determination device is configured in such a way that, in the control mode on the basis of the kinematic model, the position (P) of the reference point (R) and the orientation ( ⁇ ) of the construction machine at predetermined time intervals is continuously determined. Consequently, in an iterative process, the new position and orientation determined on the basis of the kinematic model after a time interval has elapsed or after a distance of a certain length has been covered, are used as input variables for the kinematic model in order to be used again for the subsequent time interval or distance to be able to determine a new position and orientation.
  • a particularly preferred embodiment of the construction machine provides that the computing unit of the position determination device is configured in such a way that the movement of the construction machine is modeled on the basis of a Lagrange approach.
  • the control device of the construction machine according to the invention can be designed differently.
  • the control device is configured such that the drive device is controlled in such a way that the distance between the target position described by the trajectory and the actual position of the reference point on the construction machine is minimal.
  • the control can also be based on a direction difference, described by the trajectory, between a desired direction and the actual direction of the construction machine.
  • a special aspect of the invention lies in the compensation of the factors that exert an influence on the steering behavior of a construction machine. These factors are summarized below under the term "slip". Preferred embodiments also provide for the slip to be taken into account when controlling the construction machine on the basis of the kinematic model.
  • the computing unit of the position determining device is configured in such a way that in the control mode in which the construction machine is controlled on the basis of the satellite signals of the global navigation satellite system, at least one correction variable for the kinematic model on the basis of at least one in a specific Route section is determined by the control device for a drive predetermined steering angle.
  • the computing unit of the position determining device is then configured in such a way that in the control mode in which the control of the construction machine is not based on the satellite signals of the global navigation satellite system, the position (x n , y n , z n ) of the construction machine related Reference point (R) and the orientation ( ⁇ ) of the construction machine in the coordinate system (X, Y, Z) that is independent of the construction machine on the basis of the kinematic model implemented in the computing unit of the position determination device, taking into account the at least one correction variable.
  • the at least one correction variable for the steering angle is determined for the respective construction project while driving in the area as a function of the existing conditions under real conditions.
  • the known construction machines are characterized by a work device provided on the machine frame.
  • the work device is a milling / cutting roller equipped with milling or cutting tools
  • the work device in a slipform paver the work device is a device for shaping flowable material and in a road paver the work device is a screed for shaping material.
  • the correction variable can be dependent on the type of work equipment and / or the arrangement of the work equipment in the working direction on the left or right side of the longitudinal axis of the construction machine and / or the distance between the work equipment and the longitudinal axis of the machine frame (outreach) and / or the nature of the subsoil and / or the course of the route section to be processed and / or the specified advance speed of the construction machine or the speed of a drive can be determined.
  • the control can provide the correction of the steering angle of only one, individual or all of the steerable drives. The steering angles of all drives are preferably corrected.
  • the correction variable may be dependent on the arrangement of the device for shaping flowable material in the working direction on the left or right side of the longitudinal axis of the machine frame of the slipform paver and / or the distance between the device for shaping flowable material and the longitudinal axis of the machine frame (Outreach) can be determined.
  • the route section for determining the at least one correction variable can in principle be any route section, for example a straight one Be a route section or a curved route section. If the failure of the satellite signals only affects a relatively short period of time in which the construction machine only covers a relatively short distance, for example only 10 to 20 m, it can be assumed that the conditions on this route will only change insignificantly. For example, the gradient or the direction of a roadway naturally hardly changes at all over such a short distance. A correction value currently determined on a route section can therefore be viewed as representative of a route section that immediately follows it.
  • the at least one correction variable is determined in a straight route section. It is assumed here that a construction project usually comprises a straight route section, so that the correction variable in this route section can be determined.
  • the correction variable for a drive is the steering angle specified in the straight section by the control device for the drive. The correction variable can then be determined particularly easily, since it is quasi made available by the control device of the construction machine.
  • Another embodiment provides for the determination of a plurality of correction variables for different circumstances or conditions. As a result, different correction variables can be determined, each correction variable being assigned to a specific fact or condition. This correction variable can then be used under the same or comparable circumstances or conditions.
  • the computing unit of the position determining device is configured in such a way that in the control mode in which the construction machine is controlled on the basis of the satellite signals of the global navigation satellite system, a plurality of correction variables for the kinematic model as a function of the course of the route section, ie whether the route section is a straight line or a curved route with a certain curvature, ie depending on the set steering angle and / or depending on the speed of the drive, can be determined. Since these conditions can change on the construction site, the relevant correction variable preferably determined during the construction project so that it is available at all times.
  • a correction variable and a correction variable for an arrangement of the device for molding flowable material in the working direction on the right side of the longitudinal axis of the slipform paver can be determined for an arrangement of the device for shaping flowable material in the working direction on the left side of the longitudinal axis of the slipform paver become.
  • the correction variables can also be determined as a function of the distance between the device for shaping flowable material and the longitudinal axis of the machine frame (outreach).
  • correction variables can be determined for different arrangements or distances between the milling / cutting roller (projection).
  • correction variables can be determined for different arrangements or distances of the screed (projection) for shaping material.
  • correction variables for different arrangements or projections of the working equipment of a construction machine are correction variables which generally do not change during the construction project, since the arrangement and projection of the working equipment are specified for a building project. Therefore, these correction variables can also be determined empirically beforehand on a test site and stored in a memory.
  • the above correction quantities can be stored in a memory.
  • the computing unit of the position determining device is then configured in such a way that in the control mode in which the control of the construction machine is not based on the satellite signals of the global navigation satellite system, the position (x n , y n , z n ) of the construction machine related Reference point (R) and the orientation ( ⁇ ) of the construction machine in the coordinate system (X, Y, Z) that is independent of the construction machine on the basis of the calculation unit of the position determination device implemented kinematic model is determined taking into account at least one of the plurality of correction variables.
  • the correction can be made with a correction variable that is representative of the particular circumstances or conditions of the construction project.
  • Another particularly preferred embodiment also provides for the determination of a correction variable for the kinematic model for a correction of the speeds of the drives measured with the speed sensors.
  • the computing unit of the position determining device is configured such that in the control mode in which the construction machine is controlled on the basis of the satellite signals of the global navigation satellite system, at least one correction variable for the kinematic model based on the difference between one of the Control device for a drive predetermined speed and the measured speed of the drive is determined.
  • the computing unit of the position determining device is then configured in such a way that in the control mode in which the control of the construction machine is not based on the satellite signals of the global navigation satellite system, the position (x n , y n , z n ) of the construction machine related Reference point (R) and the orientation ( ⁇ ) of the construction machine in the coordinate system (X, Y, Z) that is independent of the construction machine on the basis of the kinematic model implemented in the computing unit of the position determination device, taking into account the at least one correction variable for the speed of the at least one drive is determined.
  • One embodiment of the method according to the invention provides that in the control mode in which the construction machine is controlled on the basis of the satellite signals of the global navigation satellite system, at least one correction variable for the kinematic model on the basis of at least one in a certain route section from the control device for a Drive predetermined steering angle is determined, in the control mode in which the control of the construction machine is not based on the satellite signals of the global Navigation satellite system takes place, the position (x n , y n , z n ) of the reference point (R) related to the construction machine and the orientation ( ⁇ ) of the construction machine in the coordinate system (X, Y, Z) that is independent of the construction machine on the basis of the the kinematic model implemented in the computing unit of the position determination device is determined taking into account the at least one correction variable.
