EP3583302A1 - Procédé de fabrication de soupapes à espace creux - Google Patents

Procédé de fabrication de soupapes à espace creux

Info

Publication number
EP3583302A1
EP3583302A1 EP18710811.3A EP18710811A EP3583302A1 EP 3583302 A1 EP3583302 A1 EP 3583302A1 EP 18710811 A EP18710811 A EP 18710811A EP 3583302 A1 EP3583302 A1 EP 3583302A1
Authority
EP
European Patent Office
Prior art keywords
annular wall
valve
cavity
cup
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18710811.3A
Other languages
German (de)
English (en)
Other versions
EP3583302B1 (fr
Inventor
Thorsten MATTHIAS
Antonius Wolking
Guido Bayard
Andreas Heinek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Federal Mogul Valvetrain GmbH
Original Assignee
Federal Mogul Valvetrain GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Federal Mogul Valvetrain GmbH filed Critical Federal Mogul Valvetrain GmbH
Priority to PL18710811T priority Critical patent/PL3583302T3/pl
Publication of EP3583302A1 publication Critical patent/EP3583302A1/fr
Application granted granted Critical
Publication of EP3583302B1 publication Critical patent/EP3583302B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/12Cooling of valves
    • F01L3/14Cooling of valves by means of a liquid or solid coolant, e.g. sodium, in a closed chamber in a valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/20Making machine elements valve parts
    • B21K1/22Making machine elements valve parts poppet valves, e.g. for internal-combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/20Making uncoated products by backward extrusion
    • B21C23/205Making products of generally elongated shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements

Definitions

  • the present invention relates to a method of manufacturing cavity valves for internal combustion engines and cavity valves made therewith.
  • Cavity valves are usually made by a combination of various methods, such as e.g. Forging, turning and welding. In particular, the turning or milling of the cavity is costly. Also weld spots should be avoided on the plate surface or other operational critical points. Another disadvantage of known methods is that often a large number of process steps is necessary.
  • US 6006713 A relates to a cavity valve made by closing a hollow blank by means of welding.
  • Object of the present invention is therefore to provide a manufacturing method for cavity valves or a valve body for cavity valves, which does not have the disadvantages mentioned and at the same time a high productivity and good Has material utilization.
  • the object is achieved by a method for producing a valve body of a cavity valve, comprising the steps of providing a cup-shaped semifinished product, the semifinished product having an annular wall which surrounds a cylindrical cavity of the semifinished product and a bottom portion; Forming a valve head from the bottom portion; Lengths of the annular wall in an axial direction by forming, wherein a mandrel is inserted into the cavity during the forming; Reducing an outer diameter of the annular wall by swaging to obtain a valve stem of the finished valve body having a predetermined outer diameter.
  • the provision of the cup-shaped semifinished product may comprise providing an at least partially cylindrical blank and forming the cup-shaped semifinished product from the blank.
  • the shaping of the cup-shaped semifinished product can take place by a hot-forming method, in particular by cup-backward extrusion or forging.
  • the molding of the valve head may be by a hot forming process, in particular by cup backward extrusion or forging.
  • the lengths of the annular side wall may be made by swaging with a mandrel or ironing via a mandrel.
  • a plurality of mandrels of different diameters may be used in the length of the annular wall.
  • the lengths of the annular wall may decrease the diameter of successively used mandrels.
  • reducing the outer diameter of the annular wall may include a plurality of rotary kneading substeps.
  • reducing the outer diameter of the annular wall may occur without a mandrel inserted.
  • the method may further include charging a cooling medium, particularly sodium, into the cavity and closing the valve stem.
  • a cooling medium particularly sodium
  • FIGS. 1A-1F show various intermediate steps of the production according to the invention of a valve body of a cavity valve (shown in FIG. 1F) from a blank (shown in FIG. 1A).
  • FIGS. 1A to 1F show, in sectional views, various intermediate stages of the production method according to the invention.
  • a blank 2 is made of a valve steel known to the person skilled in the art.
  • the blank has an at least partially cylindrical shape, preferably a circular cylindrical shape, corresponding to the circular shape of the valve body or valve to be produced.
  • the blank 2 is formed into a cup-shaped semifinished product 4 or workpiece shown in FIG. 1B.
  • the semifinished product in the form of a cup comprises a bottom portion 10, from which a valve head (or valve disk) 12 is later formed, and an annular wall 6, which surrounds a cylindrical, preferably circular cylindrical, cavity 8 of the cup-shaped semifinished product 4 and from the later Valve stem 14 is formed.
  • material may flow between the bottom section 10 and the annular wall 6 during the subsequent forming steps.
  • the cup-shaped semi-finished product 4 is provided directly according to the invention; The method then starts with providing the cup-shaped semifinished product 4 illustrated in FIG. 1B.
  • valve head 12 is formed from the bottom section 10.
  • the workpiece thus obtained is shown in Fig. IC.
  • Both the forming of the blank 2 into a cup-shaped workpiece 4 and the molding of the valve head 12 from the bottom portion 10 is preferably carried out by a hot forming process; more preferably, cup reverse extrusion or forging is used. In cup backward extrusion, a punch is pressed into the blank 2 to form the cavity 8.
  • an axial length of the annular wall 6 is increased.
  • 'Axial' here refers to the longitudinal direction defined by the shaft, ie to the axis of the annular wall; 'Radial' is correspondingly a direction orthogonal to the axial direction.
  • a mandrel (not shown) is inserted into the cavity, so that a flow of the material is prevented in the radial direction and the material flow takes place mainly in the axial direction.
  • Inner diameter and wall thickness of the annular wall 6 can be adjusted to a desired value. Further, this forming step may consist of several sub-steps, in which optionally several mandrels with the row be used after decreasing diameters.
  • FIGS. 1D and IE The semifinished shapes thus achieved are illustrated by way of example in FIGS. 1D and IE, where first a larger diameter mandrel is used to obtain the semifinished state shown in FIG. 1D and subsequently a mandrel having a smaller diameter is used to obtain the state shown in Fig. IE.
  • a larger diameter mandrel is used to obtain the semifinished state shown in FIG. 1D
  • a mandrel having a smaller diameter is used to obtain the state shown in Fig. IE.
  • the use of more than two thorns with different diameters is possible.
  • this length or this elongation is preferably rotary swaging with mandrel or Abstreckgleit » over a mandrel for use.
  • the outer diameter of the annular wall 6 is reduced by swaging to obtain a finished valve body 16 whose valve stem 12 has a predetermined outer diameter D, i. has a desired target diameter; see. Fig. 1F.
  • This forming step is preferably carried out without inserted mandrel, so that the diameter can be effectively reduced.
  • This step in addition to a reduction in the outer diameter, also leads to a further elongation of the annular wall 6 and, without a mandrel, to an increase in the wall thickness of the annular wall.
  • the wall thickness would therefore possibly be set slightly smaller in the preceding elongation step, in order to obtain a specific wall thickness, taking into account the increase in thickness in the final step, and thus given a given inner diameter D a certain inner diameter.
  • the step of reducing the outer diameter of the annular wall 6 may be divided into a plurality of consecutive sub-steps, each performed by means of rotary swaging. This depends, inter alia, on the diameter reduction to be achieved, ie on the difference between the initial outer diameter of the cup-shaped workpiece ( Figure IE) and the predetermined outer diameter D to be achieved of the finished valve stem 12 ( Figure 1F).
  • the individual partial steps can be carried out independently of each other by rotary swaging with or without mandrel. If a high diameter reduction is necessary and thus "many" partial steps, it is possible, for example, to use a mandrel in at least some of the partial steps in order to increase the thickness of the annular wall 6 does not get too big.
  • Rotary swaging is an incremental pressure forming process in which the workpiece to be machined is hammered in rapid succession from different sides in the radial direction. Due to the resulting pressure, the material flows, so to speak, and the material structure is not distorted by tensile stresses. Rotary kneading is preferred as a cold forming process, i. below the recrystallization temperature of the machined material.
  • An essential advantage of the use of rotary kneading as the final forming step is that compressive stresses are induced by the radial introduction of force during rotary kneading, whereby the occurrence of tensile stresses which increase the susceptibility to cracks is prevented, in particular for the edge layers of the hollow shank.
  • Rotary kneading enables inter alia an uninterrupted fiber course in the workpiece
  • Further advantages of rotary kneading as a final forming step - compared to drawing or necking are given by a better achievable surface quality and by a relatively higher diameter reduction of the shaft per step. Due to the high achievable surface quality and the fact that the tolerable tolerances in the rotary swaging are very small, a reworking of the valve stem is usually not necessary. With free-form processes or compression processes - such as necking - in general, only a poorer surface quality or tolerance compliance can be achieved.
  • a cooling medium for example sodium
  • a valve stem which, for example by means of friction welding or a other welding procedure, is attached (not shown in the figures).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Forging (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

