EP3600765B1 - Water abrasive suspension cutting system and method for water abrasive suspension cutting - Google Patents

Water abrasive suspension cutting system and method for water abrasive suspension cutting Download PDF

Info

Publication number
EP3600765B1
EP3600765B1 EP17716813.5A EP17716813A EP3600765B1 EP 3600765 B1 EP3600765 B1 EP 3600765B1 EP 17716813 A EP17716813 A EP 17716813A EP 3600765 B1 EP3600765 B1 EP 3600765B1
Authority
EP
European Patent Office
Prior art keywords
pressure
abrasive
valve
water
filling level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17716813.5A
Other languages
German (de)
French (fr)
Other versions
EP3600765A1 (en
Inventor
Marco Linde
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ANT Applied New Technologies AG
Original Assignee
ANT Applied New Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANT Applied New Technologies AG filed Critical ANT Applied New Technologies AG
Priority to PL17716813.5T priority Critical patent/PL3600765T3/en
Publication of EP3600765A1 publication Critical patent/EP3600765A1/en
Application granted granted Critical
Publication of EP3600765B1 publication Critical patent/EP3600765B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C7/00Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
    • B24C7/0007Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a liquid carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C7/00Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
    • B24C7/0007Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a liquid carrier
    • B24C7/0015Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a liquid carrier with control of feed parameters, e.g. feed rate of abrasive material or carrier
    • B24C7/0023Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a liquid carrier with control of feed parameters, e.g. feed rate of abrasive material or carrier of feed pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/04Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for treating only selected parts of a surface, e.g. for carving stone or glass
    • B24C1/045Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for treating only selected parts of a surface, e.g. for carving stone or glass for cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/04Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for treating only selected parts of a surface, e.g. for carving stone or glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C7/00Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
    • B24C7/0084Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a mixture of liquid and gas

Definitions

  • the present disclosure relates to a water-abrasive suspension cutting system having the features specified in the preamble of claim 1 and a method for water-abrasive suspension cutting according to the preamble of claim 10.
  • a cutting system and such a method are from document EP 1 208 944 A known.
  • Water-abrasive suspension cutting systems are used to cut materials using a high-pressure water jet to which an abrasive is added.
  • Water-abrasive suspension cutting systems are to be distinguished from water-abrasive injection cutting systems, in which the abrasive is first introduced into the already very strongly accelerated water in or at an outlet nozzle.
  • the water under high pressure is first mixed with the abrasive and then the water-abrasive suspension is accelerated in the outlet nozzle.
  • the abrasive medium-water ratio can be selected higher and a higher cutting force can be achieved because the water is mixed under high pressure with the abrasive in a controlled manner upstream of the exit gland without entrapping air.
  • part of the water flow can be guided through an abrasive agent container, which is designed as a pressure container.
  • abrasive agent container which is designed as a pressure container.
  • Such a system is z. B. from the EP 1 199 136 known.
  • a technical challenge with these systems is topping up the abrasive, since the system has to be shut down for this, the abrasive agent tank must be depressurized and only then can it be filled. In industrial applications, however, continuous cutting is often desired, in which the plant does not have to be shut down to fill the abrasive.
  • the water-abrasive suspension cutting system disclosed herein according to independent claim 1 and the water-abrasive suspension cutting method disclosed herein according to independent claim 10 has the advantage over the known solutions that a desired mixing ratio between water and abrasive in the cutting jet is targeted can be set and changed as required.
  • Advantageous refinements of the disclosure are specified in the dependent claims, the following description and the drawings.
  • a desired mixing ratio between water and abrasive in the cutting jet can be set. Clear, non-abrasive water flows through the adjustable throttle located on the inlet side of the pressure vessel, which means that it wears considerably less than if it were located on the outlet side.
  • the controllable throttle can also be referred to as a control valve, which can preferably completely shut off the inflow if necessary.
  • a shutoff valve may be positioned downstream or upstream of the restrictor to completely stop the flow of abrasive from the pressure vessel.
  • a sensor signal can be used to signal the shut-off valve to shut off the pressure vessel from the high-pressure line. If necessary, this can take place when a minimum filling level is reached, which should not be fallen below.
  • the at least one controlled variable can have a sensor signal and/or an operating parameter of the high-pressure source.
  • the controlled variable can have several parameters, combinations of parameters or have calculations from one or more parameters.
  • “having” means that the at least one controlled variable depends on the sensor signal or the parameter or that the sensor signal or the parameter is included in the controlled variable.
  • the at least one controlled variable has an abrasive agent flow from the pressure vessel or a parameter that is characteristic of an abrasive agent flow from the pressure vessel.
  • the system can have a first level sensor for signaling at least a first level of abrasive in the pressure vessel. The at least one controlled variable can then have a change in the first fill level over time.
  • the system can have a first fill level sensor for signaling at least a first fill level of abrasive in the pressure vessel and a second fill level sensor for signaling at least a second fill level of abrasive in the pressure vessel, wherein the at least one controlled variable can have a time difference between the first fill level and the second fill level .
  • the fill level sensors can be ultrasonic sensors or optical sensors that are arranged at different vertical positions on the pressure vessel and can signal a specific fill level. If the geometry of the pressure vessel is known and the vertical distance between the first and the second level sensor is known, the time difference for an abrasive removal flow is characteristic, according to which the inflow to the pressure vessel can be regulated.
  • the system can have an abrasive agent flow sensor arranged on the outlet side of the pressure vessel for signaling an abrasive agent removal flow, according to which the inflow to the pressure vessel can be regulated.
  • the abrasive medium flow sensor can, for example, run through an abrasive medium line on the outlet side Count abrasive particles or otherwise measure abrasive flow. This can take place, for example, optically, inductively using ferromagnetic markers in the abrasive or by measuring structure-borne noise.
  • control variable can have a speed and/or power or current consumption of the high-pressure source.
  • the water flow through the high-pressure line can be inferred from the rotational speed and/or power or current consumption of the high-pressure source, which can also determine the mixing ratio in the cutting jet. Therefore, preferably these or other operating parameters of the high-pressure line can also be included in the at least one controlled variable.
  • a flow sensor can measure or signal a water flow through the high-pressure line, so that this can be included in the at least one controlled variable.
  • the regulation is carried out depending on a sensor signal and/or an operating parameter of the high-pressure source.
  • the regulation can be performed depending on a flow of abrasive from the pressure vessel.
  • the regulation can be carried out as a function of a change over time in a first fill level of abrasive in the pressure vessel, with the first fill level being signaled by a first fill level sensor.
  • the regulation can take place as a function of a time difference between a first filling level of abrasive in the pressure vessel and a second filling level of abrasive in the pressure vessel, the first filling level being signaled by a first filling level sensor and the second filling level being signaled by a second filling level sensor.
  • the regulation can be carried out as a function of a flow of abrasive medium, with the flow of abrasive medium being signaled by an abrasive medium flow sensor arranged on the outlet side of the pressure vessel.
  • the regulation can also take place as a function of a speed or a power or current consumption of the high-pressure source.
  • the water-abrasive suspension cutting system 1 shown has a high-pressure source 3 that provides water in a high-pressure line 5 at a high pressure po of about 1,500 to 4,000 bar.
  • the high-pressure line 5 is connected to an outlet nozzle 7, from which the water, which is under high pressure, emerges in a jet 9 at very high speed. So that the jet 9 can be used effectively as a cutting jet for cutting material, the high-pressure line 5 is branched in such a way that at least part of the flow through the high-pressure line 5 is guided through a pressure container 11, in which a water-abrasive suspension 13 is located .
  • the supply of the water-abrasive suspension 13 to the outlet nozzle can be switched on and off via a shut-off valve 15 .
  • the proportion of the water-abrasive suspension 13 in the beam 9 can be adjusted via a throttle 17 by the flow rate is throttled in the secondary branch of the high-pressure line 5 that is routed through the pressure vessel 11 .
  • the throttle 17 can be regulated, with a signal characteristic of the abrasive agent removal flow, which can be obtained from a sensor or an available operating parameter, being used as a controlled variable for regulating the opening of the throttle 17 (see Fig. 7a-c ).
  • the throttle 17 can preferably completely shut off the inflow into the pressure vessel 11, so that the shut-off valve 15 can be dispensed with.
  • a refill valve 19 in the form of a ball valve is arranged above the pressure vessel 11 .
  • the refill valve 19 connects a sluice chamber 21 arranged above the refill valve 19 to the pressure vessel 11.
  • a filling valve 23 is in turn arranged above the sluice chamber 21 and connects a refill funnel 25 arranged above the sluice chamber 21 to the sluice chamber 21.
  • the filling valve 23 can be configured essentially identically to the refill valve 19 in the form of a ball valve.
  • the refill funnel 25 is not under pressure, so that dry, moist or wet abrasive or a water-abrasive suspension can be filled in from above (see Fig Figures 8-12 ).
  • This can be, at least in part, an abrasive agent that is reprocessed from the cutting jet 9 and that is transported via a conveyor device (see Figures 8-12 ) in dry, wet, frozen, pelleted or suspended form Form can be filled into the refill funnel 25 from above.
  • the sluice chamber 21 can be depressurized at times. For example, a pressure in the sluice chamber 21 can be released into an outlet 29 via a pressure release valve 27 in the form of a needle valve.
  • the filling valve 23 can be open, so that abrasive material falls from the refill funnel 25 into the lock chamber 21 .
  • This gravitational filling of the lock chamber 21 with abrasive can be supported and accelerated by a pump 31.
  • the pump 31 can be connected to the lock chamber 21 on the suction side and to the refill funnel 25 on the pressure side. The pump 31 can thus suck abrasive into the lock chamber 21. This is especially useful when abrasive media is clogged in the tapered lower area of the refill funnel 25 or on the filling valve 23 . By sucking the abrasive down by the pump 31, a clog can be cleared or a clog can be prevented from occurring.
  • the pump 31 does not have to be designed for high pressure, it is advantageous if the pump 31 can be shut off from the sluice chamber 21 by means of a pump shut-off valve 33 in the form of a needle valve.
  • the pump shut-off valve 33 can be designed so that it can be flushed through in order to flush the valve seat and the valve body, for example in the form of a valve needle, free of abrasive (see FIG Figures 19a-b ). This ensures, on the one hand, that the pump shut-off valve 33 closes tightly and reduces material wear in the valve.
  • the pump 31 can be largely protected from abrasives by means of an upstream filter and/or separator (both not shown).
  • the pump shut-off valve 33 is only opened when the lock chamber 21 is already depressurized. Therefore, for the pump shut-off valve 33, a first embodiment of the needle valve according to Figure 19a be used where a side flush inlet and an opposite lateral flushing outlet is provided.
  • the second embodiment of the needle valve according to FIG Figure 19b more advantageously, in which a non-return valve is provided at the flushing inlet. Since the pressure release valve 27 is opened at high pressure, the check valve prevents pressure release towards the flushing inlet.
  • the scavenging outlet can open into the outlet 29 so that both the pressure release and the rinsing agent outlet take place exclusively towards the outlet 29 and not towards the rinsing inlet.
  • the lock chamber 21 has a pressure input 35 in a lower area, via which the lock chamber 21 can be pressured.
  • the Bescherungseingang 35 is in the embodiment 1 connected via a pressure valve 37 in the form of a needle valve to a pressure accumulator 39 and via throttles 41, 42 to the high-pressure line 5 in a lockable manner.
  • the pressure accumulator 39 has two pressure accumulator units in the form of spring accumulators, which are connected in parallel to the input of the pressure valve 37.
  • the pressure accumulator 39 is connected to the high-pressure line 5 via the throttle 41 .
  • the throttles 41, 42 can be static, for example in the form of pinholes, or adjustable or controllable. If the throttles 41, 42 can be adjusted to a degree at which the connection between the high-pressure line 5 and the pressurization inlet 35 can be completely shut off, the pressurization valve 37 can possibly be dispensed with.
  • the accumulator 39 is fully pressurized before the lock chamber 21 is pressurized. As soon as the pressure valve 37 is opened, the pressure from the accumulator 39 discharges into the sluice chamber 21 and thus quickly pressurizes it to about 40% of the high pressure po that is provided in the high-pressure line 5 as the nominal high pressure from the high-pressure source 3 .
  • a pressure pulse is introduced from below into the sluice chamber 21, which loosens the abrasive. This is advantageous for the later discharge of the abrasive into the pressure vessel 11.
  • the high-pressure line 5 is also connected to the sluice chamber 21 via the throttle 41 , a throttled, ie slower, pressurization through the high-pressure line 5 also takes place in parallel with the opening of the pressurization valve 37 .
  • the pressure accumulator 39 has been depressurized, the remaining pressure required in the lock chamber 21 of about 60% of the nominal high pressure po is built up exclusively via the throttled, ie slower, pressure from the high-pressure line 5 .
  • the amplitude of the pressure drop in the high-pressure line 5 is kept to a minimum.
  • the accumulator 39 is pressurized again immediately from the moment in which it has discharged itself.
  • the high-pressure line 5 pressurizes both the sluice chamber 21 with the residual pressure and the pressure accumulator 39. This is particularly advantageous if the pressure loading of the pressure accumulator 39 is so time-consuming that the refilling passage rate depends on the pressure loading time of the pressure accumulator 39.
  • the pressure accumulator 39 can be shut off with a pressure accumulator valve 43 in the form of a needle valve.
  • the pressure accumulator valve 43 can be shut off so that the high-pressure line 5 is not additionally burdened with the pressure loading of the pressure accumulator 39 while the lock chamber 21 is being pressurized.
  • Such a load could cause a pressure drop in the high-pressure line 5, which could have a negative impact on the cutting performance at the outlet nozzle 7. It is therefore advantageous to open the pressure accumulator valve 43 only when the lock chamber 21 is fully pressurized and the Beyakungsventil 37 is closed, so that the pressure accumulator 39 can be pressurized via the throttle 41 from the high-pressure line 5.
  • the filling of the sluice chamber 21 and the refilling of the pressure vessel 11 can usually take longer than the pressure charging of the pressure accumulator 39.
  • the throttle 41 can be set in such a way that the pressure accumulator 39 is pressurized as slowly as possible, but still fast enough so that before the next pass to pressurize the lock chamber 21 of the pressure accumulator 39 is fully pressurized.
  • the pressure accumulator 39 is dispensed with entirely and the lock chamber 21 is pressurized exclusively via the throttle 41 from the high-pressure line 5 .
  • This is advantageous when the high-pressure source 3 reacts so quickly to an initial pressure drop, for example via a servo pump control, and can adapt the pump output quickly enough that a large amplitude of a pressure drop does not occur in the first place.
  • An initial drop in pressure can be communicated to the high-pressure source 3 via pressure sensors, so that the high-pressure source 3 can quickly counteract a further drop in pressure with an increase in output or speed.
  • the initial pressure drop can already be mitigated via the throttle 41, so that there is never a pressure drop that significantly impairs the cutting performance.
  • the refill valve 19 can be opened so that abrasive media can flow out of the sluice chamber 21 through the refill valve 19 into the pressure vessel 11 by gravity or by gravity, in order to fill the latter to refill.
  • a conveying aid 45 for example in the form of a pump, is preferably provided, which is connected to the pressure vessel 11 on the suction side and to the lock chamber 21 on the pressure side. The conveying aid 45 supports or generates the abrasive agent flow from the lock chamber 21 downwards into the pressure vessel 11. It can prevent or solve blockages of abrasive agent and accelerate the refilling process caused by or assisted by gravity.
  • the conveying aid 45 on the pressure vessel 11 works with water at the nominal high pressure po. It must therefore be designed for high-pressure operation. For example, as in Figure 6b shown, only have an inductively driven impeller in high pressure, so that the number of moving parts that are under high pressure is minimized.
  • a conveying aid shut-off valve 47 is arranged between the conveying aid 45 and the lock chamber 21, the conveying aid shut-off valve 47 in the form of a needle valve being able to shut off the pump 47 from the lock chamber 21 when the lock chamber 21 is not or not fully pressurized.
  • the pumping aid shut-off valve 47 is a flushable needle valve according to FIG Figure 19b with a non-return valve on the flushing inlet since it is actuated under high pressure.
  • Fig. 6a-c show various alternative embodiments for the conveying aid 45.
  • the conveying aid 45 can, for example, have an impeller driven externally via a shaft (see FIG Figure 6a ) or an inductively driven impeller (see Figure 6b ).
  • the conveying aid 45 can also support the refilling of abrasive into the pressure tank 11 via a piston stroke (see Fig Figure 6c ).
  • the conveying aid 45 can pump or convey continuously or in a time-limited or pulsed manner. It may be sufficient if the abrasive agent flow into the pressure vessel 11 is only supported initially and then continues to run fast enough alone, with the aid of gravity. Alternatively or in addition the flow of abrasive into the pressure vessel 11 can be supported or generated continuously.
  • the refill valve 19 In addition to an upper valve inlet 49 and a lower valve outlet 51 , the refill valve 19 also has a lateral pressure inlet 53 .
  • a valve chamber in which a movable valve body is located, can be pressurized via the pressure inlet 53 . If the valve chamber is not pressurized, it is possible that when the system is started up, the very high pressures on the valve inlet 49 and the valve outlet 51 press the valve body so hard into the valve seat that the valve body can no longer be moved. Pressure can be equalized in the refill valve 19 via the lateral pressure inlet 53, so that the valve body can be moved after it has been put into operation.
  • a flushing source 55 can be connected to the pressure inlet 53 in a lockable manner (see 4 ).
  • three scavenging valves 57, 59, 61 are provided to be able to switch the scavenging on and off or to separate it from the high pressure.
  • a first flushing valve 57 in the form of a needle valve is arranged between the delivery aid 45 and the pressure inlet 53 .
  • a second scavenging valve 59 also referred to here as a scavenging outlet valve 59, is arranged in the form of a needle valve between a lateral scavenging outlet 63 and an outlet 65.
  • a third purge valve 61 in the form of a needle valve is positioned between the purge source 55 and the pressure inlet 53 .
  • the refill valve 19 In order to flush the refill valve 19 with water or a mixture of water and washing-up liquid so that a valve chamber of the refill valve 19 can be freed from residues of abrasive, the refill valve 19 is preferably closed.
  • the first purge valve 57 is also closed so that pressure can be released from the pressure inlet 53 without releasing the pressure on the conveying aid 45.
  • the second scavenging valve 59 is opened towards the outlet 65 so that any high pressure that may be present can be released from the valve chamber. If the third flushing valve 61 is now opened, water or a mixture of water and flushing agent flows through the valve chamber to the outlet 65 and thus flushes it free of residues of abrasive.
  • the flushing of the refill valve 19 is preferably carried out as a service procedure when the system 1 is completely depressurized, in order to be able to flush out the valve chamber completely and, if necessary, to be able to move the valve body in the process.
  • a flushing inlet 66 separate from the pressure inlet 53 is provided (see also Fig. 15a-b and 17a-b ).
  • the pressure inlet 53 may be coaxial with and opposed to a servomotor shaft 86
  • the purge inlet 66 and purge outlet 63 may be coaxial and disposed transversely of the servomotor shaft 86 on opposite sides of each other.
  • the flushing is ended again by closing the three flushing valves 57, 59, 61 in reverse order, ie the third flushing valve 61 is closed first, so that the flushing flow is stopped.
  • the second flushing valve 59 is then closed in order to close off the valve chamber from the outlet 65 .
  • the first flushing valve 57 can be opened so that the valve chamber is pressurized with high pressure.
  • Printing the valve chamber is advantageous because a valve body in the refill valve 19 can be pressed so hard into a valve seat by the high pressure difference between the valve outlet 51 or valve inlet 49 and the valve chamber that it can no longer be moved.
  • the pressurizing of the valve chamber creates pressure equalization so that the valve body in the refill valve 19 remains movable.
  • a branch of the high-pressure line 5 is routed through the pressure vessel 11 filled with the abrasive suspension 13 in order to add abrasive to the cutting jet 9 .
  • An extraction point 68 arranged in the lower area of the pressure vessel 11 is connected to the outlet nozzle 7 via an abrasive medium line 70, and a branch of the high-pressure line 5 is routed via a control valve or controllable throttle 17 into an upper area of the pressure vessel 11.
  • the abrasive medium line Downstream from the pressure vessel 11, the abrasive medium line is reunited with the high-pressure line 5 in front of the outlet nozzle 7, so that the cutting jet contains, for example, a mixing ratio of 1:9 abrasive medium suspension and water.
  • the mixing ratio can be regulated via the throttle or control valve 17 connected to the pressure vessel 11 on the inlet side.
  • the control valve 17 When the control valve 17 is in the maximum open position, the flow of abrasive removal is maximum and the mixing ratio is maximum.
  • the abrasive removal flow At minimum open position or closed position (see Fig. 7b or 7c ) of the control valve 17, the abrasive removal flow is minimal or zero and the mixing ratio is correspondingly low or the cutting jet 9 then contains only water.
  • a certain mixing ratio can be optimal for cutting certain materials, workpieces or workpiece sections, in which only as much abrasive is removed as is necessary to achieve the cutting performance.
  • the cutting performance can be adjusted via the mixing ratio during cutting.
  • the refilling of the pressure vessel 11 with abrasive can be controlled according to the abrasive removal flow so that there is always enough abrasive suspension 13 in the Pressure vessel 11 is present for continuous cutting.
  • Fig. 7a-c four different fill levels of the abrasive in the pressure vessel 11 are indicated by dashed cones.
  • the maximum filling level cone F max is defined by the fact that further refilling with abrasive into the pressure vessel 11 would result in a back pressure in the refill valve 19 .
  • the minimum filling level cone F min is defined by the fact that the proportion of abrasive medium in the abrasive medium suspension in the abrasive medium line 70 on the outlet side would decrease if abrasive medium were to be removed further.
  • level sensors 72, 74, 76 can be arranged on the pressure vessel 11 in order to signal that a level cone has been reached.
  • the level sensors 72, 74, 76 can be, for example, ultrasonic sensors, optical sensors or barriers, electromagnetic sensors or sensors of other types.
  • the level sensors 72, 74, 76 are ultrasonic sensors, which can signal that a level cone has been reached via a change in structure-borne noise.
  • An upper filling level sensor 72 can, for example, signal that the filling level cone F 1 has been reached and can start a timer or define a point in time t 1 .
  • a lower filling level sensor 74 can, for example, signal that the filling level cone F 2 has been reached and can stop a timer after ⁇ t or define a point in time t 2 .
  • a mean abrasive removal flow can be determined as ⁇ V/ ⁇ t or ⁇ V/(t 2 ⁇ t 1 ) via the known geometry of the pressure vessel 11 and the vertical spacing of the level sensors 72, 74 .
  • the third bottom level sensor 76 can be the minimum level cone F min signal and immediately shut off the shut-off valve 15 to prevent the pressure vessel 11 from being sucked dry.
  • FIG. 7b other operating parameters such as the pump speed of the high-pressure source 3 can also be used to determine the abrasive agent removal flow and its regulation as a controlled variable for the control valve 17 .
  • the abrasive medium flow or the mixing ratio can also be determined by means of a corresponding sensor 79 on the abrasive medium line 70 or in front of the outlet nozzle 7 and used as a controlled variable for the control valve 17 .
  • the level sensors 72, 74 can also be used to control or clock the refill cycles.
  • a filling of the lock chamber 21 can fit above the upper level sensor 72 between the level cone F 1 and the maximum level cone F max . If the filling level cone drops below Fi, the upper filling level sensor 72 can trigger filling of the lock chamber 21 so that it is completely filled when the lower filling level sensor 74 signals the filling level cone F 2 and can thus trigger refilling from the filled lock chamber 21 into the pressure vessel 11. This prevents the level cone from dropping down to the minimum level cone F min .
  • At least one filling of the lock chamber 21 can also fit as a buffer between the minimum level cone F min and the level cone F 2 .
  • the sluice chamber 21 can always be automatically refilled immediately as soon as the refilling of the pressure vessel 11 is complete. Then refilling from the sluice chamber 21 only needs to be triggered when the level cone F 2 is reached.
  • the vertical distance between the upper filling level sensor 72 and the lower filling level sensor 74 can be chosen to be relatively short, for example so short that a drop between F 1 and F 2 takes less time than a filling process of the lock chamber 21. With a shorter vertical distance, the mean abrasive removal flow ⁇ V/ ⁇ t or ⁇ V/(t 2 -t 1 ) can be determined more frequently and thus more accurately reflect the current abrasive removal flow dV/dt.
  • Figures 8 to 12 show various ways of adding abrasives in dry, wet, moist, suspended, frozen, pelleted or other form to the refill funnel 25 or directly to the filling valve 23.
  • a pre-loading container 78 is provided, from which abrasive suspension is conveyed into the refill funnel 25 by means of a pump 80 .
  • water that is displaced by the sinking abrasive can run off via an overflow 82 on the refill funnel.
  • a pre-loading container 78 is provided, from which dry powdered or moist lumpy abrasive agent is conveyed into the refill hopper 25 by means of a conveyor screw 84 and/or a conveyor belt 85 .
  • water that is displaced by the sinking abrasive can also run off here via the overflow 82 on the refill funnel 25 .
  • the abrasive can, for example, be recovered and processed from the waste water of the cutting jet 9 after a cutting process, so that it can be used for a further cutting process.
  • the advantage of this system compared to known water-abrasive injection cutting systems is that such a reprocessed abrasive does not have to be dried and can be filled into the system in a wet lumpy or any form.
  • no overflow 82 is provided, but rather a circuit between the refill hopper 25 and the preloading container 78, with the pump 80 driving the circuit for filling the refill hopper 25 with abrasive on the output side of the refill hopper 25.
  • the refill funnel 25 is preferably closed in this case, so that the pump 80 can suck abrasive suspension out of the preloading container 78 .
  • the advantage here is that the pump 80 pumps relatively clean water and not a saturated abrasive suspension as in 8 . As a result, the wear in the pump 80 is reduced. In addition, sucking in the abrasive suspension is less prone to clogging than pressing.
  • a screw conveyor 84 can also be arranged on the input side of the refill hopper 25 in order to convey abrasive into the refill hopper 25 . This is particularly advantageous when there is no abrasive suspension in the preloading container 78, but rather abrasive as a dry powder or in a wet lumpy form.
  • the refill funnel 25 can even be dispensed with completely (see 12 ) if the conveying via a screw conveyor 84 or a pump 80 takes place quickly enough and in a controlled manner directly into the filling valve 23.
  • the water displaced by the abrasive when the lock chamber 21 is being filled can be returned from the lock chamber 21 to the refill funnel 25 via the pump shut-off valve 33 .
  • This can also be done with a pump 31 according to FIG Figures 1 to 5 be supported in order to actively suck abrasives into the lock chamber 21 as well.
  • the abrasive medium is refilled in the pressure vessel 11 in portions and cyclically, while a workpiece to be machined can be cut continuously with the cutting jet 9 .
  • 13 illustrates the process steps over time.
  • a first step 301 water is made available under high pressure in the high-pressure line 5 by means of the high-pressure source 3 .
  • This then also provides a pressurized abrasive suspension in the pressure vessel 11 303.
  • a workpiece can then already be cut 305 by means of the high-pressure jet 9, which at least partially contains the abrasive suspension, while removing the abrasive suspension from the pressure vessel 11.
  • Steps 307 to 311 serve to refill the pressure vessel 11 with abrasive in portions and cyclically during continuous cutting 305.
  • the unpressurized sluice chamber 21 is filled 307 with abrasive or an abrasive suspension.
  • the pump 31 is then shut off from the sluice chamber 21 308.
  • the sluice chamber is then at least partially pressurized 309 by depressurizing the pressure accumulator 39, and finally the pressure container 11 is refilled 311 with abrasive or an abrasive suspension via the refill valve 19 from the pressurized sluice chamber 21.
  • the conveying aid 45 is in fluid communication with the pressurized lock chamber 21 via the open conveying aid shut-off valve 47 .
  • the conveyor aid shut-off valve 47 and the pressure valve 37 and the refill valve 19 are shut off in order to be able to relieve the pressure in the sluice chamber 21 via the pressure relief valve 27 into the outlet 29 for the next filling step.
  • the pressure accumulator can be pressurized 313 via the throttle 41 from the high-pressure line 5.
  • the lock chamber 21 can at least partially overflow the throttle 41 from the high-pressure line 5 are printed 315. This slow throttled printing 315 from the high-pressure line 5 can last longer than the fast printing 309 by the pressure discharge of the pressure accumulator 39.
  • the printing 309 of the sluice chamber 21 can A pressure accumulator 39 is depressurized during a first time window A and the lock chamber 21 of the high-pressure line 5 is pressurized 315 during a second time window B, with the first time window A and the second time window B at least partially overlapping, preferably at the beginning.
  • the loading 309 of the sluice chamber 21 by depressurizing the pressure accumulator can take place so quickly that the abrasive agent in the sluice chamber 21 is loosened by a pressure surge.
  • the sluice chamber is pressurized 309 by discharging the pressure from the pressure accumulator 39, preferably in a lower region of the sluice chamber 21, since any blockages of abrasive are more likely in a lower region than in an upper region.
  • the pressure input 35 of the lock chamber 21 is shut off from the pressure accumulator 39 and/or the high-pressure line 5 during the filling 307 and the refilling 311 .
  • the pressure loading 313 of the pressure accumulator 39 can thus take place during the filling 307 and/or the refilling 311 .
  • energy can be stored via a spring or fluid compression in the pressure accumulator 39, which can be designed, for example, as a spring or bladder accumulator.
  • the filling 307, the printing 309 and the refilling 311 can take place cyclically while the cutting 305 can be carried out continuously.
  • the pressure accumulator 39 can first be shut off by the pressure accumulator 39 being discharged from the high-pressure line 5 by means of the pressure accumulator valve 43 .
  • the pressure accumulator valve 43 can preferably only then be opened again for the purpose of pressurizing the pressure accumulator 39 be when the lock chamber 21 was pressurized via the throttle 41 from the high-pressure line 5.
  • the pressure in the unpressurized lock chamber 21 is initially the ambient pressure, which is on the zero line here.
  • the lock chamber 21 can be filled 307 before the start of the printing 309 at the point in time to.
  • Printing 309, 315 begins at time t0.
  • the lock chamber 21 is then pressurized 309 to up to 40% of the nominal high pressure po from the pressure discharge of the pressure accumulator 39.
  • the pressure accumulator 39 is then discharged to a minimum at t 1 and is then via the pressure accumulator valve 43 according to the second embodiment in FIG 2 locked.
  • the imprinting 309, 315 of the lock chamber 21 can take 5 to 10 seconds.
  • the refilling 311 can begin and the pressure vessel 39 can be pressurized 313 again at the same time.
  • the lock chamber 21 is completely pressurized from the high-pressure line 5 via the throttle 41 over the time window B.
  • the refill valve 19 is open between t 2 and t 3 so that abrasive medium can flow into the pressure container 11 .
  • the abrasive has flowed completely out of the lock chamber 21 into the pressure vessel 11 and the refilling step 311 is completed.
  • the pressure can be released from the sluice chamber 21 relatively quickly via the pressure relief valve 27 into the outlet 29 until at t 4 there is low pressure in the sluice chamber 21 again.
  • a new refill cycle can then start, beginning with the filling 307 of the lock chamber 21 .
  • the pressure accumulator 39 is preferably pressurized again as slowly as possible and throttled from t 2 onwards from the high-pressure line 5 in order to be fully pressurized again at t o for the pressurizing 309 .
  • the lower graph shows the pressure drop in the high-pressure line 5 when the pressure valve 37 opens at t o and the pressure accumulator valve 43 at t 2 .
  • the amplitude of the pressure drop is reduced in each case via the throttle 41 to a level at which the cutting performance of the cutting jet 9 is not significantly impaired.
  • FIGs 15a and 15b the refill valve 19 is shown in cross section in more detail in different open positions. Since the refill valve 19 has to be actuated under high pressure at the valve inlet 49 and the valve outlet 51, trouble-free actuation of the refill valve 19 is a technical challenge. The reliable opening and closing of the refill valve 19 is now ensured by four sub-aspects, each of which contributes individually or in any combination of two, three or all four sub-aspects to the refill valve 19 not becoming clogged or blocked by the abrasive.
  • the refill valve 19 which is preferably designed as a ball valve, has a vertical flow direction D from top to bottom and has a centrally arranged valve body 67 that can be rotated about an axis of rotation R perpendicular to the flow direction D and has spherical outer surfaces.
  • the valve body 67 has a central opening 69 in the Figures 15a and 15b shown opening positions parallel to the flow direction D and perpendicular to the axis of rotation R.
  • the first opening position according to Figure 15a differs from the second open position accordingly Figure 15b in that the valve body 67 is rotated through 180° with respect to the axis of rotation R.
  • the valve body 67 sits in a valve chamber 71 between an upper valve seat 73 and a lower valve seat 75.
  • the upper valve seat 73 forms the valve inlet 49 and the lower valve seat 75 forms the valve outlet 51.
  • the upper valve seat 73 and the lower valve seat 75 are coaxial to one another and to the vertical flow direction D arranged.
  • the valve chamber 71 can be flushed through via the lateral flushing inlet 66 and via the flushing outlet 63 diametrically opposite the flushing inlet 66, preferably when the refill valve 19 is completely pressureless.
  • the refill valve 19 is capable of a first closed position ( 16a ), a first opening position ( Figure 15a ) and a second opening position ( Figure 15b ) to take, whereby in the first closed position ( 16a ) the lock chamber 21 is fluidly separated from the pressure vessel 11 and in the first and the second open position ( Fig. 15a-b ) the lock chamber 21 is fluidly connected to the pressure vessel 11 . Because of the symmetry of the valve body 67, the first open position and the second open position are essentially indistinguishable.
  • the valve body 67 can be rotated as far as desired in one direction about the axis of rotation R, so that a reversal of the direction of rotation is not necessary in principle and the valve body 67 can only be actuated in one direction of rotation, provided the torque required for this does not exceed a certain threshold value.
  • the first closed position off 16a is here at 90 ° between the first open position and the second open position. In this case there is also a second closed position (see Figure 16b ), which is rotated by 180° about the axis of rotation R compared to the first closed position.
  • the opening 69 runs into the in Figures 16a and 16b shown closed positions both perpendicular to the direction of flow D and perpendicular to the axis of rotation R, so that the Valve body 67 seals the valve inlet 49 on the upper valve seat 73 and the valve outlet 51 on the lower valve seat 75.
  • the optional flushing inlet 66 and flushing outlet 63 are not shown, but can be provided.
  • valve body 67 can be moved in the other direction of movement and the valve 19 can be brought into the other open position/closed position.
  • the constipation or blockage can be released as a positive side effect of the reversal, so that the previously blocked direction of movement is free again the next time it is operated.
  • the refill valve 19 can also be shaken free by turning it back and forth several times, for example if the valve body 67 is difficult to actuate in both directions of movement.
  • the valve chamber 71 can be pressurized when the valve body 67 is in a closed position.
  • the valve chamber 71 has the pressure inlet 53, via which the valve chamber 71 can be pressurized when the valve body 67 is in a closed position.
  • the pressure inlet 53 is arranged here in the yz plane coaxially to a servomotor shaft 86 opposite this.
  • the pressure inlet 53 can also lie in the xz plane perpendicular thereto and, if necessary, can be used as a flushing inlet 66 as required.
  • the valve body 67 is rotated about the axis of rotation R via the servo motor shaft 86 .
  • valve chamber 71 When the initially depressurized system 1 is started or restarted, the valve chamber 71 is initially depressurized. If the pressure vessel 11 and the sluice chamber 21 are then pressurized to about 2,000 bar, the valve body 67 can be pinched by the valve seats 73, 75 because of the high pressure on the inlet and outlet side with the simultaneous low pressure in the valve chamber 71 and only become difficult or impossible to move. By means of the pressure inlet 53, the pressure difference between the valve chamber 71 and the valve inlet 49 or the valve outlet 51 can be largely reduced during start-up, so that the valve body 67 is not pinched by the high pressure.
  • the upper valve seat 73 according to the fourth sub-aspect is shown adjustable via an adjustment device.
  • the upper valve seat 73 can be positioned in the z-direction via an external thread by means of a rotation about the direction of flow D. The rotation can be carried out manually or motor-driven by levers 88 acting from the outside in engagement surfaces 77 .
  • the valve space such as in Fig. 15a-b shown flushable.
  • the refill valve has the flushing inlet 66 and the flushing outlet 63, via which the valve chamber 71 can be flushed.
  • the pressure inlet 53 can optionally serve as a flushing inlet 66 . This is particularly advantageous in combination with the second sub-aspect of a pressure inlet 53, since a flushing cycle can be carried out when the valve chamber 71 is pressureless or the system 1 is completely pressureless, and then when the system 1 is put into operation again, the valve chamber 71 can be pressurized again via the pressure inlet 53, so that the valve body 67 is not pinched by the high pressure.
  • the refill valve has the upper valve seat 73 on the inlet side and the lower valve seat 75 on the outlet side, at least one of the valve seats 73, 75 being adjustable so that the distance between the valve seats 73, 75 can be adjusted.
  • the refill valve 19 can be optimally adjusted in order to be tight on the one hand and not to block on the other hand.
  • the distance between the valve seats 73, 75 to one another can be readjusted when the system is started up, in the event of temperature fluctuations, a stubborn blockage caused by abrasives and/or material wear be beneficial.
  • a tool opening 90 can be provided as shown, through which a tool in the form of a lever 88 can reach in order to adjust the at least one adjustable valve seat 73.
  • the valve seat 73 is preferably adjusted in a service procedure with the system 1 depressurized.
  • the upper inlet-side valve seat 73 can be adjusted axially along the flow direction D via an external thread.
  • Levers 88 can be attached from the outside to engagement surfaces 77 (see Figure 18b ) to turn the valve seat 73.
  • the refill valve 19 therefore does not have to be separated from the system 1 or dismantled.
  • the operator can thus immediately intervene manually in order to ensure continuous operation, or switch off and depressurize the system 1 in order to carry out the adjustment of the valve seat 73 as a service procedure.
  • the readjustment can also be automatically controlled and/or regulated via a motor.
  • the valve body 67 is preferably rotated about the axis of rotation R in a controlled manner via a servomotor (not shown).
  • the torque that may be measured or the power consumption of the motor can be monitored, so that if a threshold value is exceeded, the direction of rotation can be switched to the other open position or closed position.
  • torque or power peaks can be recorded over a certain period of time and based on this recording, an error or maintenance case can be signaled. For example, the need for readjustment of the valve seat 73 can be indicated.
  • Fig. 19a-b show two embodiments of flushable needle valves, which are used for example as one or more of the shut-off valves 15, 27, 33, 37, 47 or elsewhere in the plant 1 can become.
  • the needle valve according to Figure 19a is preferably used where the needle valve does not have to open or close under high pressure, e.g. as a pump shut-off valve 33 in the circuit to support the filling of the sluice chamber 21.
  • the pump shut-off valve 33 has a high-pressure inlet 92 which is arranged coaxially with the high-pressure inlet 92 and is axial positionable needle 94 with respect to a low-pressure outlet 95 can be shut off.
  • the needle 94 At one end facing the high-pressure inlet 92, the needle 94 has a conical closing surface 96 which can be pressed against a valve seat 98 for shutting off. As soon as the high-pressure inlet 92 is shut off, high pressure can be applied to the high-pressure inlet 92 without it escaping via the low-pressure outlet 95 . When there is no high pressure at the high pressure inlet 92 , the pump isolation valve 33 can be opened to allow low pressure flow from the high pressure inlet 92 to the low pressure outlet 95 .
  • the needle valve according to Fig. 19a-b also has a flushing inlet 100 through which the opened needle valve can be flushed, flushing liquid, ie water or water with cleaning additives, being able to flow out via the low-pressure outlet 95 .
  • flushing liquid ie water or water with cleaning additives
  • the needle valve can preferably be flushed shortly before the refill valve 19 closes.
  • Figure 19b 12 shows a needle valve with a check valve 102 at the flushing inlet 100. The check valve 102 prevents backflow into the flushing inlet 100 and only allows flushing liquid to flow in the direction of the needle valve.
  • the low-pressure outlet 95 can also be a high-pressure outlet 95 in this case.
  • the low-pressure outlet 95 is connected to an outlet 29 .
  • the high-pressure outlet 95 is connected to the pressurization inlet 35 of the lock chamber 21 in order to subject it to high pressure.
  • the needle valves are preferably operated pneumatically via a pressure plate (not shown).
  • a pressure plate (not shown).
  • air pressure can be applied to the much larger pressure plate so that the needle valve can be closed with a few bar of air pressure and kept tight against a high pressure of 1,500 bar and more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Description

