EP3597925B1 - Pompe de refroidissement réglable - Google Patents

Pompe de refroidissement réglable Download PDF

Info

Publication number
EP3597925B1
EP3597925B1 EP18382968.8A EP18382968A EP3597925B1 EP 3597925 B1 EP3597925 B1 EP 3597925B1 EP 18382968 A EP18382968 A EP 18382968A EP 3597925 B1 EP3597925 B1 EP 3597925B1
Authority
EP
European Patent Office
Prior art keywords
shutter
coolant pump
adjustable
cavity
pump according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18382968.8A
Other languages
German (de)
English (en)
Other versions
EP3597925A1 (fr
Inventor
Carlos PERIBÁÑEZ SUBIRÓN
Irene López Bosque
Fernando Miguel Gracia
Joaquín Roche Royo
José Luis Pomar Miguel
Carlos Lozano Beltrán
David Sebastián Solano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airtex Products SA
Original Assignee
Airtex Products SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP18382529.8A external-priority patent/EP3431768B1/fr
Application filed by Airtex Products SA filed Critical Airtex Products SA
Publication of EP3597925A1 publication Critical patent/EP3597925A1/fr
Application granted granted Critical
Publication of EP3597925B1 publication Critical patent/EP3597925B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0027Varying behaviour or the very pump
    • F04D15/0038Varying behaviour or the very pump by varying the effective cross-sectional area of flow through the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/161Controlling of coolant flow the coolant being liquid by thermostatic control by bypassing pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/12Shaft sealings using sealing-rings
    • F04D29/126Shaft sealings using sealing-rings especially adapted for liquid pumps
    • F04D29/128Shaft sealings using sealing-rings especially adapted for liquid pumps with special means for adducting cooling or sealing fluid