  • the specific route section is a straight section (S1)
  • the correction variable for a drive being a steering angle specified in the straight section by the control device for the drive.
  • Another preferred embodiment of the method according to the invention provides that, in the control mode in which the construction machine is controlled on the basis of the satellite signals of the global navigation satellite system, on the basis of a drive in a certain route section (S1, S2) from the control device predetermined steering angle a plurality of correction variables for the kinematic model depending on the type of working equipment of the construction machine and / or the arrangement of the working equipment in the working direction on the left or right side of the longitudinal axis of the machine frame and / or the distance of the working equipment to the longitudinal axis of the machine frame and / or the nature of the subsoil and / or the course of the route section (S1, S2) and / or the speed of the drive can be determined, wherein in the control mode in which the control of the construction machine is not based on the satellite signals d es global navigation satellite system takes place, the position (x n , y n , z n ) of the reference point (R) related to the construction machine and the orientation ( ⁇ ) of the construction
  • Another preferred embodiment of the method according to the invention provides that in a construction machine which is a slipform paver, which has a device for Having forms of flowable material, in the control mode in which the construction machine is controlled on the basis of the satellite signals of the global navigation satellite system, on the basis of a steering angle predetermined by the control device for a drive in a certain route section (S1, S2)
  • Correction variables for the kinematic model are determined depending on the arrangement of the device for shaping flowable material on the left or right side of the machine frame and / or the distance of the device for shaping flowable material from the longitudinal axis of the machine frame.
  • Another preferred embodiment of the method according to the invention provides that in the control mode in which the construction machine is controlled on the basis of the satellite signals of the global navigation satellite system, at least one correction variable for the kinematic model based on the difference between one of the control device for a Drive predetermined speed and the measured speed of the drive is determined, wherein in the control mode in which the control of the construction machine is not based on the satellite signals of the global navigation satellite system, the position (x n , y n , z n ) of the construction machine related reference point (R) and the orientation ( ⁇ ) of the construction machine in the coordinate system (X, Y, Z) that is independent of the construction machine on the basis of the kinematic model implemented in the computing unit of the position determination device, taking into account the minimum ns a correction variable for the speed of the at least one drive is determined.
  • FIGS 1A and 2A show, as an example of a self-propelled construction machine, a slipform paver with a conveyor system in a side view ( Figure 1A ) and the slipform paver in plan view ( Figure 2A ).
  • a slipform paver is for example in the EP 1 103 659 B1 described in detail. However, the explanations are not limited to a slipform paver, but relate generally to all construction machines.
  • the slipform paver has a machine frame 1 which is supported by a chassis 2.
  • the chassis 2 has two front drives 3, 4 in the working direction A and a rear drive 6, which are attached to the front and rear lifting columns 7, 8.
  • the drives 3, 4 and 6 can be track drives or wheels.
  • the lifting columns 7 of the front drives 3, 4 can be attached to supports 9, 10 which are pivotably connected to the machine frame 1.
  • the rear drive 6 is slidably guided transversely to the working direction A.
  • a replaceable sliding formwork 11 is attached to the machine frame 1 on the left in the working direction A.
  • a conveying device 12 is provided for transporting material. It is assumed below that the front left and right drives 3, 4 and the rear drive 6 are steerable drives, at least the two front drives 3, 4 having their own drive.
  • FIGs 2A and 2B show the slipform paver from Fig. 1 in plan view, with the slipform paver in Figure 2A in the straight ahead and in Figure 2B are shown in the cornering without the conveyor.
  • Figure 2B shows the maximum steering angle of the two front bogies 3, 4 and the rear bogie 6.
  • steering actuators 3A, 4A, 6A which are only hinted at, are provided on bogies 3, 4 and 6, which can be piston / cylinder arrangements.
  • the drives can be driven by hydraulic drive motors. It is also assumed that the drives are at a point of contact on the Stand up on the ground.
  • the slipform paver When operating the slipform paver, the aim is largely automatic control without significant intervention by the vehicle driver.
  • the slipform paver therefore has automatic control using a global satellite navigation system (GNSS), which is state-of-the-art.
  • GNSS global satellite navigation system
  • the steering angles of the bogies are set in such a way that a reference point R on the slipform paver or the slipform moves along a specified trajectory (target distance), i.e. on trajectory T or at a specified distance (equidistant) from the trajectory ( Figures 4 and 5 ).
  • the trajectory T can be described by individual segments that can include straight lines or curves.
  • the trajectory T is described by coordinates in a coordinate system (X, Y, Z) which is independent of the slipform paver and which can be determined with a computer in an office away from the construction site or on the machine.
  • a coordinate system (X, Y, Z) which is independent of the slipform paver and which can be determined with a computer in an office away from the construction site or on the machine.
  • the construction machine has a position determination device 13 for determining the position of a reference point R related to the construction machine and the orientation ( ⁇ ) of the construction machine in a coordinate system that is independent of the construction machine ( Fig. 3 ).
  • the position determination device 13 has at least one navigation satellite system receiver 14 for receiving satellite signals from a global navigation satellite system (GNNS) 15 and a computing unit 16 which is configured in such a way that, on the basis of the satellite signals of the global navigation satellite system 15, the position (P) of the Reference point R and the orientation ( ⁇ ) of the construction machine in a coordinate system (X, Y, Z) that is independent of the construction machine.
  • GNNS global navigation satellite system
  • the data describing the position and orientation ( ⁇ ) of the construction machine are continuously read into a memory 17 of the position-determining device 13.
  • the computing unit 16 of the position determination device 13 can be part of a central computing and control unit (not shown) of the construction machine.
  • the computing unit 16 can for example have general processors, digital signal processors (DSP) for the continuous processing of digital signals, microprocessors, application-specific integrated circuits (ASIC), integrated circuits consisting of logic elements (FPGA) or other integrated circuits (IC) or hardware components in order to perform the arithmetic operations described below.
  • DSP digital signal processors
  • ASIC application-specific integrated circuits
  • FPGA logic elements
  • IC integrated circuits
  • a data processing program software can run on the hardware components to carry out the method steps.
  • the construction machine has a control device 18 which interacts with the position determination device 13 and is configured in such a way that the steering angles of the steerable drives 3, 4, 6 are set such that the reference point R of the construction machine moves along the predetermined trajectory T.
  • the control device 18 can also be part of a central computing and control unit (not shown) of the construction machine, which can have the above-mentioned components.
  • Fig. 4 shows the movement of the construction machine 1 in a coordinate system (X, Y, Z) that is independent of the construction machine, together with the GNSS.
  • the construction machine moves along the trajectory T.
  • the trajectory is a trajectory in the plane.
  • the trajectory T shown in the plane of the drawing is a trajectory described by a sequence of desired positions (x, y, z) in the coordinate system (X, Y, Z).
  • the position determination device 13 continuously determines the actual position (x, y, z) of the reference point R on the construction machine.
  • the actual position P ist of the construction machine is continuously compared with the target position P soll .
  • the control device 18 controls the steering actuators 3A, 4A, 6A of the steerable bogies 3, 4, 6 in such a way that the distance d between the target position P soll described by the trajectory and the actual position P ist of the reference point R on construction machine 1 is minimal ( Fig. 5 ).
  • This control requires knowledge of the current position of the construction machine and thus the reception of the satellite signals from the GNSS.
  • the position determination device 13 continuously checks the statistical quality of the position calculation based on the given satellite constellation. If the statistical quality is not available, for example in building coverings or under bridges, the control can be based on a different control mode, which is described in detail below.
  • Fig. 4 the area in which the statistical quality of the satellite signals is no longer given is indicated by hatching.
  • the control device 18 switches the control from a control mode based on the satellite signals to a control mode in which the construction machine is no longer controlled based on the satellite signals of the global navigation satellite system.
  • the control device 18 is configured in such a way that in this control mode, during the movement of the construction machine, the position (x n , y n , z n ) of the reference point R related to the construction machine and the orientation ( ⁇ ) in the coordinate system (X , Y, Z) is determined on the basis of a kinematic model 16A implemented in the arithmetic unit 16 of the position determining device 13, which the position (P) of the reference point R and the orientation ( ⁇ ) of the construction machine in the coordinate system ( X, Y, Z).
  • the kinematic model 16A can be software that runs on the computing unit 16.