Die vorliegende Offenbarung betrifft eine Wasser-Abrasiv-Suspensions-Schneidanlage mit den im Oberbegriff des Anspruchs 1 angegebenen Merkmalen und ein Verfahren zum Wasser-Abrasiv-Suspensions-Schneiden gemäß dem Oberbegriff des Anspruchs 10. Eine derartige Schneidanlage und ein derartiges Verfahren sind aus dem Dokument EP 1 208 944 A bekannt.The present disclosure relates to a water-abrasive suspension cutting system having the features specified in the preamble of claim 1 and a method for water-abrasive suspension cutting according to the preamble of claim 10. Such a cutting system and such a method are from document EP 1 208 944 A known.

Wasser-Abrasiv-Suspensions-Schneidanlagen werden zum Schneiden von Materialien mittels eines Hochdruck-Wasserstrahls verwendet, welchem ein Abrasivmittel zugesetzt ist. Wasser-Abrasiv-Suspensions-Schneidanlagen sind zu unterscheiden von Wasser-Abrasiv-Injektions-Schneidanlagen, bei denen das Abrasivmittel erst in oder an einer Austrittsdüse in das bereits sehr stark beschleunigte Wasser eingeführt wird. Bei Wasser-Abrasiv-Suspensions-Schneidanlagen wird zunächst das unter Hochdruck stehende Wasser mit dem Abrasivmittel gemischt und dann die Wasser-Abrasivmittel-Suspension in der Austrittsdüse beschleunigt. Bei Wasser-Abrasiv-Injektions-Schneidanlagen besteht zwar nicht das Problem, das Abrasivmittel unter Hochdruck mit dem Wasser zu mischen, da das Abrasivmittel erst an der Austrittsdüse zugeführt wird, allerdings ist das Abrasivmittel-Wasser-Verhältnis bei Wasser-Abrasiv-Injektions-Schneidanlagen stark beschränkt und damit dessen Schneidkraft. Außerdem führen Lufteinschlüsse bei Wasser-Abrasiv-Injektions-Schneidanlagen zur Schneidleistungsminderung durch uneffektives Beschleunigen der Abrasivmittelpartikel beim Einsaugen in den Wasserstrahl sowie hohe Luftanteile im Schneidstrahl. Bei Wasser-Abrasiv-Suspensions-Schneidanlagen hingegen kann das Abrasivmittel-Wasser-Verhältnis höher gewählt und eine höhere Schneidkraft erzielt werden, da das Wasser unter Hochdruck stromaufwärts der Austrittsdrüse ohne Lufteinschlüsse mit dem Abrasivmittel gesteuert gemischt wird. So kann beispielsweise ein Teil des Wasserstroms durch einen Abrasivmittelbehälter geführt werden, welcher als Druckbehälter ausgebildet ist. Eine solche Anlage ist z. B. aus der EP 1 199 136 bekannt. Eine technische Herausforderung bei diesen Anlagen ist das Nachfüllen des Abrasivmittels, da dazu die Anlage außer Betrieb genommen werden muss, der Abrasivmittel behälter in einen drucklosen Zustand gebracht werden muss und erst dann befüllt werden kann. Bei industriellen Anwendungen ist jedoch oft ein kontiniuierliches Schneiden erwünscht, bei dem die Anlage für das Befüllen des Abrasivmittels nicht außer Betrieb genommen werden muss.Water-abrasive suspension cutting systems are used to cut materials using a high-pressure water jet to which an abrasive is added. Water-abrasive suspension cutting systems are to be distinguished from water-abrasive injection cutting systems, in which the abrasive is first introduced into the already very strongly accelerated water in or at an outlet nozzle. In water-abrasive suspension cutting systems, the water under high pressure is first mixed with the abrasive and then the water-abrasive suspension is accelerated in the outlet nozzle. With water-abrasive injection cutting systems, there is no problem of mixing the abrasive with the water under high pressure, since the abrasive is only fed in at the outlet nozzle, but the abrasive-water ratio in water-abrasive injection cutting systems is severely limited and thus its cutting power. In addition, air inclusions in water-abrasive injection cutting systems lead to a reduction in cutting performance due to ineffective acceleration of the abrasive particles when sucked into the water jet and high air content in the cutting jet. With water-abrasive suspension cutting systems, on the other hand, the abrasive medium-water ratio can be selected higher and a higher cutting force can be achieved because the water is mixed under high pressure with the abrasive in a controlled manner upstream of the exit gland without entrapping air. For example, part of the water flow can be guided through an abrasive agent container, which is designed as a pressure container. Such a system is z. B. from the EP 1 199 136 known. A technical challenge with these systems is topping up the abrasive, since the system has to be shut down for this, the abrasive agent tank must be depressurized and only then can it be filled. In industrial applications, however, continuous cutting is often desired, in which the plant does not have to be shut down to fill the abrasive.

