EP3596410B9 - Co2-kühlsystem und steuerungsverfahren dafür - Google Patents

Co2-kühlsystem und steuerungsverfahren dafür Download PDF

Info

Publication number
EP3596410B9
EP3596410B9 EP18713542.1A EP18713542A EP3596410B9 EP 3596410 B9 EP3596410 B9 EP 3596410B9 EP 18713542 A EP18713542 A EP 18713542A EP 3596410 B9 EP3596410 B9 EP 3596410B9
Authority
EP
European Patent Office
Prior art keywords
flow passage
pressure
gas storage
storage reservoir
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18713542.1A
Other languages
English (en)
French (fr)
Other versions
EP3596410A1 (de
EP3596410B1 (de
Inventor
Bo Zhao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Corp
Original Assignee
Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corp filed Critical Carrier Corp
Publication of EP3596410A1 publication Critical patent/EP3596410A1/de
Application granted granted Critical
Publication of EP3596410B1 publication Critical patent/EP3596410B1/de
Publication of EP3596410B9 publication Critical patent/EP3596410B9/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/001Compression machines, plants or systems with reversible cycle not otherwise provided for with two or more accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/001Charging refrigerant to a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/002Collecting refrigerant from a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/006Details for charging or discharging refrigerants; Service stations therefor characterised by charging or discharging valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0415Refrigeration circuit bypassing means for the receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/07Exceeding a certain pressure value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2523Receiver valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2525Pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators

Definitions

  • the present invention relates to the field of refrigeration, and more particularly, relates to a carbon dioxide refrigeration system and a pressure relief and recovery control method.
  • a pressure relief valve or a pressure relief tank is introduced in the carbon dioxide refrigeration system, so that when the overpressure condition occurs, part of a carbon dioxide refrigerant is discharged into the atmosphere via the pressure relief valve or discharged into the pressure relief tank for subsequent processing.
  • Such design relieves the overpressure problem of the carbon dioxide refrigeration system to a certain degree.
  • part of carbon dioxide in the system is discharged, which may influence refrigeration capacity of the system in the normal operating state, so maintenance personnel needs to constantly execute a refrigerant refilling action, which will increase maintenance costs.
  • a condensing unit for the overpressure problem of the carbon dioxide refrigeration system in a shutdown state, can be additionally arranged, and after the system is shut down, the condensing unit will inject cooling capacity to the system so as to prevent the occurrence of the carbon dioxide overpressure problem to the system.
  • EP 0860309 discloses a carbon dioxide gas refrigeration cycle comprising a main body of the cycle and a buffer tank separate from the main body of the cycle; the buffer tank may be connected to either the high-pressure side or the low-pressure side of the main body of the refrigeration cycle.
  • the present invention aims to provide a carbon dioxide refrigeration system capable of unloading and recovering a carbon dioxide refrigerant.
  • the present invention further aims to provide a control method of a carbon dioxide refrigeration system capable of unloading and recovering a carbon dioxide refrigerant.
  • the present invention provides a carbon dioxide refrigeration system, comprising: a refrigeration loop, which comprises: a compressor, a condenser, a throttling element and an evaporator which are connected by pipelines, wherein a high-pressure side flow passage of the refrigeration loop is formed from the downstream of the compressor to the upstream of the throttling element, and a low-pressure side flow passage of the refrigeration loop is formed from the downstream of the throttling element to the upstream of the compressor; and a pressure relief and recovery loop, which comprises: a gas storage reservoir, which is used for storing gas-phase carbon dioxide; a pressure relief flow passage, which is used for connecting the gas storage reservoir and the refrigeration loop and used for discharging the gas-phase carbon dioxide in the refrigeration loop into the gas storage reservoir; and a recovery flow passage, which is used for connecting the gas storage reservoir and the refrigeration loop and provided with a driving apparatus, the recovery flow passage being used for recovering the gas-phase carbon dioxide in the gas storage reservoir into the refrigeration loop under
  • the present invention further provides a control method of the carbon dioxide refrigeration system according to any one of claims 1 to 8, comprising: a pressure relief control step S100, which comprises: a switch-on step S110: when a pressure of the high-pressure side flow passage is not smaller than a first preset pressure, and when a pressure of the low-pressure side flow passage is not smaller than a third preset pressure, switching on the pressure relief flow passage; a switch-off step S120: when the pressure of the high-pressure side flow passage is not greater than a second preset pressure, and when the pressure of the low-pressure side flow passage is not greater than a fourth preset pressure, switching off the pressure relief flow passage; and a maintenance step S130: when the pressure of the high-pressure side flow passage is smaller than the first preset pressure and greater than the second preset pressure, and when the pressure of the low-pressure side flow passage is smaller than the third preset pressure and greater than the fourth preset pressure, maintaining a current on/off state of the pressure relief flow
  • FIG. 1 is a schematic diagram of a system flow passage of a carbon dioxide refrigeration system of the present invention.
  • FIG. 1 shows a carbon dioxide refrigeration system.
  • the system includes a refrigeration loop 200 for providing cooling capacity and a pressure relief and recovery loop 100 for providing pressure relief and carbon dioxide recovery.
  • the refrigeration loop 200 includes a compressor 210, a condenser 220, a throttling element 230 and an evaporator 240 which are connected by pipelines; a high-pressure side flow passage of the refrigeration loop is formed from the downstream of the compressor 210 to the upstream of the throttling element 230; and a low-pressure side flow passage of the refrigeration loop is formed from the downstream of the throttling element 230 to the upstream of the compressor 210.