  • the position determination device 13 has steering angle sensors 19, 20, 21 assigned to the front left and right drives 3, 4 and the rear drive 6 for determining the steering angle and speed sensors 22, 23, 24 for determining the speeds of the drives 3, 4, 6 on that in Fig. 3 are shown schematically.
  • the steering angle sensors 19, 20, 21 and speed sensors 22, 23, 24 should have a high degree of accuracy.
  • magnetoresistive sensors can be used as steering angle sensors 19, 20, 21, which measure the position of the Determine the pistons of the piston / cylinder arrangements with which the steering angles are set.
  • speed sensors 22, 23, 24, inductive proximity sensors, for example, can be used, which are arranged in the gears via which the drives 3, 4, 6 are driven.
  • these sensors Depending on the distance covered, these sensors generate a certain number of pulses per unit of distance or, depending on the speed of the drives, a certain number of pulses per unit of time.
  • the data of the steering angle sensors 19, 20, 21 and speed sensors 22, 23, 24 describing the steering angles and speeds represent the input variables of the kinematic model 16A. Suitable data transmission means are provided for the transmission of this data. This data can be transmitted via a CAN bus, for example.
  • Another input variable of the kinematic model 16A is the position (P) of the reference point R determined on the basis of the satellite signals of the global navigation satellite system 15 and the orientation ( ⁇ ) of the construction machine in the coordinate system (X, Y, Z) to the which is independent of the construction machine Point in time at which the control device 18 switches from the control mode based on the satellite signals to the control mode based on the kinematic model.
  • the data describing the position and orientation ( ⁇ ) of the construction machine have previously been read into the memory 17 of the position determining device 13.
  • the control device 18 reads the position (P) of the reference point Around the orientation ( ⁇ ) of the construction machine descriptive data at the time of switching to the new control mode from the memory 17.
  • the output variables of the kinematic model 16A are the actual position P ist (x, y, z) of the reference point R on the construction machine and the orientation ( ⁇ ) of the construction machine in the coordinate system that is independent of the construction machine.
  • the actual position P ist (x, y, z) of the reference point R on the construction machine is continuously compared with the target position P soll in order to control the steering angle of the drives 3, 4, 6 in such a way that the reference point R runs along of the trajectory T moves ( Fig. 5 ).
  • the kinematic model is described in detail below.
  • the position (P) and orientation ( ⁇ ) of the construction machine is specified below in a coordinate system that is independent of the construction machine and that is a global coordinate system.
  • the position and orientation ( ⁇ ) of the construction machine can be specified in relation to any reference point on the construction machine.
  • the reference point can be a point on the slipform, preferably a point on the longitudinal axis of the slipform.
  • the position of any other reference point on the construction machine can also be determined in this coordinate system, since the geometric dimensions of the construction machine are known.
  • Fig. 6 shows the slipform paver in a machine coordinate system (X, Y) related to the slipform paver.
  • X X FL ⁇ m FL + X FR ⁇ m FR m M.
  • y Y FL ⁇ m FL + Y FR ⁇ m FR m M.
  • m FL and m FR are the weights measured on the front drives 3, 4, m M is the total weight of the slipform paver and X FL is the distance between the front left drive 3 and X FR is the distance between the front right drive 4 from the origin of the machine coordinate system.
  • the construction machine is believed to be a rigid body.
  • the velocity can be at any point according to the following Equation to be calculated: , where V P is the velocity vector to be determined for an arbitrary point on the rigid body, V K is the velocity vector of a point on the rigid body at which the velocity vector is known, ⁇ is the angular velocity and KP (t) is the distance vector between these two points ( Fig. 7 ).
  • V FL is the velocity vector of the contact point of the front left drive 3
  • V FR is the velocity vector of the contact point of the front right drive 4
  • V R is the velocity vector of the contact point of the rear drive 6
  • V CG is the velocity vector of the construction machine at the center of gravity
  • d FL-CG is the distance vector between the contact point of the front left drive 3 and the center of gravity
  • d FR-CG is the distance vector between the contact point of the front right drive 4 and the center of gravity
  • d R-CG is the distance vector between the contact point of the rear drive 6 and the center of gravity.
  • the above vectors are then transformed into the global coordinate system in order to be able to describe the movement of the construction machine in a coordinate system that is independent of the construction machine.
  • the angles ⁇ and ⁇ are introduced.
  • the position and orientation ( ⁇ ) of the construction machine in a UTM coordinate system is described below.
  • the position and orientation ( ⁇ ) of the construction machine can but can also be described in another global coordinate system, for example in a Gauss-Krüger coordinate system or MGRS system.
  • Fig. 8 shows the construction machine in the UTM coordinate system, the construction machine making a left turn.
  • Fig. 8 shows the working direction A of the construction machine, the speed vector V FR of the contact point of the front right drive 4, the steering angle ⁇ of the front right drive 4, and the angle ⁇ in the UTM coordinate system.
  • is the angle between the working direction A and the north-south direction ("high value") N ("false northing").
  • the angle ⁇ is calculated according to the following equation:
  • the speed vector V FR of the front right drive 4 in relation to the Y-axis and X-axis of the coordinate system can be broken down into the vectors V Y_FR and V X_FR , which are calculated according to the following equations:
  • the angles ⁇ and ⁇ are calculated, where the angle ⁇ has the orientation ( ⁇ ) of the construction machine in the UTM coordinate system and the angle ⁇ describes the orientation ( ⁇ ) of the distance vector d 2 in the machine coordinate system.
  • the distance vector d 2 is calculated from the known geometric dimensions of the construction machine.
  • Fig. 9 the vectors ⁇ xd 1 , ⁇ xd 2 , ⁇ xd 3 and the angles ⁇ and ⁇ are shown.
  • Equations (4.1.2), (4.1.3), (4.1.4) can be transformed as follows: , where V Y_UTM is the speed of the center of gravity of the construction machine in the direction of the Y-axis and V Y_UTM is the speed of the center of gravity of the construction machine in the direction of the X-axis in the UTM coordinate system and V FL , V FR and V R with the speed Sensors 22, 23, 24 are measured speeds of the front left drive 3, front right drive 4 and rear drive 6.
  • the Lagrange approach is used below, the secondary conditions being defined by setting functions to given values.
  • This method introduces a new unknown scalar variable for each constraint, a Lagrange multiplier, and defines a linear combination that integrates the multipliers as coefficients (WIKIPEDIA: Lagrange multiplier).
  • the steering angles and the speeds of the drives 3, 4, 6 are continuously measured with the steering angle sensors 19, 20, 21 and the speed sensors 22, 23, 24.
  • the time interval between two successive measurements is ⁇ t.
  • the computing unit 16 receives the measured values (data) from the steering angle and speed sensors 19, 20, 21, 22, 23, 24 and calculates the speed V Y_UTM and V X_UTM as well as the angular speed ⁇ at the successive times (t 1 , t 2 , t 3 , ... t n ).
  • the position and orientation ( ⁇ ) of the construction machine for the subsequent point in time is calculated from the position and orientation ( ⁇ ) calculated at the previous point in time using the following equations.
  • Y UTM i Y UTM i - 1 + V.
  • the position and orientation ( ⁇ ) of the construction machine are known in the UTM coordinate system, since the position and orientation ( ⁇ ) of the construction machine have been previously determined and stored on the basis of the satellite signals of the global navigation satellite system 15.
  • the previously determined position and orientation ( ⁇ ) of the construction machine is read out from the memory 17 by the computing unit 16 of the position determining device 13 at time ts, so that the new position and orientation ( ⁇ ) can be calculated.
  • the continuously recalculated position and orientation ( ⁇ ) are read into the memory 17 and read out again from the memory for the subsequent calculations.
  • the control device 18 sets the steering angles of the drives 3, 4, 6 in this way that the distance (d) between the desired position (P soll ) described by the trajectory and the actual position (P ist ) of the reference point R determined by the position determining device 13 on the basis of the kinematic model 16A is minimal ( Fig. 5 ).
  • the construction machine can also be controlled without receiving the satellite signals.
  • the satellite signals are received again, it is possible to switch to the control mode using the global navigation satellite system 15. The switchover can take place automatically if the statistical quality of the position calculation is given again.
  • the position determination device 13 continuously determines the quality of the signals.
  • the deviation of the calculated position from the position determined with the navigation satellite system can be determined.
  • the position and orientation ( ⁇ ) determined with the navigation satellite system are again continuously read into the memory 17 in order to be available in the event of a possible failure of the satellite-based control.
  • the kinematic model described above assumes physically ideal conditions, that is, that the steering angles or speeds determined with the steering angle sensors 19, 20, 21 and the speed sensors 22, 23, 24 correspond to the changes in direction actually achieved or the movements actually achieved correspond to the reason. In practice, however, this is not the case. In practice there is a difference between the theoretical movement, as it can be calculated by the kinematic model, and the movement actually occurring under the real conditions. This effect or this difference is also referred to as slip.
  • the offset value empirically determined for the respective front drive is subtracted from the corresponding angle ⁇ .
  • V. FL ⁇ cos ⁇ FL - s FL V. Y UTM - ⁇ ⁇ d 1 ⁇ cos ⁇ FL + e 1
  • V. FL ⁇ sin ⁇ FL - s FL V. X UTM - ⁇ ⁇ d 1 ⁇ sin ⁇ FL + e 2
  • V. FR ⁇ cos ⁇ FR - s FR V. Y UTM - ⁇ ⁇ d 2 ⁇ cos ⁇ FR + e 3rd
  • V. FR ⁇ sin ⁇ FR - s FR V. X UTM - ⁇ ⁇ d 2 ⁇ sin ⁇ FR + e 4th V. R.
