EP3596410B9 - Co2 refrigeration system and control method thereof - Google Patents
Co2 refrigeration system and control method thereof Download PDFInfo
- Publication number
- EP3596410B9 EP3596410B9 EP18713542.1A EP18713542A EP3596410B9 EP 3596410 B9 EP3596410 B9 EP 3596410B9 EP 18713542 A EP18713542 A EP 18713542A EP 3596410 B9 EP3596410 B9 EP 3596410B9
- Authority
- EP
- European Patent Office
- Prior art keywords
- flow passage
- pressure
- gas storage
- storage reservoir
- carbon dioxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005057 refrigeration Methods 0.000 title claims description 107
- 238000000034 method Methods 0.000 title claims description 13
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 104
- 238000011084 recovery Methods 0.000 claims description 58
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 52
- 239000001569 carbon dioxide Substances 0.000 claims description 52
- 239000003507 refrigerant Substances 0.000 claims description 36
- 238000012423 maintenance Methods 0.000 claims description 6
- 238000011144 upstream manufacturing Methods 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 description 5
- 238000001816 cooling Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 230000001603 reducing effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/008—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/10—Compression machines, plants or systems with non-reversible cycle with multi-stage compression
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B45/00—Arrangements for charging or discharging refrigerant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/06—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
- F25B2309/061—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/001—Compression machines, plants or systems with reversible cycle not otherwise provided for with two or more accumulators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2345/00—Details for charging or discharging refrigerants; Service stations therefor
- F25B2345/001—Charging refrigerant to a cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2345/00—Details for charging or discharging refrigerants; Service stations therefor
- F25B2345/002—Collecting refrigerant from a cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2345/00—Details for charging or discharging refrigerants; Service stations therefor
- F25B2345/006—Details for charging or discharging refrigerants; Service stations therefor characterised by charging or discharging valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0409—Refrigeration circuit bypassing means for the evaporator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0415—Refrigeration circuit bypassing means for the receiver
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/16—Receivers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/23—Separators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/07—Exceeding a certain pressure value in a refrigeration component or cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2501—Bypass valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2523—Receiver valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2525—Pressure relief valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B43/00—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
- F25B43/006—Accumulators
Definitions
- the present invention relates to the field of refrigeration, and more particularly, relates to a carbon dioxide refrigeration system and a pressure relief and recovery control method.
- a pressure relief valve or a pressure relief tank is introduced in the carbon dioxide refrigeration system, so that when the overpressure condition occurs, part of a carbon dioxide refrigerant is discharged into the atmosphere via the pressure relief valve or discharged into the pressure relief tank for subsequent processing.
- Such design relieves the overpressure problem of the carbon dioxide refrigeration system to a certain degree.
- part of carbon dioxide in the system is discharged, which may influence refrigeration capacity of the system in the normal operating state, so maintenance personnel needs to constantly execute a refrigerant refilling action, which will increase maintenance costs.
- a condensing unit for the overpressure problem of the carbon dioxide refrigeration system in a shutdown state, can be additionally arranged, and after the system is shut down, the condensing unit will inject cooling capacity to the system so as to prevent the occurrence of the carbon dioxide overpressure problem to the system.
- EP 0860309 discloses a carbon dioxide gas refrigeration cycle comprising a main body of the cycle and a buffer tank separate from the main body of the cycle; the buffer tank may be connected to either the high-pressure side or the low-pressure side of the main body of the refrigeration cycle.
- the present invention aims to provide a carbon dioxide refrigeration system capable of unloading and recovering a carbon dioxide refrigerant.
- the present invention further aims to provide a control method of a carbon dioxide refrigeration system capable of unloading and recovering a carbon dioxide refrigerant.