Definitions

  • the present disclosure relates to coolant pumps, particularly adjustable coolant pumps.
  • the present disclosure further relates to methods of operation of adjustable coolant pumps.
  • the aforementioned application presents a controllable coolant pump where the adjustment element is mechanically activated by means of a vacuum. This negative pressure is applied to an annular membrane which is deformed due to the pressure gradient respect to the atmospheric pressure at the other side of the annular membrane.
  • the membrane pushes a support element connected, through several rods, to the adjustment element, covering the output of the impeller of the pump, which never stops spinning. Therefore the hydraulic resistance of the circuit is increased due to the adjustment element, and this is reflected in a reduction of the flow rate.
  • the static sealing elements have to be adjusted on the basis of the position of the end of stroke embodied by a machined portion of the engine block.
  • the position of the end of stroke is thus defined by the machined portion and is influenced by a long chain of tolerances, i.e. tolerances through a long chain of parts. Adaptations of the construction to other applications are thus complicated.
  • the flexible material of the membranes may be prone to suffer from wear which may cause inaccuracy of the function of regulation of the shutter and even a failure of the membrane.
  • some examples of pumps comprise a plate positioned between the impeller and the shutter or adjustment element to avoid the risk of interference.
  • this plate generates a bulky and complex configuration of the adjustable coolant pump.
  • WO2017076648A1 discloses a method for controlling a mechanically controllable coolant pump for an internal combustion engine.
  • Document DE102013111939B3 discloses a coolant pump with hydraulically actuated shutter, with integrated auxiliary pump and electromagnetic valve for the provision and regulation of the control pressure.
  • an adjustable coolant pump according to claim 1 is provided.
  • a gap between the annular wall of the housing and the shutter may be eliminated.
  • a backflow of the coolant between the shutter and the housing is avoided or at least reduced, even when the shutter is displaced along the axis of rotation. Therefore, the adjustment capability of the shutter is not reduced.
  • the adjustment sealing arrangement may provide a dynamic sealing between the shutter and the housing along the stroke of the shutter.
  • the sealing may be achieved in the annular wall which may be substantially parallel to the direction of a relative motion between the annular wall and the shutter.
  • a sealing function of the adjustment sealing arrangement may be independent of the aforementioned clearances and tolerances of the manufacturing and assembly of the components. Therefore, the sealing function of the adjustment sealing arrangement may be achieved and maintained regardless of the clearances and tolerances between the shutter and the housing.
  • the sealing function of the adjustment sealing arrangement may be present regardless of the relative position between the shutter and the housing.
  • the sealing function may be also achieved in the end points of the stroke of the shutter.
  • the housing may further comprise at least one end-stop element attached to a portion of the housing to define an end of stroke for the shutter when covering, at least partially, the outflow region, wherein the end-stop element is attached to the bottom face.
  • the end-stop element may provide a perfectly defined and fixed end-stop position for the adjustment element or shutter, when covering, at least partially the impeller.
  • the adjustable coolant pump comprising the end-stop element may avoid any possible contact of the shutter and the impeller, for instance, when the impeller may spin and at least a portion of the outflow region may be covered.
  • the adjustable coolant pump according to this example may absorb at the same time the clearances and tolerances of the manufacturing and assembly of the components in so way that regulation function may not be affected.
  • the adjustable coolant pump according to this example does not comprise any plate between the impeller and the shutter, so a simple, compact and reliable configuration may be achieved.
  • the adjustable coolant pump may further comprise an annular piston displaceable in axial direction, an annular groove inside of which the annular piston is displaceable, wherein the annular groove is divided in at least a first and a second pressure chamber by the annular piston, wherein the annular piston is mechanically connected to the shutter such that a displacement of the annular piston in axial direction is transmitted to the shutter.
  • the adjustable coolant pump does not comprise any membrane but an annular piston displaceable inside the annular groove. Therefore, an accurate and predictable displacement of the piston may be achieved.
  • a reliable function of regulation of the shutter may be obtained.
  • the risk of failure and wear related to the membranes may be avoided.
  • the method of this aspect may provide the same advantages as the adjustable coolant pump of the first aspect.