  • the above is one relatively common refrigeration loop 200, and a carbon dioxide refrigerant enters the condenser 220 to dissipate heat and is condensed after compressed via the compressor 210, then is throttled by the throttling element 230 for pressure reduction, and finally enters the evaporator 240 to absorb heat for refrigeration.
  • the pressure relief and recovery loop 100 includes: a gas storage reservoir 110, which is used for storing gas-phase carbon dioxide; a pressure relief flow passage 120, which is used for connecting the gas storage reservoir 110 and the refrigeration loop and is used for discharging the gas-phase carbon dioxide in the refrigeration loop into the gas storage reservoir 110; and a recovery flow passage 130, which is used for connecting the gas storage reservoir 110 and the refrigeration loop, and on which a recovery compressor131 is arranged, the recovery flow passage 130 being used for recovering the gas-phase carbon dioxide in the gas storage reservoir 110 into the refrigeration loop under the drive of the recovery compressor 131.
  • the over-pressured refrigerant in the refrigeration loop 200 can be led into the gas storage reservoir 110 in the pressure relief and recovery loop 100 via the pressure relief flow passage 120, and after the system is normal, the refrigerant can be recovered into the refrigeration loop 200 under the drive of the recovery compressor 131. Therefore, not only is a refrigerant overpressure phenomenon avoided, but also a problem that the refrigerant needs to be constantly refilled is solved, and considerations to maintenance cost and system operation stability are balanced.
  • the pressure relief flow passage 120 is used for connecting the gas storage reservoir 110 and the high-pressure side flow passage of the refrigeration loop; and/or the pressure relief flow passage 120 is used for connecting the gas storage reservoir 110 and the low-pressure side flow passage of the refrigeration loop.
  • the high-pressure side flow passage and the low-pressure side flow passage of the same carbon dioxide refrigeration system have different overpressure determination standards.
  • Such arrangement can implement pressure relief on the high-pressure side flow passage when overpressure occurs on the high-pressure side and pressure relief on the low-pressure side flow passage when overpressure occurs on the low-pressure side, and such regulation mode is more targeted.
  • the pressure relief flow passage 120 can be from the gas storage reservoir 110 to a high-pressure side pressure relief junction 125 located on a flow passage between the condenser 220 and the throttling element 230 of the refrigeration loop; or alternatively, the pressure relief flow passage 120 can be from the gas storage reservoir 110 to a high-pressure side pressure relief junction 125 located on a flow passage between the condenser 220 and the compressor 210 of the refrigeration loop; and/or the pressure relief flow passage 120 can be from the gas storage reservoir 110 to a low-pressure side pressure relief junction 126 located on a flow passage between the evaporator 240 and the compressor 210 of the refrigeration loop; or alternatively, the pressure relief flow passage 120 can be from the gas storage reservoir 110 to a low-pressure side pressure relief junction 126 located on a flow passage between the evaporator 240 and the throttling element 230 of the refrigeration loop.
  • the recovery flow passage 130 is used for connecting the gas storage reservoir 110 and the low-pressure side flow passage of the refrigeration loop, so that after the system is recovered to a normal pressure state, the discharged carbon dioxide refrigerant is recovered into the refrigeration loop again, thus avoiding an influence on refrigeration capacity of the system due to insufficiency of the refrigerant.
  • the refrigerant is introduced via the low-pressure side flow passage, so that in one aspect, the resistance acting on the refrigerant when it is introduced into the system can be reduced, and in the other aspect, the refrigerant can directly enter the compressor to participate in a new round of working cycle.
  • the recovery flow passage 130 is from the gas storage reservoir 110 to a recovery junction 133 located on the flow passage between the evaporator 240 and the compressor 210 of the refrigeration loop.
  • the recovery flow passage 130 is used for connecting the gas storage reservoir 110 and a flow passage between the evaporator 240 and the gas-liquid separator 250 of the refrigeration loop.
  • the recovery flow passage 130 can be a flow passage connecting the gas storage reservoir 110 and an air suction port of the compressor 210 of the refrigeration loop.