- the present invention provides a carbon dioxide refrigeration system, comprising: a refrigeration loop, which comprises: a compressor, a condenser, a throttling element and an evaporator which are connected by pipelines, wherein a high-pressure side flow passage of the refrigeration loop is formed from the downstream of the compressor to the upstream of the throttling element, and a low-pressure side flow passage of the refrigeration loop is formed from the downstream of the throttling element to the upstream of the compressor; and a pressure relief and recovery loop, which comprises: a gas storage reservoir, which is used for storing gas-phase carbon dioxide; a pressure relief flow passage, which is used for connecting the gas storage reservoir and the refrigeration loop and used for discharging the gas-phase carbon dioxide in the refrigeration loop into the gas storage reservoir; and a recovery flow passage, which is used for connecting the gas storage reservoir and the refrigeration loop and provided with a driving apparatus, the recovery flow passage being used for recovering the gas-phase carbon dioxide in the gas storage reservoir into the refrigeration loop under
- the present invention further provides a control method of the carbon dioxide refrigeration system according to any one of claims 1 to 8, comprising: a pressure relief control step S100, which comprises: a switch-on step S110: when a pressure of the high-pressure side flow passage is not smaller than a first preset pressure, and when a pressure of the low-pressure side flow passage is not smaller than a third preset pressure, switching on the pressure relief flow passage; a switch-off step S120: when the pressure of the high-pressure side flow passage is not greater than a second preset pressure, and when the pressure of the low-pressure side flow passage is not greater than a fourth preset pressure, switching off the pressure relief flow passage; and a maintenance step S130: when the pressure of the high-pressure side flow passage is smaller than the first preset pressure and greater than the second preset pressure, and when the pressure of the low-pressure side flow passage is smaller than the third preset pressure and greater than the fourth preset pressure, maintaining a current on/off state of the pressure relief flow
- FIG. 1 is a schematic diagram of a system flow passage of a carbon dioxide refrigeration system of the present invention.
- FIG. 1 shows a carbon dioxide refrigeration system.
- the system includes a refrigeration loop 200 for providing cooling capacity and a pressure relief and recovery loop 100 for providing pressure relief and carbon dioxide recovery.
- the refrigeration loop 200 includes a compressor 210, a condenser 220, a throttling element 230 and an evaporator 240 which are connected by pipelines; a high-pressure side flow passage of the refrigeration loop is formed from the downstream of the compressor 210 to the upstream of the throttling element 230; and a low-pressure side flow passage of the refrigeration loop is formed from the downstream of the throttling element 230 to the upstream of the compressor 210.
- the above is one relatively common refrigeration loop 200, and a carbon dioxide refrigerant enters the condenser 220 to dissipate heat and is condensed after compressed via the compressor 210, then is throttled by the throttling element 230 for pressure reduction, and finally enters the evaporator 240 to absorb heat for refrigeration.
- the pressure relief and recovery loop 100 includes: a gas storage reservoir 110, which is used for storing gas-phase carbon dioxide; a pressure relief flow passage 120, which is used for connecting the gas storage reservoir 110 and the refrigeration loop and is used for discharging the gas-phase carbon dioxide in the refrigeration loop into the gas storage reservoir 110; and a recovery flow passage 130, which is used for connecting the gas storage reservoir 110 and the refrigeration loop, and on which a recovery compressor131 is arranged, the recovery flow passage 130 being used for recovering the gas-phase carbon dioxide in the gas storage reservoir 110 into the refrigeration loop under the drive of the recovery compressor 131.
- the over-pressured refrigerant in the refrigeration loop 200 can be led into the gas storage reservoir 110 in the pressure relief and recovery loop 100 via the pressure relief flow passage 120, and after the system is normal, the refrigerant can be recovered into the refrigeration loop 200 under the drive of the recovery compressor 131. Therefore, not only is a refrigerant overpressure phenomenon avoided, but also a problem that the refrigerant needs to be constantly refilled is solved, and considerations to maintenance cost and system operation stability are balanced.
- the pressure relief flow passage 120 is used for connecting the gas storage reservoir 110 and the high-pressure side flow passage of the refrigeration loop; and/or the pressure relief flow passage 120 is used for connecting the gas storage reservoir 110 and the low-pressure side flow passage of the refrigeration loop.
- the high-pressure side flow passage and the low-pressure side flow passage of the same carbon dioxide refrigeration system have different overpressure determination standards.
- Such arrangement can implement pressure relief on the high-pressure side flow passage when overpressure occurs on the high-pressure side and pressure relief on the low-pressure side flow passage when overpressure occurs on the low-pressure side, and such regulation mode is more targeted.