  • it may further comprise stopping the displacement of the shutter at a predefined end of stroke by means of the end-stop element, when the shutter covers, at least partially, the outflow region.
  • a method with an accurate adjustment function of the shutter may be achieved.
  • the shutter may be displaced until a predefined end of stroke by means of the end-stop element.
  • a coolant is to be understood as a fluid such as a liquid used to remove heat.
  • dynamic sealing is meant a sealing provided at least between two surfaces and there is a relative motion between them.
  • static sealing is meant a sealing provided at least between two surfaces and there is no relative motion between them.
  • adjustable coolant pump 1 In the following some examples of an adjustable coolant pump 1 will be described. Although those examples may be related to an internal combustion engine, the adjustable coolant pump 1 could be related to any kind of engine or the like.
  • the adjustable coolant pump 1 may be used for conveying and circulating a coolant or coolants.
  • Figure 1 schematically shows a longitudinal cross section view of an adjustable coolant pump 1 according to an example when a regulation function is deactivated and figure 2 schematically shows a longitudinal cross section view of the adjustable coolant pump of the figure 1 when a regulation function is activated.
  • the pump 1 When the regulation function is deactivated, the pump 1 may be able to provide its flow rate of coolant. Conversely, when the regulation function is activated the pump 1 may be able to provide a percentage of its flow rate or even nothing.
  • the adjustable coolant pump 1 may be pneumatically actuated.
  • Figure 7 schematically shows a longitudinal cross section view of an adjustable coolant pump 1 according to a further example when a regulation function is deactivated and figure 8 schematically shows the adjustable coolant pump 1 of the figure 7 when a regulation function is activated.
  • An exemplary adjustable coolant pump 1 may comprise:
  • the ring seal 123 could be made from e.g. rubber or the like or from any suitable material available in the market such as metallic material.
  • the shaft seal 11 may be in fluid communication with the cavity 121, e.g. the shat seal 11 may be arranged so as to receive coolant from the cavity 121.
  • the shaft seal 11 is received, at least partially, in a seal region 130 of the housing 12, and the seal region is in fluid communication with the cavity 121.
  • the outflow region OR is in fluid communication with the cavity 121 (and the seal region 130 if present) through a shutter hole 23 provided in the shutter 2.
  • the sealing arrangement may be configured / adapted to prevent a flow of coolant, i.e. null or negligible, therethrough and from the cavity 121 when the pressure in the cavity is below a predetermined threshold.
  • the shaft seal 11 is in fluid communication with the cavity 121
  • the shat seal 11 may be arranged so as to receive coolant from the cavity 121.
  • the shaft seal 11 is received, at least partially, in a seal region 130 of the housing 12, and the seal region 130 is in fluid communication with the cavity 121.
  • the outflow region OR may be in fluid communication with the cavity 121 (and the seal region 130 if present) through the shutter hole 23 provided in the shutter 2.
  • the sealing arrangement may be configured / adapted to allow a flow F of coolant therethrough and from the cavity 121 when the pressure in the cavity is above the predetermined threshold, as illustrated in figure 5 . Details about that flow F will be provided later.
  • the ring seal 123 may comprise a flange 124 protruding from the rest of the ring seal 123 to contact the shutter 2 or the annular wall 122, the ring seal 123 may be deformable.
  • the ring seal 123 may be disposed about the axis of rotation AR.
  • the annular wall 12 may be integrally formed with the rest of the housing 12 or may be a separate part which can be attached to the rest of the housing 12.
  • the ring seal 123 is attached to the annular wall 122.
  • the ring seal 123 may be attached to the shutter 2, particularly in a sidewall of the cup-like shutter 2.
  • the ring seal 123 may be attached either to the shutter 2 or the annular wall 122, there may be a relative motion between the ring seal 123 and the annular wall 122 or the shutter 2.
  • the pump 1 may ensure that all the available force of regulation system may be used for sealing between shutter 2 and block engine (not illustrated), making it independent the sealing between shutter and housing from the chain of tolerances of axial motion and from the overall force realized by the regulation system.
  • Figure 3 schematically shows an enlarged detail A of an adjustment sealing arrangement of the adjustable coolant pump 1 of the figure 1 and figure 4 schematically shows an enlarged detail B of an adjustment sealing arrangement of the adjustable coolant pump 1 of the figure 2 .
  • annular recces 125 in the annular wall 122 where the ring seal 123 may be received. More particularly, the annular recess 125 is formed in an inner face of the annular wall 122, the inner face forming the cavity 121 where the shutter 2 may be housed. The inner face is facing the shutter 2.