  • the accuracy of movement of the construction machine can be improved.
  • the determination of the steering angle and the speeds as well as their corrections are not restricted to the drives that are described with reference to the slipform paver as an example of a construction machine. If, for example, four drives are drivable and / or steerable drives, the steering angles and speeds of four drives can also be taken into account. However, the steering angles and speeds of only two drives can also be used as input variables for the kinematic model.
  • Figure 10A shows, in a greatly simplified representation, a self-propelled construction machine which is initially intended to move on a straight line S1 and then to drive in a left-hand curve S2 L
  • Figure 10B a construction machine shows that should first move on a straight line S1 and then move in a right-hand curve S2 R.
  • the trajectory on which the control of the construction machine is based thus has a straight route section, which is followed by a curved route section.
  • the curved route section is a quarter circle.
  • the construction machine can be, for example, a slipform paver or a road milling machine or a road paver. If, for example, the concrete trough of a slipform paver is not arranged on the longitudinal axis of the machine frame, but is offset laterally to the longitudinal axis of the machine frame, which is the case in practice, the concrete trough exerts a torque about its vertical axis when the slipform paver moves causes the slipform paver to make a curve even though a steering angle of 0 ° is set for the drives.
  • a milling drum of a road milling machine arranged laterally to the longitudinal axis of the machine frame exerts a torque so that the road milling machine travels a curve even though the steering angle is 0 °.
  • FIGS. 10A and 10B show in a greatly simplified schematic representation a construction machine, in particular a slipform paver or a road milling machine or a road paver, the eccentrically arranged concrete trough or milling drum or screed being denoted by the reference symbol "11".
  • a slipform paver with a concrete trough arranged on the left-hand side or a road milling machine with a milling drum 11 arranged on the left-hand side makes a slight left turn when the drives are set straight ahead.
  • a slipform paver or a road milling machine with a concrete trough or milling drum 11 arranged on the right-hand side makes a slight right turn when the drives are set straight ahead.
  • the slip does not play a role, since the steering angle and the speeds of the drives are continuously adjusted or corrected so that the construction machine follows the trajectory. Without this control, however, the vehicle driver would have to "counter-steer” in order to keep the construction machine in the desired lane.
  • a special aspect of the invention is to also take the slip into account when controlling the construction machine on the basis of the kinematic model.
  • a correction variable for the steering angle is introduced into the kinematic model, which in particular corrects the influence of the weight of the concrete and its interaction with the ground surface on the steering behavior.
  • This correction variable can in principle be determined empirically in tests as a function of further variables, but this is not the subject of the invention.
  • the correction variable can depend on the side on which the concrete trough (milling drum, screed) is arranged, the distance of the center of gravity of the concrete trough (milling drum, screed) from the longitudinal axis of the machine frame, the speed of the construction machine and the course of the trajectory be determined.
  • different correction variables can be stored in the memory 17 of the position determining device and used to calculate the position and orientation ( ⁇ ) of the construction machine on the basis of the kinematic model.
  • the correction variable is determined during the control of the slipform paver on the basis of the satellite signals of the global navigation satellite system in order to compensate for the in the control mode in which the control of the construction machine is not based on the satellite signals of the global navigation satellite system To be available for slip.
  • the correction variable is preferably determined continuously, so that at the time of failure of the satellite signals, the correction variable determined in the immediately preceding route section can be used for the immediately following route section.
  • a particularly simple embodiment to be implemented provides for the determination of only one correction variable for the steering angle of the drives. For this it is assumed that the steering angle of the bogies only needs to be corrected by a constant amount for the entire route to be processed. H. must always be counter-steered by the same angle while driving. This angle can preferably be determined while driving straight ahead.
  • the control unit of the position determining device 13 is configured such that the following routine is carried out while the construction machine is being controlled on the basis of the satellite signals of the global navigation satellite system.
  • the computing unit 16 analyzes the course of the trajectory, ie it determines whether the construction machine is traveling straight ahead or is traveling in a curve. If the construction machine is to move in a straight line, ie the trajectory T on which the control is currently based is a straight line, the setting of a steering angle of 0 ° is assumed for all drives, provided that there is no slip. To determine the correction variable, the steering angles are recorded which are specified by the control device 18 for straight-ahead travel, so that the construction machine moves along the trajectory T, ie the straight line. This steering angle are assumed to be the corrective quantity introduced into the kinematic model 16A.
  • the steering angle for all drives does not change at least significantly during straight travel.
  • the correction variable can, however, also be calculated from different steering angles set by the control device while driving straight ahead using the known statistical evaluation methods.
  • the computing unit 16 can, for example, calculate the mean value from a plurality of steering angles while driving straight ahead.
  • the correction variable can also be determined while cornering.
  • the associated steering angle is calculated with the known radius of the curve, which would have to be set for the curve radius on the assumption that slip does not occur.
  • the correction variable is the difference between the steering angle set by the control device 18 during cornering and the calculated steering angle.
  • correction variables for different routes are calculated and stored in memory 17.
  • the individual correction variables or correction factors can be assigned to specific value ranges for the corresponding steering angle, for example a first steering angle range from 0 ° to 20 °, a second steering angle range of greater than 20 ° to 40 ° and a third steering angle range of greater than 40 °.
  • the correction variable can also be calculated as a function of the speed of the drives 3, 4, 6. For example, different speed ranges can be assigned to each steering angle range, for example a first, second and a third speed range, or vice versa, so that a certain correction variable results for a certain speed and a certain steering angle.
  • the correction variables determined are taken into account in the equation system 4.4.1 describing the kinematic model.
  • the measured steering angles for the two front drives and the rear drive are corrected with the corresponding correction variable.
  • This correction takes into account the assumption that a counter-steering by a certain angle is necessary because of the slip when driving straight ahead or cornering.
  • the steering angle ⁇ predetermined by the control device 18 for the front left drive 3 during straight-ahead travel is subtracted from the measured steering angle.
  • a correction factor can also be calculated by which the steering angle is multiplied.
  • the correction can also take place with a correction function that describes a correction variable for different steering angles, for example a stronger correction for larger steering angles.
  • the correction function can also take into account different speeds of the drives, for example a stronger correction at higher speeds.
  • the slip is also taken into account when calculating the position and orientation ( ⁇ ) of the construction machine on the basis of the kinematic model 16A implemented in the computing unit 16 of the position determining device 13. This further improves the position determination and thus also the control of the construction machine without receiving the satellite signals.
  • the arithmetic unit compares the measured steering angle or the measured speed of a drive with the value ranges for the steering angle and speeds and determines the value range in which the steering angle or the speed lies.
  • the correction variable assigned to the respective steering angle range or speed range is then derived from the Memory read out and used for further calculation of position and orientation ( ⁇ ).
  • the correction variables for the steering angle can be determined during the construction project in question, preferably on a straight line S1 or on a curved route section S2 on which the construction machine was traveling before the satellite navigation failed.
  • the speed of the individual drives can also be corrected with a correction variable that has been previously determined during the relevant building project or other building project.
  • the computing unit 16 of the position determining device 13 is configured to determine a correction variable for the speed of the individual drives such that the following routine is carried out while the construction machine is being controlled on the basis of the satellite signals of the global navigation satellite system.
  • the speeds of the front right and left drives 3, 4 and of the rear drive 6 are recorded with the associated speed sensors 22, 23, 24, for example while the construction machine is traveling straight ahead.
  • the speeds specified by the control device 18 for the individual drives 3, 4, 6 for straight travel, for example are recorded, which should correspond to the speeds measured by the speed sensors 22, 23, 24.
  • the computing unit 16 calculates the difference between the predetermined speeds and the measured speeds. This difference is used as a correction variable for the respective drive, which is taken into account in the equation system 4.4.1 describing the kinematic model.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Business, Economics & Management (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Operation Control Of Excavators (AREA)
  • Road Paving Machines (AREA)