L'invention concerne un procédé de fabrication d'un corps de soupape d'une soupape à espaces creux, le procédé consistant à : utiliser un produit semi-fini en forme de coupelle, pourvu d'une paroi annulaire, qui entoure un espace creux, et d'une section de fond ; allonger la paroi et réduire consécutivement un diamètre externe de la paroi annulaire pour obtenir un diamètre externe prédéfini de tige de soupape d'une soupape à fabriquer. L'invention concerne en outre une soupape à espace creux fabriquée par ce procédé.
EP18710811.3A 2017-06-29 2018-03-06 Procédé de fabrication de soupapes à espace creux Active EP3583302B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL18710811T PL3583302T3 (pl) 2017-06-29 2018-03-06 Sposób wytwarzania zaworów z pustą przestrzenią

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017114524.9A DE102017114524A1 (de) 2017-06-29 2017-06-29 Verfahren zur Herstellung von Hohlraumventilen
PCT/EP2018/055424 WO2019001781A1 (fr) 2017-06-29 2018-03-06 Procédé de fabrication de soupapes à espace creux

Publications (2)

Publication Number Publication Date
EP3583302A1 true EP3583302A1 (fr) 2019-12-25
EP3583302B1 EP3583302B1 (fr) 2021-04-14

Family

ID=61627077

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18710811.3A Active EP3583302B1 (fr) 2017-06-29 2018-03-06 Procédé de fabrication de soupapes à espace creux

Country Status (8)

Country Link
US (1) US11260448B2 (fr)
EP (1) EP3583302B1 (fr)
JP (1) JP7051904B2 (fr)
KR (1) KR102446127B1 (fr)
CN (1) CN110869590B (fr)
DE (1) DE102017114524A1 (fr)
PL (1) PL3583302T3 (fr)
WO (1) WO2019001781A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3882438A4 (fr) * 2018-11-12 2021-11-24 Nittan Valve Co., Ltd. Procédé de fabrication d'une soupape champignon de moteur
DE102019106222A1 (de) * 2019-03-12 2020-09-17 Federal-Mogul Valvetrain Gmbh Verfahren zur Herstellung eines Hohlventils für Verbrennungsmotoren
DE102019106209A1 (de) * 2019-03-12 2020-09-17 Federal-Mogul Valvetrain Gmbh Verfahren zur Herstellung eines Hohlventils für Verbrennungsmotoren
DE102019106214A1 (de) * 2019-03-12 2020-09-17 Federal-Mogul Valvetrain Gmbh Verfahren zur Herstellung eines Hohlventils für Verbrennungsmotoren
CN115697584A (zh) 2020-03-30 2023-02-03 日锻株式会社 发动机的提升阀的制造方法
CN112719201B (zh) * 2020-12-02 2022-09-23 浙江欧伦泰防火设备有限公司 一种阀门锻压工艺
WO2022195730A1 (fr) * 2021-03-16 2022-09-22 フジオーゼックス株式会社 Soupape de moteur creuse et son procédé de production

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2009996A (en) * 1931-10-20 1935-08-06 Jr Louis W Gering Method of making valves
US5413073A (en) * 1993-04-01 1995-05-09 Eaton Corporation Ultra light engine valve
US5458314A (en) * 1993-04-01 1995-10-17 Eaton Corporation Temperature control in an ultra light engine valve
DE59707222D1 (de) 1997-08-19 2002-06-13 Trw Deutschland Gmbh Hohlventil für Verbrennungsmotoren
DE20122516U1 (de) 2001-04-11 2005-12-29 Gkn Driveline International Gmbh Vorrichtung zum Abstrecken von zylindrischen Hohlkörpern (Rohrziehen)
JP4390291B1 (ja) * 2008-09-18 2009-12-24 株式会社 吉村カンパニー 中空エンジンバルブの弁傘部の製造方法及び中空エンジンバルブ
US8230597B2 (en) * 2008-10-03 2012-07-31 Ford Global Technologies, Llc Forming preforms and parts therefrom
JP4929408B1 (ja) * 2011-03-22 2012-05-09 三菱重工業株式会社 中空エンジンバルブの製造方法
JP5950440B2 (ja) 2012-01-30 2016-07-13 三菱重工工作機械株式会社 中空エンジンバルブの製造方法
JP2014084725A (ja) 2012-10-19 2014-05-12 Mitsubishi Heavy Ind Ltd エンジンバルブ及びその製造方法
JP5625220B2 (ja) * 2013-01-15 2014-11-19 株式会社飯塚製作所 鍛造方法及び鍛造装置
DE102017114509A1 (de) * 2017-06-29 2019-01-03 Federal-Mogul Valvetrain Gmbh Hohlraumventil mit optimierter Schaftinnengeometrie und Verfahren zu dessen Herstellung