Die EP 2 755 802 B1 und WO 2015/149867 A1 beschreiben Schleusenlösungen, um einen kontinuierlichen Betrieb der Anlage sicherzustellen. Wegen der besonders hohen Drücke von teilweise über 2.000 bar ist das zyklische Be- und Entdrucken einer Schleusenkammer allerdings eine technische Herausforderung. Insbesondere gestaltet sich die Einstellung eines gewünschten Mischungsverhältnisses zwischen Wasser und Abrasivmittel im Schneidstrahl mit den bekannten Anlagen als schwierig.the EP 2 755 802 B1 and WO 2015/149867 A1 describe lock solutions to ensure continuous operation of the system. However, due to the particularly high pressures of sometimes over 2,000 bar, the cyclic pressurization and depressurization of a lock chamber is a technical challenge. In particular, it is difficult to set a desired mixing ratio between water and abrasive in the cutting jet with the known systems.

Die hierin offenbarte Wasser-Abrasiv-Suspensions-Schneidanlage gemäß dem unabhängigen Anspruch 1 und das hierin offenbarte Wasser-Abrasiv-Suspensions-Schneidverfahren gemäß dem unabhängigen Anspruchs 10 hat gegenüber den bekannten Lösungen den Vorteil, dass ein gewünschtes Mischungsverhältnis zwischen Wasser und Abrasivmittel im Schneidstrahl gezielt eingestellt und nach Bedarf geändert werden kann. Vorteilhafte Ausgestaltungen der Offenbarung sind in den Unteransprüchen, der nachfolgenden Beschreibung und den Zeichnungen angegeben.The water-abrasive suspension cutting system disclosed herein according to independent claim 1 and the water-abrasive suspension cutting method disclosed herein according to independent claim 10 has the advantage over the known solutions that a desired mixing ratio between water and abrasive in the cutting jet is targeted can be set and changed as required. Advantageous refinements of the disclosure are specified in the dependent claims, the following description and the drawings.

Gemäß einem ersten Aspekt der vorliegenden Offenbarung wird eine Wasser-Abrasiv-Suspensions-Schneidanlage bereitgestellt mit

  • einer Hochdruckquelle zum Bereitstellen von Wasser unter Hochdruck,
  • einer mit der Hochdruckquelle verbundenen Hochdruckleitung, und
  • einem Druckbehälter zum Bereitstellen einer unter Hochdruck stehenden Abrasivmittelsuspension, wobei
der Druckbehälter über eine regelbare Drossel mit der Hochdruckleitung fluidverbunden ist, wobei die Drossel eingangsseitig vom Druckbehälter angeordnet ist und dazu eingerichtet ist, abhängig von mindestens einer Regelgröße den Zufluss in den Druckbehälter aus der Hochdruckleitung zu regeln.According to a first aspect of the present disclosure, a water-abrasive suspension cutting system is provided with
  • a high-pressure source for providing water under high pressure,
  • a high pressure line connected to the high pressure source, and
  • a pressure vessel for providing a high-pressure abrasive suspension, wherein
the pressure vessel is in fluid communication with the high-pressure line via a controllable throttle, the throttle being arranged on the inlet side of the pressure vessel and being set up to regulate the inflow into the pressure vessel from the high-pressure line as a function of at least one controlled variable.

Mit dieser Anlage kann ein gewünschtes Mischungsverhältnis zwischen Wasser und Abrasivmittel im Schneidstrahl eingestellt werden. Die eingangsseitig vom Druckbehälter angeordnete und regelbare Drossel wird von klarem Wasser ohne Abrasivmittel durchflossen und verschleißt dadurch erheblich weniger als wenn sie ausgangsseitig angeordnet wäre. Die regelbare Drossel kann auch als Regelventil bezeichnet werden, das vorzugsweise den Zufluss ggf. komplett absperren kann.With this system, a desired mixing ratio between water and abrasive in the cutting jet can be set. Clear, non-abrasive water flows through the adjustable throttle located on the inlet side of the pressure vessel, which means that it wears considerably less than if it were located on the outlet side. The controllable throttle can also be referred to as a control valve, which can preferably completely shut off the inflow if necessary.

Optional kann stromabwärts oder stromaufwärts von der Drossel ein Absperrventil angeordnet sein, um den Abrasivmittelfluss aus dem Druckbehälter vollständig zu stoppen. Beispielsweise kann mittels eines Sensorsignals dem Absperrventil signalisiert werden, den Druckbehälter von der Hochdruckleitung abzusperren. Dies kann ggf. dann erfolgen, wenn ein minimaler Füllstand erreicht ist, der nicht unterschritten werden soll.Optionally, a shutoff valve may be positioned downstream or upstream of the restrictor to completely stop the flow of abrasive from the pressure vessel. For example, a sensor signal can be used to signal the shut-off valve to shut off the pressure vessel from the high-pressure line. If necessary, this can take place when a minimum filling level is reached, which should not be fallen below.

Optional kann die mindestens eine Regelgröße ein Sensorsignal und/oder einen Betriebsparameter der Hochdruckquelle aufweisen. Die Regelgröße kann mehrere Parameter, Kombinationen von Paramefern bzw. Berechnungen aus einem oder mehreren Parametern aufweisen. "Aufweisen" heißt in diesem Sinne, dass die mindestens eine Regelgröße von dem Sensorsignal bzw. dem Parameter abhängt oder das Sensorsignal bzw. der Parameter in die Regelgröße mit eingeht.Optionally, the at least one controlled variable can have a sensor signal and/or an operating parameter of the high-pressure source. The controlled variable can have several parameters, combinations of parameters or have calculations from one or more parameters. In this sense, “having” means that the at least one controlled variable depends on the sensor signal or the parameter or that the sensor signal or the parameter is included in the controlled variable.

Optional weist die mindestens eine Regelgröße einen Abrasivmittelstrom aus dem Druckbehälter oder einen für einen Abrasivmittelstrom aus dem Druckbehälter charakteristischen Parameter auf. Beispielsweise kann die Anlage einen ersten Füllstandssensor zur Signalisierung mindestens eines ersten Füllstands von Abrasivmittel im Druckbehälter aufweisen. Die mindestens eine Regelgröße kann dann eine zeitliche Veränderung des ersten Füllstands aufweisen.Optionally, the at least one controlled variable has an abrasive agent flow from the pressure vessel or a parameter that is characteristic of an abrasive agent flow from the pressure vessel. For example, the system can have a first level sensor for signaling at least a first level of abrasive in the pressure vessel. The at least one controlled variable can then have a change in the first fill level over time.

Optional kann die Anlage einen ersten Füllstandssensor zur Signalisierung mindestens eines ersten Füllstands von Abrasivmittel im Druckbehälter und einen zweiten Füllstandssensor zur Signalisierung mindestens eines zweiten Füllstands von Abrasivmittel im Druckbehälter aufweisen, wobei die mindestens eine Regelgröße eine Zeitdifferenz zwischen dem ersten Füllstand und dem zweiten Füllstand aufweisen kann. Beispielsweise können die Füllstandssensoren Ultraschallsensoren oder optische Sensoren sein, die an unterschiedlichen vertikalen Positionen am Druckbehälter angeordnet sind und einen bestimmten Füllstand signalisieren können. Bei bekannter Geometrie des Druckbehälters und bekanntem vertikalen Abstand zwischen dem ersten und dem zweiten Füllstandssensor ist die Zeitdifferenz für einen Abrasivmittelentnahmefluss charakteristisch, nach dem der Zufluss zum Druckbehälter geregelt werden kann.Optionally, the system can have a first fill level sensor for signaling at least a first fill level of abrasive in the pressure vessel and a second fill level sensor for signaling at least a second fill level of abrasive in the pressure vessel, wherein the at least one controlled variable can have a time difference between the first fill level and the second fill level . For example, the fill level sensors can be ultrasonic sensors or optical sensors that are arranged at different vertical positions on the pressure vessel and can signal a specific fill level. If the geometry of the pressure vessel is known and the vertical distance between the first and the second level sensor is known, the time difference for an abrasive removal flow is characteristic, according to which the inflow to the pressure vessel can be regulated.

Optional kann die Anlage einen ausgangsseitig vom Druckbehälter angeordneten Abrasivmittelflusssensor zum Signalisieren eines Abrasivmittelentnahmeflusses aufweisen, nach dem der Zufluss zum Druckbehälter geregelt werden kann. Der Abrasivmittelflusssensor kann beispielsweise durch eine ausgangsseitige Abrasivmittelleitung laufende Abrasivmittelpartikel zählen oder anderweitig den Abrasivmittelfluss messen. Dies kann z.B. optisch, induktiv über ferromagnetische Marker im Abrasivmittel oder über eine Körperschallmessung stattfinden.Optionally, the system can have an abrasive agent flow sensor arranged on the outlet side of the pressure vessel for signaling an abrasive agent removal flow, according to which the inflow to the pressure vessel can be regulated. The abrasive medium flow sensor can, for example, run through an abrasive medium line on the outlet side Count abrasive particles or otherwise measure abrasive flow. This can take place, for example, optically, inductively using ferromagnetic markers in the abrasive or by measuring structure-borne noise.

Optional kann die Regelgröße eine Drehzahl und/oder Leistungs- bzw. Stromaufnahme der Hochdruckquelle aufweisen. Über die Drehzahl und/oder Leistungs- bzw. Stromaufnahme der Hochdruckquelle kann auf den Wasserfluss durch die Hochdruckleitung geschlossen werden, der das Mischungsverhältnis im Schneidstrahl mitbestimmen kann. Daher können vorzugsweise diese oder andere Betriebsparameter der Hochdruckleitung in die mindestens eine Regelgröße mit eingehen. Alternativ oder zusätzlich kann ein Durchflusssensor einen Wasserfluss durch die Hochdruckleitung messen bzw. signalisieren, sodass dieser in die mindestens eine Regelgröße eingehen kann.Optionally, the control variable can have a speed and/or power or current consumption of the high-pressure source. The water flow through the high-pressure line can be inferred from the rotational speed and/or power or current consumption of the high-pressure source, which can also determine the mixing ratio in the cutting jet. Therefore, preferably these or other operating parameters of the high-pressure line can also be included in the at least one controlled variable. Alternatively or additionally, a flow sensor can measure or signal a water flow through the high-pressure line, so that this can be included in the at least one controlled variable.

Gemäß einem zweiten Aspekt der vorliegenden Offenbarung wird ein Verfahren zum Wasser-Abrasiv-Suspensions-Schneiden mit den Schritten bereitgestellt:

  • Bereitstellen von Wasser unter Hochdruck in einer Hochdruckleitung mittels einer Hochdruckquelle,
  • Bereitstellen einer unter Hochdruck stehenden Abrasivmittelsuspension in einem Druckbehälter,
  • Schneiden eines Materials mittels eines Hochdruckstrahls, der zumindest teilweise die Abrasivmittelsuspension enthält, unter Entnahme der Abrasivmittelsuspension aus dem Druckbehälter, und
  • Regeln eines Zuflusses in den Druckbehälter aus der Hochdruckleitung mittels einer eingangsseitig mit dem Druckbehälter fluidverbundenen und regelbaren Drossel in Abhängigkeit von einer Regelgröße.
According to a second aspect of the present disclosure, there is provided a method for water-abrasive suspension cutting, comprising the steps:
  • providing high-pressure water in a high-pressure line by means of a high-pressure source,
  • Providing an abrasive suspension under high pressure in a pressure vessel,
  • cutting a material by means of a high-pressure jet which at least partially contains the abrasive suspension, while removing the abrasive suspension from the pressure vessel, and
  • Regulating an inflow into the pressure vessel from the high-pressure line by means of a throttle that is fluidly connected to the pressure vessel on the inlet side and can be regulated as a function of a controlled variable.

Optional wird das Regeln in Abhängigkeit von einem Sensorsignal und/oder einem Betriebsparameter der Hochdruckquelle durchgeführt. Beispielsweise kann das Regeln in Abhängigkeit von einem Abrasivmittelstrom aus dem Druckbehälter durchgeführt werden. Alternativ oder zusätzlich kann das Regeln in Abhängigkeit von einer zeitlichen Veränderung eines ersten Füllstands von Abrasivmittel im Druckbehälter durchgeführt werden, wobei der erste Füllstand von einem ersten Füllstandssensor signalisiert wird.Optionally, the regulation is carried out depending on a sensor signal and/or an operating parameter of the high-pressure source. For example, the regulation can be performed depending on a flow of abrasive from the pressure vessel. Alternatively or additionally, the regulation can be carried out as a function of a change over time in a first fill level of abrasive in the pressure vessel, with the first fill level being signaled by a first fill level sensor.

Optional kann das Regeln in Abhängigkeit von einer Zeitdifferenz zwischen einem ersten Füllstand von Abrasivmittel im Druckbehälter und einem zweiten Füllstand von Abrasivmittel im Druckbehälter erfolgen, wobei der erste Füllstand von einem ersten Füllstandssensor und der zweite Füllstand von einem zweiten Füllstandssensor signalisiert wird. Alternativ oder zusätzlich kann das Regeln in Abhängigkeit von einem Abrasivmittelfluss durchgeführt wird, wobei der Abrasivmittelfluss von einem ausgangsseitig vom Druckbehälter angeordneten Abrasivmittelflusssensor signalisiert wird. Das Regeln kann alternativ oder zusätzlich auch in Abhängigkeit von einer Drehzahl oder einer Leistungs- bzw. Stromaufnahme der Hochdruckquelle erfolgen.Optionally, the regulation can take place as a function of a time difference between a first filling level of abrasive in the pressure vessel and a second filling level of abrasive in the pressure vessel, the first filling level being signaled by a first filling level sensor and the second filling level being signaled by a second filling level sensor. As an alternative or in addition, the regulation can be carried out as a function of a flow of abrasive medium, with the flow of abrasive medium being signaled by an abrasive medium flow sensor arranged on the outlet side of the pressure vessel. Alternatively or additionally, the regulation can also take place as a function of a speed or a power or current consumption of the high-pressure source.

Die Offenbarung ist nachfolgend anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:

  • Fig. 1 ein schematisches Schaltbild eines ersten Ausführungsbeispiels der hierein offenbarten Wasser-Abrasiv-Suspensions-Schneidanlage;
  • Fig. 2 ein schematisches Schaltbild eines zweiten Ausführungsbeispiels der hierein offenbarten Wasser-Abrasiv-Suspensions-Schneidanlage;
  • Fig. 3 ein schematisches Schaltbild eines dritten Ausführungsbeispiels der hierein offenbarten Wasser-Abrasiv-Suspensions-Schneidanlage;
  • Fig. 4 ein schematisches Schaltbild eines vierten Ausführungsbeispiels der hierein offenbarten Wasser-Abrasiv-Suspensions-Schneidanlage;
  • Fig. 5 ein schematisches Schaltbild eines fünften Ausführungsbeispiels der hierein offenbarten Wasser-Abrasiv-Suspensions-Schneidanlage;
  • Fig. 6a-c schematische Teilschaltbilder dreier unterschiedlicher Ausführungsformen einer Förderhilfe der hierein offenbarten Wasser-Abrasiv-Suspensions-Schneidanlage;
  • Fig. 7a-c schematische Teilschaltbilder dreier unterschiedlicher Ausführungsformen einer Abrasivmittelstromsteuerung der hierein offenbarten Wasser-Abrasiv-Suspensions-Schneidanlage;
  • Fig. 8-12 schematische Schaltbilder fünf unterschiedlicher Ausführungsformen einer Abrasivmittelnachfuhreinrichtung der hierein offenbarten Wasser-Abrasiv-Suspensions-Schneidanlage;
  • Fig. 13 ein schematisches Ablaufdiagramm eines Verfahrens zum Wasser-Abrasiv-Suspensions-Schneiden;
  • Fig. 14 Druck-Zeit-Diagramme in einer Schleusenkammer, in einem Druckspeicher und in einer Hochdruckleitung gemäß der hierein offenbarten Wasser-Abrasiv-Suspensions-Schneidanlage;
  • Fig. 15a-b Querschnitte in einer xz-Ebene durch ein Nachfüllventil in zwei verschiedenen Offnungsstellungen gemäß der hierein offenbarten Wasser-Abrasiv-Suspensions-Schneidanlage;
  • Fig. 16a-b Querschnitte in einer xz-Ebene durch ein Nachfüllventil in zwei verschiedenen Schließstellungen gemäß der hierein offenbarten Wasser-Abrasiv-Suspensions-Schneidanlage;
  • Fig. 17a-b Querschnitte in einer yz-Ebene durch ein Nachfüllventil in Schließstellung gemäß zweier unterschiedlicher Wasser-Abrasiv-Suspensions-Schneidanlagen;
  • Fig. 18a-b perspektivische Ansichten auf ein Nachfüllventil gemäß der hierein offenbarten Wasser-Abrasiv-Suspensions-Schneidanlage; und
  • Fig. 19a-b Querschnitte durch ein Absperrventil in Form eines Nadelventils gemäß zwei verschiedener Wasser-Abrasiv-Suspensions-Schneidanlagen; in einer Öffnungsstellung.
The disclosure is explained in more detail below with reference to exemplary embodiments illustrated in the drawings. Show it:
  • 1 a schematic circuit diagram of a first exemplary embodiment of the water-abrasive suspension cutting system disclosed herein;
  • 2 a schematic circuit diagram of a second embodiment of the water-abrasive suspension cutting system disclosed herein;
  • 3 a schematic circuit diagram of a third embodiment of the water-abrasive suspension cutting system disclosed herein;
  • 4 a schematic circuit diagram of a fourth exemplary embodiment of the water-abrasive suspension cutting system disclosed herein;
  • figure 5 a schematic circuit diagram of a fifth exemplary embodiment of the water-abrasive suspension cutting system disclosed herein;
  • Fig. 6a-c schematic partial circuit diagrams of three different embodiments of a conveying aid of the water-abrasive suspension cutting system disclosed herein;
  • Fig. 7a-c schematic partial circuit diagrams of three different embodiments of an abrasive flow control of the water-abrasive suspension cutting system disclosed herein;
  • Figures 8-12 schematic circuit diagrams of five different embodiments of an abrasive agent supply device of the water-abrasive suspension cutting system disclosed herein;
  • 13 a schematic flowchart of a method for water-abrasive suspension cutting;
  • 14 Pressure-time diagrams in a lock chamber, in a pressure accumulator and in a high-pressure line according to the water-abrasive suspension cutting system disclosed herein;
  • Fig. 15a-b Cross sections in an xz plane through a refill valve in two different opening positions according to the water-abrasive suspension cutting system disclosed herein;
  • Fig. 16a-b Cross sections in an xz plane through a refill valve in two different closed positions according to the water-abrasive suspension cutting system disclosed herein;
  • Fig. 17a-b Cross-sections in a yz plane through a refill valve in the closed position according to two different water-abrasive suspension cutting systems;
  • Fig. 18a-b perspective views of a refill valve according to the water-abrasive suspension cutting system disclosed herein; and
  • Fig. 19a-b Cross sections through a shut-off valve in the form of a needle valve according to two different water-abrasive suspension cutting systems; in an open position.