Claims (17)

  1. Engin de chantier automoteur avec
    un bâti d'engin (1) qui est porté par des mécanismes de roulement (3, 4, 6), dont au moins certains mécanismes de roulement sont des mécanismes de roulement (3, 4, 6) entraînables et/ou dirigeables,
    un dispositif de détermination de position (13) pour la détermination de la position d'un point de référence (R) lié à l'engin de chantier et l'orientation (ψ) de l'engin de chantier dans un système de coordonnées (X, Y, Z) indépendant de l'engin de chantier, dans lequel le dispositif de détermination de position (13) présente un récepteur de système de navigation par satellite (14) pour la réception de signaux de satellite d'un système de navigation par satellite (15) global et une unité de calcul (16) qui est configurée de telle manière que sur la base des signaux de satellite du système de navigation par satellite (15) global la position (P) du point de référence (R) et l'orientation (ψ) de l'engin de chantier soient déterminées dans un système de coordonnées (X, Y, Z) indépendant de l'engin de chantier, et
    un dispositif de commande (18) coagissant avec le dispositif de détermination de position (13) qui est configuré de telle manière que les angles de direction des mécanismes de roulement (3, 4, 6) dirigeables soient réglés de telle manière que le point de référence (R) de l'engin de chantier se déplace le long d'une trajectoire (T) prédéfinie,
    dans lequel
    l'unité de calcul (16) du dispositif de détermination de position (13) est configurée de telle manière que dans un mode de commande, dans lequel la commande de l'engin de chantier n'est pas effectuée sur la base des signaux de satellite du système de navigation par satellite (15) global, pendant le mouvement de l'engin de chantier la position (xn, yn, zn) du point de référence (R) lié à l'engin de chantier et l'orientation (ψ) de l'engin de chantier sont déterminées dans le système de coordonnées (X, Y, Z) indépendant de l'engin de chantier sur la base d'un modèle (16A) cinématique implémenté dans l'unité de calcul (16) du dispositif de détermination de position, qui décrit la position (P) du point de référence (R) dans le système de coordonnées (X, Y, Z) indépendant de l'engin de chantier et l'orientation (ψ) de l'engin de chantier en fonction des angles de direction et des vitesses des mécanismes de roulement (3, 4, 6),
    caractérisé en ce
    que l'unité de calcul (16) du dispositif de détermination de position (13) est configurée de telle manière que dans le mode de commande, dans lequel la commande de l'engin de chantier est effectuée sur la base des signaux de satellite du système de navigation par satellite (15) global, au moins une grandeur de correction pour le modèle cinématique (16A) est déterminée sur la base d'au moins un angle de direction prescrit dans une section de voie (S1, S2) déterminée par le dispositif de commande (18) pour un mécanisme de roulement (3, 4, 6), dans lequel l'unité de calcul (16) du dispositif de détermination de position (13) est configurée de telle manière que dans le mode de commande, dans lequel la commande de l'engin de chantier n'est pas effectuée sur la base des signaux de satellite du système de navigation par satellite (15) global, la position (xn, yn, zn) du point de référence (R) lié à l'engin de chantier et l'orientation (ψ) de l'engin de chantier sont déterminées sur la base du modèle (16A) cinématique implémenté dans l'unité de calcul (16) du dispositif de détermination de position (13) en tenant compte de l'au moins une grandeur de correction.
  2. Engin de chantier automoteur selon la revendication 1, caractérisé en ce que l'unité de calcul (16) du dispositif de détermination de position (13) présente des capteurs d'angle de direction (19, 20, 21) associés aux mécanismes de roulement (3, 4, 6) dirigeables pour une détermination des angles de direction et des capteurs de vitesse (22, 23, 24) associés aux mécanismes de roulement (3, 4, 6) entraînables pour une détermination des vitesses des mécanismes de roulement (3, 4, 6), dans lequel des moyens de transmission de données (CAN) sont prévus pour la transmission des données décrivant les angles de direction et les vitesses des capteurs d'angle de direction (19, 20, 21) et des capteurs de vitesse (22, 23, 24) à l'unité de calcul (16) comme grandeurs d'entrée du modèle cinématique (16A).
  3. Engin de chantier automoteur selon la revendication 1 ou 2, caractérisé en ce que le dispositif de détermination de position (13) est configuré de telle manière que la position (P) du point de référence (R) déterminée sur la base des signaux de satellite du système de navigation par satellite (15) global et l'orientation (ψ) de l'engin de chantier est lue dans le système de coordonnées (X, Y, Z) indépendant de l'engin de chantier dans une mémoire (17) et la position (P) du point de référence (R) et l'orientation (ψ) de l'engin de chantier sont lues à partir de la mémoire (17) dans le mode de commande sur la base du modèle cinématique (16A) pour la détermination de la position (P) du point de référence (R) et de l'orientation (ψ) de l'engin de chantier.
  4. Engin de chantier automoteur selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'unité de calcul (16) du dispositif de détermination de position (13) est configurée de telle manière que dans le mode de commande sur la base du modèle cinématique (16A) la position (P) du point de référence (R) et l'orientation (ψ) de l'engin de chantier sont déterminées en continu dans des intervalles de temps prédéfinis.
  5. Engin de chantier automoteur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'unité de calcul (16) du dispositif de détermination de position (13) est configurée de telle manière que la modélisation du mouvement de l'engin de chantier soit effectuée sur la base d'une approche de Lagrange.
  6. Engin de chantier automoteur selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'unité de calcul (16) du dispositif de détermination de position (13) est configurée de telle manière que le modèle cinématique (16A) tienne compte des valeurs de correction déterminées par voie empirique pour les angles de direction (19, 20, 21) et/ou des valeurs de correction déterminées pour la vitesse (22, 23, 24).
  7. Engin de chantier automoteur selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le dispositif de commande (18) est configuré de telle manière que les angles de direction des mécanismes de roulement (3, 4, 6) dirigeables soient réglés de telle manière que la distance (d) entre la position de consigne (Pde consigne) décrite par la trajectoire (T) et la position réelle (Preelle) déterminée par le dispositif de détermination de position (13) du point de référence (R) soit minimale.
  8. Engin de chantier automoteur selon l'une quelconque des revendications 1 à 7, caractérisé en ce que l'engin de chantier est une fraiseuse routière qui présente un rouleau de fraisage/de coupe équipé d'outils de fraisage ou de coupe, ou l'engin de chantier est un finisseur à coffrage glissant qui présente un dispositif pour le formage de matériau coulant, ou l'engin de chantier est un finisseur routier qui présente une poutre lisseuse pour le formage de matériau.
  9. Engin de chantier automoteur selon la revendication 8, caractérisé en ce que la section de voie déterminée est une section droite (S1), dans lequel la grandeur de correction pour un mécanisme de roulement (3, 4, 6) est un angle de direction prédéfini dans la section droite du dispositif de commande (18) pour le mécanisme de roulement.
  10. Engin de chantier automoteur selon l'une quelconque des revendications 1 à 9, caractérisé en ce que l'unité de calcul (16) du dispositif de détermination de position (13) est configurée de telle manière que dans le mode de commande, dans lequel la commande de l'engin de chantier est effectuée sur la base des signaux de satellite du système de navigation par satellite (15) global, sur la base d'un angle de direction prédéfini dans une section de voie (S1, S2) déterminée du dispositif de commande (18) pour un mécanisme de roulement une pluralité de grandeurs de correction pour le modèle cinématique (16A) sont déterminées en fonction du type de dispositif de travail de l'engin de chantier et/ou de l'agencement du dispositif de travail dans le sens de travail sur le côté gauche ou droit de l'axe longitudinal du bâti d'engin (1) et/ou de la distance du dispositif de travail à l'axe longitudinal du bâti d'engin (1) et/ou de la nature du sol et/ou de l'étendue de la section de voie (S1, S2) et/ou de la vitesse du mécanisme de roulement (3, 4, 5), dans lequel l'unité de calcul (16) du dispositif de détermination de position (13) est configurée de telle manière que dans le mode de commande, dans lequel la commande de l'engin de chantier n'est pas effectuée sur la base des signaux de satellite du système de navigation par satellite (15) global, la position (xn, yn, zn) du point de référence (R) lié à l'engin de chantier et l'orientation (ψ) de l'engin de chantier sont déterminées dans le système de coordonnées (X, Y, Z) indépendant de l'engin de chantier sur la base du modèle cinématique (16A) implémenté dans l'unité de calcul (16) du dispositif de détermination de position (13) en tenant compte d'au moins une de la pluralité de grandeurs de correction.
  11. Engin de chantier automoteur selon la revendication 10, caractérisé en ce que l'engin de chantier est un finisseur à coffrage glissant qui présente un dispositif de formage de matériau coulant (11), dans lequel l'unité de calcul (16) du dispositif de détermination de position (13) est configurée de telle manière que dans le mode de commande, dans lequel la commande de l'engin de chantier est effectuée sur la base des signaux de satellite du système de navigation par satellite (15) global, sur la base d'un angle de direction prédéfini dans une section de voie (S1, S2) déterminée par le dispositif de commande (18) pour un mécanisme de roulement une pluralité de grandeurs de correction pour le modèle cinématique (16A) est déterminée en fonction de l'agencement du dispositif de formage de matériau coulant (11) sur le côté gauche ou droit du bâti d'engin (1) et/ou de la distance du dispositif de formage de matériau coulant (11) par rapport à l'axe longitudinal du bâti d'engin (1).
  12. Engin de chantier automoteur selon l'une quelconque des revendications 1 à 11, caractérisé en ce que l'unité de calcul (16) du dispositif de détermination de position (13) est configurée de telle manière que dans le mode de commande, dans lequel la commande de l'engin de chantier est effectuée sur la base des signaux de satellite du système de navigation par satellite (15) global, au moins une grandeur de correction pour le modèle cinématique (16A) est déterminée sur la base de la différence entre une vitesse prédéfinie par le dispositif de commande (18) pour un mécanisme de roulement (3, 4, 6) et la vitesse mesurée du mécanisme de roulement, dans lequel l'unité de calcul (16) du dispositif de détermination de position (13) est configurée de telle manière que dans le mode de commande, dans lequel la commande de l'engin de chantier n'est pas effectuée sur la base des signaux de satellite du système de navigation par satellite (15) global, la position (xn, yn, zn) du point de référence (R) lié à l'engin de chantier et l'orientation (ψ) de l'engin de chantier sont déterminées dans le système de coordonnées (X, Y, Z) indépendant de l'engin de chantier sur la base du modèle cinématique (16A) implémenté dans l'unité de calcul (16) du dispositif de détermination de position en tenant compte d'au moins une grandeur de correction pour la vitesse de l'au moins un mécanisme de roulement (3, 4, 6).
  13. Procédé de commande d'un engin de chantier automoteur qui présente un bâti d'engin (1) qui est porté par des mécanismes de roulement (3, 4, 5, 6) dont au moins certains mécanismes de roulement sont des mécanismes de roulement (3, 4, 6) entraînables et/ou dirigeables, pour lequel des signaux de satellite d'un système de navigation par satellite (15) global sont reçus et sur la base des signaux de satellite du système de navigation par satellite (15) global la position d'un point de référence (R) et l'orientation (ψ) de l'engin de chantier sont déterminées dans un système de coordonnées (X, Y, Z) indépendant de l'engin de chantier et les angles de direction des mécanismes de roulement (3, 4, 6) dirigeables sont réglés de telle manière que le point de référence (R) de l'engin de chantier se déplace le long d'une trajectoire prédéfinie (T),
    dans lequel
    dans un mode de commande, dans lequel la commande de l'engin de chantier n'est pas effectuée sur la base des signaux de satellite du système de navigation par satellite (15) global, pendant le mouvement de l'engin de chantier la position (xn, yn, zn) du point de référence (R) lié à l'engin de chantier et l'orientation (ψ) de l'engin de chantier dans le système de coordonnées (X, Y, Z) indépendant de l'engin de chantier sont déterminées sur la base d'un modèle cinématique (16A) implémenté dans une unité de calcul (16), qui décrit la position (P) du point de référence (R) et l'orientation (ψ) de l'engin de chantier dans le système de coordonnées (X, Y, Z) indépendant de l'engin de chantier en fonction des angles de direction et des vitesses des mécanismes de roulement (3, 4, 6),
    caractérisé en ce que
    dans le mode de commande, dans lequel la commande de l'engin de chantier est effectuée sur la base des signaux de satellite du système de navigation par satellite global, au moins une grandeur de correction pour le modèle cinématique est déterminée sur la base d'au moins un angle de direction prédéfini dans une section de voie déterminée par le dispositif de commande pour un mécanisme de roulement, dans lequel dans le mode de commande, dans lequel la commande de l'engin de chantier n'est pas effectuée sur la base des signaux de satellite du système de navigation par satellite global, la position (xn, yn, zn) du point de référence (R) lié à l'engin de chantier et l'orientation (ψ) de l'engin de chantier dans le système de coordonnées (X, Y, Z) indépendant de l'engin de chantier sont déterminées sur la base du modèle cinématique implémenté dans l'unité de calcul du dispositif de détermination de position en tenant compte de l'au moins une grandeur de correction.
  14. Procédé selon la revendication 13, caractérisé en ce que dans le mode de commande sur la base du modèle cinématique (16A) la position (P) du point de référence (R) et l'orientation (ψ) de l'engin de chantier sont déterminées en continu dans des intervalles de temps prédéfinis.
  15. Procédé selon la revendication 13 ou 14, caractérisé en ce que la modélisation du mouvement de l'engin de chantier est effectuée sur la base d'une approche de Lagrange dans le mode de commande sur la base du modèle cinématique (16A).
  16. Procédé selon l'une quelconque des revendications 13 à 15, caractérisé en ce que l'angle de direction des mécanismes de roulement (3, 4, 6) dirigeables est mesuré avec des capteurs d'angle de direction (19, 20, 21) et le modèle cinématique (16A) tient compte des valeurs de correction déterminées par voie empirique pour les angles de direction (19, 20, 21) et/ou la vitesse des mécanismes de roulement (3, 4, 6) entraînables est mesurée avec des capteurs de vitesse (22, 23, 24) et le modèle cinématique (16A) tient compte des valeurs de correction déterminées par voie empirique pour la vitesse (22, 23, 24),
  17. Procédé selon l'une quelconque des revendications 13 à 16, caractérisé en ce que les angles de direction des mécanismes de roulement (3, 4, 6) dirigeables sont réglés de telle manière que la distance (d) entre la position de consigne (Pde consigne) décrite par la trajectoire (T) et la position réelle (Préelle) déterminée du point de référence (R) soit minimale.
EP19190829.2A 2018-08-16 2019-08-08 Engin de construction autonome et procédé de commande d'un engin de construction autonome Active EP3611303B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018119962.7A DE102018119962A1 (de) 2018-08-16 2018-08-16 Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine

Publications (2)

Publication Number Publication Date
EP3611303A1 EP3611303A1 (fr) 2020-02-19
EP3611303B1 true EP3611303B1 (fr) 2021-06-09

Family

ID=67587537

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19190829.2A Active EP3611303B1 (fr) 2018-08-16 2019-08-08 Engin de construction autonome et procédé de commande d'un engin de construction autonome

Country Status (4)

Country Link
US (1) US11774965B2 (fr)
EP (1) EP3611303B1 (fr)
CN (2) CN110835880B (fr)
DE (1) DE102018119962A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7154814B2 (ja) * 2018-04-26 2022-10-18 株式会社小松製作所 作業機械およびその制御方法
CN114516364B (zh) * 2020-11-18 2023-01-03 中国农业机械化科学研究院 一种液压传动控制履带拖拉机转弯半径控制方法
CN112359682A (zh) * 2020-11-27 2021-02-12 山东精砼工程机械股份有限公司 一种滑模混凝土连续浇筑车组及浇筑方法
US11807997B2 (en) 2021-05-12 2023-11-07 Caterpillar Paving Products Inc. Systems and methods of visual guidance
CN113430975B (zh) * 2021-07-12 2022-09-09 包头市公路工程股份有限公司 自密实混凝土墙式护栏滑模施工工法
DE102022133913A1 (de) * 2022-12-19 2024-06-20 Wirtgen Gmbh Selbstfahrende Baumaschine, insbesondere Straßenfräsmaschine oder Straßenfertiger, zur Bearbeitung des Bodens oder Errichtung eines Bauwerks auf dem Boden und Verfahren zur Bearbeitung des Bodens oder Errichtung eines Bauwerks auf dem Boden mit einer selbstfahrenden Baumaschine
CN117055450B (zh) * 2023-10-11 2023-12-15 徐州新路智能科技有限公司 一种滑模摊铺机作业行走纠偏智能控制系统