- the pressure relief flow passage 120 can be from the gas storage reservoir 110 to a high-pressure side pressure relief junction 125 located on a flow passage between the condenser 220 and the throttling element 230 of the refrigeration loop; or alternatively, the pressure relief flow passage 120 can be from the gas storage reservoir 110 to a high-pressure side pressure relief junction 125 located on a flow passage between the condenser 220 and the compressor 210 of the refrigeration loop; and/or the pressure relief flow passage 120 can be from the gas storage reservoir 110 to a low-pressure side pressure relief junction 126 located on a flow passage between the evaporator 240 and the compressor 210 of the refrigeration loop; or alternatively, the pressure relief flow passage 120 can be from the gas storage reservoir 110 to a low-pressure side pressure relief junction 126 located on a flow passage between the evaporator 240 and the throttling element 230 of the refrigeration loop.
- the recovery flow passage 130 is used for connecting the gas storage reservoir 110 and the low-pressure side flow passage of the refrigeration loop, so that after the system is recovered to a normal pressure state, the discharged carbon dioxide refrigerant is recovered into the refrigeration loop again, thus avoiding an influence on refrigeration capacity of the system due to insufficiency of the refrigerant.
- the refrigerant is introduced via the low-pressure side flow passage, so that in one aspect, the resistance acting on the refrigerant when it is introduced into the system can be reduced, and in the other aspect, the refrigerant can directly enter the compressor to participate in a new round of working cycle.
- the recovery flow passage 130 is from the gas storage reservoir 110 to a recovery junction 133 located on the flow passage between the evaporator 240 and the compressor 210 of the refrigeration loop.
- the recovery flow passage 130 is used for connecting the gas storage reservoir 110 and a flow passage between the evaporator 240 and the gas-liquid separator 250 of the refrigeration loop.
- the recovery flow passage 130 can be a flow passage connecting the gas storage reservoir 110 and an air suction port of the compressor 210 of the refrigeration loop.
- an electromagnetic valve for controlling on-off of the flow passage can be arranged on the pressure relief flow passage 120.
- the pressure relief flow passage 120 includes a high-pressure side pressure relief branch 121 and a low-pressure side pressure relief branch 122
- the electromagnetic valve described herein is correspondingly a high-pressure side pressure relief electromagnetic valve 123 and a low-pressure side pressure relief electromagnetic valve 124, respectively.
- a check valve 132 for preventing backflow can be arranged on the recovery flow passage 130.
- the recovery compressor 131 on the recovery flow passage 130 may also be other driving apparatuses capable of pressurizing a gas.
- the related pressure relief and recovery loop 100 can also be applicable to other types of carbon dioxide refrigeration systems, as long as the systems also have a demand for solving the carbon dioxide overpressure problem.
- the pressure relief flow passage 120 and the recovery flow passage 130 in the pressure relief and recovery loop 100 and the associated carbon dioxide refrigeration system reference can also be made to the above-mentioned embodiment. Namely, the pressure relief flow passage 120 is joined to the high-pressure side flow passage or the low-pressure side flow passage of the carbon dioxide refrigeration system, and the recovery flow passage 130 is joined to the low-pressure side flow passage of the carbon dioxide refrigeration system.
- the method includes a pressure relief control step S100 for carrying out pressure relief when the system is over-pressured and a refrigerant recovery control step S200 for recovering the unloaded refrigerant after the system normally operates.
- the pressure relief control step S100 includes: a switch-on step S110: when a pressure of the high-pressure side flow passage is not smaller than a first preset pressure, and/or when a pressure of the low-pressure side flow passage is not smaller than a third preset pressure, which shows that the pressure in the high-pressure side flow passage and/or the low-pressure side flow passage has exceeded a normal operation range, at the moment, switching on the pressure relief flow passage; a switch-off step S120: when the pressure of the high-pressure side flow passage is not greater than a second preset pressure, and/or when the pressure of the low-pressure side flow passage is not greater than a fourth preset pressure, which shows that the pressure in the high-pressure side flow passage and/or the low-pressure side flow passage has fallen back into the normal operation range, at the moment, switching off the pressure relief flow passage; and a maintenance step S130: when the pressure of the high-pressure side flow passage is smaller than the first preset pressure and greater than the second preset pressure, and/or when the pressure of
- the refrigerant when the system normally operates, the refrigerant enters the condenser 220 to be condensed and dissipate heat after compressed via the compressor 210, then, after subjected to throttling and pressure reduction by the throttling element 230, the refrigerant enters the evaporator 240 to evaporate and absorb heat, so as to provide cooling capacity for an application environment, and subsequently, the refrigerant is dried in the gas-liquid separator, and enters the compressor 210 to start a new round of cycle.