  • the ring seal 123 may comprise a flange 124 or lip to contact the shutter 2.
  • the ring seal 123 may be an O-ring, "X" or squared cross-section shaped or the like.
  • the ring seal 123 may be manufactured from a resilient material.
  • the flange 124 may protrude from the rest of ring seal 123 to obtain a better contact with the shutter 2.
  • the flange 124 also protrudes from the inner wall of the annular wall 122.
  • the ring seal 123 may be configured so as to allow an empty space 126 or void defined in the annular recess 125 and covered at least partially by the flange 124.
  • the flange 124 may be received by the empty space 126 when it is bent due to the relative motion between the shutter 2 and the housing 12.
  • Details A and B, in figures 3 and 4 are related to examples of the adjustable coolant pump 1 wherein the flange 124 is disposed facing the outflow region OR.
  • the flange 124 may be disposed in any other direction, provided that a contact with the annular wall 122 and the shutter 2 can be achieved.
  • the adjustable coolant pump 1 may further comprise at least one end-stop element 3 attached to a portion of the housing 12 to define an end of stroke for the shutter 2 when covering, at least partially, the outflow region OR.
  • the end-stop element 3 may also act as a guide for the shutter 2 when displacing along the axis of rotation AR.
  • the pump 1 illustrated in figures 7 and 8 may comprise three end-stop elements 3 disposed around and parallel to the axis of rotation AR at 120° the one to the other.
  • the end-stop element may be attached to the bottom face 16.
  • the axis of rotation AR may match or at least be parallel to the longitudinal axis of the shaft 13, according to one example.
  • the housing 12 may also comprise side walls to join the top face 15 and the bottom face 16 such that the housing 12 may comprise a cylinder-shaped body.
  • the end-stop element 3 may comprise a shank 31 fixed at one end to the portion of the housing 12 and may further comprise a widening 32 at the other end to stop the shutter 2 when covering, at least partially, the outflow region OR.
  • the shank 31 may have a predefined length such that this predefined length of the shank 31 may correspond to a predefined end of stroke for the shutter 2 when covering, at least partially, the outflow region OR.
  • the predefined length of the shank 31 may be chosen depending on the expected reduction percentage of flow rate and therefore on the amount of coverage.
  • the end of stroke of the shutter 2 may be located at different positions related to the impeller 14 (and the housing 12).
  • the reduction percentage of the flow rate may be easily adjusted by adopting a different length of the shank 31. For instance, a shank 31 with a short length (shorter stroke of shutter 2) may achieve less reduction percentage than a shank 31 with longer length (longer stroke of shutter 2).
  • the end-stop element 3 may comprise a bolt; alternatively the end-stop element 3 may be a rivet or any analogous element. This bolt or rivet may be fixed to a corresponding orifice in the bottom face 16.
  • the adjustable coolant pump 1 may further comprise:
  • Both the annular piston 4 and the annular groove 5 may be disposed around the shaft 13 or the axis of rotation AR thereof, as depicted in figures 1-2 .
  • the adjustable coolant pump 1 may further comprise at least one rod 6 to mechanically connect the annular piston 4 to the shutter 2.
  • the rod 6 may comprise two notches 61, 62 respectively at its ends to allow a fixation respectively to the annular piston 4 and the shutter 2. These notches 61, 62 may match a corresponding hole 22 in the shutter 2 or slot 42 in the annular piston 4. Alternatively, the relative fixation of the rod 6 to the annular piston 4 and the shutter 2 may be achieved by welding, bonding or the like.
  • rod 6 has been depicted as a single element, alternatively it may be envisaged as a plurality of parts that allow a mechanical connection between the shutter 2 and the piston 4.
  • the rod 6 may slidably move along a rod bearing 63 to facilitate the transmission of movement from annular piston 4 and the shutter 2.
  • This rod bearing 63 may be positioned between the rod 6 and the housing 12.
  • Some rod seals may be disposed for preventing the coolant from going from the impeller area to the annular groove 5.
  • Figures 9A-9B schematically show enlarged details of connections between the rod 6 and respectively the annular piston 4 and the shutter 2 when a regulation function is deactivated. Meanwhile, figures 10A-10B schematically show enlarged details of those connections between the rod 6 and respectively the annular piston 4 and the shutter 2 when the regulation function is activated.
  • notches 61, 22 may bring the presence of some clearances C1, C2 in the area of connection of those notches 61, 62 to hole 22 and slot 42. These clearances may facilitate the assembling of the pump 1. Such clearances C1, C2 may vary depending on the status of the pump 1 as will be explained later.