Die in Fig. 1 gezeigte Wasser-Abrasiv-Suspensions-Schneidanlage 1 weist eine Hochdruckquelle 3 auf, die in einer Hochdruckleitung 5 Wasser unter einem Hochdruck po von etwa 1.500 bis 4.000 bar zur Verfügung stellt. Die Hochdruckleitung 5 ist mit einer Austrittsdüse 7 verbunden, aus der das unter Hochdruck stehende Wasser mit sehr hoher Geschwindigkeit in einem Strahl 9 austritt. Damit der Strahl 9 effektiv als Schneidstrahl zum Schneiden von Material verwendet werden kann, ist die Hochdruckleitung 5 derart verzweigt, dass zumindest ein Teil des Durchflusses durch die Hochdruckleitung 5 durch einen Druckbehälter 11 geführt wird, in dem sich eine Wasser-Abrasivmittel-Suspension 13 befindet. Über ein Absperrventil 15 kann das Zuführen der Wasser-Abrasivmittel-Suspension 13 zur Austrittsdüse ein- und ausgeschaltet werden. Der Anteil der Wasser-Abrasivmittel-Suspension 13 im Strahl 9 kann über eine Drossel 17 eingestellt werden, indem die Durchflussmenge in dem durch den Druckbehälter 11 geführten Nebenstrang der Hochdruckleitung 5 gedrosselt wird. Die Drossel 17 ist regelbar, wobei ein für den Abrasivmittelentnahmestrom charakteristisches Signal, das aus einem Sensor oder einem zur Verfügung stehenden Betriebsparameter gewonnen werden kann, als Regelgröße zur Regelung der Öffnung der Drossel 17 verwendet wird (siehe Fig. 7a-c). Vorzugsweise kann die Drossel 17 vollständig den Zufluss in den Druckbehälter 11 absperren, sodass auf das Absperrventil 15 verzichtet werden kann.In the 1 The water-abrasive suspension cutting system 1 shown has a high-pressure source 3 that provides water in a high-pressure line 5 at a high pressure po of about 1,500 to 4,000 bar. The high-pressure line 5 is connected to an outlet nozzle 7, from which the water, which is under high pressure, emerges in a jet 9 at very high speed. So that the jet 9 can be used effectively as a cutting jet for cutting material, the high-pressure line 5 is branched in such a way that at least part of the flow through the high-pressure line 5 is guided through a pressure container 11, in which a water-abrasive suspension 13 is located . The supply of the water-abrasive suspension 13 to the outlet nozzle can be switched on and off via a shut-off valve 15 . The proportion of the water-abrasive suspension 13 in the beam 9 can be adjusted via a throttle 17 by the flow rate is throttled in the secondary branch of the high-pressure line 5 that is routed through the pressure vessel 11 . The throttle 17 can be regulated, with a signal characteristic of the abrasive agent removal flow, which can be obtained from a sensor or an available operating parameter, being used as a controlled variable for regulating the opening of the throttle 17 (see Fig. 7a-c ). The throttle 17 can preferably completely shut off the inflow into the pressure vessel 11, so that the shut-off valve 15 can be dispensed with.

Beim Schneiden wird dem Druckbehälter 11 Wasser-Abrasivmittel-Suspension 13 entnommen und Wasser unter Hochdruck zugeführt, wobei also das im Druckbehälter 11 befindliche Abrasivmittel verbraucht wird. Es muss daher der Druckbehälter 11 kontinuierlich oder sequenziell mit Abrasivmittel nachgefüllt werden. Dazu ist oberhalb des Druckbehälters 11 ein Nachfüllventil 19 in Form eines Kugelhahns angeordnet. Das Nachfüllventil 19 verbindet eine über dem Nachfüllventil 19 angeordnete Schleusenkammer 21 mit dem Druckbehälter 11. Über der Schleusenkammer 21 ist wiederum ein Befüllventil 23 angeordnet, das einen über der Schleusenkammer 21 angeordneten Nachfülltrichter 25 mit der Schleusenkammer 21 verbindet. Das Befüllventil 23 kann im Wesentlichen baugleich zum Nachfüllventil 19 in Form eines Kugelhahns ausgestaltet sein.During cutting, the water-abrasive suspension 13 is removed from the pressure vessel 11 and water is supplied under high pressure, so that the abrasive agent in the pressure vessel 11 is consumed. Therefore, the pressure vessel 11 must be refilled continuously or sequentially with abrasive. For this purpose, a refill valve 19 in the form of a ball valve is arranged above the pressure vessel 11 . The refill valve 19 connects a sluice chamber 21 arranged above the refill valve 19 to the pressure vessel 11. A filling valve 23 is in turn arranged above the sluice chamber 21 and connects a refill funnel 25 arranged above the sluice chamber 21 to the sluice chamber 21. The filling valve 23 can be configured essentially identically to the refill valve 19 in the form of a ball valve.

Der Nachfülltrichter 25 steht nicht unter Druck, sodass von oben trockenes, feuchtes oder nasses Abrasivmittel oder eine Wasser-Abrasivmittel-Suspension eingefüllt werden kann (siehe Figuren 8-12). Dies kann zumindest teilweise ein aus dem Schneidstrahl 9 wiederaufbereitetes Abrasivmittel sein, das über eine Fördereinrichtung (siehe Figuren 8-12) in trockener, nasser, gefrorener, pelletierter oder suspendierter Form von oben in den Nachfülltrichter 25 eingefüllt werden kann. Wenn das Nachfüllventil 19 geschlossen ist, kann die Schleusenkammer 21 zeitweise drucklos sein. Beispielsweise kann ein Druck in der Schleusenkammer 21 über ein Druckablassventil 27 in Form eines Nadelventils in einen Ablauf 29 abgelassen werden. Bei druckloser Schleusenkammer 21 kann das Befüllventil 23 geöffnet sein, sodass Abrasivmittel aus dem Nachfülltrichter 25 in die Schleusenkammer 21 fällt. Dieses schwerkraftbedingte Füllen der Schleusenkammer 21 mit Abrasivmittel kann unterstützt und beschleunigt werden durch eine Pumpe 31. Die Pumpe 31 kann saugseitig mit der Schleusenkammer 21 verbunden sein und druckseitig mit dem Nachfülltrichter 25. Damit kann die Pumpe 31 Abrasivmittel in die Schleusenkammer 21 saugen. Dies ist vor allem dann besonders sinnvoll, wenn Abrasivmittel im verjüngten unteren Bereich des Nachfülltrichters 25 bzw. am Befüllventil 23 verstopft. Durch ein Absaugen des Abrasivmittels nach unten durch die Pumpe 31 kann eine Verstopfung aufgelöst oder das Entstehen einer Verstopfung verhindert werden. Damit die Pumpe 31 nicht für Hochdruck ausgelegt werden muss, ist es vorteilhaft, wenn die Pumpe 31 mittels eines Pumpenabsperrventils 33 in Form eines Nadelventils von der Schleusenkammer 21 absperrbar ist. Das Pumpenabsperrventil 33 kann dabei durchspülbar ausgestaltet sein, um den Ventilsitz und den Ventilkörper, z.B. in Form einer Ventilnadel, von Abrasivmittel freizuspülen (siehe Figuren 19a-b). Dadurch wird zum einen ein dichtes Schließen des Pumpenabsperrventils 33 gewährleistet und der Materialverschleiß im Ventil verringert. Die Pumpe 31 kann mittels eines vorgelagerten Filters und/oder Abscheiders (beides nicht gezeigt) vor Abrasivmittel weitestgehend geschützt werden.The refill funnel 25 is not under pressure, so that dry, moist or wet abrasive or a water-abrasive suspension can be filled in from above (see Fig Figures 8-12 ). This can be, at least in part, an abrasive agent that is reprocessed from the cutting jet 9 and that is transported via a conveyor device (see Figures 8-12 ) in dry, wet, frozen, pelleted or suspended form Form can be filled into the refill funnel 25 from above. When the refill valve 19 is closed, the sluice chamber 21 can be depressurized at times. For example, a pressure in the sluice chamber 21 can be released into an outlet 29 via a pressure release valve 27 in the form of a needle valve. When the lock chamber 21 is depressurized, the filling valve 23 can be open, so that abrasive material falls from the refill funnel 25 into the lock chamber 21 . This gravitational filling of the lock chamber 21 with abrasive can be supported and accelerated by a pump 31. The pump 31 can be connected to the lock chamber 21 on the suction side and to the refill funnel 25 on the pressure side. The pump 31 can thus suck abrasive into the lock chamber 21. This is especially useful when abrasive media is clogged in the tapered lower area of the refill funnel 25 or on the filling valve 23 . By sucking the abrasive down by the pump 31, a clog can be cleared or a clog can be prevented from occurring. So that the pump 31 does not have to be designed for high pressure, it is advantageous if the pump 31 can be shut off from the sluice chamber 21 by means of a pump shut-off valve 33 in the form of a needle valve. The pump shut-off valve 33 can be designed so that it can be flushed through in order to flush the valve seat and the valve body, for example in the form of a valve needle, free of abrasive (see FIG Figures 19a-b ). This ensures, on the one hand, that the pump shut-off valve 33 closes tightly and reduces material wear in the valve. The pump 31 can be largely protected from abrasives by means of an upstream filter and/or separator (both not shown).

Das Pumpenabsperrventil 33 wird lediglich dann geöffnet, wenn die Schleusenkammer 21 bereits drucklos ist. Daher kann für das Pumpenabsperrventil 33 eine erste Ausführungsform des Nadelventils gemäß Fig. 19a verwendet werden, bei der ein seitlicher Spüleinlass und ein gegenüberliegender seitlicher Spülauslass vorgesehen ist. Für das Druckablassventil 27 hingegen ist die zweite Ausführungsform des Nadelventils gemäß Fig. 19b vorteilhafter, bei der ein Rückschlagventil am Spüleinlass vorgesehen ist. Da das Druckablassventil 27 bei Hochdruck geöffnet wird, verhindert das Rückschlagventil einen Druckablass in Richtung des Spüleinlasses. Der Spülauslass kann in den Ablauf 29 münden, sodass sowohl der Druckablass als auch der Spülmittelablass ausschließlich zum Ablauf 29 hin stattfindet und nicht zum Spüleinlass.The pump shut-off valve 33 is only opened when the lock chamber 21 is already depressurized. Therefore, for the pump shut-off valve 33, a first embodiment of the needle valve according to Figure 19a be used where a side flush inlet and an opposite lateral flushing outlet is provided. For the pressure relief valve 27, on the other hand, the second embodiment of the needle valve according to FIG Figure 19b more advantageously, in which a non-return valve is provided at the flushing inlet. Since the pressure release valve 27 is opened at high pressure, the check valve prevents pressure release towards the flushing inlet. The scavenging outlet can open into the outlet 29 so that both the pressure release and the rinsing agent outlet take place exclusively towards the outlet 29 and not towards the rinsing inlet.

Sobald die Schleusenkammer 21 nun beispielsweise mit 1kg Abrasivmittel gefüllt ist, kann das Befüllventil 23 geschlossen werden. Außerdem werden nun das Druckablassventil 27 und das Pumpenabsperrventil 33 geschlossen. Die Schleusenkammer 21 weist in einem unteren Bereich einen Bedruckungseingang 35 auf, über den die Schleusenkammer 21 bedruckbar ist. Der Bedruckungseingang 35 ist in dem Ausführungsbeispiel der Fig. 1 über ein Bedruckungsventil 37 in Form eines Nadelventils absperrbar mit einem Druckspeicher 39 und über Drosseln 41, 42 mit der Hochdruckleitung 5 verbunden. Der Druckspeicher 39 weist zwei Druckspeichereinheiten in Form von Federspeichern auf, die parallel mit dem Eingang des Bedruckungsventils 37 verbunden sind. Der Druckspeicher 39 ist über die Drossel 41 mit der Hochdruckleitung 5 verbunden. Die Drosseln 41, 42 können statisch, beispielsweise in Form von Lochblenden, oder einstellbar bzw. regelbar ausgestaltet sein. Sind die Drosseln 41, 42 einstellbar bis zu einem Grad, bei dem die Verbindung zwischen der Hochdruckleitung 5 und dem Bedruckungseingang 35 vollständig abgesperrt werden kann, kann ggf. auf das Bedruckungsventil 37 verzichtet werden. Der Druckspeicher 39 ist voll druckbeladen, bevor die Schleusenkammer 21 bedruckt wird. Sobald das Bedruckungsventil 37 geöffnet wird, druckentlädt sich der Druckspeicher 39 in die Schleusenkammer 21 und bedruckt diese somit schnell auf etwa 40% des Hochdrucks po, der in der Hochdruckleitung 5 als nomineller Hochdruck von der Hochdruckquelle 3 bereitgestellt wird. Durch diese schnelle Teilbedruckung wird ein Druckimpuls von unten in die Schleusenkammer 21 eingeleitet, der das Abrasivmittel auflockert. Dies ist für das spätere Ablassen des Abrasivmittels in den Druckbehälter 11 vorteilhaft. Da auch die Hochdruckleitung 5 über die Drossel 41 mit der Schleusenkammer 21 verbunden ist, findet mit der Öffnung des Bedruckungsventils 37 parallel auch eine gedrosselte, d.h. langsamere, Bedruckung durch die Hochdruckleitung 5 statt. Sobald der Druckspeicher 39 druckentladen ist, wird der restliche benötigte Druck in der Schleusenkammer 21 von etwa 60% des nominellen Hochdrucks po ausschließlich über die gedrosselte, d.h. langsamere, Bedruckung aus der Hochdruckleitung 5 aufgebaut. Damit wird die Amplitude des Druckabfalls in der Hochdruckleitung 5 auf ein Minimum beschränkt.As soon as the sluice chamber 21 is filled with 1 kg of abrasive, for example, the filling valve 23 can be closed. In addition, the pressure relief valve 27 and the pump shut-off valve 33 are now closed. The lock chamber 21 has a pressure input 35 in a lower area, via which the lock chamber 21 can be pressured. The Bedruckungseingang 35 is in the embodiment 1 connected via a pressure valve 37 in the form of a needle valve to a pressure accumulator 39 and via throttles 41, 42 to the high-pressure line 5 in a lockable manner. The pressure accumulator 39 has two pressure accumulator units in the form of spring accumulators, which are connected in parallel to the input of the pressure valve 37. The pressure accumulator 39 is connected to the high-pressure line 5 via the throttle 41 . The throttles 41, 42 can be static, for example in the form of pinholes, or adjustable or controllable. If the throttles 41, 42 can be adjusted to a degree at which the connection between the high-pressure line 5 and the pressurization inlet 35 can be completely shut off, the pressurization valve 37 can possibly be dispensed with. The accumulator 39 is fully pressurized before the lock chamber 21 is pressurized. As soon as the pressure valve 37 is opened, the pressure from the accumulator 39 discharges into the sluice chamber 21 and thus quickly pressurizes it to about 40% of the high pressure po that is provided in the high-pressure line 5 as the nominal high pressure from the high-pressure source 3 . Through this rapid partial printing, a pressure pulse is introduced from below into the sluice chamber 21, which loosens the abrasive. This is advantageous for the later discharge of the abrasive into the pressure vessel 11. Since the high-pressure line 5 is also connected to the sluice chamber 21 via the throttle 41 , a throttled, ie slower, pressurization through the high-pressure line 5 also takes place in parallel with the opening of the pressurization valve 37 . As soon as the pressure accumulator 39 has been depressurized, the remaining pressure required in the lock chamber 21 of about 60% of the nominal high pressure po is built up exclusively via the throttled, ie slower, pressure from the high-pressure line 5 . Thus, the amplitude of the pressure drop in the high-pressure line 5 is kept to a minimum.

In der in Fig. 1 gezeigten ersten Ausführungsform wird der Druckspeicher 39 sofort ab dem Moment wieder druckbeladen, in dem er sich druckentladen hat. In diesem Fall bedruckt die Hochdruckleitung 5 sowohl die Schleusenkammer 21 mit dem Restdruck als auch den Druckspeicher 39. Dies ist insbesondere dann vorteilhaft, wenn das Druckbeladen des Druckspeichers 39 so zeitintensiv ist, dass die Nachfülldurchgangrate von der Druckladezeit des Druckspeichers 39 abhängt.in the in 1 First embodiment shown, the accumulator 39 is pressurized again immediately from the moment in which it has discharged itself. In this case, the high-pressure line 5 pressurizes both the sluice chamber 21 with the residual pressure and the pressure accumulator 39. This is particularly advantageous if the pressure loading of the pressure accumulator 39 is so time-consuming that the refilling passage rate depends on the pressure loading time of the pressure accumulator 39.

In der in Fig. 2 gezeigten zweiten Ausführungsform ist der Druckspeicher 39 mit einem Druckspeicherventil 43 in Form eines Nadelventils absperrbar. In dem Moment, in dem sich der Druckspeicher 39 druckentladen hat, kann das Druckspeicherventil 43 abgesperrt werden, um die Hochdruckleitung 5 während der Bedruckung der Schleusenkammer 21 nicht zusätzlich mit dem Druckbeladen des Druckspeichers 39 zu belasten. Eine solche Belastung könnte einen Druckabfall in der Hochdruckleitung 5 verursachen, der negativen Einfluss auf die Schneidleistung an der Austrittsdüse 7 haben könnte. Es ist daher vorteilhaft, das Druckspeicherventil 43 erst dann zu öffnen, wenn die Schleusenkammer 21 vollständig bedruckt ist und das Bedruckungsventil 37 geschlossen, damit der Druckspeicher 39 über die Drossel 41 aus der Hochdruckleitung 5 druckbeladen werden kann. Dies ist insbesondere dann vorteilhaft, wenn das Druckbeladen des Druckspeichers 39 nicht so zeitintensiv ist, dass die Nachfülldurchgangrate von der Druckladezeit des Druckspeichers 39 abhängt. Das Befüllen der Schleusenkammer 21 und das Nachfüllen des Druckbehälters 11 können zumeist länger dauern als das Druckbeladen des Druckspeichers 39. Die Drossel 41 kann so eingestellt sein, dass das Bedrucken des Druckspeichers 39 möglichst langsam abläuft, aber noch schnell genug, damit vor dem nächsten Durchgang zur Bedruckung der Schleusenkammer 21 der Druckspeicher 39 vollständig druckbeladen ist.in the in 2 shown second embodiment, the pressure accumulator 39 can be shut off with a pressure accumulator valve 43 in the form of a needle valve. At the moment when the pressure accumulator 39 has been discharged, the pressure accumulator valve 43 can be shut off so that the high-pressure line 5 is not additionally burdened with the pressure loading of the pressure accumulator 39 while the lock chamber 21 is being pressurized. Such a load could cause a pressure drop in the high-pressure line 5, which could have a negative impact on the cutting performance at the outlet nozzle 7. It is therefore advantageous to open the pressure accumulator valve 43 only when the lock chamber 21 is fully pressurized and the Bedruckungsventil 37 is closed, so that the pressure accumulator 39 can be pressurized via the throttle 41 from the high-pressure line 5. This is particularly advantageous when the pressure charging of the pressure accumulator 39 is not so time-consuming that the refilling passage rate depends on the pressure charging time of the pressure accumulator 39 . The filling of the sluice chamber 21 and the refilling of the pressure vessel 11 can usually take longer than the pressure charging of the pressure accumulator 39. The throttle 41 can be set in such a way that the pressure accumulator 39 is pressurized as slowly as possible, but still fast enough so that before the next pass to pressurize the lock chamber 21 of the pressure accumulator 39 is fully pressurized.

In einer dritten Ausführungsform gemäß Fig. 3 wird ganz auf den Druckspeicher 39 verzichtet und die Schleusenkammer 21 ausschließlich über die Drossel 41 aus der Hochdruckleitung 5 bedruckt. Dies ist dann vorteilhaft, wenn die Hochdruckquelle 3 beispielsweise über eine Servopumpensteuerung so schnell auf einen anfänglichen Druckabfall reagieren und die Pumpenleistung entsprechend schnell anpassen kann, dass es gar nicht erst zu einer großen Amplitude eines Druckabfalls kommt. Über Drucksensoren kann der Hochdruckquelle 3 ein anfänglicher Druckabfall mitgeteilt werden, sodass die Hochdruckquelle 3 mit einer Leistungssteigerung bzw. Drehzahlerhöhung einem weiteren Druckabfall schnell gegensteuern kann. Über die Drossel 41 kann bereits der anfängliche Druckabfall abgemildert werden, sodass es zu keinem Zeitpunkt zu einem Druckabfall kommt, der die Schneidleistung signifikant beeinträchtigt.In a third embodiment according to 3 the pressure accumulator 39 is dispensed with entirely and the lock chamber 21 is pressurized exclusively via the throttle 41 from the high-pressure line 5 . This is advantageous when the high-pressure source 3 reacts so quickly to an initial pressure drop, for example via a servo pump control, and can adapt the pump output quickly enough that a large amplitude of a pressure drop does not occur in the first place. An initial drop in pressure can be communicated to the high-pressure source 3 via pressure sensors, so that the high-pressure source 3 can quickly counteract a further drop in pressure with an increase in output or speed. The initial pressure drop can already be mitigated via the throttle 41, so that there is never a pressure drop that significantly impairs the cutting performance.

Sobald nun die Schleusenkammer 21 vollständig bedruckt ist, kann das Nachfüllventil 19 geöffnet werden, damit schwerkraftbedingt oder -unterstützt Abrasivmittel aus der Schleusenkammer 21 durch das Nachfüllventil 19 in den Druckbehälter 11 strömen kann, um diesen nachzufüllen. Vorzugsweise ist eine Förderhilfe 45, beispielsweise in Form einer Pumpe, vorgesehen, die saugseitig mit dem Druckbehälter 11 und druckseitig mit der Schleusenkammer 21 verbunden ist. Die Förderhilfe 45 unterstützt bzw. erzeugt den Abrasivmittelstrom aus der Schleusenkammer 21 nach unten in den Druckbehälter 11. Sie kann Verstopfungen von Abrasivmittel verhindern oder lösen und den schwerkraftbedingten bzw. -unterstützten Nachfüllvorgang beschleunigen. Im Unterschied zur Pumpe 31 am Nachfülltrichter 25 arbeitet die Förderhilfe 45 am Druckbehälter 11 mit Wasser unter dem nominellen Hochdruck po. Sie muss daher für den Hochdruckbetrieb ausgelegt sein. Beispielsweise kann sie, wie in Fig. 6b gezeigt, lediglich ein induktiv angetriebenes Schaufelrad im Hochdruck aufweisen, sodass die Anzahl der beweglichen Teile, die unter Hochdruck stehen, minimiert ist. Ein Förderhilfeabsperrventil 47 ist zwischen der Förderhilfe 45 und der Schleusenkammer 21 angeordnet, wobei das Förderhilfeabsperrventil 47 in Form eines Nadelventils die Pumpe 47 gegenüber der Schleusenkammer 21 absperren kann, wenn die Schleusenkammer 21 nicht oder nicht vollständig bedruckt ist. Vorzugsweise ist das Förderhilfeabsperrventil 47 ein spülbares Nadelventil gemäß Fig. 19b mit einem Rückschlagventil am Spüleinlass, da es unter Hochdruck betätigt wird.As soon as the sluice chamber 21 is fully pressurized, the refill valve 19 can be opened so that abrasive media can flow out of the sluice chamber 21 through the refill valve 19 into the pressure vessel 11 by gravity or by gravity, in order to fill the latter to refill. A conveying aid 45, for example in the form of a pump, is preferably provided, which is connected to the pressure vessel 11 on the suction side and to the lock chamber 21 on the pressure side. The conveying aid 45 supports or generates the abrasive agent flow from the lock chamber 21 downwards into the pressure vessel 11. It can prevent or solve blockages of abrasive agent and accelerate the refilling process caused by or assisted by gravity. In contrast to the pump 31 on the refill funnel 25, the conveying aid 45 on the pressure vessel 11 works with water at the nominal high pressure po. It must therefore be designed for high-pressure operation. For example, as in Figure 6b shown, only have an inductively driven impeller in high pressure, so that the number of moving parts that are under high pressure is minimized. A conveying aid shut-off valve 47 is arranged between the conveying aid 45 and the lock chamber 21, the conveying aid shut-off valve 47 in the form of a needle valve being able to shut off the pump 47 from the lock chamber 21 when the lock chamber 21 is not or not fully pressurized. Preferably, the pumping aid shut-off valve 47 is a flushable needle valve according to FIG Figure 19b with a non-return valve on the flushing inlet since it is actuated under high pressure.