  • an electromagnetic valve for controlling on-off of the flow passage can be arranged on the pressure relief flow passage 120.
  • the pressure relief flow passage 120 includes a high-pressure side pressure relief branch 121 and a low-pressure side pressure relief branch 122
  • the electromagnetic valve described herein is correspondingly a high-pressure side pressure relief electromagnetic valve 123 and a low-pressure side pressure relief electromagnetic valve 124, respectively.
  • a check valve 132 for preventing backflow can be arranged on the recovery flow passage 130.
  • the recovery compressor 131 on the recovery flow passage 130 may also be other driving apparatuses capable of pressurizing a gas.
  • the related pressure relief and recovery loop 100 can also be applicable to other types of carbon dioxide refrigeration systems, as long as the systems also have a demand for solving the carbon dioxide overpressure problem.
  • the pressure relief flow passage 120 and the recovery flow passage 130 in the pressure relief and recovery loop 100 and the associated carbon dioxide refrigeration system reference can also be made to the above-mentioned embodiment. Namely, the pressure relief flow passage 120 is joined to the high-pressure side flow passage or the low-pressure side flow passage of the carbon dioxide refrigeration system, and the recovery flow passage 130 is joined to the low-pressure side flow passage of the carbon dioxide refrigeration system.
  • the method includes a pressure relief control step S100 for carrying out pressure relief when the system is over-pressured and a refrigerant recovery control step S200 for recovering the unloaded refrigerant after the system normally operates.
  • the pressure relief control step S100 includes: a switch-on step S110: when a pressure of the high-pressure side flow passage is not smaller than a first preset pressure, and/or when a pressure of the low-pressure side flow passage is not smaller than a third preset pressure, which shows that the pressure in the high-pressure side flow passage and/or the low-pressure side flow passage has exceeded a normal operation range, at the moment, switching on the pressure relief flow passage; a switch-off step S120: when the pressure of the high-pressure side flow passage is not greater than a second preset pressure, and/or when the pressure of the low-pressure side flow passage is not greater than a fourth preset pressure, which shows that the pressure in the high-pressure side flow passage and/or the low-pressure side flow passage has fallen back into the normal operation range, at the moment, switching off the pressure relief flow passage; and a maintenance step S130: when the pressure of the high-pressure side flow passage is smaller than the first preset pressure and greater than the second preset pressure, and/or when the pressure of
  • the refrigerant when the system normally operates, the refrigerant enters the condenser 220 to be condensed and dissipate heat after compressed via the compressor 210, then, after subjected to throttling and pressure reduction by the throttling element 230, the refrigerant enters the evaporator 240 to evaporate and absorb heat, so as to provide cooling capacity for an application environment, and subsequently, the refrigerant is dried in the gas-liquid separator, and enters the compressor 210 to start a new round of cycle.
  • the pressure of the high-pressure side flow passage (for example, a pressure at the condenser 220) is greater than or equal to the first preset pressure, it shows that the high-pressure side flow passage of the refrigeration system has an overpressure condition, and the high-pressure side pressure relief electromagnetic valve 123 should be opened; and at the moment, part of the high-pressure refrigerant flows from the high-pressure side pressure relief junction 125 into the gas storage reservoir 110 via the switched-on high-pressure side pressure relief branch 121 for temporary storage.
  • the pressure of the high-pressure side flow passage for example, a pressure at the condenser 220
  • the high-pressure side pressure relief electromagnetic valve 123 After the high-pressure side pressure relief electromagnetic valve 123 is opened transiently, the pressure of the high-pressure side flow passage can easily fall below the first preset pressure, and at the moment, it is apparently unreasonable to immediately close the high-pressure side pressure relief electromagnetic valve 123, which will result in that the pressure of the high-pressure side flow passage is always around the first preset pressure and a pressure reducing effect cannot be really achieved.