  • the first pressure chamber 51 may comprise an opening 55 to allow atmospheric air entering the first pressure chamber 51 and the second pressure chamber 52 may be associated with a vacuum source (not illustrated).
  • the second pressure chamber 52 may comprise a vacuum connection 54 to allow the fluid connection to the vacuum source.
  • the piston 4 may comprise a piston seal 41 for sealing the first 51 and the second 52 pressure chambers each other.
  • the piston seal 41 may be a lip seal or the like which may contact the walls of the annular groove 4.
  • the adjustable coolant pump 1 may further comprise a resilient element 7 to push the annular piston 41 in axial direction and away from the impeller 14, wherein the resilient element 7 may be located in a corresponding accommodation 53 opened out to the annular groove 5.
  • a plurality of resilient elements 7 such as three, around and parallel to the axis of rotation AR at 120° the one to the other.
  • the resilient element 7 may comprise a spring, for instance.
  • the shutter 2 may comprise at least one bore 21 to slidably receive the corresponding end-stop element 3.
  • the number of bores 21 may be the same as the number of end-stop elements 3.
  • the shank 31 with a predefined length it may be possible to easily adjust the reduction percentage above mentioned without adjusting the output delivered by the power source which drives the shaft 13, and/or without adjusting the vacuum source associated to the second pressure chamber 52.
  • Figure 6 is a flow chart of an exemplary method of operation of an adjustable coolant pump. Although figure 6 shows a specific sequence, it should be understood that other sequences may be followed not deviating from the scope of the present disclosure.
  • the method of operation 100 may be related to the herein disclosed examples of adjustable coolant pump 1, for instance those examples which may comprise:
  • the method 100 may comprise:
  • a sealing may be achieved between the shutter 2 and the housing 12, more particularly, between the shutter 2 and the annular wall 122. This way, a sealing function of the adjustment sealing arrangement may be maintained not only at the end points of the stroke of the shutter 2 but also along said stroke.
  • the flange 124 may be bent or deformed when the shutter 2 is displaced along the axis of rotation AR so as to ensure the sealing along the whole shutter stroke.
  • the method 100 may comprise:
  • the sealing arrangement may prevent a flow of coolant to pass therethrough i.e. the sealing arrangement may block the coolant inside the cavity 121.
  • the pressure threshold may depend on features of the ring seal 123 such as material, shape or even the presence of accessories e.g. a flange 124, and so the pressure threshold may be predefined.
  • a flow of coolant may be allowed to pass between the shutter 2 and the annular wall 122 towards a portion of the volute 140 which is not under the influence of the shutter 2 when the shutter 2 is activated.
  • This portion of the volute may be in fluid communication with the rest of the cooling system of the engine block (not illustrated) even if the shutter 2 is activated.
  • the flow F allowed by the sealing arrangement may run through the cooling system and cool some parts of the engine which may become overheated. This may occur e.g. when the engine is revved above a predefined number of rpm's.
  • Figure 5 shows a path of a flow F of coolant from the impeller, passing through the shutter hole 23, the cavity 121 and seal region 130, between the shutter 2 and the annular wall and towards the portion of volute 140.
  • a clearance C3 between the flange 124 and the shutter 2 has been magnified for the sake of clarity.
  • the flow F between the shutter 2 and the annular wall 122 may allow to renew coolant at the cavity 121 (and the seal region 130 if present), and thus to cool the shaft seal 11.
  • the sealing arrangement may allow the flow F between the shutter 2 and the annular wall 122 towards the portion of volute 140 by a further deformation of the ring seal 123.
  • the flange 124 may be further bent (in a direction of arrow BD of figure 5 towards the annular wall 122) by the coolant which has been pressurized in the cavity 121 (and seal region 130 if present) when the engine is revved above a predetermined number of rpm. Fluid closed inside the cavity 121 (and seal region 130 if present) may be driven and bend the flange 124 allowing a flow of coolant from cavity 121 to the portion of the volute 140 through a path defined by the shutter 2 and the annular wall 122.
  • the whole ring seal 123 may be further bent to allow the pass the coolant.
  • the portion of the volute 140 may be at lower pressure relative to the cavity 121 because the shutter 2 may act as a barrier to the coolant driven by the impeller.
  • the sealing arrangement may have a dual behaviour: preventing the flow and/or allowing a relative little amount of coolant to pass therethrough towards the portion of the volute 140 which is not under the influence of the shutter 2, depending on the pressure built-up in the cavity.
  • the sealing arrangement may prevent the flow through the whole range of rpm's of the engine.
  • the ring seal 123 could be made from such a material that it does not undergo any deformations in spite of the built-up pressure, e.g. metal or the like.