Fig. 6a-c zeigen verschiedene alternative Ausführungsformen für die Förderhilfe 45. Die Förderhilfe 45 kann beispielsweise einen über eine Welle von außen angetriebenen Impeller aufweisen (siehe Fig. 6a) oder einen induktiv angetriebenen Impeller (siehe Fig. 6b). Die Förderhilfe 45 kann auch über einen Kolbenhub das Nachfüllen von Abrasivmittel in den Druckbehälter 11 unterstützen (siehe Fig. 6c). Die Förderhilfe 45 kann kontinuierlich pumpen bzw. fördern oder zeitlich begrenzt bzw. gepulst. Es kann ggf. ausreichen, wenn der Abrasivmittelfluss in den Druckbehälter 11 nur anfänglich unterstützt wird und dann schwerkraftunterstützt allein schnell genug weiterläuft. Alternativ oder zusätzlich kann der Abrasivmittelfluss in den Druckbehälter 11 kontinuierlich unterstützt bzw. erzeugt werden. Fig. 6a-c show various alternative embodiments for the conveying aid 45. The conveying aid 45 can, for example, have an impeller driven externally via a shaft (see FIG Figure 6a ) or an inductively driven impeller (see Figure 6b ). The conveying aid 45 can also support the refilling of abrasive into the pressure tank 11 via a piston stroke (see Fig Figure 6c ). The conveying aid 45 can pump or convey continuously or in a time-limited or pulsed manner. It may be sufficient if the abrasive agent flow into the pressure vessel 11 is only supported initially and then continues to run fast enough alone, with the aid of gravity. Alternatively or in addition the flow of abrasive into the pressure vessel 11 can be supported or generated continuously.

Das Nachfüllventil 19 weist neben einem oberen Ventileingang 49 und einem unteren Ventilausgang 51 auch einen seitlichen Druckeinlass 53 auf. Über den Druckeinlass 53 kann ein Ventilraum, in dem sich ein beweglicher Ventilkörper befindet, bedruckt werden. Ohne Bedruckung des Ventilraums kann es nämlich sein, dass bei Inbetriebnahme der Anlage die sehr hohen Drücke auf den Ventileingang 49 und den Ventilausgang 51 den Ventilkörper so stark in den Ventilsitz pressen, dass sich der Ventilkörper nicht mehr bewegen lässt. Über den seitlichen Druckeinlass 53 kann ein Druckausgleich im Nachfüllventil 19 hergestellt werden, sodass der Ventilkörper nach Inbetriebnahme beweglich ist.In addition to an upper valve inlet 49 and a lower valve outlet 51 , the refill valve 19 also has a lateral pressure inlet 53 . A valve chamber, in which a movable valve body is located, can be pressurized via the pressure inlet 53 . If the valve chamber is not pressurized, it is possible that when the system is started up, the very high pressures on the valve inlet 49 and the valve outlet 51 press the valve body so hard into the valve seat that the valve body can no longer be moved. Pressure can be equalized in the refill valve 19 via the lateral pressure inlet 53, so that the valve body can be moved after it has been put into operation.

In dem in Fig. 4 und 5 gezeigten vierten bzw. fünften Ausführungsbeispiel ist eine Spülung für das Nachfüllventil 19 vorgesehen. Dazu kann eine Spülquelle 55 absperrbar mit dem Druckeinlass 53 verbunden sein (siehe Fig. 4). Vorzugsweise sind drei Spülventile 57, 59, 61 dazu vorgesehen, die Spülung ein- und ausschalten zu können bzw. vom Hochdruck zu trennen. Ein erstes Spülventil 57 in Form eines Nadelventils ist zwischen der Förderhilfe 45 und dem Druckeinlass 53 angeordnet. Ein zweites Spülventil 59, hier auch als Spülauslassventil 59 bezeichnet, ist in Form eines Nadelventils zwischen einem seitlichen Spülauslass 63 und einem Ablauf 65 angeordnet. Ein drittes Spülventil 61 in Form eines Nadelventils ist zwischen der Spülquelle 55 und dem Druckeinlass 53 angeordnet.in the in 4 and 5 The fourth or fifth exemplary embodiment shown is provided for flushing the refill valve 19 . For this purpose, a flushing source 55 can be connected to the pressure inlet 53 in a lockable manner (see 4 ). Preferably, three scavenging valves 57, 59, 61 are provided to be able to switch the scavenging on and off or to separate it from the high pressure. A first flushing valve 57 in the form of a needle valve is arranged between the delivery aid 45 and the pressure inlet 53 . A second scavenging valve 59, also referred to here as a scavenging outlet valve 59, is arranged in the form of a needle valve between a lateral scavenging outlet 63 and an outlet 65. A third purge valve 61 in the form of a needle valve is positioned between the purge source 55 and the pressure inlet 53 .

Um nun das Nachfüllventil 19 mit Wasser oder einer Wasser-Spülmittel-Mischung durchzuspülen, damit ein Ventilraum des Nachfüllventils 19 von Abrasivmittelresten befreit werden kann, ist das Nachfüllventil 19 vorzugsweise geschlossen. Das erste Spülventil 57 wird ebenfalls geschlossen, damit vom Druckeinlass 53 Druck abgelassen werden kann, ohne den Druck an der Förderhilfe 45 abzulassen. Das zweite Spülventil 59 wird zum Ablauf 65 hin geöffnet, sodass der ggf. bestehende Hochdruck aus dem Ventilraum abgelassen werden kann. Wird nun das dritte Spülventil 61 geöffnet, so fließt Wasser bzw. eine Wasser-Spülmittel-Mischung durch den Ventilraum zum Ablauf 65 und spült diesen somit von Abrasivmittelresten frei. Vorzugsweise wird das Spülen des Nachfüllventils 19 bei vollständig druckloser Anlage 1 als Serviceprozedur durchgeführt, um den Ventilraum vollständig ausspülen zu können und ggf. den Ventilkörper dabei bewegen zu können.In order to flush the refill valve 19 with water or a mixture of water and washing-up liquid so that a valve chamber of the refill valve 19 can be freed from residues of abrasive, the refill valve 19 is preferably closed. The first purge valve 57 is also closed so that pressure can be released from the pressure inlet 53 without releasing the pressure on the conveying aid 45. The second scavenging valve 59 is opened towards the outlet 65 so that any high pressure that may be present can be released from the valve chamber. If the third flushing valve 61 is now opened, water or a mixture of water and flushing agent flows through the valve chamber to the outlet 65 and thus flushes it free of residues of abrasive. The flushing of the refill valve 19 is preferably carried out as a service procedure when the system 1 is completely depressurized, in order to be able to flush out the valve chamber completely and, if necessary, to be able to move the valve body in the process.

Alternativ zur vierten Ausführungsform gemäß Fig. 4 kann in einer fünften Ausführungsform nach Fig. 5 ein Spüleinlass 66 separat vom Druckeinlass 53 vorgesehen (siehe auch Fig. 15a-b und 17a-b). Der Druckeinlass 53 kann koaxial zu einer Servomotorwelle 86 und dieser gegenüberliegend angeordnet sein, wobei der Spüleinlass 66 und der Spülauslass 63 quer zur Servomotorwelle 86 koaxial zueinander und an sich jeweils gegenüberliegenden Seiten angeordnet sein können.As an alternative to the fourth embodiment according to 4 can according to a fifth embodiment figure 5 a flushing inlet 66 separate from the pressure inlet 53 is provided (see also Fig. 15a-b and 17a-b ). The pressure inlet 53 may be coaxial with and opposed to a servomotor shaft 86 , while the purge inlet 66 and purge outlet 63 may be coaxial and disposed transversely of the servomotor shaft 86 on opposite sides of each other.

Das Spülen wird durch Schließen der drei Spülventile 57, 59, 61 in umgekehrter Reihenfolge wieder beendet, d.h. das dritte Spülventil 61 wird zunächst geschlossen, sodass der Spülfluss gestoppt wird. Dann wird das zweite Spülventil 59 geschlossen, um den Ventilraum gegenüber dem Ablauf 65 abzuschließen. Schließlich kann das erste Spülventil 57 geöffnet werden, damit der Ventilraum mit Hochdruck bedruckt wird. Das Bedrucken des Ventilraums ist vorteilhaft, da ein Ventilkörper im Nachfüllventil 19 durch die hohe Druckdifferenz zwischen dem Ventilausgang 51 oder Ventileingang 49 und dem Ventilraum so stark in einen Ventilsitz gepresst werden kann, dass sich dieser nicht mehr bewegen lässt. Das Bedrucken des Ventilraums schafft dagegen einen Druckausgleich, sodass der Ventilkörper im Nachfüllventil 19 beweglich bleibt.The flushing is ended again by closing the three flushing valves 57, 59, 61 in reverse order, ie the third flushing valve 61 is closed first, so that the flushing flow is stopped. The second flushing valve 59 is then closed in order to close off the valve chamber from the outlet 65 . Finally, the first flushing valve 57 can be opened so that the valve chamber is pressurized with high pressure. Printing the valve chamber is advantageous because a valve body in the refill valve 19 can be pressed so hard into a valve seat by the high pressure difference between the valve outlet 51 or valve inlet 49 and the valve chamber that it can no longer be moved. The pressurizing of the valve chamber, on the other hand, creates pressure equalization so that the valve body in the refill valve 19 remains movable.

In den Teilschaltbildern gemäß Fig. 7a-c wird eine bevorzugte Regelung des Abrasivmittelentnahmeflusses verdeutlicht. Zur Beimengung von Abrasivmittel in den Schneidstrahl 9 ist eine Abzweigung der Hochdruckleitung 5 durch den mit Abrasivmittelsuspension 13 gefüllten Druckbehälter 11 geführt. Eine im unteren Bereich des Druckbehälters 11 angeordnete Entnahmestelle 68 ist über eine Abrasivmittelleitung 70 mit der Austrittsdüse 7 verbunden, und eine Abzweigung der Hochdruckleitung 5 ist über ein Regelventil bzw. regelbare Drossel 17 in einen oberen Bereich des Druckbehälters 11 geführt. Stromabwärts vom Druckbehälter 11 wird die Abrasivmittelleitung vor der Austrittsdüse 7 wieder mit der Hochdruckleitung 5 zusammengeführt, sodass der Schneidstrahl beispielsweise in einem Mischungsverhältnis von 1:9 Abrasivmittelsuspension und Wasser enthält. Das Mischungsverhältnis ist dabei über das eingangsseitig mit dem Druckbehälter 11 verbundene Drossel bzw. Regelventil 17 regelbar. Bei maximaler Öffnungsstellung des Regelventils 17 ist der Abrasivmittelentnahmefluss maximal und das Mischungsverhältnis maximal. Bei minimaler Öffnungsstellung bzw. Schließstellung (siehe Fig. 7b oder 7c) des Regelventils 17 ist der Abrasivmittelentnahmefluss minimal bzw. null und das Mischungsverhältnis entsprechend gering bzw. enthält der Schneidstrahl 9 dann ausschließlich Wasser.According to the partial circuit diagrams Fig. 7a-c a preferred regulation of the abrasive removal flow is illustrated. A branch of the high-pressure line 5 is routed through the pressure vessel 11 filled with the abrasive suspension 13 in order to add abrasive to the cutting jet 9 . An extraction point 68 arranged in the lower area of the pressure vessel 11 is connected to the outlet nozzle 7 via an abrasive medium line 70, and a branch of the high-pressure line 5 is routed via a control valve or controllable throttle 17 into an upper area of the pressure vessel 11. Downstream from the pressure vessel 11, the abrasive medium line is reunited with the high-pressure line 5 in front of the outlet nozzle 7, so that the cutting jet contains, for example, a mixing ratio of 1:9 abrasive medium suspension and water. The mixing ratio can be regulated via the throttle or control valve 17 connected to the pressure vessel 11 on the inlet side. When the control valve 17 is in the maximum open position, the flow of abrasive removal is maximum and the mixing ratio is maximum. At minimum open position or closed position (see Fig. 7b or 7c ) of the control valve 17, the abrasive removal flow is minimal or zero and the mixing ratio is correspondingly low or the cutting jet 9 then contains only water.

Es ist nun aus verschiedenen Gründen vorteilhaft, den tatsächlichen Abrasivmittelentnahmefluss zu messen und zu regeln. Zum einen kann für das Schneiden bestimmter Materialien, Werkstücke oder Werkstückabschnitte ein bestimmtes Mischungsverhältnis optimal sein, bei dem nur so viel Abrasivmittel zum Erzielen der Schneidleistung wie nötig entnommen wird. Bei inhomogenen Werkstücken kann die Schneidleistung über das Mischungsverhältnis während des Schneidens angepasst werden. Zum anderen kann das Nachfüllen des Druckbehälters 11 mit Abrasivmittel entsprechend dem Abrasivmittelentnahmefluss so gesteuert werden, dass ständig genügend Abrasivmittelsuspension 13 im Druckbehälter 11 für ein kontinuierliches Schneiden vorhanden ist. In Fig. 7a-c sind jeweils vier verschiedene Füllstände des Abrasivmittels im Druckbehälter 11 durch gestrichelte Kegel angedeutet. Zwischen einem maximalen Füllstandskegel Fmax und einem minimalen Füllstandskegel Fmin sind zwei weitere Füllstandskegel F1 und F2 gezeigt, wobei Fmax>F1>F2>Fmin. Es sei an dieser Stelle noch einmal darauf hingewiesen, dass die gesamte Anlage 1 und insbesondere der Druckbehälter 11 vollständig luftfrei sind. Das heißt, dass sich die Füllstandskegel in hochbedrucktem Wasser befinden. Der maximale Füllstandskegel Fmax ist dadurch definiert, dass sich bei weiterer Nachfüllung mit Abrasivmittel in den Druckbehälter 11 ein Rückstau in das Nachfüllventil 19 ergeben würde. Der minimale Füllstandskegel Fmin ist dadurch definiert, dass sich bei weiterer Abrasivmittelentnahme der Abrasivmittelanteil der Abrasivmittelsuspension in der ausgangsseitigen Abrasivmittelleitung 70 abnehmen würde.Now, it is advantageous to measure and control the actual abrasive extraction flow for several reasons. On the one hand, a certain mixing ratio can be optimal for cutting certain materials, workpieces or workpiece sections, in which only as much abrasive is removed as is necessary to achieve the cutting performance. In the case of inhomogeneous workpieces, the cutting performance can be adjusted via the mixing ratio during cutting. On the other hand, the refilling of the pressure vessel 11 with abrasive can be controlled according to the abrasive removal flow so that there is always enough abrasive suspension 13 in the Pressure vessel 11 is present for continuous cutting. In Fig. 7a-c four different fill levels of the abrasive in the pressure vessel 11 are indicated by dashed cones. Two further level cones F 1 and F 2 are shown between a maximum level cone F max and a minimum level cone F min , with F max >F 1 >F 2 >F min . It should be pointed out once again at this point that the entire system 1 and in particular the pressure vessel 11 are completely free of air. This means that the level cones are in highly pressurized water. The maximum filling level cone F max is defined by the fact that further refilling with abrasive into the pressure vessel 11 would result in a back pressure in the refill valve 19 . The minimum filling level cone F min is defined by the fact that the proportion of abrasive medium in the abrasive medium suspension in the abrasive medium line 70 on the outlet side would decrease if abrasive medium were to be removed further.

Wie in Fig. 7a und 7b gezeigt, können Füllstandssensoren 72, 74, 76 am Druckbehälter 11 angeordnet sein, um das Erreichen eines Füllstandskegels zu signalisieren. Die Füllstandssensoren 72, 74, 76 können beispielsweise Ultraschallsensoren, optische Sensoren bzw. Schranken, elektro-magnetische Sensoren oder Sensoren anderer Art sein. Hier sind die Füllstandssensoren 72, 74, 76 Ultraschallsensoren, die ein Erreichen eines Füllstandskegels über eine Veränderung des Körperschalls signalisieren können. Ein oberer Füllstandssensor 72 kann beispielsweise das Erreichen des Füllstandskegels F1 signalisieren und einen Zeitnehmer starten bzw. einen Zeitpunkt t1 definieren. Ein unterer Füllstandssensor 74 kann beispielsweise das Erreichen des Füllstandskegels F2 signalisieren und einen Zeitnehmer nach Δt stoppen bzw. einen Zeitpunkt t2 definieren. Über die bekannte Geometrie des Druckbehälters 11 und den vertikalen Abstand der Füllstandssensoren 72, 74 kann ein mittlerer Abrasivmittelentnahmefluss ermittelt werden als ΔV/Δt bzw. ΔV/(t2-t1). Der dritte unterste Füllstandssensor 76 kann den minimalen Füllstandskegel Fmin signalisieren und sofort eine Absperrung des Absperrventils 15 bewirken, um ein Leersaugen des Druckbehälters 11 zu verhindern. Gemäß Fig. 7b können auch andere Betriebsparameter wie etwa die Pumpendrehzahl der Hochdruckquelle 3 zur Bestimmung des Abrasivmittelentnahmeflusses und dessen Regelung als Regelgröße für das Regelventil 17 herangezogen werden. Wie in Fig. 7c gezeigt, kann der Abrasivmitteldurchfluss bzw. das Mischungsverhältnis mittels eines entsprechenden Sensors 79 auch an der Abrasivmittelleitung 70 bzw. vor der Austrittsdüse 7 bestimmt und als Regelgröße für das Regelventil 17 benutzt werden.As in Figures 7a and 7b shown, level sensors 72, 74, 76 can be arranged on the pressure vessel 11 in order to signal that a level cone has been reached. The level sensors 72, 74, 76 can be, for example, ultrasonic sensors, optical sensors or barriers, electromagnetic sensors or sensors of other types. Here the level sensors 72, 74, 76 are ultrasonic sensors, which can signal that a level cone has been reached via a change in structure-borne noise. An upper filling level sensor 72 can, for example, signal that the filling level cone F 1 has been reached and can start a timer or define a point in time t 1 . A lower filling level sensor 74 can, for example, signal that the filling level cone F 2 has been reached and can stop a timer after Δt or define a point in time t 2 . A mean abrasive removal flow can be determined as ΔV/Δt or ΔV/(t 2 −t 1 ) via the known geometry of the pressure vessel 11 and the vertical spacing of the level sensors 72, 74 . The third bottom level sensor 76 can be the minimum level cone F min signal and immediately shut off the shut-off valve 15 to prevent the pressure vessel 11 from being sucked dry. According to Figure 7b other operating parameters such as the pump speed of the high-pressure source 3 can also be used to determine the abrasive agent removal flow and its regulation as a controlled variable for the control valve 17 . As in Figure 7c shown, the abrasive medium flow or the mixing ratio can also be determined by means of a corresponding sensor 79 on the abrasive medium line 70 or in front of the outlet nozzle 7 and used as a controlled variable for the control valve 17 .

Die Füllstandssensoren 72, 74 können auch dazu genutzt werden, die Nachfüllzyklen zu steuern bzw. zu takten. Beispielsweise kann über dem oberen Füllstandssensor 72 zwischen dem Füllstandskegel F1 und dem maximalen Füllstandskegel Fmax eine Füllung der Schleusenkammer 21 passen. Sinkt der Füllstandskegel unter Fi, kann der obere Füllstandssensor 72 ein Befüllen der Schleusenkammer 21 auslösen, damit diese vollständig befüllt ist, wenn der untere Füllstandssensor 74 den Füllstandskegel F2 signalisiert und damit ein Nachfüllen aus der befüllten Schleusenkammer 21 in den Druckbehälter 11 auslösen kann. Damit wird verhindert, dass der Füllstandskegel bis auf den minimalen Füllstandskegel Fmin absinkt. Zwischen dem minimalen Füllstandskegel Fmin und dem Füllstandskegel F2 kann ebenfalls mindestens eine Füllung der Schleusenkammer 21 als Puffer passen. Alternativ zu einem Auslösen des Befüllens der Schleusenkammer 21 bei einem bestimmten Füllstand kann die Schleusenkammer 21 automatisch immer sofort wieder befüllt werden sobald das Nachfüllen des Druckbehälters 11 beendet ist. Dann braucht nur bei dem Füllstandskegel F2 das Nachfüllen aus der Schleusenkammer 21 ausgelöst werden. Der vertikale Abstand zwischen dem oberen Füllstandssensor 72 und dem unteren Füllstandssensor 74 kann relativ kurz gewählt werden, beispielsweise so kurz, dass ein Absinken zwischen F1 und F2 kürzer dauert als ein Befüllvorgang der Schleusenkammer 21. Mit einem kürzeren vertikalen Abstand kann der mittlere Abrasivmittelentnahmefluss ΔV/Δt bzw. ΔV/(t2-t1) häufiger ermittelt werden und damit genauer den aktuellen Abrasivmittelentnahmefluss dV/dt wiedergeben.The level sensors 72, 74 can also be used to control or clock the refill cycles. For example, a filling of the lock chamber 21 can fit above the upper level sensor 72 between the level cone F 1 and the maximum level cone F max . If the filling level cone drops below Fi, the upper filling level sensor 72 can trigger filling of the lock chamber 21 so that it is completely filled when the lower filling level sensor 74 signals the filling level cone F 2 and can thus trigger refilling from the filled lock chamber 21 into the pressure vessel 11. This prevents the level cone from dropping down to the minimum level cone F min . At least one filling of the lock chamber 21 can also fit as a buffer between the minimum level cone F min and the level cone F 2 . As an alternative to triggering the filling of the sluice chamber 21 at a specific fill level, the sluice chamber 21 can always be automatically refilled immediately as soon as the refilling of the pressure vessel 11 is complete. Then refilling from the sluice chamber 21 only needs to be triggered when the level cone F 2 is reached. The vertical distance between the upper filling level sensor 72 and the lower filling level sensor 74 can be chosen to be relatively short, for example so short that a drop between F 1 and F 2 takes less time than a filling process of the lock chamber 21. With a shorter vertical distance, the mean abrasive removal flow ΔV/Δt or ΔV/(t 2 -t 1 ) can be determined more frequently and thus more accurately reflect the current abrasive removal flow dV/dt.