  • the high-pressure side pressure relief electromagnetic valve 123 is continuously kept open until the pressure of the high-pressure side flow passage is reduced to a pressure smaller than or equal to the second preset pressure value, at which the overpressure condition of the refrigeration system has been really regulated and controlled, and the high-pressure side pressure relief electromagnetic valve 123 can be closed. Conversely, when the pressure of the high-pressure side flow passage is greater than the second preset pressure value, the high-pressure side pressure relief electromagnetic valve 123 is still kept in a closed state until the pressure of the high-pressure side flow passage is continuously risen above the first preset pressure value, and the high-pressure side pressure relief electromagnetic valve 123 is opened again. The working cycle above is repeated.
  • the pressure of the low-pressure side flow passage (for example, the pressure at the evaporator 240) is greater than or equal to the third preset pressure, it shows that the low-pressure side flow passage of the refrigeration system has the overpressure condition, and the low-pressure side pressure relief electromagnetic valve 124 should be opened; and at the moment, part of the low-pressure refrigerant flows from the low-pressure side pressure relief junction 126 into the gas storage reservoir 110 via the switched-on low-pressure side pressure relief branch 122 for temporary storage.
  • the pressure of the low-pressure side flow passage can easily fall below the third preset pressure, and at the moment, it is also unreasonable to immediately close the low-pressure side pressure relief electromagnetic valve 124, which will result in that the pressure of the low-pressure side flow passage is always around the third preset pressure and a pressure reducing effect cannot be really achieved.
  • the low-pressure side pressure relief electromagnetic valve 124 is continuously kept open until the pressure of the low-pressure side flow passage is reduced to a pressure smaller than or equal to the fourth preset pressure value, at which the overpressure condition of the refrigeration system has been really regulated and controlled , and the low-pressure side pressure relief electromagnetic valve 124 can be closed. Conversely, when the pressure of the low-pressure side flow passage is greater than the fourth preset pressure value, the low-pressure side pressure relief electromagnetic valve 124 is still kept in a closed state until the pressure of the low-pressure side flow passage is continuously risen above the third preset pressure value, and the low-pressure side pressure relief electromagnetic valve 124 is opened again. The working cycle above is repeated.
  • pressure relief can be effectively performed on a refrigeration system when the system is over-pressured.
  • pressure relief will cause a decrease in the stock of the working refrigerant in the system. Therefore, when the system is in the normal working state, the unloaded refrigerant should also be recovered into the original refrigeration system.
  • pressure relief can be continuously normally operated or stopped.
  • the system normally operates i.e., the compressor of the refrigeration loop operates
  • the recovery compressor 131 in the recovery flow passage 130 operates, and at the moment, the refrigerant stored in the gas storage reservoir 110 flows from the recovery junction 133 into the refrigeration loop 200 via the recovery flow passage 130 and participates in the refrigeration working cycle again.
  • the recovery compressor 131 When the recovery compressor 131 has been started transiently, the pressure in the gas storage reservoir 110 can easily fall below the fifth preset pressure, and at the moment, it is apparently unreasonable to immediately stop the recovery compressor 131, which will result in that the refrigerant inadequately enters the refrigeration loop 200 to participate in refrigeration. Therefore, after the pressure in the gas storage reservoir 110 falls below the fifth preset pressure, the recovery compressor 131 is continuously kept started until the pressure in the gas storage reservoir 110 is reduced to a pressure smaller than or equal to the sixth preset pressure value, at which the refrigerant in the gas storage reservoir 110 is basically all recovered into the refrigeration loop 200, and the recovery compressor 131 can be stopped.
  • the recovery compressor 131 is still kept in a stop state until the pressure in the gas storage reservoir 110 is continuously risen above the fifth preset pressure value, and the recovery compressor 131 operates again. The working cycle above is repeated.
  • the system stops working i.e., the compressor of the refrigeration loop 200 stops operating, at the moment, the refrigerant does not need to be recovered, and the recovery compressor 131 in the recovery flow passage 130 should be directly stopped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Safety Valves (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Claims (9)