  • the method 100 may further comprise stopping the displacement of the shutter at a predefined end of stroke by means of the end-stop element 3, when the shutter 2 covers, at least partially, the outflow region OR.
  • the shutter 2 has reached the end of stroke which may be determined by the widening 32 of the end-stop element 3.
  • the sum of end-areas of each end-stop element 3 may define an activation stroke limit and may provide a planar contact surface for the shutter 2, particularly for the face of the shutter opposite to the annular piston 4.
  • the method 100 related, for instance, to those herein disclosed examples in which the adjustable coolant pump 1 may further comprise:
  • the method 100 may further comprise: reducing the pressure of the second pressure chamber 52 to at least one predefined level lower than the pressure of the first pressure chamber 1 for displacing the annular piston 4 in axial direction to the impeller 14 and covering, at least partially, the outflow region OR of the impeller 14 by the shutter 2.
  • Reducing the pressure of the second pressure chamber 52 may comprise actuating a vacuum source (not illustrated) associated to the second pressure chamber 52 and allowing atmospheric air entering the first pressure chamber 51 through an opening 55 thereof.
  • actuating the vacuum source for instance, a gas may be removed from the second pressure chamber 52. Meanwhile, the opening 55 may allow atmospheric air entering the first pressure chamber 51.
  • the annular piston 4 may move in axial direction towards the impeller 14, so the size (volume) of the second pressure chamber 52 may become smaller than the first pressure chamber 51.
  • the shutter 2 may be mechanically associated to the annular piston 4, the shutter 2 may describe a similar displacement.
  • the pressure inside the second pressure chamber 52 may be kept below the atmospheric pressure of the environment of the pump 1.
  • the regulation function may be deemed as not necessary it may be deactivated.
  • the vacuum source may be no longer activated.
  • the resilient elements 7 may displace the annular piston 4 away from the impeller 14 in axial direction.
  • the force generated by the springs 15 may be lower than the force created by the vacuum pressure of the vacuum source when the regulation function is activated so as to displace the shutter 2 towards the impeller 14 and at the same time this force may be sufficient as to return both annular piston 4 and shutter or adjusting element 2 when regulation function is deactivated.
  • the first pressure chamber 51 may become smaller than the second pressure chamber 52.
  • the face of the shutter opposite to the impeller 14 may contact the bottom face 16 which may act as deactivation stroke limit.
  • first 51 and the second 52 chambers may cause the displacement of the annular piston 4 in axial direction.
  • first pressure chamber may be fed with air directly taken from the environment of the pump (for instance atmospheric air) or a gas at a pressure higher than the gas inside the second pressure chamber 52 may be forced to enter the first chamber 51.
  • control unit may determine that a regulation of the flow-rate of the pump 1 may be activated.
  • the control unit may send a command to the vacuum source to remove a predefined quantity of fluid form the second pressure chamber 52. This way, the outflow region OR may be at least partially occluded.
  • an atmospheric pressure fluid such as ambient air
  • an atmospheric pressure fluid may enter the first pressure chamber 51 or an atmospheric pressure fluid may be forced to enter.
  • the force of the generated vacuum may be greater than the opposite force of the resilient elements 7 to displace the piston towards the impeller 14.
  • the control unit may determine that the regulation function may be no longer needed, it may send a command to the vacuum source to stop generating vacuum.
  • the atmospheric pressure fluid such as ambient air
  • the vacuum connection 54 may be in fluid communication with an atmospheric air intake (not illustrated).
  • the aperture/closure of the atmospheric air intake may be ruled by the control unit. This way, the difference of pressure between the first 51 and the second 52 chambers may no longer exist and both chambers 51, 52 may contain fluid at substantially the same pressure. Then resilient elements 7 may push the piston away from the impeller 14 in axial direction.
  • the clearances C1, C2 may vary depending on the status of the pump 1. For instance, in figures 3A-3B the function may be deactivated but in figures 10A-10B activated.
  • the size of the clearance C1, C2 may be the same in both cases but their distribution may vary like the size of the first and second pressure chambers 51, 52 by activation or deactivation of regulation.
  • clearance C1, C2 may be larger in the connection area disposed closer to the impeller 14. Conversely, when the regulation is activated (see figures 9A-9B ), clearance C1, C2 may be larger in the connection area disposed farther from the impeller 14.
  • the adjustable coolant pump 1 may be configured to carry out the method 100.