Family Cites Families (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065856A (en) 1973-05-23 1978-01-03 British Railways Board Maintenance machines for railway track
JPH06506297A (ja) 1990-08-17 1994-07-14 スペイシャル・ポジッショニング・システムズ・インコーポレーテッド 空間位置決めシステム
US5245422A (en) 1991-06-28 1993-09-14 Zexel Corporation System and method for automatically steering a vehicle within a lane in a road
FR2683336B1 (fr) 1991-11-06 1996-10-31 Laserdot Dispositif de guidage asservi sur faisceau laser pour une machine de travaux publics.
JP2505210Y2 (ja) 1993-04-09 1996-07-24 建設省東北地方建設局長 舗装作業車の自動操向装置
ZA948824B (en) 1993-12-08 1995-07-11 Caterpillar Inc Method and apparatus for operating geography altering machinery relative to a work site
US5519620A (en) 1994-02-18 1996-05-21 Trimble Navigation Limited Centimeter accurate global positioning system receiver for on-the-fly real-time kinematic measurement and control
US5838277A (en) 1994-05-20 1998-11-17 Trimble Navigation Limited GPS-based controller module
US5549412A (en) 1995-05-24 1996-08-27 Blaw-Knox Construction Equipment Corporation Position referencing, measuring and paving method and apparatus for a profiler and paver
US5612864A (en) 1995-06-20 1997-03-18 Caterpillar Inc. Apparatus and method for determining the position of a work implement
US5721685A (en) 1995-06-29 1998-02-24 Holland; Robert E. Digi-track digital roadway and railway analyzer
US5752207A (en) 1995-09-29 1998-05-12 Caterpillar Inc. Method and apparatus for determining a path for a machine between a predetermined route and a final position
KR100256620B1 (ko) 1995-10-30 2000-05-15 모리 하루오 네비게이션장치
CN2233941Y (zh) * 1995-12-21 1996-08-28 张新胜 道路标线导航装置
US6287048B1 (en) 1996-08-20 2001-09-11 Edmund D. Hollon Uniform compaction of asphalt concrete
US6113309A (en) 1996-08-20 2000-09-05 Hollon; Edmund D. Uniform compaction of asphalt concrete
DE19647150C2 (de) 1996-11-14 2001-02-01 Moba Mobile Automation Gmbh Vorrichtung und Verfahren zum Steuern der Einbauhöhe eines Straßenfertigers
US6047227A (en) 1996-11-19 2000-04-04 Caterpillar Inc. Method and apparatus for operating geography altering machinery relative to a work site
US5929807A (en) 1997-03-07 1999-07-27 Trimble Navigation Limited Method and apparatus for precision location of GPS survey tilt pole
DE19756676C1 (de) 1997-12-19 1999-06-02 Wirtgen Gmbh Verfahren und Vorrichtung zum Abfräsen von Verkehrsflächen
GB2333862B (en) 1998-02-02 2002-01-09 Caterpillar Paving Prod Method and apparatus for controllably avoiding an obstruction to a cold planer
US6272406B2 (en) * 1998-03-09 2001-08-07 Jervis B. Webb Company Guidance system for an automated guided-vehicle
US6140957A (en) 1998-03-12 2000-10-31 Trimble Navigation Limited Method and apparatus for navigation guidance
US6199000B1 (en) 1998-07-15 2001-03-06 Trimble Navigation Limited Methods and apparatus for precision agriculture operations utilizing real time kinematic global positioning system systems
US6088644A (en) 1998-08-12 2000-07-11 Caterpillar Inc. Method and apparatus for determining a path to be traversed by a mobile machine
US7399139B2 (en) 1998-10-27 2008-07-15 Somero Enterprises, Inc. Apparatus and method for three-dimensional contouring
US6074693A (en) 1999-02-22 2000-06-13 Trimble Navigation Limited Global positioning system controlled paint sprayer
US6425186B1 (en) 1999-03-12 2002-07-30 Michael L. Oliver Apparatus and method of surveying
US6191732B1 (en) 1999-05-25 2001-02-20 Carlson Software Real-time surveying/earth moving system
US6307959B1 (en) 1999-07-14 2001-10-23 Sarnoff Corporation Method and apparatus for estimating scene structure and ego-motion from multiple images of a scene using correlation
JP3995846B2 (ja) 1999-09-24 2007-10-24 本田技研工業株式会社 物体認識装置
DE29918747U1 (de) 1999-10-25 2000-02-24 MOBA - Mobile Automation GmbH, 65604 Elz Vorrichtung zum Steuern eines Straßenfertigers
DE19957048C1 (de) 1999-11-26 2001-08-09 Wirtgen Gmbh Gleitschalungsfertiger
DK1118713T3 (da) 2000-01-19 2005-01-10 Joseph Voegele Ag Fremgangsmåde til styring af en entreprenörmaskine og en vejlægningsmaskine samt vejlægningsmaskine
ATE448365T1 (de) 2000-05-05 2009-11-15 Leica Geosystems Gr Llc Lasergesteuerte baumaschine
DE10060903C2 (de) 2000-12-07 2002-10-31 Moba Mobile Automation Gmbh Laser-Höhenregeleinrichtung für eine Baumaschine
US6655465B2 (en) 2001-03-16 2003-12-02 David S. Carlson Blade control apparatuses and methods for an earth-moving machine
AUPR396501A0 (en) 2001-03-26 2001-04-26 Edgeroi Pty Ltd Ground marking apparatus
US6769836B2 (en) 2002-04-11 2004-08-03 Enviro-Pave, Inc. Hot-in-place asphalt recycling machine and process
EP2575271B1 (fr) 2002-09-23 2014-09-10 Topcon GPS LLC Estimation de position par un réseau de récepteurs de positionnement global
US9002565B2 (en) 2003-03-20 2015-04-07 Agjunction Llc GNSS and optical guidance and machine control
US8271194B2 (en) 2004-03-19 2012-09-18 Hemisphere Gps Llc Method and system using GNSS phase measurements for relative positioning
US6907336B2 (en) 2003-03-31 2005-06-14 Deere & Company Method and system for efficiently traversing an area with a work vehicle
DE10317160A1 (de) 2003-04-14 2004-11-18 Wacker Construction Equipment Ag System und Verfahren zur automatisierten Bodenverdichtung
US7068815B2 (en) 2003-06-13 2006-06-27 Sarnoff Corporation Method and apparatus for ground detection and removal in vision systems
US7443167B2 (en) 2003-08-28 2008-10-28 Science Applications International Corporation Interleaved magnetometry and pulsed electromagnetic detection of underground objects
US7002513B2 (en) 2004-03-26 2006-02-21 Topcon Gps, Llc Estimation and resolution of carrier wave ambiguities in a position navigation system
DE102004040135B3 (de) * 2004-08-19 2005-12-15 Abg Allgemeine Baumaschinen-Gesellschaft Mbh Selbstfahrendes Gerät zum Abfräsen von Verkehrsflächen
DE102004040136B4 (de) 2004-08-19 2008-05-08 Abg Allgemeine Baumaschinen-Gesellschaft Mbh Gerät zum Abfräsen von Verkehrsflächen
EP1672122A1 (fr) 2004-12-17 2006-06-21 Leica Geosystems AG Procédé et appareil pour contrôler une machine de construction de chaussée
US9963836B1 (en) * 2005-02-23 2018-05-08 Gomaco Corporation Method for operating paving train machines
US7363154B2 (en) 2005-10-12 2008-04-22 Trimble Navigation Limited Method and system for determining the path of a mobile machine
US7856302B2 (en) 2005-12-23 2010-12-21 Caterpillar Inc Work machine with transition region control system
DE102006020293B4 (de) 2006-04-27 2013-07-11 Wirtgen Gmbh Straßenbaumaschine, Nivelliereinrichtung sowie Verfahren zum Regeln der Frästiefe oder Fräsneigung bei einer Straßenbaumaschine
DE102006024123B4 (de) 2006-05-22 2010-02-25 Wirtgen Gmbh Selbstfahrende Baumaschine, sowie Verfahren zum Bearbeiten von Bodenoberflächen
US7617061B2 (en) 2006-11-03 2009-11-10 Topcon Positioning Systems, Inc. Method and apparatus for accurately determining height coordinates in a satellite/laser positioning system
DE102006062129B4 (de) 2006-12-22 2010-08-05 Wirtgen Gmbh Straßenbaumaschine sowie Verfahren zur Messung der Frästiefe
US7865285B2 (en) 2006-12-27 2011-01-04 Caterpillar Inc Machine control system and method
US8768558B2 (en) * 2007-01-05 2014-07-01 Agjunction Llc Optical tracking vehicle control system and method
US8068962B2 (en) 2007-04-05 2011-11-29 Power Curbers, Inc. 3D control system for construction machines
EP2006448A1 (fr) 2007-06-21 2008-12-24 Leica Geosystems AG Train de finisseuses pour la fabrication d'une couche de revêtement routier en béton ou en asphalte
US7717521B2 (en) 2007-07-09 2010-05-18 Hall David R Metal detector for an asphalt milling machine
DE102007044090A1 (de) 2007-09-14 2009-04-09 Wirtgen Gmbh Straßenfräsmaschine oder Maschine zur Ausbeutung von Lagerstätten
WO2009126587A1 (fr) 2008-04-08 2009-10-15 Hemisphere Gps Llc Système et procédé de communication mobile gnss
US7946787B2 (en) 2008-06-27 2011-05-24 Caterpillar Inc. Paving system and method
US8401744B2 (en) 2008-07-22 2013-03-19 Trimble Navigation Limited System and method for configuring a guidance controller
JP5227139B2 (ja) 2008-11-12 2013-07-03 株式会社トプコン 建設機械
DE102009033219A1 (de) 2009-01-23 2010-07-29 Daimler Ag Verfahren zur Ermittlung eines Fahrzeug vorausliegenden Straßenprofils einer Fahrspur
US20120001638A1 (en) 2010-06-30 2012-01-05 Hall David R Assembly and Method for Identifying a Ferrous Material
US8174437B2 (en) 2009-07-29 2012-05-08 Hemisphere Gps Llc System and method for augmenting DGNSS with internally-generated differential correction
US8649930B2 (en) * 2009-09-17 2014-02-11 Agjunction Llc GNSS integrated multi-sensor control system and method
DE102009059106A1 (de) 2009-12-18 2011-06-22 Wirtgen GmbH, 53578 Selbstfahrende Baumaschine und Verfahren zur Steuerung einer selbstfahrenden Baumaschine
US8589015B2 (en) * 2010-02-12 2013-11-19 Webtech Wireless Inc. Vehicle sensor calibration for determining vehicle dynamics
EP2366830B1 (fr) 2010-03-18 2016-05-11 Joseph Vögele AG Système et procédé d'application d'un revêtement routier
DE102010014695A1 (de) 2010-04-12 2011-10-13 Dynapac Gmbh Verfahren zum Abfräsen von Oberflächenbelägen, vorzugsweise Straßenbelägen
US8314608B2 (en) 2010-06-30 2012-11-20 Hall David R Method of determining distance to a ferrous material
US8700324B2 (en) 2010-08-25 2014-04-15 Caterpillar Inc. Machine navigation system having integrity checking
DE102010048185B4 (de) 2010-10-13 2021-10-28 Wirtgen Gmbh Selbstfahrende Baumaschine
US8498788B2 (en) 2010-10-26 2013-07-30 Deere & Company Method and system for determining a planned path of a vehicle
US8794867B2 (en) 2011-05-26 2014-08-05 Trimble Navigation Limited Asphalt milling machine control and method
DE102011106139B4 (de) 2011-06-10 2015-04-02 Wirtgen Gmbh Verfahren und Vorrichtung zum Bestimmen einer von mindestens einer Baumaschine oder Abbaumaschine mit einer Fräswalze gefrästen Fläche
DE102012001289A1 (de) * 2012-01-25 2013-07-25 Wirtgen Gmbh Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine
DE102012215005A1 (de) * 2012-08-23 2014-02-27 Wirtgen Gmbh Selbstfahrende Fräsmaschine, sowie Verfahren zum Lenken einer selbstfahrenden Fräsmaschine
US9036865B2 (en) 2012-09-12 2015-05-19 International Business Machines Corporation Location determination for an object using visual data
US8989968B2 (en) 2012-10-12 2015-03-24 Wirtgen Gmbh Self-propelled civil engineering machine system with field rover
US9096977B2 (en) 2013-05-23 2015-08-04 Wirtgen Gmbh Milling machine with location indicator system
JP5555367B1 (ja) 2013-11-18 2014-07-23 株式会社シーティーエス 締固め及び敷均し管理システム
DE102015007562B4 (de) * 2014-06-17 2020-01-16 Bomag Gmbh Selbstfahrende Bodenfräsmaschine, insbesondere Straßenfräse, Recycler, Stabilisierer oder Surface-Miner, mit integrierter Wartungsplatte
US9347185B2 (en) 2014-07-30 2016-05-24 Shaker Ahmed REDA Method and apparatus for scanning and repairing road damage
DE102014012831B4 (de) 2014-08-28 2018-10-04 Wirtgen Gmbh Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine
DE102014012836B4 (de) * 2014-08-28 2018-09-13 Wirtgen Gmbh Selbstfahrende Baumaschine und Verfahren zur Visualisierung des Bearbeitungsumfeldes einer sich im Gelände bewegenden Baumaschine
DE102014012825A1 (de) 2014-08-28 2016-03-03 Wirtgen Gmbh Selbstfahrende Baumaschine und Verfahren zur Steuerung einer selbstfahrenden Baumaschine
EP3156873B2 (fr) * 2015-10-15 2023-04-05 Honda Research Institute Europe GmbH Véhicule autonome avec localisation simultanée améliorée et fonction de cartographie
JP6658464B2 (ja) 2016-11-09 2020-03-04 株式会社デンソー 中立点検出装置、及び操舵制御システム
DE102016222589B4 (de) * 2016-11-16 2020-01-16 Wirtgen Gmbh Selbstfahrende Fräsmaschine, sowie Verfahren zum Steuern einer selbstfahrenden Fräsmaschine