  1. Kohlendioxid-Kühlsystem, umfassend:
    eine Kühlschleife (200), die umfasst: einen Kompressor (210), einen Kondensator (220), ein Drosselelement (230) und einen Verdampfer (240), die durch Rohrleitungen verbunden sind, wobei ein hochdruckseitiger Stromdurchlass der Kühlschleife von der stromabwärtigen Seite des Kompressors zur stromaufwärtigen Seite des Drosselelements ausgebildet ist, und ein niederdruckseitiger Stromdurchlass der Kühlschleife von der stromabwärtigen Seite des Drosselelements zur stromaufwärtigen Seite des Kompressors ausgebildet ist; und
    eine Druckentlastungs- und Rückgewinnungsschleife (100), die umfasst:
    einen Gasspeicherbehälter (110) zur Speicherung von Gasphasen-Kohlendioxid;
    einen Druckentlastungsstromdurchlass (120), der den Gasspeicherbehälter und die Kühlschleife verbindet und der geeignet ist, das Gasphasen-Kohlendioxid in der Kühlschleife in den Gasspeicherbehälter abzuführen; und
    einen Rückgewinnungsstromdurchlass (130), der den Gasspeicherbehälter und die Kühlschleife verbindet und mit einer Antriebseinrichtung (131) versehen ist, wobei der Rückgewinnungsstromdurchlass geeignet ist, das Gasphasen-Kohlendioxid im Gasspeicherbehälter unter dem Antrieb der Antriebseinrichtung in die Kühlschleife zurückzugewinnen;
    dadurch gekennzeichnet, dass der Druckentlastungsstromdurchlass (120) den Gasspeicherbehälter (110) und den hochdruckseitigen Stromdurchlass der Kühlschleife (200) verbindet; und der Druckentlastungsstromdurchlass (120) den Gasspeicherbehälter (110) und den niederdruckseitigen Stromdurchlass der Kühlschleife (200) verbindet.
  2. Kohlendioxid-Kühlsystem nach Anspruch 1, dadurch gekennzeichnet, dass der Druckentlastungsstromdurchlass (120) den Gasspeicherbehälter (110) und einen Stromdurchlass zwischen dem Kondensator (220) und dem Drosselelement (230) der Kühlschleife (200) verbindet; oder der Druckentlastungsstromdurchlass den Gasspeicherbehälter und einen Stromdurchlass zwischen dem Kondensator und dem Kompressor der Kühlschleife verbindet.
  3. Kohlendioxid-Kühlsystem nach Anspruch 1, dadurch gekennzeichnet, dass der Druckentlastungsstromdurchlass (120) den Gasspeicherbehälter (110) und einen Stromdurchlass zwischen dem Verdampfer (240) und dem Kompressor (210) der Kühlschleife (200) verbindet; oder der Druckentlastungsstromdurchlass den Gasspeicherbehälter und einen Stromdurchlass zwischen dem Verdampfer und dem Drosselelement (230) der Kühlschleife verbindet.
  4. Kohlendioxid-Kühlsystem nach Anspruch 1, dadurch gekennzeichnet, dass der Rückgewinnungsstromdurchlass (130) den Gasspeicherbehälter (110) und den niederdruckseitigen Stromdurchlass der Kühlschleife (200) verbindet.
  5. Kohlendioxid-Kühlsystem nach Anspruch 4, dadurch gekennzeichnet, dass der Rückgewinnungsstromdurchlass (130) den Gasspeicherbehälter (110) und den Stromdurchlass zwischen dem Verdampfer (240) und dem Kompressor (210) der Kühlschleife (200) verbindet.
  6. Kohlendioxid-Kühlsystem nach Anspruch 1, dadurch gekennzeichnet, dass die Kühlschleife (200) weiter einen Gas-Flüssigkeits-Abscheider (250) umfasst, der zwischen dem Verdampfer (240) und dem Kompressor (210) angeordnet ist; und dass der Rückgewinnungsstromdurchlass den Gasspeicherbehälter (110) und einen Stromdurchlass zwischen dem Verdampfer und dem Gas-Flüssigkeits-Abscheider der Kühlschleife verbindet.
  7. Kohlendioxid-Kühlsystem nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass am Druckentlastungsstromdurchlass (120) ein elektromagnetisches Ventil (123, 124) zum Steuern des Ein- und Ausschaltens des Stromdurchlasses angeordnet ist.
  8. Kohlendioxid-Kühlsystem nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass am Rückgewinnungsstromdurchlass (130) ein Rückschlagventil (132) zur Verhinderung des Rückflusses angeordnet ist.
  9. Steuerungsverfahren für das Kohlendioxid-Kühlsystem nach einem der Ansprüche 1 bis 8, umfassend:
    einen Druckentlastungssteuerungsschritt S100, der umfasst:
    einen Einschaltschritt S110: wenn ein Druck des hochdruckseitigen Stromdurchlasses nicht kleiner als ein erster voreingestellter Druck ist, und wenn ein Druck des niederdruckseitigen Stromdurchlasses nicht kleiner als ein dritter voreingestellter Druck ist, Einschalten des Druckentlastungsstromdurchlasses (120);
    einen Abschaltschritt S120: wenn der Druck des hochdruckseitigen Stromdurchlasses nicht größer als ein zweiter voreingestellter Druck ist, und wenn der Druck des niederdruckseitigen Stromdurchlasses nicht größer als ein vierter voreingestellter Druck ist, Abschalten des Druckentlastungsstromdurchlasses (120); und
    einen Aufrechterhaltungsschritt S130: wenn der Druck des hochdruckseitigen Stromdurchlasses kleiner als der erste voreingestellte Druck und größer als der zweite voreingestellte Druck ist, und wenn der Druck des niederdruckseitigen Stromdurchlasses kleiner als der dritte voreingestellte Druck und größer als der vierte voreingestellte Druck ist, Aufrechterhalten eines aktuellen Ein/Aus-Zustands des Druckentlastungsstromdurchlasses (120); und/oder
    einen Schritt S200 zur Steuerung der Kühlmittelrückgewinnung, der umfasst:
    S210: wenn der Kompressor (210) der Kühlschleife (200) arbeitet und ein Druck des Gasspeicherbehälters (110) nicht kleiner als ein fünfter voreingestellter Druck ist, Betreiben der Antriebseinrichtung (131) im Rückgewinnungsstromdurchlass (130);
    S220: wenn der Druck des Gasspeicherbehälters (110) nicht höher ist als ein sechster voreingestellter Druck, Stoppen der Antriebseinrichtung (131) im Rückgewinnungsstromdurchlass (130);
    S230: wenn der Druck des Gasspeicherbehälters (110) größer als der sechste voreingestellte Druck und kleiner als der fünfte voreingestellte Druck ist, Aufrechterhalten eines aktuellen Arbeitszustands der Antriebseinrichtung (131); und
    S240: wenn der Kompressor (210) der Kühlschleife (200) den Betrieb stoppt, Stoppen der Antriebseinrichtung (131) im Rückgewinnungsstromdurchlass (130).
EP18713542.1A 2017-03-15 2018-03-12 Co2-kühlsystem und steuerungsverfahren dafür Active EP3596410B9 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710153062.XA CN108626920A (zh) 2017-03-15 2017-03-15 制冷系统的压力卸载及回收回路、二氧化碳制冷系统及其控制方法
PCT/US2018/021956 WO2018169844A1 (en) 2017-03-15 2018-03-12 Pressure relief and recover circuit for refrigeration system, co2 refrigeration system and control method thereof