Claims (14)

  1. Une pompe à agent de refroidissement réglable (1) comprenant :
    un boîtier (2) ;
    un arbre (13) pour tourner autour d'un axe de rotation (AR) du boîtier ;
    une roue hélice (14) assemblée dans l'arbre ;
    un capot de fermeture (2) déplaçable le long de l'axe de rotation pour couvrir, au moins en partie, une région de sortie (OR) de la roue hélice de telle sorte qu'une quantité d'agent de refroidissement délivrée par la pompe est réglable ;
    dans lequel le boîtier comprend :
    une face supérieure (15) et une face inférieure (16) disposées essentiellement perpendiculairement à l'axe de rotation, la face inférieure étant prévue entre la face supérieure et le capot de fermeture ;
    une paroi annulaire (122) s'étendant à partir de la face inférieure dans la direction axiale de telle sorte qu'une cavité (121) pour recevoir le capot de fermeture est définie au moins par la paroi annulaire et la face inférieure ;
    dans laquelle la pompe à agent de refroidissement réglable comprend en outre :
    un agencement d'étanchéité de réglage prévu entre le capot de fermeture et la paroi annulaire, l'agencement d'étanchéité comprenant un joint torique (123) fixé soit au capot de fermeture soit à la paroi annulaire, de telle manière qu'une étanchéité dynamique entre le capot de fermeture et le boîtier est définie et
    un joint d'arbre (11) disposé autour de l'arbre, caractérisé en ce que le joint d'arbre est en communication fluidique avec la cavité ;
    dans lequel la région d'écoulement est en communication fluidique avec la cavité à travers un trou de capot de fermeture prévu dans le capot de fermeture et
    dans lequel l'agencement d'étanchéité permet un écoulement de liquide de refroidissement à travers celui-ci et à partir de la cavité lorsque la pression dans la cavité est supérieure à un seuil prédéterminé.
  2. La pompe à agent de refroidissement réglable selon la revendication 1,
    dans lequel l'agencement d'étanchéité empêche un écoulement d'agent de refroidissement à travers le trou du capot de fermeture et à partir de la cavité lorsque la pression dans la cavité est inférieure au seuil prédéterminé.
  3. La pompe à agent de refroidissement réglable selon la revendication 2, dans laquelle le joint d'arbre est reçu, au moins en partie, dans une région de joint (130) du boîtier, et la région de joint est en communication fluidique avec la cavité et la région d'écoulement.
  4. La pompe à agent de refroidissement réglable selon l'une quelconque des revendications 1 à 3, dans laquelle le joint torique comprend une bride (124) faisant saillie du reste du joint torique pour entrer en contact avec le capot de fermeture ou la paroi annulaire, le joint torique étant déformable.
  5. La pompe à agent de refroidissement réglable selon la revendication 4, dans laquelle la bride est disposée en face de la région d'écoulement.
  6. La pompe d'agent de refroidissement réglable selon l'une quelconque des revendications 1 à 5, comprenant en outre :
    au moins un élément de butée (3) fixé à une partie du boîtier pour définir une fin de course pour le capot de fermeture lorsqu'il recouvre, au moins en partie, la région d'écoulement ;
    dans lequel l'élément de butée est fixé à la face inférieure.
  7. La pompe à agent de refroidissement réglable selon la revendication 6, dans laquelle l'élément de butée comprend une tige (31) fixée à une extrémité à la partie du boîtier et comprenant en outre un élargissement (32) à l'autre extrémité pour arrêter le capot de fermeture lorsqu'il recouvre, au moins partiellement, la région d'écoulement.
  8. La pompe à agent de refroidissement réglable selon la revendication 7, dans laquelle la tige a une longueur prédéfinie telle que la longueur prédéfinie de la tige correspond à une fin de course prédéfinie pour le capot de fermeture lorsqu'il recouvre, au moins en partie, la région d'écoulement.
  9. La pompe à agent de refroidissement réglable selon l'une quelconque des revendications 7 à 8, dans laquelle l'élément de butée comprend un boulon ou un rivet.
  10. La pompe à agent de refroidissement réglable selon l'une quelconque des revendications 1 à 9, comprenant en outre :
    un piston annulaire (4) déplaçable dans la direction axiale ;
    une rainure annulaire (5) à l'intérieur de laquelle le piston annulaire est déplaçable ;
    dans laquelle la rainure annulaire est divisée en au moins une première (51) et une seconde (52) chambre de pression par le piston annulaire ;
    dans laquelle le piston annulaire est relié mécaniquement au capot de fermeture de sorte qu'un déplacement du piston annulaire dans la direction axiale est transmis au capot de fermeture.
  11. La pompe à agent de refroidissement réglable selon la revendication 10, comprenant en outre au moins une tige (6) pour connecter mécaniquement le piston annulaire au capot de fermeture.
  12. Un procédé de fonctionnement (100) d'une pompe à agent de refroidissement réglable (1), la pompe à agent de refroidissement réglable selon la revendication 1, dans lequel le procédé comprend :
    faire tourner l'arbre (101) pour faire tourner la roue hélice afin de mettre en mouvement une quantité d'agent de refroidissement ;
    déplacer le capot de fermeture (102) le long de l'axe de rotation pour recouvrir, au moins en partie, la région d'écoulement de la roue hélice afin d'ajuster la quantité d'agent de refroidissement délivrée par la pompe ;
    fournir de l'étanchéité (103) entre le capot de fermeture et la paroi annulaire lorsque le capot de fermeture est déplacé.
  13. Le procédé selon la revendication 12, la pompe à agent de refroidissement réglable selon l'une quelconque des revendications 1 ou 2, dans lequel le procédé comprend en outre :
    permettre qu'une quantité d'agent de refroidissement provenant de la région d'écoulement passe à travers le trou du capot de fermeture ;
    permettre qu'une pression s'accumule à l'intérieur de la cavité.
  14. Le procédé selon l'une quelconque des revendications 12 à 13, la pompe à agent de refroidissement réglable selon la revendication 6, dans lequel le procédé comprend en outre :
    arrêter le déplacement du capot de fermeture à une fin de course prédéfinie au moyen de l'élément de butée, lorsque le capot de fermeture recouvre, au moins en partie, la région d'écoulement.
EP18382968.8A 2018-07-16 2018-12-21 Pompe de refroidissement réglable Active EP3597925B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18382529.8A EP3431768B1 (fr) 2017-07-17 2018-07-16 Pompe de refroidissement réglable