Fig. 8 bis 12 zeigen verschiedene Möglichkeiten, Abrasivmittel in trockener, nasser, feuchter, suspendierter, gefrorener, pelletierter oder anderer Form in den Nachfülltrichter 25 bzw. direkt in das Befüllventil 23 zu geben. In Fig. 8 ist ein Vorladebehälter 78 vorgesehen, aus dem mittels einer Pumpe 80 Abrasivmittelsuspension in den Nachfülltrichter 25 gefördert wird. Über einen Überlauf 82 am Nachfülltrichter kann beim Beladen des Nachfülltrichters 25 Wasser ablaufen, das durch das absinkende Abrasivmittel verdrängt wird. Figures 8 to 12 show various ways of adding abrasives in dry, wet, moist, suspended, frozen, pelleted or other form to the refill funnel 25 or directly to the filling valve 23. In 8 a pre-loading container 78 is provided, from which abrasive suspension is conveyed into the refill funnel 25 by means of a pump 80 . When loading the refill funnel 25, water that is displaced by the sinking abrasive can run off via an overflow 82 on the refill funnel.

In Fig. 9 ist ein Vorladebehälter 78 vorgesehen, aus dem mittels einer Förderschnecke 84 und/oder eines Förderbands 85 trockenes pulverförmiges oder feuchtes klumpiges Abrasivmittel in den Nachfülltrichter 25 gefördert wird. Über den Überlauf 82 am Nachfülltrichter 25 kann auch hier beim Beladen des Nachfülltrichters 25 Wasser ablaufen, das durch das absinkende Abrasivmittel verdrängt wird. Das Abrasivmittel kann beispielsweise nach einem Schneidprozess aus dem Abwasser des Schneidstrahls 9 wiedergewonnen und aufbereitet sein, sodass es für einen weiteren Schneidprozess benutzbar ist. Der Vorteil dieser Anlage gegenüber bekannten Wasser-Abrasiv-Injektions-Schneidanlagen ist, dass solch ein wiederaufbereitetes Abrasivmittel nicht getrocknet werden muss und in feucht-klumpiger oder beliebiger Form in die Anlage gefüllt werden kann.In 9 a pre-loading container 78 is provided, from which dry powdered or moist lumpy abrasive agent is conveyed into the refill hopper 25 by means of a conveyor screw 84 and/or a conveyor belt 85 . When the refill funnel 25 is being loaded, water that is displaced by the sinking abrasive can also run off here via the overflow 82 on the refill funnel 25 . The abrasive can, for example, be recovered and processed from the waste water of the cutting jet 9 after a cutting process, so that it can be used for a further cutting process. The advantage of this system compared to known water-abrasive injection cutting systems is that such a reprocessed abrasive does not have to be dried and can be filled into the system in a wet lumpy or any form.

In Fig. 10 ist kein Überlauf 82 vorgesehen, sondern ein Kreislauf zwischen dem Nachfülltrichter 25 und dem Vorladebehälter 78, wobei die Pumpe 80 ausgangsseitig vom Nachfülltrichter 25 den Kreislauf zur Befüllung des Nachfülltrichter 25 mit Abrasivmittel antreibt. Der Nachfülltrichter 25 ist in diesem Fall vorzugsweise geschlossen, sodass die Pumpe 80 Abrasivmittelsuspension aus dem Vorladebehälter 78 saugen kann. Vorteilhaft ist hierbei, dass die Pumpe 80 relativ sauberes Wasser fördert und keine gesättigte Abrasivmittelsuspension wie in Fig. 8. Dadurch wird der Verschleiß in der Pumpe 80 reduziert. Außerdem ist ein Ansaugen der Abrasivmittelsuspension weniger verstopfungsanfällig als ein Drücken. Wie in Fig. 11 gezeigt, kann allerdings auch eine Förderschnecke 84 eingangsseitig zum Nachfülltrichter 25 angeordnet sein, um Abrasivmittel in den Nachfülltrichter 25 zu fördern. Dies ist insbesondere dann vorteilhaft, wenn keine Abrasivmittelsuspension im Vorladebehälter 78 ist, sondern Abrasivmittel als trockenes Pulver oder in feucht-klumpiger Form.In 10 no overflow 82 is provided, but rather a circuit between the refill hopper 25 and the preloading container 78, with the pump 80 driving the circuit for filling the refill hopper 25 with abrasive on the output side of the refill hopper 25. The refill funnel 25 is preferably closed in this case, so that the pump 80 can suck abrasive suspension out of the preloading container 78 . The advantage here is that the pump 80 pumps relatively clean water and not a saturated abrasive suspension as in 8 . As a result, the wear in the pump 80 is reduced. In addition, sucking in the abrasive suspension is less prone to clogging than pressing. As in 11 shown, however, a screw conveyor 84 can also be arranged on the input side of the refill hopper 25 in order to convey abrasive into the refill hopper 25 . This is particularly advantageous when there is no abrasive suspension in the preloading container 78, but rather abrasive as a dry powder or in a wet lumpy form.

Es kann sogar vollständig auf den Nachfülltrichter 25 verzichtet werden (siehe Fig. 12), wenn das Fördern über eine Förderschnecke 84 oder eine Pumpe 80 schnell genug und kontrolliert direkt in das Befüllventil 23 stattfindet. Über das Pumpenabsperrventil 33 kann das beim Befüllen der Schleusenkammer 21 durch das Abrasivmittel verdrängte Wasser aus der Schleusenkammer 21 in den Nachfülltrichter 25 zurückgeführt werden. Dies kann auch mit einer Pumpe 31 gemäß Fig. 1 bis 5 unterstützt werden, um Abrasivmittel zusätzlich aktiv in die Schleusenkammer 21 zu saugen.The refill funnel 25 can even be dispensed with completely (see 12 ) if the conveying via a screw conveyor 84 or a pump 80 takes place quickly enough and in a controlled manner directly into the filling valve 23. The water displaced by the abrasive when the lock chamber 21 is being filled can be returned from the lock chamber 21 to the refill funnel 25 via the pump shut-off valve 33 . This can also be done with a pump 31 according to FIG Figures 1 to 5 be supported in order to actively suck abrasives into the lock chamber 21 as well.

Das Nachfüllen des Abrasivmittels in den Druckbehälter 11 erfolgt gemäß einem Ausführungsbeispiel portioniert und zyklisch während ein zu bearbeitendes Werkstück kontinuierlich mit dem Schneidstrahl 9 geschnitten werden kann. Fig. 13 illustriert die Verfahrensschritte im zeitlichen Ablauf. In einem ersten Schritt 301 wird Wasser unter hohem Druck in der Hochdruckleitung 5 mittels der Hochdruckquelle 3 bereitgestellt. Damit wird dann auch eine unter Druck stehende Abrasivmittelsuspension in dem Druckbehälter 11 bereitgestellt 303. Damit kann dann bereits ein Werkstück mittels des Hochdruckstrahls 9, der zumindest teilweise die Abrasivmittelsuspension enthält, unter Entnahme der Abrasivmittelsuspension aus dem Druckbehälter 11 geschnitten werden 305. Die Schritte 307 bis 311 dienen dem portionierten und zyklischen Nachfüllen des Druckbehälters 11 mit Abrasivmittel während des kontinuierlichen Scheidens 305. Zunächst wird die unbedruckte Schleusenkammer 21 mit Abrasivmittel oder einer Abrasivmittelsuspension befüllt 307. Während des Befüllens ist die Förderhilfe 45 durch das Förderhilfeabsperrventil 47 von der unbedruckten Schleusenkammer 21 abgesperrt. Sodann wird die Pumpe 31 von der Schleusenkammer 21 abgesperrt 308. Danach wird die Schleusenkammer zumindest teilweise durch Druckentladen des Druckspeichers 39 bedruckt 309, und schließlich der Druckbehälter 11 mit Abrasivmittel oder einer Abrasivmittelsuspension über das Nachfüllventil 19 aus der bedruckten Schleusenkammer 21 nachgefüllt 311. Beim Nachfüllen 311 ist die Förderhilfe 45 über das geöffnete Förderhilfeabsperrventil 47 mit der bedruckten Schleusenkammer 21 fluidverbunden. Nach dem Nachfüllen 311 werden das Förderhilfeabsperrventil 47 sowie das Bedruckungsventil 37 und das Nachfüllventil 19 abgesperrt, um die Schleusenkammer 21 über das Druckablassventil 27 in den Ablauf 29 für den nächsten Befüllschritt druckentlasten zu können.According to one exemplary embodiment, the abrasive medium is refilled in the pressure vessel 11 in portions and cyclically, while a workpiece to be machined can be cut continuously with the cutting jet 9 . 13 illustrates the process steps over time. In a first step 301 , water is made available under high pressure in the high-pressure line 5 by means of the high-pressure source 3 . This then also provides a pressurized abrasive suspension in the pressure vessel 11 303. A workpiece can then already be cut 305 by means of the high-pressure jet 9, which at least partially contains the abrasive suspension, while removing the abrasive suspension from the pressure vessel 11. Steps 307 to 311 serve to refill the pressure vessel 11 with abrasive in portions and cyclically during continuous cutting 305. First, the unpressurized sluice chamber 21 is filled 307 with abrasive or an abrasive suspension. The pump 31 is then shut off from the sluice chamber 21 308. The sluice chamber is then at least partially pressurized 309 by depressurizing the pressure accumulator 39, and finally the pressure container 11 is refilled 311 with abrasive or an abrasive suspension via the refill valve 19 from the pressurized sluice chamber 21. When refilling 311 the conveying aid 45 is in fluid communication with the pressurized lock chamber 21 via the open conveying aid shut-off valve 47 . After refilling 311, the conveyor aid shut-off valve 47 and the pressure valve 37 and the refill valve 19 are shut off in order to be able to relieve the pressure in the sluice chamber 21 via the pressure relief valve 27 into the outlet 29 for the next filling step.

Während des Befüllens 307 der Schleusenkammer 21 oder während des Nachfüllens 311 des Druckbehälters 11 kann der Druckspeicher über die Drossel 41 aus der Hochdruckleitung 5 druckbeladen werden 313. Zeitgleich startend mit dem Bedrucken 309 der Schleusenkammer 21 aus dem Druckspeicher 39 kann die Schleusenkammer 21 zumindest teilweise über die Drossel 41 aus der Hochdruckleitung 5 bedruckt werden 315. Dieses langsame gedrosselte Bedrucken 315 aus der Hochdruckleitung 5 kann länger andauern als das schnelle Bedrucken 309 durch das Druckentladen des Druckspeichers 39. Mit anderen Worten kann das Bedrucken 309 der Schleusenkammer 21 durch Druckentladen eines Druckspeichers 39 während eines ersten Zeitfensters A und das Bedrucken 315 der Schleusenkammer 21 der Hochdruckleitung 5 während eines zweiten Zeitfensters B erfolgen, wobei sich das erste Zeitfenster A und das zweite Zeitfenster B zumindest teilweise überschneiden, vorzugsweise an ihrem Beginn.During the filling 307 of the lock chamber 21 or during the refilling 311 of the pressure vessel 11, the pressure accumulator can be pressurized 313 via the throttle 41 from the high-pressure line 5. Starting at the same time as the pressurization 309 of the lock chamber 21 from the pressure accumulator 39, the lock chamber 21 can at least partially overflow the throttle 41 from the high-pressure line 5 are printed 315. This slow throttled printing 315 from the high-pressure line 5 can last longer than the fast printing 309 by the pressure discharge of the pressure accumulator 39. In other words, the printing 309 of the sluice chamber 21 can A pressure accumulator 39 is depressurized during a first time window A and the lock chamber 21 of the high-pressure line 5 is pressurized 315 during a second time window B, with the first time window A and the second time window B at least partially overlapping, preferably at the beginning.

Das Bedrucken 309 der Schleusenkammer 21 durch Druckentladen des Druckspeichers kann derart schnell erfolgen, dass in der Schleusenkammer 21 befindliches Abrasivmittel durch einen Druckstoß aufgelockert wird. Dabei erfolgt das Bedrucken 309 der Schleusenkammer durch Druckentladen des Druckspeichers 39 vorzugsweise in einen unteren Bereich der Schleusenkammer 21, da etwaige Verstopfungen von Abrasivmittel in einem unteren Bereich wahrscheinlicher sind als in einem oberen Bereich.The loading 309 of the sluice chamber 21 by depressurizing the pressure accumulator can take place so quickly that the abrasive agent in the sluice chamber 21 is loosened by a pressure surge. The sluice chamber is pressurized 309 by discharging the pressure from the pressure accumulator 39, preferably in a lower region of the sluice chamber 21, since any blockages of abrasive are more likely in a lower region than in an upper region.

Optional ist der Bedruckungseingang 35 der Schleusenkammer 21 vom Druckspeicher 39 und/oder der Hochdruckleitung 5 während des Befüllens 307 und des Nachfüllens 311 abgesperrt. Das Druckbeladen 313 der Druckspeicher 39 kann somit während des Befüllens 307 und/oder des Nachfüllens 311 erfolgen. Dabei kann Energie über eine Feder- oder Fluidkompression im Druckspeicher 39 gespeichert werden, der beispielsweise als Feder- oder Blasenspeicher ausgestaltet sein kann. Das Befüllen 307, das Bedrucken 309 und das Nachfüllen 311 können zyklisch ablaufen während das Schneiden 305 kontinuierlich durchgeführt werden kann.Optionally, the pressure input 35 of the lock chamber 21 is shut off from the pressure accumulator 39 and/or the high-pressure line 5 during the filling 307 and the refilling 311 . The pressure loading 313 of the pressure accumulator 39 can thus take place during the filling 307 and/or the refilling 311 . In this case, energy can be stored via a spring or fluid compression in the pressure accumulator 39, which can be designed, for example, as a spring or bladder accumulator. The filling 307, the printing 309 and the refilling 311 can take place cyclically while the cutting 305 can be carried out continuously.

Optional kann der Druckspeicher 39 nach dem Bedrucken 309 der Schleusenkammer 21 durch Druckentladen des Druckspeichers 39 von der Hochdruckleitung 5 zunächst mittels des Druckspeicherventils 43 abgesperrt werden. Das Druckspeicherventil 43 kann vorzugsweise erst dann zum Druckbeladen des Druckspeichers 39 wieder geöffnet werden, wenn die Schleusenkammer 21 über die Drossel 41 aus der Hochdruckleitung 5 bedruckt wurde.Optionally, after the lock chamber 21 has been pressurized 309 , the pressure accumulator 39 can first be shut off by the pressure accumulator 39 being discharged from the high-pressure line 5 by means of the pressure accumulator valve 43 . The pressure accumulator valve 43 can preferably only then be opened again for the purpose of pressurizing the pressure accumulator 39 be when the lock chamber 21 was pressurized via the throttle 41 from the high-pressure line 5.

Fig. 14 verdeutlicht einen beispielhaften Verlauf des Drucks p über die Zeit t in der Schleusenkammer 21 (oben), im Druckspeicher 39 (mittig) und in der Hochdruckleitung 5 (unten). Der Druck in der unbedruckten Schleusenkammer 21 ist zunächst der Umgebungsdruck, der hier auf der Nulllinie liegt. Die Schleusenkammer 21 kann in dieser unbedruckten Phase vor dem Start des Bedruckens 309 zum Zeitpunkt to befüllt werden 307. 14 illustrates an exemplary course of the pressure p over time t in the lock chamber 21 (top), in the pressure accumulator 39 (middle) and in the high-pressure line 5 (bottom). The pressure in the unpressurized lock chamber 21 is initially the ambient pressure, which is on the zero line here. In this unprinted phase, the lock chamber 21 can be filled 307 before the start of the printing 309 at the point in time to.

Das Bedrucken 309, 315 beginnt zum Zeitpunkt to. Während des ersten kurzen Zeitfensters A=t1-t0 wird nun die Schleusenkammer 21 auf bis zu 40% des nominellen Hochdrucks po aus der Druckentladung des Druckspeichers 39 bedruckt 309. Der Druckspeicher 39 ist dann bei t1 bis auf ein Minimum entladen und wird danach über das Druckspeicherventil 43 gemäß dem zweitem Ausführungsbeispiel in Fig. 2 abgesperrt. Die Schleusenkammer 21 wird allerdings langsam innerhalb des zweiten längeren Zeitfensters B=t2-t0 weiter über die Drossel 41 aus der Hochdruckleitung 5 bedruckt 315 bis der nominelle Hochdruck po bei t2 erreicht ist. Das Bedrucken 309, 315 der Schleusenkammer 21 kann 5 bis 10 Sekunden dauern. Sobald der nominelle Hochdruck po in der Schleusenkammer 21 bei t2 erreicht ist, kann das Nachfüllen 311 beginnen und der Druckbehälter 39 gleichzeitig wieder druckbeladen 313 werden. In der Ausführungsform gemäß Fig. 3 ohne Druckspeicher 39 wird die Schleusenkammer 21 komplett über die Drossel 41 über das Zeitfenster B hinweg aus der Hochdruckleitung 5 bedruckt.Printing 309, 315 begins at time t0. During the first short time window A=t 1 -t 0 the lock chamber 21 is then pressurized 309 to up to 40% of the nominal high pressure po from the pressure discharge of the pressure accumulator 39. The pressure accumulator 39 is then discharged to a minimum at t 1 and is then via the pressure accumulator valve 43 according to the second embodiment in FIG 2 locked. However, the sluice chamber 21 continues to be slowly pressurized 315 within the second, longer time window B=t 2 -t 0 via the throttle 41 from the high-pressure line 5 until the nominal high pressure po is reached at t 2 . The imprinting 309, 315 of the lock chamber 21 can take 5 to 10 seconds. As soon as the nominal high pressure po is reached in the lock chamber 21 at t 2 , the refilling 311 can begin and the pressure vessel 39 can be pressurized 313 again at the same time. In the embodiment according to 3 without a pressure accumulator 39, the lock chamber 21 is completely pressurized from the high-pressure line 5 via the throttle 41 over the time window B.

Zwischen t2 und t3 ist das Nachfüllventil 19 geöffnet, sodass Abrasivmittel in den Druckbehälter 11 strömen kann. Zum Zeitpunkt t3 ist das Abrasivmittel vollständig aus der Schleusenkammer 21 in den Druckbehälter 11 geströmt und der Nachfüllschritt 311 abgeschlossen. Zum Befüllen 307 kann der Druck aus der Schleusenkammer 21 relativ schnell über das Druckablassventil 27 in den Ablauf 29 abgelassen werden bis bei t4 wieder Niederdruck in der Schleusenkammer 21 herrscht. Dann kann ein neuer Nachfüllzyklus beginnend mit dem Befüllen 307 der Schleusenkammer 21 starten. Der Druckspeicher 39 wird vorzugsweise möglichst langsam und gedrosselt von t2 an aus der Hochdruckleitung 5 wieder druckbeladen, um bei to wieder für das Bedrucken 309 voll druckgeladen zu sein. Der untere Graph zeigt den Druckabfall in der Hochdruckleitung 5 beim Öffnen des Bedruckungsventils 37 bei to bzw. des Druckspeicherventils 43 bei t2. Die Amplitude des Druckabfalls ist jeweils über die Drossel 41 auf ein Maß reduziert, bei dem die Schneidleistung des Schneidstrahls 9 nicht signifikant beeinträchtigt ist.The refill valve 19 is open between t 2 and t 3 so that abrasive medium can flow into the pressure container 11 . At time t 3 the abrasive has flowed completely out of the lock chamber 21 into the pressure vessel 11 and the refilling step 311 is completed. For filling 307, the pressure can be released from the sluice chamber 21 relatively quickly via the pressure relief valve 27 into the outlet 29 until at t 4 there is low pressure in the sluice chamber 21 again. A new refill cycle can then start, beginning with the filling 307 of the lock chamber 21 . The pressure accumulator 39 is preferably pressurized again as slowly as possible and throttled from t 2 onwards from the high-pressure line 5 in order to be fully pressurized again at t o for the pressurizing 309 . The lower graph shows the pressure drop in the high-pressure line 5 when the pressure valve 37 opens at t o and the pressure accumulator valve 43 at t 2 . The amplitude of the pressure drop is reduced in each case via the throttle 41 to a level at which the cutting performance of the cutting jet 9 is not significantly impaired.