Publications (3)

Publication Number Publication Date
EP3596410A1 EP3596410A1 (de) 2020-01-22
EP3596410B1 EP3596410B1 (de) 2022-03-02
EP3596410B9 true EP3596410B9 (de) 2022-06-29

Family

ID=61768536

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18713542.1A Active EP3596410B9 (de) 2017-03-15 2018-03-12 Co2-kühlsystem und steuerungsverfahren dafür

Country Status (5)

Country Link
US (1) US20200011575A1 (de)
EP (1) EP3596410B9 (de)
CN (1) CN108626920A (de)
DK (1) DK3596410T5 (de)
WO (1) WO2018169844A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109631379B (zh) * 2018-11-26 2020-09-29 安徽正刚新能源科技有限公司 一种500/600kw-5000/6000kw冷热联供装置
CN109631444B (zh) * 2018-11-26 2020-08-21 安徽正刚新能源科技有限公司 一种二氧化碳工作容量精确调节装置
CA3120511A1 (en) * 2018-12-19 2020-03-20 Toromont Industries Ltd Refrigeration system with transfer system
CN115406287B (zh) * 2022-08-18 2023-09-29 百穰新能源科技(深圳)有限公司 二氧化碳气液相变储能系统的存储单元、控制方法与系统
CN115751756B (zh) * 2022-11-28 2024-04-30 南京五洲制冷集团有限公司 一种利用高压储气发电的co2载冷剂储能供冷系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4909042A (en) * 1987-12-10 1990-03-20 Murray Corporation Air conditioner charging station with same refrigerant reclaiming and liquid refrigerant return and method
JPH10238872A (ja) * 1997-02-24 1998-09-08 Zexel Corp 炭酸ガス冷凍サイクル
JP2002195705A (ja) * 2000-12-28 2002-07-10 Tgk Co Ltd 超臨界冷凍サイクル
CN1610809A (zh) * 2002-03-28 2005-04-27 松下电器产业株式会社 制冷循环装置
JP4687710B2 (ja) * 2007-12-27 2011-05-25 三菱電機株式会社 冷凍装置
JP5523817B2 (ja) * 2009-12-25 2014-06-18 三洋電機株式会社 冷凍装置
CN201866973U (zh) * 2010-11-17 2011-06-15 重庆高环科技有限公司 恒压制冷系统
ITPI20120065A1 (it) * 2012-05-28 2013-11-29 Ecotechnics S P A Metodo ed apparecchiatura per il recupero del refrigerante da un impianto di condizionamento
DE102014000541A1 (de) * 2014-01-15 2015-07-30 Thermea. Energiesysteme Gmbh Vorrichtung zum Erhalt des unterkritischen Betriebszustandes bei hohen Gaskühlereintrittstemperaturen eines Druckluft-Kältetrockners