Also Published As

Publication number Publication date
KR102446127B1 (ko) 2022-09-21
JP7051904B2 (ja) 2022-04-11
KR20200019904A (ko) 2020-02-25
US20200156144A1 (en) 2020-05-21
CN110869590B (zh) 2021-08-03
DE102017114524A1 (de) 2019-01-03
PL3583302T3 (pl) 2021-11-15
EP3583302B1 (fr) 2021-04-14
WO2019001781A1 (fr) 2019-01-03
US11260448B2 (en) 2022-03-01
JP2020525695A (ja) 2020-08-27
CN110869590A (zh) 2020-03-06

Similar Documents

Publication Publication Date Title
EP3583302B1 (fr) Procédé de fabrication de soupapes à espace creux
EP3583301B1 (fr) Procédé de fabrication d'un corps de valve d'une soupape creuse à géométrie intérieure de la tige optimisée et soupape creuse
DE69403843T2 (de) Ultraleichtes Ventil für Brennkraftmaschine
DE102019106209A1 (de) Verfahren zur Herstellung eines Hohlventils für Verbrennungsmotoren
EP3582910B1 (fr) Procédé de laminage de type à clavette transversale de soupapes à disque
WO2019223908A1 (fr) Procédé de fabrication d'une soupape creuse pour moteur à combustion interne
EP3898025B1 (fr) Procédé pour produire une préforme pour une soupape à tige creuse pour des moteurs à combustion interne
EP1024913B1 (fr) Procede et dispositif pour produire un arbre a partir d'un element tubulaire
DE102016122514B4 (de) Feuerverschweißtes innengekühltes Ventil sowie dadurch hergestelltes Ventil
DE102020132822B4 (de) Verfahren zur Herstellung eines inneren Anschlags in einem Rohrbauteil
EP3585986B1 (fr) Procédé de fabrication d'une soupape à refroidissement intérieur dotée d'une structure de refroidissement et soupape fabriquée au moyen dudit procédé
EP3762163B1 (fr) Procédé de fabrication d'une soupape à tige creuse dont la tige a une géométrie interne optimisée, pour des moteurs à combustion interne
EP4007666B1 (fr) Procédé et dispositif de fabrication de vannes creuses et intérieurement refroidies
DE102017207431A1 (de) Verfahren zur Herstellung eines Kolbenoberteils und/oder eines Kolbenunterteils für einen Kolben einer Brennkraftmaschine
WO2020182387A1 (fr) Procédé de fabrication d'une soupape creuse pour moteurs à combustion interne
EP2976180A1 (fr) Procédé de production d'un piston pour moteur à combustion interne et piston réalisé selon ce procédé
DE102007048940A1 (de) Verfahren zur Herstellung einer Buchse
DE19756673A1 (de) Verfahren zur Herstellung einer Welle aus einem Rohrstück, Vorrichtung zur Herstellung einer Welle aus einem Rohrstück und aus einem Rohrstück hergestellte Nockenwelle
DE102015206246A1 (de) Verfahren zur Herstellung eines Metall-Balgs
DE102011106705A1 (de) Verfahren zur Herstellung eines Antriebsrads und Rohling für selbiges

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190918

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502018004806

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F01L0003140000

Ipc: B21C0023200000

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: F01L 3/14 20060101ALI20200423BHEP

Ipc: B21K 1/22 20060101ALI20200423BHEP

Ipc: B21C 23/20 20060101AFI20200423BHEP

17Q First examination report despatched

Effective date: 20200515

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201120

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018004806

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1381856

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210515

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210814

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210715

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210816

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018004806

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210814

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220306

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220306

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220306

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220306

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240220

Year of fee payment: 7

Ref country code: CZ

Payment date: 20240226

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1381856

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180306

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240227

Year of fee payment: 7

Ref country code: PL

Payment date: 20240220

Year of fee payment: 7

Ref country code: IT

Payment date: 20240220

Year of fee payment: 7

Ref country code: FR

Payment date: 20240220

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414