- the pressure of the high-pressure side flow passage (for example, a pressure at the condenser 220) is greater than or equal to the first preset pressure, it shows that the high-pressure side flow passage of the refrigeration system has an overpressure condition, and the high-pressure side pressure relief electromagnetic valve 123 should be opened; and at the moment, part of the high-pressure refrigerant flows from the high-pressure side pressure relief junction 125 into the gas storage reservoir 110 via the switched-on high-pressure side pressure relief branch 121 for temporary storage.
- the pressure of the high-pressure side flow passage for example, a pressure at the condenser 220
- the high-pressure side pressure relief electromagnetic valve 123 After the high-pressure side pressure relief electromagnetic valve 123 is opened transiently, the pressure of the high-pressure side flow passage can easily fall below the first preset pressure, and at the moment, it is apparently unreasonable to immediately close the high-pressure side pressure relief electromagnetic valve 123, which will result in that the pressure of the high-pressure side flow passage is always around the first preset pressure and a pressure reducing effect cannot be really achieved.
- the high-pressure side pressure relief electromagnetic valve 123 is continuously kept open until the pressure of the high-pressure side flow passage is reduced to a pressure smaller than or equal to the second preset pressure value, at which the overpressure condition of the refrigeration system has been really regulated and controlled, and the high-pressure side pressure relief electromagnetic valve 123 can be closed. Conversely, when the pressure of the high-pressure side flow passage is greater than the second preset pressure value, the high-pressure side pressure relief electromagnetic valve 123 is still kept in a closed state until the pressure of the high-pressure side flow passage is continuously risen above the first preset pressure value, and the high-pressure side pressure relief electromagnetic valve 123 is opened again. The working cycle above is repeated.
- the pressure of the low-pressure side flow passage (for example, the pressure at the evaporator 240) is greater than or equal to the third preset pressure, it shows that the low-pressure side flow passage of the refrigeration system has the overpressure condition, and the low-pressure side pressure relief electromagnetic valve 124 should be opened; and at the moment, part of the low-pressure refrigerant flows from the low-pressure side pressure relief junction 126 into the gas storage reservoir 110 via the switched-on low-pressure side pressure relief branch 122 for temporary storage.
- the pressure of the low-pressure side flow passage can easily fall below the third preset pressure, and at the moment, it is also unreasonable to immediately close the low-pressure side pressure relief electromagnetic valve 124, which will result in that the pressure of the low-pressure side flow passage is always around the third preset pressure and a pressure reducing effect cannot be really achieved.
- the low-pressure side pressure relief electromagnetic valve 124 is continuously kept open until the pressure of the low-pressure side flow passage is reduced to a pressure smaller than or equal to the fourth preset pressure value, at which the overpressure condition of the refrigeration system has been really regulated and controlled , and the low-pressure side pressure relief electromagnetic valve 124 can be closed. Conversely, when the pressure of the low-pressure side flow passage is greater than the fourth preset pressure value, the low-pressure side pressure relief electromagnetic valve 124 is still kept in a closed state until the pressure of the low-pressure side flow passage is continuously risen above the third preset pressure value, and the low-pressure side pressure relief electromagnetic valve 124 is opened again. The working cycle above is repeated.
- pressure relief can be effectively performed on a refrigeration system when the system is over-pressured.
- pressure relief will cause a decrease in the stock of the working refrigerant in the system. Therefore, when the system is in the normal working state, the unloaded refrigerant should also be recovered into the original refrigeration system.
- pressure relief can be continuously normally operated or stopped.
- the system normally operates i.e., the compressor of the refrigeration loop operates
- the recovery compressor 131 in the recovery flow passage 130 operates, and at the moment, the refrigerant stored in the gas storage reservoir 110 flows from the recovery junction 133 into the refrigeration loop 200 via the recovery flow passage 130 and participates in the refrigeration working cycle again.