In Figuren 15a und 15b ist das Nachfüllventil 19 im Querschnitt detaillierter in jeweils unterschiedlichen Öffnungsstellungen gezeigt. Da das Nachfüllventil 19 unter Hochdruck auf dem Ventileingang 49 und dem Ventilausgang 51 betätigt werden muss, ist das störungsfreie Betätigen des Nachfüllventils 19 eine technische Herausforderung. Das zuverlässige Öffnen und Schließen des Nachfüllventils 19 wird nun durch vier Unteraspekte gewährleistet, die jeder für sich allein oder in beliebiger Kombination von zwei, drei oder allen vier Unteraspekten dazu beitragen, dass das Nachfüllventil 19 nicht verstopft oder durch das Abrasivmittel blockiert.In Figures 15a and 15b the refill valve 19 is shown in cross section in more detail in different open positions. Since the refill valve 19 has to be actuated under high pressure at the valve inlet 49 and the valve outlet 51, trouble-free actuation of the refill valve 19 is a technical challenge. The reliable opening and closing of the refill valve 19 is now ensured by four sub-aspects, each of which contributes individually or in any combination of two, three or all four sub-aspects to the refill valve 19 not becoming clogged or blocked by the abrasive.

Das Nachfüllventil 19, das vorzugsweise als Kugelhahn ausgebildet ist, hat eine vertikale Durchflussrichtung D von oben nach unten und weist einen zentral angeordneten und um eine zur Durchflussrichtung D senkrechte Drehachse R drehbaren Ventilkörper 67 mit sphärischen Außenflächen auf. Der Ventilkörper 67 weist eine zentrische Durchbrechung 69 auf, die in den in Fig. 15a und Fig. 15b gezeigten Öffnungsstellungen parallel zur Durchflussrichtung D und senkrecht zur Drehachse R verläuft. Die erste Öffnungsstellung gemäß Fig. 15a unterscheidet sich von der zweiten Öffnungsstellung gemäß Fig. 15b dadurch, dass der Ventilkörper 67 um 180° bezüglich der Drehachse R gedreht ist. Der Ventilkörper 67 sitzt in einem Ventilraum 71 zwischen einem oberen Ventilsitz 73 und einem unteren Ventilsitz 75. Der obere Ventilsitz 73 bildet den Ventileingang 49 und der untere Ventilsitz 75 den Ventilausgang 51. Der obere Ventilsitz 73 und der untere Ventilsitz 75 sind koaxial zueinander und zur vertikalen Durchflussrichtung D angeordnet. Der Ventilraum 71 ist über den lateralen Spüleinlass 66 und über den diametral dem Spüleinlass 66 gegenüberliegenden Spülauslass 63, vorzugsweise bei vollständig drucklosem Nachfüllventil 19, durchspülbar.The refill valve 19, which is preferably designed as a ball valve, has a vertical flow direction D from top to bottom and has a centrally arranged valve body 67 that can be rotated about an axis of rotation R perpendicular to the flow direction D and has spherical outer surfaces. The valve body 67 has a central opening 69 in the Figures 15a and 15b shown opening positions parallel to the flow direction D and perpendicular to the axis of rotation R. The first opening position according to Figure 15a differs from the second open position accordingly Figure 15b in that the valve body 67 is rotated through 180° with respect to the axis of rotation R. The valve body 67 sits in a valve chamber 71 between an upper valve seat 73 and a lower valve seat 75. The upper valve seat 73 forms the valve inlet 49 and the lower valve seat 75 forms the valve outlet 51. The upper valve seat 73 and the lower valve seat 75 are coaxial to one another and to the vertical flow direction D arranged. The valve chamber 71 can be flushed through via the lateral flushing inlet 66 and via the flushing outlet 63 diametrically opposite the flushing inlet 66, preferably when the refill valve 19 is completely pressureless.

Gemäß dem ersten Unteraspekt ist das Nachfüllventil 19 dazu in der Lage, eine erste Schließstellung (Fig. 16a), eine erste Öffnungsstellung (Fig. 15a) und eine zweite Öffnungsstellung (Fig. 15b) einzunehmen, wobei in der ersten Schließstellung (Fig. 16a) die Schleusenkammer 21 vom Druckbehälter 11 fluidgetrennt ist und in der ersten sowie der zweiten Öffnungsstellung (Fig. 15a-b) die Schleusenkammer 21 mit dem Druckbehälter 11 fluidverbunden ist. Die erste Öffnungsstellung und die zweite Öffnungsstellung sind wegen der Symmetrie des Ventilkörpers 67 im Wesentlichen kaum unterscheidbar. Der Ventilkörper 67 kann beliebig weit in eine Richtung um die Drehachse R gedreht werden, sodass eine Umkehr der Drehrichtung prinzipiell nicht nötig ist und der Ventilkörper 67 ausschließlich in eine Drehrichtung betätigt werden kann, sofern das dafür benötigte Drehmoment einen bestimmten Schwellenwert nicht überschreitet. Die erste Schließstellung aus Fig. 16a liegt hier bei 90° zwischen der ersten Öffnungsstellung und der zweiten Öffnungsstellung. In diesem Fall gibt es auch eine zweite Schließstellung (siehe Fig. 16b), die gegenüber der ersten Schließstellung um 180° um die Drehachse R gedreht ist. Die Durchbrechung 69 verläuft in den in Fig. 16a und Fig. 16b gezeigten Schließstellungen sowohl senkrecht zur Durchflussrichtung D als auch senkrecht zur Drehachse R, sodass der Ventilkörper 67 den Ventileingang 49 am oberen Ventilsitz 73 abdichtet und den Ventilausgang 51 am unteren Ventilsitz 75. Hier sind der optionale Spüleinlass 66 und Spülauslass 63 nicht gezeigt, können aber vorgesehen sein. Damit bestehen also für den Ventilkörper 67 immer zwei Möglichkeiten zur Bewegungsrichtung, das Nachfüllventil 19 entweder zur ersten Öffnungsstellung/Schließstellung oder zur zweiten Öffnungsstellung/Schließstellung hin zu öffnen bzw. zu schließen, falls eine Bewegungsrichtung momentan ein zu hohes Drehmoment erfordert. Ist also eine Bewegungsrichtung verstopft oder blockiert, so kann der Ventilkörper 67 in die andere Bewegungsrichtung bewegt werden und das Ventil 19 in die andere Öffnungsstellung/Schließstellung gebracht werden. Dabei kann durch die Umkehrung als positiver Nebeneffekt die Verstopfung bzw. Blockade aufgelöst werden, sodass bei der nächsten Betätigung die zuvor blockierte Bewegungsrichtung wieder frei ist. Das Nachfüllventil 19 kann auch durch mehrmaliges Hin- und Herdrehen freigerüttelt werden, beispielsweise falls der Ventilkörper 67 in beide Bewegungsrichtungen nur schwer zu betätigen ist.According to the first sub-aspect, the refill valve 19 is capable of a first closed position ( 16a ), a first opening position ( Figure 15a ) and a second opening position ( Figure 15b ) to take, whereby in the first closed position ( 16a ) the lock chamber 21 is fluidly separated from the pressure vessel 11 and in the first and the second open position ( Fig. 15a-b ) the lock chamber 21 is fluidly connected to the pressure vessel 11 . Because of the symmetry of the valve body 67, the first open position and the second open position are essentially indistinguishable. The valve body 67 can be rotated as far as desired in one direction about the axis of rotation R, so that a reversal of the direction of rotation is not necessary in principle and the valve body 67 can only be actuated in one direction of rotation, provided the torque required for this does not exceed a certain threshold value. The first closed position off 16a is here at 90 ° between the first open position and the second open position. In this case there is also a second closed position (see Figure 16b ), which is rotated by 180° about the axis of rotation R compared to the first closed position. The opening 69 runs into the in Figures 16a and 16b shown closed positions both perpendicular to the direction of flow D and perpendicular to the axis of rotation R, so that the Valve body 67 seals the valve inlet 49 on the upper valve seat 73 and the valve outlet 51 on the lower valve seat 75. Here the optional flushing inlet 66 and flushing outlet 63 are not shown, but can be provided. Thus, there are always two options for the direction of movement for the valve body 67, to open or close the refill valve 19 either to the first open position/closed position or to the second open position/closed position if a direction of movement currently requires too high a torque. If one direction of movement is clogged or blocked, the valve body 67 can be moved in the other direction of movement and the valve 19 can be brought into the other open position/closed position. The constipation or blockage can be released as a positive side effect of the reversal, so that the previously blocked direction of movement is free again the next time it is operated. The refill valve 19 can also be shaken free by turning it back and forth several times, for example if the valve body 67 is difficult to actuate in both directions of movement.

Gemäß dem zweiten Unteraspekt ist der Ventilraum 71 in einer Schließstellung des Ventilkörpers 67 bedruckbar. Gemäß Fig. 17a-b weist der Ventilraum 71 dazu den Druckeinlass 53 auf, über den der Ventilraum 71 in einer Schließstellung des Ventilkörpers 67 bedruckbar ist. Der Druckeinlass 53 ist hier in der yz-Ebene koaxial zu einer Servomotorwelle 86 dieser gegenüberliegend angeordnet. Alternativ dazu kann der Druckeinlass 53 auch in der dazu senkrechten xz-Ebene liegen und ggf. je nach Bedarf als Spüleinlass 66 verwendet werden. Über die Servomotorwelle 86 wird der Ventilkörper 67 um die Drehachse R gedreht. Bei Inbetriebnahme bzw. Wiederinbetriebnahme der zunächst drucklosen Anlage 1 ist der Ventilraum 71 anfänglich drucklos. Wird der Druckbehälter 11 und die Schleusenkammer 21 dann auf etwa 2.000 bar bedruckt, kann der Ventilkörper 67 von den Ventilsitzen 73, 75 wegen des eingangsseitigen sowie ausgangsseitigen Hochdrucks bei gleichzeitigem Niederdruck im Ventilraum 71 eingeklemmt werden und nur schwer oder gar nicht mehr beweglich sein. Mittels des Druckeinlasses 53 kann die Druckdifferenz zwischen dem Ventilraum 71 und dem Ventileingang 49 bzw. dem Ventilausgang 51 bei Inbetriebnahme weitgehend reduziert werden, sodass der Ventilkörper 67 nicht durch den hohen Druck eingeklemmt wird. In Fig. 17b ist der obere Ventilsitz 73 gemäß dem vierten Unteraspekt über eine Einstellvorrichtung einstellbar gezeigt. Der obere Ventilsitz 73 ist dabei über ein Außengewinde mittels einer Drehung um die Durchflussrichtung D in z-Richtung positionierbar. Die Drehung kann durch von außen in Angriffsflächen 77 angreifende Hebel 88 manuell oder motorgetrieben durchgeführt werden.According to the second sub-aspect, the valve chamber 71 can be pressurized when the valve body 67 is in a closed position. According to Fig. 17a-b For this purpose, the valve chamber 71 has the pressure inlet 53, via which the valve chamber 71 can be pressurized when the valve body 67 is in a closed position. The pressure inlet 53 is arranged here in the yz plane coaxially to a servomotor shaft 86 opposite this. As an alternative to this, the pressure inlet 53 can also lie in the xz plane perpendicular thereto and, if necessary, can be used as a flushing inlet 66 as required. The valve body 67 is rotated about the axis of rotation R via the servo motor shaft 86 . When the initially depressurized system 1 is started or restarted, the valve chamber 71 is initially depressurized. If the pressure vessel 11 and the sluice chamber 21 are then pressurized to about 2,000 bar, the valve body 67 can be pinched by the valve seats 73, 75 because of the high pressure on the inlet and outlet side with the simultaneous low pressure in the valve chamber 71 and only become difficult or impossible to move. By means of the pressure inlet 53, the pressure difference between the valve chamber 71 and the valve inlet 49 or the valve outlet 51 can be largely reduced during start-up, so that the valve body 67 is not pinched by the high pressure. In Figure 17b the upper valve seat 73 according to the fourth sub-aspect is shown adjustable via an adjustment device. The upper valve seat 73 can be positioned in the z-direction via an external thread by means of a rotation about the direction of flow D. The rotation can be carried out manually or motor-driven by levers 88 acting from the outside in engagement surfaces 77 .

Gemäß dem dritten Unteraspekt ist der Ventilraum wie beispielsweise in Fig. 15a-b gezeigt durchspülbar. Dabei weist das Nachfüllventil den Spüleinlass 66 und den Spülauslass 63 auf, über welche der Ventilraum 71 durchspülbar ist. Der Druckeinlass 53 kann dabei wahlweise als Spüleinlass 66 dienen. Dies ist besonders vorteilhaft in Kombination mit dem zweiten Unteraspekt eines Druckeinlasses 53, da ein Spüldurchgang bei drucklosem Ventilraum 71 bzw. vollständig druckloser Anlage 1 durchgeführt werden kann und danach bei Wiederinbetriebnahme der Anlage 1 der Ventilraum 71 über den Druckeinlass 53 wieder bedruckt werden kann, damit der Ventilkörper 67 vom hohem Druck nicht eingeklemmt wird.According to the third sub-aspect, the valve space, such as in Fig. 15a-b shown flushable. The refill valve has the flushing inlet 66 and the flushing outlet 63, via which the valve chamber 71 can be flushed. The pressure inlet 53 can optionally serve as a flushing inlet 66 . This is particularly advantageous in combination with the second sub-aspect of a pressure inlet 53, since a flushing cycle can be carried out when the valve chamber 71 is pressureless or the system 1 is completely pressureless, and then when the system 1 is put into operation again, the valve chamber 71 can be pressurized again via the pressure inlet 53, so that the valve body 67 is not pinched by the high pressure.

Gemäß dem vierten Unteraspekt weist das Nachfüllventil den eingangsseitigen oberen Ventilsitz 73 und den ausgangsseitigen unteren Ventilsitz 75 auf, wobei mindestens einer der Ventilsitze 73, 75 verstellbar ist, sodass der Abstand der Ventilsitze 73, 75 zueinander einstellbar ist. Somit kann das Nachfüllventil 19 optimal eingestellt werden, um einerseits dicht zu sein und andererseits nicht zu blockieren. Es kann bei Inbetriebnahme der Anlage, bei Temperaturschwankungen, einer hartnäckigen Blockade durch Abrasivmittel und/oder materialverschleißbedingt ein Nachjustieren des Abstands der Ventilsitze 73, 75 zueinander vorteilhaft sein. Um dafür die Anlage nicht abschalten und auseinander bauen zu müssen, kann wie in Fig. 18a gezeigt eine Werkzeugöffnung 90 vorgesehen sein, durch die ein Werkzeug in Form eines Hebels 88 greifen kann, um den mindestens einen verstellbaren Ventilsitz 73 einzustellen. Vorzugsweise wird allerdings das Einstellen des Ventilsitzes 73 in einer Serviceprozedur bei druckloser Anlage 1 durchgeführt. In diesem Beispiel ist der obere eingangsseitige Ventilsitz 73 über ein Außengewinde axial entlang der Durchflussrichtung D verstellbar. Hebel 88 können von außen an umfangseitig angeordnete Angriffsflächen 77 (siehe Fig. 18b) angesetzt werden, um den Ventilsitz 73 zu drehen. Das Nachfüllventil 19 muss also nicht von der Anlage 1 getrennt oder abgebaut werden. Die bedienende Person kann somit manuell sofort eingreifen, um einen kontinuierlichen Betrieb sicherzustellen, oder die Anlage 1 abschalten und entdrucken, um das Einstellen des Ventilsitzes 73 als Serviceprozedur durchzuführen. Alternativ oder zusätzlich kann das Nachjustieren auch automatisch gesteuert und/oder geregelt über einen Motor erfolgen.According to the fourth sub-aspect, the refill valve has the upper valve seat 73 on the inlet side and the lower valve seat 75 on the outlet side, at least one of the valve seats 73, 75 being adjustable so that the distance between the valve seats 73, 75 can be adjusted. Thus, the refill valve 19 can be optimally adjusted in order to be tight on the one hand and not to block on the other hand. The distance between the valve seats 73, 75 to one another can be readjusted when the system is started up, in the event of temperature fluctuations, a stubborn blockage caused by abrasives and/or material wear be beneficial. In order not to have to switch off and disassemble the system for this, as in 18a A tool opening 90 can be provided as shown, through which a tool in the form of a lever 88 can reach in order to adjust the at least one adjustable valve seat 73. However, the valve seat 73 is preferably adjusted in a service procedure with the system 1 depressurized. In this example, the upper inlet-side valve seat 73 can be adjusted axially along the flow direction D via an external thread. Levers 88 can be attached from the outside to engagement surfaces 77 (see Figure 18b ) to turn the valve seat 73. The refill valve 19 therefore does not have to be separated from the system 1 or dismantled. The operator can thus immediately intervene manually in order to ensure continuous operation, or switch off and depressurize the system 1 in order to carry out the adjustment of the valve seat 73 as a service procedure. Alternatively or additionally, the readjustment can also be automatically controlled and/or regulated via a motor.

Der Ventilkörper 67 wird vorzugsweise über einen nicht gezeigten Servomotor kontrolliert um die Drehachse R gedreht. Dabei kann das ggf. gemessene Drehmoment oder die Leistungsaufnahme des Motors überwacht werden, sodass bei Überschreitung eines Schwellenwertes die Drehrichtung zur anderen Öffnungsstellung oder Schließstellung hin umgestellt werden kann. Alternativ oder zusätzlich können Drehmoment- oder Leistungsspitzen über einen bestimmten Zeitraum aufgezeichnet werden und basierend auf dieser Aufzeichnung ein Fehler- oder Wartungsfall signalisiert werden. Beispielsweise kann der Bedarf für ein Nachjustieren des Ventilsitzes 73 angezeigt werden.The valve body 67 is preferably rotated about the axis of rotation R in a controlled manner via a servomotor (not shown). The torque that may be measured or the power consumption of the motor can be monitored, so that if a threshold value is exceeded, the direction of rotation can be switched to the other open position or closed position. Alternatively or additionally, torque or power peaks can be recorded over a certain period of time and based on this recording, an error or maintenance case can be signaled. For example, the need for readjustment of the valve seat 73 can be indicated.

Fig. 19a-b zeigen zwei Ausführungsformen von spülbaren Nadelventilen, die beispielsweise als eines oder mehrere der Absperrventile 15, 27, 33, 37, 47 oder an anderer Stelle in der Anlage 1 verwendet werden können. Das Nadelventil gemäß Fig. 19a wird vorzugsweise dort eingesetzt, wo das Nadelventil nicht unter Hochdruck öffnen oder schließen muss, z.B. als Pumpenabsperrventil 33 im Kreislauf zur Unterstützung der Befüllung der Schleusenkammer 21. Das Pumpenabsperrventil 33 weist dabei einen Hochdruckeingang 92 auf, der mit einer zum Hochdruckeingang 92 koaxial angeordneten und axial positionierbaren Nadel 94 bezüglich eines Niederdruckausgangs 95 absperrbar ist. Die Nadel 94 weist an einem dem Hochdruckeingang 92 zugewandten Ende eine konische Schließfläche 96 auf, die zum Absperren gegen einen Ventilsitz 98 gedrückt werden kann. Sobald der Hochdruckeingang 92 abgesperrt ist, kann auf den Hochdruckeingang 92 Hochdruck gegeben werden, ohne dass dieser über den Niederdruckausgang 95 entweicht. Wenn kein Hochdruck am Hochdruckeingang 92 herrscht, kann das Pumpenabsperrventil 33 geöffnet werden, um einen Durchfluss bei Niederdruck vom Hochdruckeingang 92 zum Niederdruckausgang 95 zuzulassen. Fig. 19a-b show two embodiments of flushable needle valves, which are used for example as one or more of the shut-off valves 15, 27, 33, 37, 47 or elsewhere in the plant 1 can become. The needle valve according to Figure 19a is preferably used where the needle valve does not have to open or close under high pressure, e.g. as a pump shut-off valve 33 in the circuit to support the filling of the sluice chamber 21. The pump shut-off valve 33 has a high-pressure inlet 92 which is arranged coaxially with the high-pressure inlet 92 and is axial positionable needle 94 with respect to a low-pressure outlet 95 can be shut off. At one end facing the high-pressure inlet 92, the needle 94 has a conical closing surface 96 which can be pressed against a valve seat 98 for shutting off. As soon as the high-pressure inlet 92 is shut off, high pressure can be applied to the high-pressure inlet 92 without it escaping via the low-pressure outlet 95 . When there is no high pressure at the high pressure inlet 92 , the pump isolation valve 33 can be opened to allow low pressure flow from the high pressure inlet 92 to the low pressure outlet 95 .