Publications (2)

Publication Number Publication Date
EP3597925A1 EP3597925A1 (fr) 2020-01-22
EP3597925B1 true EP3597925B1 (fr) 2024-02-14

Family

ID=64900831

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18382968.8A Active EP3597925B1 (fr) 2018-07-16 2018-12-21 Pompe de refroidissement réglable

Country Status (1)

Country Link
EP (1) EP3597925B1 (fr)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017076648A1 (fr) * 2015-11-06 2017-05-11 Pierburg Gmbh Procédé de réglage d'une pompe à liquide de refroidissement réglable mécaniquement pour un moteur à combustion interne

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2957424A (en) * 1958-11-19 1960-10-25 Gen Motors Corp Centrifugal pump
DE2255503A1 (de) * 1972-11-13 1974-05-16 Heinz Knebel Einrichtung zur stufenlos regulierbaren ausstossmengen-regelung fuer kreiselpumpen, ventilatoren und geblaese
US3826586A (en) * 1972-12-29 1974-07-30 Gen Electric Variable diffuser centrifugal pump shutter control
DE102005062200B3 (de) 2005-12-23 2007-02-22 Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt Regelbare Kühlmittelpumpe
DE102013111939B3 (de) * 2013-10-30 2014-10-30 Pierburg Gmbh Kühlmittelpumpe für den Einsatz im KFZ-Bereich

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017076648A1 (fr) * 2015-11-06 2017-05-11 Pierburg Gmbh Procédé de réglage d'une pompe à liquide de refroidissement réglable mécaniquement pour un moteur à combustion interne

Also Published As

Publication number Publication date
EP3597925A1 (fr) 2020-01-22

Similar Documents

Publication Publication Date Title
EP3431768B1 (fr) Pompe de refroidissement réglable
JP6679718B2 (ja) 内燃機関用冷却媒体ポンプ
US9903367B2 (en) Variable displacement oil pump
JP6647540B2 (ja) 内燃機関の機械的に調整可能な冷却媒体ポンプのための調整ユニット
US20120097750A1 (en) Thermostat device
EP3434946A1 (fr) Vanne de régulation de débit d'écoulement de commande, spécifiquement pour un compresseur à volutes à l'intérieur d'un climatiseur de véhicule ou d'une pompe à chaleur
JP6632721B2 (ja) 内燃機関用冷却媒体ポンプ
KR102252391B1 (ko) 가변 용량 압축기 및 그 제어 밸브
JP2006527328A (ja) 内燃機関用カムシャフトアジャスタ
EP3597925B1 (fr) Pompe de refroidissement réglable
JP6664465B2 (ja) 可変容量形ポンプ
JP2005526204A (ja) 液圧ポンプの圧力調節のための装置
JP6323307B2 (ja) リリーフバルブ
JP2012132372A (ja) 圧縮機
JP7451064B2 (ja) 容量制御弁
US6699017B2 (en) Restriction structure in variable displacement compressor
EP2902631B1 (fr) Pompe centrifuge réglable avec obturateur actionné au moyen d'un système de translation-rotation de surfaces inclinées
WO2016080261A1 (fr) Soupape de décharge
CN111108271B (zh) 用于内燃机的冷却剂泵
EP1983191A1 (fr) Compresseur sans embrayage du type a cylindree variable
KR20160018390A (ko) 제어 밸브
CN112334653B (zh) 可变容量压缩机
JP6292105B2 (ja) 圧力調整システム
JP6323308B2 (ja) リリーフバルブ
JP2018109364A (ja) 可変容量圧縮機

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200722

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220511

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F01P 7/16 20060101ALI20230821BHEP

Ipc: F04D 29/12 20060101ALI20230821BHEP

Ipc: F04D 15/00 20060101AFI20230821BHEP

INTG Intention to grant announced

Effective date: 20230912

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018065162

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

U01 Request for unitary effect filed

Effective date: 20240223

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240301