Also Published As

Publication number Publication date
CN211312127U (zh) 2020-08-21
CN110835880A (zh) 2020-02-25
CN110835880B (zh) 2021-07-23
US20200057444A1 (en) 2020-02-20
DE102018119962A1 (de) 2020-02-20
EP3611303A1 (fr) 2020-02-19
US11774965B2 (en) 2023-10-03

Similar Documents

Publication Publication Date Title
EP3611303B1 (fr) Engin de construction autonome et procédé de commande d'un engin de construction autonome
EP3502821B1 (fr) Engin de construction et procédé de commande d'un engin de construction
EP2620547B1 (fr) Engin automobile et procédé de commande d'un engin automobile
WO2019101651A1 (fr) Procédé et dispositif de fonctionnement d'un système mobile
EP2091803B1 (fr) Procédé pour garer un véhicule en marche arrière, et système d'aide au stationnement à cet effet
DE102018106713A1 (de) Verfahren zum Steuern eines Fahrzeugspurwechsels, Vorrichtung zum Steuern eines Fahrzeugspurwechsels und dazugehörige Einrichtungen
DE102016113902A1 (de) Feldbasierte Drehmoment-Lenkregelung
DE102005062084A1 (de) Verfahren zum Lenken eines Fahrzeugs in eine Parklücke und Einparkhilfeeinrichtung
EP3401442B1 (fr) Finisseuse de route ayant une compensation de braquage et procédé de commande
DE102018216082A1 (de) Verfahren zur kooperativen Manöverabstimmung
DE102006037588B4 (de) Verfahren zur automatischen oder teilautomatischen spurtreuen Mehrachslenkung eines Straßenfahrzeugs und Vorrichtung zur Durchführung des Verfahrens
DE102014216713A1 (de) Selbstfahrende Fräsmaschine, sowie Verfahren zum Abladen von Fräsgut
DE102019135225A1 (de) Verfahren zum Abfräsen von Verkehrsflächen mit einer Fräswalze, sowie Fräsmaschine zur Durchführung des Verfahrens zum Abfräsen von Verkehrsflächen
EP3489414A1 (fr) Engin de construction et procédé de commande d'un engin de construction
EP3536857B1 (fr) Machine à coffrages glissants et procédé de fonctionnement d'une machine à coffrages glissants
DE60002830T2 (de) Verfahren zur herstellung mit hilfe eines satellitenpositionierungssystems
WO2023198352A1 (fr) Procédé pour déterminer une trajectoire de déplacement pour un véhicule
EP4249680A1 (fr) Fraiseuse routière automotrice et procédé de commande d'une fraiseuse routière automotrice
DE19951296C2 (de) Vorrichtung und Verfahren zum Steuern eines Strassenfertigers
EP4056760B1 (fr) Finisseuse de routes à régulation en cascade de nivellement
DE102004050690A1 (de) Verfahren, Computer-Programm mit Programm-Code-Mitteln, Computer-Programm-Produkt und Gerät zur Modellierung der Umwelt eines autonomen mobilen Systems
WO2022253595A1 (fr) Utilisation de données cartographiques pour guidage latéral par système d'aide à la conduite
DE102017222563A1 (de) Verfahren und Vorrichtung zur Kommunikation zwischen mehreren Kraftfahrzeugen
EP3760790B1 (fr) Engin de construction et procédé de commande d'un engin de construction
EP2319730A1 (fr) Procédé de fonctionnement d'un système d'éclairage adaptatif prédictif dans un véhicule automobile et véhicule automobile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200619

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: E01C 19/00 20060101AFI20201207BHEP

INTG Intention to grant announced

Effective date: 20201222

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1400610

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019001581

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210909

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210909

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211011

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019001581

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

26N No opposition filed

Effective date: 20220310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210808

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210808

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190808

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230831

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230823

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240819

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240822

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240821

Year of fee payment: 6