Also Published As

Publication number Publication date
DK3596410T3 (da) 2022-03-28
US20200011575A1 (en) 2020-01-09
DK3596410T5 (da) 2022-07-25
EP3596410A1 (de) 2020-01-22
WO2018169844A1 (en) 2018-09-20
EP3596410B1 (de) 2022-03-02
CN108626920A (zh) 2018-10-09

Similar Documents

Publication Publication Date Title
EP3596410B9 (de) Co2-kühlsystem und steuerungsverfahren dafür
CN110914609B (zh) 用于运输制冷单元的经济器的控制方法
KR100757592B1 (ko) 공조용 히트 펌프
US6705093B1 (en) Humidity control method and scheme for vapor compression system with multiple circuits
JP3988779B2 (ja) 冷凍装置
CN105588376B (zh) 制冷系统及其控制方法、冷藏运输车
EP3575712B1 (de) Kühlsystem
CN110234944B (zh) 制冷系统
EP3115715B1 (de) Kältekreislaufsystem
CN104848587A (zh) 变频多联式热泵系统及旁通电子膨胀阀的控制方法
US11988423B2 (en) Cooling system
JP6328004B2 (ja) 圧縮機/ポンプ切換式の冷却装置
JP2018200145A (ja) 制御装置、空気調和機及び制御方法
WO2021048899A1 (ja) 室外ユニット及び冷凍サイクル装置
US11656004B2 (en) Cooling system with flexible evaporating temperature
WO2018079242A1 (ja) 冷凍装置、冷凍システム
JP6327986B2 (ja) 圧縮機/ポンプ切換式の冷却装置
KR100876285B1 (ko) 가스히트펌프 시스템
WO2021048898A1 (ja) 室外ユニットおよび冷凍サイクル装置
KR20090070000A (ko) 공기조화기의 과부하 방지 장치
CN107421152B (zh) 一种供冷系统及其控制方法
JP2024049917A (ja) 二次冷媒冷凍システム及び二次冷媒の圧力調整方法
CN117847813A (zh) 冷媒循环系统及其控制方法、制冷设备
CN117043530A (zh) 用于控制具有旁通阀的蒸气压缩系统的方法
JP2023146975A (ja) 空気調和機

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190919

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602018031568

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F25B0009000000

Ipc: F25B0041200000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 41/20 20210101AFI20211116BHEP

INTG Intention to grant announced

Effective date: 20211202

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1472554

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018031568

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20220321

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20220302

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B9

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220302

REG Reference to a national code

Ref country code: DK

Ref legal event code: T5

Effective date: 20220718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220602

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1472554

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220302

REG Reference to a national code

Ref country code: NO

Ref legal event code: TB2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220603

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220704

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220702

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018031568

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220312

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220312

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

26N No opposition filed

Effective date: 20221205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20220217

Year of fee payment: 5

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240220

Year of fee payment: 7

Ref country code: GB

Payment date: 20240220

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180312

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20240222

Year of fee payment: 7

Ref country code: FR

Payment date: 20240220

Year of fee payment: 7

Ref country code: DK

Payment date: 20240220

Year of fee payment: 7