Das Nadelventil gemäß Fig. 19a-b weist auch einen Spüleinlass 100 auf, über den das geöffnete Nadelventil durchgespült werden kann, wobei Spülflüssigkeit, d.h. Wasser oder Wasser mit Reinigungszusätzen, über den Niederdruckausgang 95 ausfließen kann. Durch diesen Durchfluss von Spülflüssigkeit kann insbesondere der Ventilsitz 98 und die Schließfläche 96 von Abrasivmittelresten befreit werden, um ein sauberes Schließen unter möglichst wenig Materialverschleiß zu gewährleisten. Vorzugsweise kann das Nadelventil kurz vor einem Schließvorgang des Nachfüllventils 19 gespült werden. Fig. 19b zeigt ein Nadelventil mit einem Rückschlagventil 102 am Spüleinlass 100. Das Rückschlagventil 102 verhindert einen Rückfluss in den Spüleinlass 100 und lässt nur einen Durchfluss von Spülflüssigkeit in Richtung des Nadelventils zu. Dies ist dann sinnvoll, wenn das Nadelventil beispielsweise als eines oder mehrere der Absperrventile 15, 27, 37, 47 verwendet wird, da dort das Ventil geöffnet wird, wenn am Hochdruckeingang 92 Hochdruck herrscht. Dieser Hochdruck würde sich ohne das Rückschlagventil 102 zumindest teilweise in den Spüleinlass 100 entladen und zu einem Rückfluss in den Spüleinlass 100 führen. Dies verhindert das Rückschlagventil 102 und ermöglicht somit einen sauberen Druckablass über den Niederdruckausgang 95. Der Niederdruckausgang 95 kann in diesem Fall auch ein Hochdruckausgang 95 sein. Beispielsweise ist der Niederdruckausgang 95 im Falle des Druckablassventils 27 mit einem Ablauf 29 verbunden. Im Falle des Bedruckungsventils 37 ist der Hochdruckausgang 95 jedoch mit dem Bedruckungseingang 35 der Schleusenkammer 21 verbunden, um diese mit Hochdruck zu beaufschlagen.The needle valve according to Fig. 19a-b also has a flushing inlet 100 through which the opened needle valve can be flushed, flushing liquid, ie water or water with cleaning additives, being able to flow out via the low-pressure outlet 95 . Through this flow of flushing liquid, in particular the valve seat 98 and the closing surface 96 can be freed from abrasive residues in order to ensure clean closing with as little material wear as possible. The needle valve can preferably be flushed shortly before the refill valve 19 closes. Figure 19b 12 shows a needle valve with a check valve 102 at the flushing inlet 100. The check valve 102 prevents backflow into the flushing inlet 100 and only allows flushing liquid to flow in the direction of the needle valve. This makes sense when the needle valve is used, for example, as one or more of the shut-off valves 15, 27, 37, 47, since the valve is opened there when high pressure is present at the high-pressure inlet 92 reigns. Without the check valve 102 , this high pressure would at least partially discharge into the scavenging inlet 100 and lead to a backflow into the scavenging inlet 100 . The check valve 102 prevents this and thus enables a clean pressure release via the low-pressure outlet 95. The low-pressure outlet 95 can also be a high-pressure outlet 95 in this case. For example, in the case of the pressure relief valve 27 , the low-pressure outlet 95 is connected to an outlet 29 . In the case of the pressurization valve 37, however, the high-pressure outlet 95 is connected to the pressurization inlet 35 of the lock chamber 21 in order to subject it to high pressure.

Vorzugsweise sind die Nadelventile pneumatisch über einen Anpressteller (nicht gezeigt) betrieben. Um dem auf die Nadelspitze in Form der konischen Schließfläche 96 wirkenden Hochdruck entgegenzuwirken, kann ein Luftdruck auf den sehr viel größeren Anpressteller gegeben werden, sodass mit wenigen bar Luftdruck das Nadelventil geschlossen und gegen einen Hochdruck von 1.500 bar und mehr dicht gehalten werden kann.The needle valves are preferably operated pneumatically via a pressure plate (not shown). In order to counteract the high pressure acting on the tip of the needle in the form of the conical closing surface 96, air pressure can be applied to the much larger pressure plate so that the needle valve can be closed with a few bar of air pressure and kept tight against a high pressure of 1,500 bar and more.

Die nummerierten Bezeichnungen der Bauteile oder Bewegungsrichtungen als "erste", "zweite", "dritte" usw. sind hierin rein willkürlich zur Unterscheidung der Bauteile oder Bewegungsrichtungen untereinander gewählt und können beliebig anders gewählt werden. Es ist damit kein Bedeutungsrang verbunden.The numbered designations of the components or directions of movement as "first", "second", "third", etc. are chosen herein purely arbitrarily to distinguish the components or directions of movement from one another and can be chosen arbitrarily differently. There is no rank associated with it.

BezugszeichenlisteReference List

1 -1 -
Wasser-Abrasiv-Suspensions-SchneidanlageWater-abrasive suspension cutting system
3 -3 -
Hochdruckquellehigh pressure source
5 -5 -
Hochdruckleitunghigh pressure line
7 -7 -
Austrittsdüseoutlet nozzle
9 -9 -
Schneidstrahlcutting jet
11 -11 -
Druckbehälterpressure vessel
13 -13 -
Wasser-Abrasivmittel-SuspensionWater abrasive suspension
15 -15 -
Absperrventilshut-off valve
17 -17 -
Drosselthrottle
19 -19 -
Nachfüllventilrefill valve
21 -21 -
Schleusenkammerlock chamber
23 -23 -
Befüllventilfilling valve
25 -25 -
Nachfülltrichterrefill funnel
27 -27 -
Druckablassventilpressure relief valve
29 -29 -
Ablaufprocess
31 -31 -
Pumpepump
33 -33 -
Pumpenabsperrventilpump shut-off valve
35 -35 -
Bedruckungseingangprinting input
37 -37 -
Bedruckungsventilpressure valve
39 -39 -
Druckspeicheraccumulator
41 -41 -
Drosselthrottle
42 -42 -
Drosselthrottle
43 -43 -
Druckspeicherventilaccumulator valve
45 -45 -
Förderhilfefunding aid
47 -47 -
FörderhilfeabsperrventilConveyor Aid Shutoff Valve
49 -49 -
Ventileingangvalve inlet
51 -51 -
Ventilausgangvalve outlet
53 -53 -
Druckeinlasspressure inlet
55 -55 -
Spülquellepurge source
57 -57 -
erstes Spülventilfirst flush valve
59 -59 -
zweites Spülventil bzw. Spülauslassventilsecond purge valve or purge outlet valve
61 -61 -
drittes Spülventilthird flush valve
63 -63 -
Spülauslasspurge outlet
65 -65 -
Ablaufprocess
66 -66 -
Spüleinlassflush inlet
67 -67 -
Ventilkörpervalve body
68 -68 -
Entnahmestellesampling point
69 -69 -
Durchbrechungbreakthrough
70 -70 -
Abrasivmittelleitungabrasive line
71 -71 -
Ventilraumvalve space
72 -72 -
Füllstandssensorlevel sensor
73 -73 -
eingangsseitiger Ventilsitzupstream valve seat
74 -74 -
Füllstandssensorlevel sensor
75 -75 -
ausgangsseitiger Ventilsitzdownstream valve seat
76 -76 -
Füllstandssensorlevel sensor
77 -77 -
Angriffsflächenattack surfaces
78 -78 -
Vorladebehälterpre-charge container
80 -80 -
Pumpepump
82 -82 -
Überlaufoverflow
84 -84 -
FörderschneckeAuger
85 -85 -
Förderbandconveyor belt
86 -86 -
Servomotorwelleservo motor shaft
88 -88 -
Hebellever
90 -90 -
Werkzeugöffnungtool opening
92 -92 -
Hochdruckeinganghigh pressure inlet
94 -94 -
Nadelneedle
95 -95 -
Niederdruckausgang/HochdruckausgangLow pressure outlet/high pressure outlet
96 -96 -
konische Schließflächeconical closing surface
98 -98 -
Ventilsitzvalve seat
100 -100 -
Spüleinlassflush inlet
102 -102 -
Rückschlagventilcheck valve
301 -301 -
Bereitstellen von Wasser unter hohem Druck in der HochdruckleitungProviding water under high pressure in the high-pressure line
303 -303 -
Bereitstellen einer unter Druck stehenden Abrasivmittelsuspension in dem Druckbehälterproviding a pressurized abrasive suspension in the pressure vessel
305 -305 -
Schneiden eines Materials mittels eines HochdruckstrahlsCutting a material using a high-pressure jet
307 -307 -
Befüllen einer unbedruckten Schleusenkammer mit Abrasivmittel oder einer Wasser-Abrasivmittel-SuspensionFilling an unpressurized lock chamber with abrasive or a water-abrasive suspension
308 -308 -
Absperren der Pumpe von der SchleusenkammerShut off the pump from the lock chamber
309 -309 -
Bedrucken der Schleusenkammer durch Druckentladen des DruckspeichersPressurizing the lock chamber by discharging the pressure accumulator
311 -311 -
Nachfüllen des Druckbehälters mit AbrasivmittelRefilling the pressure vessel with abrasive
313 -313 -
Druckbeladen des DruckspeichersPressure loading of the pressure accumulator
315 -315 -
Bedrucken der Schleusenkammer über die Drossel aus der HochdruckleitungPressurizing the sluice chamber via the throttle from the high-pressure line
A -A -
erstes Zeitfensterfirst time window
B -B -
zweites Zeitfenstersecond time window
R -R -
Drehachseaxis of rotation
D -D -
Durchflussrichtungflow direction
F1 -F1 -
Füllstandskegellevel cone
F2 -F2 -
Füllstandskegellevel cone
Fmax -Fmax -
maximaler Füllstandskegelmaximum level cone
Fmin -fmin -
minimaler Füllstandskegelminimum level cone

Claims (16)

  1. A water-abrasive suspension cutting facility (1), with
    - a high-pressure source (3) for providing (301) water at a high pressure,
    - a high-pressure conduit (5) which is connected to the high-pressure source (3), and
    - a pressure tank (11) for providing (303) an abrasive agent suspension (13) which is at a high pressure, characterised in that
    the pressure tank (11) is fluid-connected to the high-pressure conduit (5) via a regulatable throttle (17), wherein the throttle (17) is arranged at the entry side of the pressure tank (11) and is configured to regulate the feed flow into the pressure tank (11) from the high-pressure conduit (5) in dependence on at least one control variable.
  2. A water-abrasive suspension cutting facility (1) according to claim 1, wherein a shut-off valve (15) is arranged upstream or downstream of the throttle (17).
  3. A water-abrasive suspension cutting facility (1) according to claim 2, wherein the shut-off valve (15) is designed to shut off the pressure tank (11) from the high-pressure conduit (5) in dependence on at least one sensor signal.
  4. A water-abrasive suspension cutting facility (1) according to one of the preceding claims, wherein the at least one control variable comprises a sensor signal and/or an operating parameter of the high-pressure source (3).
  5. A water-abrasive suspension cutting facility (1) according to one of the preceding claims, wherein the at least one control variable comprises an abrasive agent flow out of the pressure tank (11) or a parameter which is characteristic of an abrasive agent flow out of the pressure tank (11).
  6. A water-abrasive suspension cutting facility (1) according to one of the preceding claims, with a first filling level sensor (72) for signalising at least one first filling level (F1) of abrasive agent in the pressure tank (11), wherein the at least one control variable comprises a temporal change of the first filling level (F1).
  7. A water-abrasive suspension cutting facility (1) according to one of the preceding claims, with a first filling level sensor (72) for the signalisation of at least a first filling level (F1) of abrasive agent in the pressure tank (11) and with a second filling level sensor (74) for the signalisation of at least a second filling level (F2) of abrasive agent in the pressure tank (11), wherein the at least one control variable can comprise a time difference between the first filling level (F1) and the second filling level (F2).
  8. A water-abrasive suspension cutting facility (1) according to one of the preceding claims, with an abrasive agent flow sensor (79) which is arranged at the exit side of the pressure tank (11), wherein the at least one control variable comprises an abrasive agent flow which is signalised by the abrasive agent flow sensor (79).
  9. A water-abrasive suspension cutting facility (1) according to one of the preceding claims, wherein the at least one control variable comprises a speed and/or a power consumption or electricity consumption of the high-pressure source (3).
  10. A method for the water-abrasive suspension cutting with the steps:
    - providing (301) water at a high pressure in a high-pressure conduit (5) by way of a high-pressure source (3),
    - providing (303) an abrasive agent suspension (13) which is at a high pressure in a pressure tank (11), and
    - cutting (305) a material by way of a high-pressure jet (9) which at least partly comprises the abrasive agent suspension, amid the removal of the abrasive agent suspension (13) out of the pressure tank (11),
    characterised in that the method also comprises the step of:
    - regulating a feed flow into the pressure tank (11) out of the high-pressure conduit (5) by way a regulatable throttle (17) which is fluid-connected to the pressure tank (11) at the entry side, in dependence on at least one control variable.
  11. A method according to claim 10, wherein the regulating is effected in dependence on a sensor signal and/or an operating parameter of the high-pressure source (3).
  12. A method according to claim 11 or 12, wherein the regulating is effected in dependence on an abrasive agent flow out of the pressure tank (11).
  13. A method according to one of the claims 10 to 12, wherein the regulating is effected in dependence on a temporal change of a first filling level (F1) of abrasive agent in the pressure tank (11), wherein the first filling level (F1) is signalised by a first filling level sensor (72).
  14. A method according to one of the claims 10 to 13, wherein the regulating is effected in dependence on a time difference between a first filling level (F1) of abrasive agent in the pressure tank (11) and a second filling level (F2) of abrasive agent in the pressure tank (11), wherein the first filling level (F1) is signalised by a first filling level sensor (72) and the second filling level (F2) by a second filling level sensor (74).
  15. A method according to one of the claims 10 to 14, wherein the regulating is effected in dependence on an abrasive agent flow, wherein the abrasive agent flow is signalised by an abrasive agent flow sensor (79) which is arranged at the exit side of the pressure tank (11).
  16. A method according to one of the claims 10 to 15, wherein the regulating is effected in dependence on a speed or power consumption or electricity consumption of the high-pressure source (3).
EP17716813.5A 2017-03-31 2017-03-31 Water abrasive suspension cutting system and method for water abrasive suspension cutting Active EP3600765B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL17716813.5T PL3600765T3 (en) 2017-03-31 2017-03-31 Water abrasive suspension cutting system and method for water abrasive suspension cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2017/057786 WO2018177559A1 (en) 2017-03-31 2017-03-31 Water abrasive suspension cutting system and method for water abrasive suspension cutting

Publications (2)

Publication Number Publication Date
EP3600765A1 EP3600765A1 (en) 2020-02-05
EP3600765B1 true EP3600765B1 (en) 2022-06-08

Family

ID=58536941

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17716813.5A Active EP3600765B1 (en) 2017-03-31 2017-03-31 Water abrasive suspension cutting system and method for water abrasive suspension cutting

Country Status (11)

Country Link
US (1) US11511392B2 (en)
EP (1) EP3600765B1 (en)
JP (1) JP7050806B2 (en)
KR (1) KR102450780B1 (en)
CN (1) CN110709209B (en)
AU (1) AU2017407669A1 (en)
BR (1) BR112019019435A2 (en)
CA (1) CA3058494C (en)
MX (1) MX2019011565A (en)
PL (1) PL3600765T3 (en)
WO (1) WO2018177559A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11577366B2 (en) 2016-12-12 2023-02-14 Omax Corporation Recirculation of wet abrasive material in abrasive waterjet systems and related technology
AU2017407668A1 (en) * 2017-03-31 2019-10-17 Ant Applied New Technologies Ag Water-abrasive-suspension cutting system and method for water-abrasive-suspension cutting
CN109664204A (en) * 2019-01-02 2019-04-23 中国矿业大学 A kind of super-pressure the Premixed Abrasive Water Jet intelligence continuous feeding system
CN110000929B (en) * 2019-04-28 2024-05-10 南京大地水刀股份有限公司 Ultra-high power and ultra-high voltage system
EP4004672A1 (en) * 2019-07-29 2022-06-01 Omax Corporation Measuring abrasive flow rates in a conduit
IT202000006010A1 (en) * 2020-03-20 2021-09-20 Milano Politecnico Abrasive water jet cutting machine

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753346B2 (en) 1986-07-01 1995-06-07 川崎製鉄株式会社 Abrasive replenishment method in descaling device
CH674096A5 (en) * 1988-01-19 1990-04-30 Lonza Ag
DK0514945T3 (en) 1991-05-23 1995-04-10 Pro Aqua Geraete Gmbh Sand / water metering unit
DE9106342U1 (en) 1991-05-23 1991-10-24 Abrex Oberflächentechnik GmbH, 2330 Windeby Wet sandblaster
US5722801A (en) 1995-12-21 1998-03-03 The Young Industries, Inc. Material conveying system with flow rate control
GB9719550D0 (en) 1997-09-16 1997-11-19 Miller Donald S Fluid abrasive jets for machining
US6431950B1 (en) * 2000-10-18 2002-08-13 Micron Technology, Inc. Point-of-use fluid regulating system for use in the chemical-mechanical planarization of semiconductor wafers
DE50006171D1 (en) 2000-10-20 2004-05-27 Ant Applied New Technologies A Method for filling a pressure vessel and device for generating a jet of a suspension
EP1208944A1 (en) 2000-11-24 2002-05-29 ANT Applied New Technologies AG Method for filling pressurised container and device for producing a jet of slurry
JP4700437B2 (en) * 2005-08-15 2011-06-15 株式会社ディスコ High-pressure liquid jet cutting device
JP5261098B2 (en) 2008-09-18 2013-08-14 株式会社ディスコ Water jet processing equipment
JP2010184318A (en) 2009-02-12 2010-08-26 Disco Abrasive Syst Ltd Water jet processing device
ES2769552T3 (en) * 2010-09-13 2020-06-26 Quantum Servo Pumping Tech Pty Ltd Ultra high pressure pump
WO2013037405A1 (en) * 2011-09-14 2013-03-21 Ant Applied New Technologies Ag Abrasive water jet cutting system
CN202271282U (en) 2011-09-30 2012-06-13 安徽理工大学 Abrasive water-jet cleaning and de-rusting equipment with adjustable slurry mixing concentration
CA2805461C (en) * 2012-02-13 2015-05-26 Marco Group International, Inc. Blast machine system controller
EP2814637B1 (en) 2012-02-15 2015-11-25 ANT Applied New Technologies AG Water abrasive suspension cutting system
GB201204253D0 (en) 2012-03-11 2012-04-25 Miller Donald S Abrasive suspension feed system
CN202668366U (en) 2012-06-07 2013-01-16 上海金箭水射流设备制造有限公司 Continuous sand feeding device
US9586306B2 (en) * 2012-08-13 2017-03-07 Omax Corporation Method and apparatus for monitoring particle laden pneumatic abrasive flow in an abrasive fluid jet cutting system
CN103100984B (en) 2013-03-11 2015-03-04 重庆大学 Abrasive automatic feeding device and using method
CN103245397A (en) * 2013-04-10 2013-08-14 徐州浩通水射流科技有限公司 Device for monitoring abrasive amount in high-pressure tank online by utilizing ultrasonic
CN103302599A (en) 2013-06-28 2013-09-18 竞陆电子(昆山)有限公司 Water supplementing structure of sand blast line water return system
US11260503B2 (en) 2013-12-20 2022-03-01 Flow International Corporation Abrasive slurry delivery systems and methods
MX2016012954A (en) 2014-04-04 2016-12-07 Ant Applied New Tech Ag Water-abrasive-suspension cutting system.
DE102015000632A1 (en) * 2015-01-22 2016-07-28 Sentenso Gmbh Control of the abrasive throughput of a blasting machine
CN205199609U (en) 2015-11-23 2016-05-04 四川亿欣新材料有限公司 Found abrasive material layer stabilising arrangement
CN105619265A (en) * 2016-01-27 2016-06-01 北京雷蒙赛博机电技术有限公司 Material supply automatic switching system used for pre-mixed grinding material water jet equipment
CN105563349A (en) * 2016-01-27 2016-05-11 北京雷蒙赛博机电技术有限公司 Abrasive concentration control system for front mixed abrasive water jet equipment
CN205968670U (en) 2016-07-22 2017-02-22 东莞市联发铸造有限公司 Sand sprayer

Also Published As

Publication number Publication date
PL3600765T3 (en) 2022-11-14
CA3058494C (en) 2024-02-13
CA3058494A1 (en) 2018-10-04
CN110709209B (en) 2022-07-19
BR112019019435A2 (en) 2020-04-14
AU2017407669A1 (en) 2019-10-17
CN110709209A (en) 2020-01-17
MX2019011565A (en) 2019-11-18
JP7050806B2 (en) 2022-04-08
JP2020515421A (en) 2020-05-28
WO2018177559A1 (en) 2018-10-04
KR102450780B1 (en) 2022-10-04
US11511392B2 (en) 2022-11-29
EP3600765A1 (en) 2020-02-05
US20210107113A1 (en) 2021-04-15
KR20190135513A (en) 2019-12-06

Similar Documents

Publication Publication Date Title
EP3600765B1 (en) Water abrasive suspension cutting system and method for water abrasive suspension cutting
EP3600766B1 (en) Water-abrasive-suspension cutting system
EP2531696B1 (en) Spray nozzle unit
AT507381B1 (en) SANDDING AND SEPARATING DEVICE
DE60212119T2 (en) ABRASIVE LIQUID RAY DEVICE
EP3615273A1 (en) Water-abrasive-suspension cutting system
EP3532245B1 (en) Device for abrasive fluid-jet cutting
EP3768563B1 (en) Device for spreading granulate
EP2463057B1 (en) Device for blast-machining or abrasive blasting objects
EP3600767B1 (en) Water-abrasive-suspension cutting system and method for water-abrasive-suspension cutting
EP2123402B1 (en) Dry ice jet system
DE2701038A1 (en) SHOOTING DEVICE FOR LOCKELESS LOOMS
EP1034891B1 (en) Dispositif et procédé de nettoyage
CH705773B1 (en) A thrust centrifuge and method for operating a thrust centrifuge.
EP2785494B1 (en) Method for wet-blasting workpieces
EP3600768A1 (en) Water-abrasive-suspension cutting system and method for water-abrasive-suspension cutting
EP1161293B1 (en) Cleaning device
DE102006032184B4 (en) Device for conveying powdered fluidized media
WO2013079488A2 (en) Method, abrasives and apparatus for wet blasting
DE102012003838B4 (en) Spray device with check valve
DE19720528A1 (en) Liquid and powder particle mixing apparatus
DE202011052285U1 (en) Apparatus for mixing abrasive with a stream of air
DE102016106630A1 (en) Method and system for metering abrasive
WO2020126420A1 (en) Method and device for the erosive machining of a workpiece or a workpiece surface using a high-pressure fluid jet
WO2011107082A1 (en) Device and method for producing high-pressure pulses

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190926

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211221

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1496591

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220615

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017013285

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220908

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220909

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221010

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221008

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017013285

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

26N No opposition filed

Effective date: 20230310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230402

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240320

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240318

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240319

Year of fee payment: 8

Ref country code: CZ

Payment date: 20240318

Year of fee payment: 8

Ref country code: GB

Payment date: 20240322

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240321

Year of fee payment: 8

Ref country code: PL

Payment date: 20240321

Year of fee payment: 8

Ref country code: IT

Payment date: 20240329

Year of fee payment: 8

Ref country code: FR

Payment date: 20240320

Year of fee payment: 8