- the recovery compressor 131 When the recovery compressor 131 has been started transiently, the pressure in the gas storage reservoir 110 can easily fall below the fifth preset pressure, and at the moment, it is apparently unreasonable to immediately stop the recovery compressor 131, which will result in that the refrigerant inadequately enters the refrigeration loop 200 to participate in refrigeration. Therefore, after the pressure in the gas storage reservoir 110 falls below the fifth preset pressure, the recovery compressor 131 is continuously kept started until the pressure in the gas storage reservoir 110 is reduced to a pressure smaller than or equal to the sixth preset pressure value, at which the refrigerant in the gas storage reservoir 110 is basically all recovered into the refrigeration loop 200, and the recovery compressor 131 can be stopped.
- the recovery compressor 131 is still kept in a stop state until the pressure in the gas storage reservoir 110 is continuously risen above the fifth preset pressure value, and the recovery compressor 131 operates again. The working cycle above is repeated.
- the system stops working i.e., the compressor of the refrigeration loop 200 stops operating, at the moment, the refrigerant does not need to be recovered, and the recovery compressor 131 in the recovery flow passage 130 should be directly stopped.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Safety Valves (AREA)
- Air-Conditioning For Vehicles (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710153062.XA CN108626920A (zh) | 2017-03-15 | 2017-03-15 | 制冷系统的压力卸载及回收回路、二氧化碳制冷系统及其控制方法 |
PCT/US2018/021956 WO2018169844A1 (en) | 2017-03-15 | 2018-03-12 | Pressure relief and recover circuit for refrigeration system, co2 refrigeration system and control method thereof |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3596410A1 EP3596410A1 (en) | 2020-01-22 |
EP3596410B1 EP3596410B1 (en) | 2022-03-02 |
EP3596410B9 true EP3596410B9 (en) | 2022-06-29 |
Family
ID=61768536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18713542.1A Active EP3596410B9 (en) | 2017-03-15 | 2018-03-12 | Co2 refrigeration system and control method thereof |
Country Status (5)
Country | Link |
---|---|
US (1) | US20200011575A1 (da) |
EP (1) | EP3596410B9 (da) |
CN (1) | CN108626920A (da) |
DK (1) | DK3596410T5 (da) |
WO (1) | WO2018169844A1 (da) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109631444B (zh) * | 2018-11-26 | 2020-08-21 | 安徽正刚新能源科技有限公司 | 一种二氧化碳工作容量精确调节装置 |
CN109631379B (zh) * | 2018-11-26 | 2020-09-29 | 安徽正刚新能源科技有限公司 | 一种500/600kw-5000/6000kw冷热联供装置 |
CA3120511A1 (en) * | 2018-12-19 | 2020-03-20 | Toromont Industries Ltd | Refrigeration system with transfer system |
CN115406287B (zh) * | 2022-08-18 | 2023-09-29 | 百穰新能源科技(深圳)有限公司 | 二氧化碳气液相变储能系统的存储单元、控制方法与系统 |
CN115751756B (zh) * | 2022-11-28 | 2024-04-30 | 南京五洲制冷集团有限公司 | 一种利用高压储气发电的co2载冷剂储能供冷系统 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4909042A (en) * | 1987-12-10 | 1990-03-20 | Murray Corporation | Air conditioner charging station with same refrigerant reclaiming and liquid refrigerant return and method |
JPH10238872A (ja) * | 1997-02-24 | 1998-09-08 | Zexel Corp | 炭酸ガス冷凍サイクル |
JP2002195705A (ja) * | 2000-12-28 | 2002-07-10 | Tgk Co Ltd | 超臨界冷凍サイクル |
ATE521860T1 (de) * | 2002-03-28 | 2011-09-15 | Panasonic Corp | Kühlkreislaufvorrichtung |
JP4687710B2 (ja) * | 2007-12-27 | 2011-05-25 | 三菱電機株式会社 | 冷凍装置 |
JP5523817B2 (ja) * | 2009-12-25 | 2014-06-18 | 三洋電機株式会社 | 冷凍装置 |
CN201866973U (zh) * | 2010-11-17 | 2011-06-15 | 重庆高环科技有限公司 | 恒压制冷系统 |
ITPI20120065A1 (it) * | 2012-05-28 | 2013-11-29 | Ecotechnics S P A | Metodo ed apparecchiatura per il recupero del refrigerante da un impianto di condizionamento |
DE102014000541A1 (de) * | 2014-01-15 | 2015-07-30 | Thermea. Energiesysteme Gmbh | Vorrichtung zum Erhalt des unterkritischen Betriebszustandes bei hohen Gaskühlereintrittstemperaturen eines Druckluft-Kältetrockners |
-
2017
- 2017-03-15 CN CN201710153062.XA patent/CN108626920A/zh active Pending
-
2018
- 2018-03-12 DK DK18713542.1T patent/DK3596410T5/da active
- 2018-03-12 WO PCT/US2018/021956 patent/WO2018169844A1/en unknown
- 2018-03-12 US US16/493,198 patent/US20200011575A1/en not_active Abandoned
- 2018-03-12 EP EP18713542.1A patent/EP3596410B9/en active Active
Also Published As
Publication number | Publication date |
---|---|
DK3596410T5 (da) | 2022-07-25 |
DK3596410T3 (da) | 2022-03-28 |
CN108626920A (zh) | 2018-10-09 |
EP3596410B1 (en) | 2022-03-02 |
WO2018169844A1 (en) | 2018-09-20 |
EP3596410A1 (en) | 2020-01-22 |
US20200011575A1 (en) | 2020-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3596410B9 (en) | Co2 refrigeration system and control method thereof | |
CN110914609B (zh) | 用于运输制冷单元的经济器的控制方法 | |
KR100757592B1 (ko) | 공조용 히트 펌프 | |
US6705093B1 (en) | Humidity control method and scheme for vapor compression system with multiple circuits | |
CN105588376B (zh) | 制冷系统及其控制方法、冷藏运输车 | |
EP3575712B1 (en) | Cooling system | |
EP3115715B1 (en) | Refrigeration cycle system | |
CN110234944B (zh) | 制冷系统 | |
CN104848587A (zh) | 变频多联式热泵系统及旁通电子膨胀阀的控制方法 | |
US6925822B2 (en) | Oil return control in refrigerant system | |
US11988423B2 (en) | Cooling system | |
JP6328004B2 (ja) | 圧縮機/ポンプ切換式の冷却装置 | |
JP2018200145A (ja) | 制御装置、空気調和機及び制御方法 | |
WO2018079242A1 (ja) | 冷凍装置、冷凍システム | |
CN117847813A (zh) | 冷媒循环系统及其控制方法、制冷设备 | |
WO2021048899A1 (ja) | 室外ユニット及び冷凍サイクル装置 | |
US11656004B2 (en) | Cooling system with flexible evaporating temperature | |
JP6327986B2 (ja) | 圧縮機/ポンプ切換式の冷却装置 | |
KR100876285B1 (ko) | 가스히트펌프 시스템 | |
KR20090070000A (ko) | 공기조화기의 과부하 방지 장치 | |
CN107421152B (zh) | 一种供冷系统及其控制方法 | |
JP2024049917A (ja) | 二次冷媒冷凍システム及び二次冷媒の圧力調整方法 | |
CN117043530A (zh) | 用于控制具有旁通阀的蒸气压缩系统的方法 | |
JP2023146975A (ja) | 空気調和機 | |
CN114608189A (zh) | 冷媒调节方法、装置和空调系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190919 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602018031568 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F25B0009000000 Ipc: F25B0041200000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F25B 41/20 20210101AFI20211116BHEP |
|
INTG | Intention to grant announced |
Effective date: 20211202 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1472554 Country of ref document: AT Kind code of ref document: T Effective date: 20220315 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018031568 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20220321 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20220302 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PK Free format text: BERICHTIGUNG B9 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220302 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T5 Effective date: 20220718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220602 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1472554 Country of ref document: AT Kind code of ref document: T Effective date: 20220302 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: TB2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220603 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220704 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220702 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018031568 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220331 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220312 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220312 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 |
|
26N | No opposition filed |
Effective date: 20221205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20220217 Year of fee payment: 5 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240220 Year of fee payment: 7 Ref country code: GB Payment date: 20240220 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20180312 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20240222 Year of fee payment: 7 Ref country code: FR Payment date: 20240220 Year of fee payment: 7 Ref country code: DK Payment date: 20240220 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |