EP3571335A1 - Verfahren zur herstellung korrosionsstabiler und optional farblich metallisch beschichteter, und dekorativer kunststoffbauteile - Google Patents

Verfahren zur herstellung korrosionsstabiler und optional farblich metallisch beschichteter, und dekorativer kunststoffbauteile

Info

Publication number
EP3571335A1
EP3571335A1 EP18703234.7A EP18703234A EP3571335A1 EP 3571335 A1 EP3571335 A1 EP 3571335A1 EP 18703234 A EP18703234 A EP 18703234A EP 3571335 A1 EP3571335 A1 EP 3571335A1
Authority
EP
European Patent Office
Prior art keywords
deposited
aluminum
layer
components
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18703234.7A
Other languages
English (en)
French (fr)
Inventor
Dirk Kieslich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gerhardi Kunststofftechnik GmbH
Original Assignee
Gerhardi Kunststofftechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gerhardi Kunststofftechnik GmbH filed Critical Gerhardi Kunststofftechnik GmbH
Publication of EP3571335A1 publication Critical patent/EP3571335A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2013Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by mechanical pretreatment, e.g. grinding, sanding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/208Multistep pretreatment with use of metal first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • C23C18/24Roughening, e.g. by etching using acid aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/20Electrolytic after-treatment
    • C25D11/22Electrolytic after-treatment for colouring layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • C25D11/243Chemical after-treatment using organic dyestuffs
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • C25D11/246Chemical after-treatment for sealing layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals
    • C25D3/44Aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts
    • C25D3/665Electroplating: Baths therefor from melts from ionic liquids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics

Definitions

  • the invention relates to a method for producing corrosion-resistant and optionally color-coated metallic decorative plastic components, wherein the components to be coated are first produced by plastic injection molding of a galvanisable plastic and then subjected to a chemical pretreatment, in which a first conductive metal layer is deposited and then an aluminum is deposited galvanically.
  • plastic components are used for visual enhancement.
  • Conventional surface technologies of such surface-decorated components are the manufacture of plastic surfaces by injection molding, painting of the plastic surfaces, scarring and etching of the tool surfaces to be imaged and molding them by plastic injection molding, galvanizing the plastic surface, decorating in the injection mold by IMD (In Mold Decoration), wherein an imprinted on a carrier film printing in the injection molding of a
  • Carrier film is molded, the injection molding of printed and partially deformed and contour-punched film inserts by the FIM technology, the film insert molding, and the metal foil back-injection.
  • a coating method with which it is possible to achieve optically metallic surfaces is, for example, the vapor deposition, to which the PVD method (Physical Vapor Deposition) and their modified technologies such as CVD (Chemical Vapor Deposition) and PeCVD (plasma vapor deposition). Enhanced Chemical Vapor Desposition) and others belong.
  • PVD Physical Vapor Deposition
  • CVD Chemical Vapor Deposition
  • PeCVD plasma vapor deposition
  • Enhanced Chemical Vapor Desposition Enhanced Chemical Vapor Desposition
  • thin metal layers are deposited in an evacuated vacuum chamber on a plastic component.
  • the material to be deposited is in solid form.
  • the vaporized material moves through the coating chamber and strikes the component to be coated, where precipitation leads to layer formation.
  • the PVD process is generally suitable for representing metallic layers, it has proven to be problematic that the very thin metal coating can not have sufficient resistance to abrasion and corrosion without an additional protective layer.
  • a protective layer for example a clearcoat system.
  • a coating of a primer is usually necessary.
  • Another important and industrially important coating is the galvanic deposition of metals on plastic components.
  • the parts are first produced by injection molding, for example from butadienhaitigen copolymers such as ABS or ABS / PC. After the injection molding process, the components are chemically pretreated to autoclaltically deposit on them a first thin metal layer, usually a thin layer of nickel or copper. In the further galvanic process, further metal layers are then deposited electrolytically until finally the electroplating process is finished, usually with a deposited chromium layer.
  • For all surfaces used in addition to the high aesthetic standards, there must also be a high resistance to mechanical damage as well as high media resistance in order to meet the later requirements of automotive exterior and interior design.
  • the conventional electrodeposited surface finishes and colors usually range from high gloss to different mattness, through to modified electrolytes and processes, to slightly anthracite and brownish tones.
  • a combination of lacquer, gas phase deposition, for example a PVD coating, and a tinted, ie weakly pigmented lacquer can be used to display colored metallic surfaces.
  • gas phase deposition for example a PVD coating
  • a tinted, ie weakly pigmented lacquer can be used to display colored metallic surfaces.
  • Such a technology is described in DE 102 33 120 A1. It is also possible to deposit the metal layers to be deposited directly on the substrate via special metal alloys.
  • EP 2 369 032 A1 describes such an approach. But here is one as well Primer for bonding and a downstream, namely a Klariackmaschine necessary. However, the color spectrum is limited and the haptic sensation is reduced by the lacquer layer. The invention aims to remedy this situation.
  • the invention has for its object to provide a method for producing corrosion-resistant and optionally color-coated metallic, decorative plastic components, in which a high-quality, corrosion-stable and optional inked decorative metal layer can be formed with a chemical and galvanic pretreatment and at least one galvanic metal deposition ,
  • the invention provides a process for producing corrosion-resistant and optionally metallic-color-coated, decorative plastic components, in which a high-quality, corrosion-resistant and optionally color-capable decorative metal layer can be formed by chemical and galvanic pretreatment and at least one galvanic metal deposition.
  • the chemical pretreatment is performed by means of selected mechanical and chemical roughening, swelling and pickling technologies and other technologies for providing a first conductive metal layer adhesion mechanism.
  • the anodized layer is compacted. During compaction, the pores opened by anodizing are closed again. This prevents the storage of corrosive substances.
  • FIG 1 shows the flow diagram of the method according to the invention
  • the components to be coated are first produced in the plastic injection molding process (a) from a galvanisable plastic, preferably from a butadiene-containing copolymenate such as ABS or ABS / PC.
  • the components are chemically pretreated in a conventional plastic electroplating process (b) to subsequently autocally deposit a first thin metal layer on this machined surface (c), which is usually a thin layer of nickel or copper.
  • Autocatalysis (Greek for "self-dissolution”) refers to a special form of catalytic chemical reaction in which a final product acts as a catalyst for the reaction, and the continuous formation of this catalyst constantly accelerates the reaction.
  • At least one metal layer is then applied electrolytically (d) or aluminum is deposited directly in a further galvanic process step (e), which is oxidized to an aluminum oxide in a subsequent anodization process (f) and optionally dyed (g). ,
  • the inventive method is thus according to the described process steps capable of corrosion-resistant and optionally colored metallic coated decorative plastic components provide (h).
  • an aluminum is deposited which, in the downstream anodization process, is oxidized to an aluminum oxide and optionally dyed.
  • the aluminum is also electrodeposited from electrolytes or from aluminum salts in organic solutions as well as optionally by ionic liquids.
  • the method according to the invention can thus according to the method form a corrosion-resistant, optionally colored and decorative metallic surface coating on plastic components.
  • the described anodizing process uses, like the previously described galvanic process, the plastic electroplating of the electrolysis, the oxidation of the aluminum to aluminum (III) oxide generally being carried out under direct current at the anode.
  • the converted aluminum oxide layer is subsequently highly corrosion-resistant and has a high visual appearance.
  • the aluminum-coated components are usually degreased and pickled to remove impurities, deposits and possibly formed oxide layers.
  • pickling existing small surface defects such as e.g. Scores, scratches, blowholes, inclusions, etc. eliminated by material removal.
  • the aluminum-coated component can be immersed in hot dye solution and then rinsed.
  • the dye moieties are deposited mainly in the upper regions of the pores of the anodized layer and enter into bonds with the oxide layer.
  • dyeing of the oxidized aluminum layers may also be performed.
  • the component is neutralized after anodizing, rinsed and in color baths with Colored metal salt solutions.
  • the ions of the solution accumulate in the pores of the anodizing layer and become a solid.
  • the electrolytic Colinalverfah- ren is carried out with AC voltage.
  • the electrolyte contains a coloring metal salt.
  • the metal ions penetrate deeply into the pores of the layer.
  • the duration of the electrolysis depends on the desired color depth.
  • interference dyeing in which, in contrast to the previous dyeing technologies, the color of the aluminum is not generated by embedded foreign ions, but by an interference within the aluminum oxide layer.
  • light appears on thin layers of optically transparent materials such.
  • This color effect is also referred to as "iridescent colors” as a result of the refraction and interference of light on thin surface layers of an object, so that the object shines in the colors of the rainbow.
  • the colors depend on the viewing angle, depending on the layer thickness of the oxide layer and the associated deletion of light, different colors (eg blue, green, gray or red) can be reproducibly displayed.
  • the anodized and possibly colored aluminum is compacted in a final processing step in demineralized water by simple cooking.
  • cooking in hot to boiling water can be used.
  • this can be done by dip dyeing (adsorptive dyeing) at temperatures between 55 and 85 ° C., whereby the process can take between 15 to 30 minutes to 20 to 35 minutes.
  • the re-compaction can also take place in the post-compressor solution at a temperature between 90 and 100 ° C. Approx. 3 minutes are required per 1 ⁇ m layer thickness for this treatment.
  • the treatment can be done in hot water, which must be deionized water.
  • the temperature is also between 90 and 100 ° C, for a 1 micron layer thickness also a duration of 3 minutes is required.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung korrosionsstabiler und optional farblich metallisch beschichteter, dekorativer Kunststoffbauteile (h), bei dem die zu beschichteten Bauteile zunächst im Kunststoffspritzgussverfahren (a) aus einem galvanisierbaren Kunststoff hergestellt werden und anschließend einer chemischen Vorbehandlung (b) unterzogen werden, bei der eine erste leitende Metallschicht (c) abgeschieden wird und anschließend galvanisch ein Aluminium abgeschieden wird (e). Die abgeschiedene Aluminiumoberfläche wird in einem anschließenden Eloxal-Verfahren oxidiert (f).

Description

VERFAHREN ZUR HERSTELLUNG KORROSIONSSTABILER UND OPTIONAL FARBLICH METALLISCH BESCHICHTETER, UND DEKORATIVER
KUNSTSTOFFBAUTEILE
Die Erfindung betrifft ein Verfahren zur Herstellung korrosionsstabiler und optional farblich metallisch beschichteter, dekorativer Kunststoffbauteile, bei dem die zu beschichteten Bauteile zunächst im Kunststoffspritzgussverfahren aus einem galvanisierbaren Kunststoff hergestellt werden und anschließend einer chemischen Vorbehandlung unterzogen werden, bei der eine erste leitende Metallschicht abgeschieden wird und anschließend galvanisch ein Aluminium abgeschieden wird.
In der Automobilindustrie werden verschiedene und unterschiedlich dekorierte Kunststoffbauteile zur optischen Aufwertung eingesetzt. Herkömmliche Oberflächentechnologien solcher oberflächendekorierter Bauteile sind das Fertigen undekorierter Kunststoffoberflächen durch Spritzguss, das Lackieren der Kunststoffoberflächen, das Narben und Ätzen der abzubildenden Werkzeugoberflächen und Abformen dieser durch Kunststoff- spritzguss, das Galvanisieren der Kunststoffoberfläche, das Dekorieren im Spritzgießwerkzeug durch IMD (In Mold Dekoration), wobei eine auf eine Trägerfolie aufgedruckte Bedruckung im Spritzgießprozess von einer
Trägerfolie abgeformt wird, das Hinterspritzen von bedruckten und teilweise verformten und konturfolgend gestanzten Folieninserts durch die FIM Technologie, das Film-Insert-Molding, sowie das Metallfolienhinter- spritzen.
Neben all diesen klassischen Oberflächentechnologien ist die Darstellung metallischer Oberflächen besonders hoch nachgefragt im Trend, da diese Oberfläche wie keine andere eine hochwertige und robuste Anmutung suggeriert. Neben den mit Echtmetall dekorierten Bauteilen, also verblendeten, gefügten oder hinterspritzten Bauteilen mit dünnen Edelstahl oder Aluminiumblechen, werden auch besonders bevorzugt metallisch beschichtete Kunststoffbauteile als Dekorelemente eingesetzt.
Eine Besch ichtungsart mit der es möglich ist optisch metallische Oberflächen zu erzielen ist z.B. die Gasphasenabscheidung, zu der das PVD- Verfahren (Physical-Vapor-Deposition) sowie deren modifizierte Technologien wie z.B. CVD (Chemical-Vapor-Deposition) und PeCVD (Plasma- Enhanced-Chemical-Vapor-Desposition) und weitere gehören. Hierbei werden dünne Metallschichten in einer evakuierten Vakuumkammer auf ein Kunststoffbauteil abgeschieden. Das abzuscheidende Material liegt in fester Form vor. Das verdampfte Material bewegt sich durch die Beschich- tungskammer und trifft auf das zu beschichtende Bauteil, wo es durch Niederschlag zur Schichtausbiidung kommt. Zwar ist das PVD-Verfahren generell geeignet metallische Schichten darzustellen, als problematisch hat sich jedoch erwiesen, dass die sehr dünne Metallbeschichtung nicht ohne eine zusätzliche Schutzschicht eine hinreichende Festigkeit gegen Abrieb und Korrosion aufweisen kann. Aus diesem Grund ist es erforder- lieh, eine Schutzschicht, beispielsweise ein Klarlacksystem, zu applizieren. Um eine ausreichende Grundhaftung auf das abzuscheidende Kunststoffbauteil zu erzielen, ist in der Regel auch eine Lackierung eines Haftvermittlers notwendig. Eine weitere und industriell sehr wichtige Beschichtung ist die galvanische Abscheidung von Metallen auf Kunststoffbauteilen. Dabei werden die Teile zunächst im Spritzgießverfahren, beispielsweise aus butadienhaitigen Copolymerisaten wie ABS oder ABS/PC, hergestellt. Nach dem Spritz- gieß-Vorgang werden die Bauteile chemisch vorbehandelt, um auf ihnen anschließend autokaltaiytisch eine erste dünne Metallschicht, in der Regel eine dünne Nickel- oder Kupferschicht, abzuscheiden. Im weiteren Galva- nikprozess werden dann elektrolytisch weitere Metallschichten abgeschieden, bis der Galvanisierprozess abschließend meist mit einer abgeschiedenen Chromschicht beendet ist. Bei allen eingesetzten Oberflächen muss neben dem hohen ästhetischen Anspruch auch eine hohe Widerstandskraft gegen mechanische Beschädigungen sowie auch eine hohe Medienbeständigkeit vorliegen, um den späteren Anforderungen im automobilen Exterieur sowie im Interieur ge- recht zu werden.
Neben all diesen zu erfüllenden Anforderungen, besteht jedoch stets auch der Wunsch nach mehr Individualität, nach designtechnischer Freiheit sowie farblicher und struktureller Ausgestaltung der Oberflächen. Besonders bei den metallischen Oberflächen wie der galvanischen Beschichtung wünscht sich die Automobilindustrie vielfach farblichen Spielraum, ist aber bisher bei dieser Darstellung stark eingeschränkt.
Die konventioneilen galvanisch abgeschiedenen Oberflächengüten und Farben reichen in der Regel von Hochglanz Ober verschiedene Mattigkeiten bis, durch modifizierte Elektrolyte und Prozesse, zu leicht anthrazit und bräunlichen Tönen.
Optisch und haptisch metallische und farbliche Oberflächen sind meist nur durch autendige zusätzliche Lackierungen oder ggf. zusätzliche Beschichtung auf der Metallabscheidung möglich» wobei die Haftung der Lackschichten oder der Beschichtung auf der Chromschicht stets kritisch betrachtet werden muss und die optische sowie haptische Anmutung der Grundoberfläche massiv eingeschränkt wird. Dies hat seine Ursache darin, dass die abgeschiedene Chromschicht sehr inert und inaktiv ist und deshalb die (Lack-)Schichten nicht halten.
Um farbliche, metallisch wirkende Oberflächen darzustellen, kann zum Beispiel unter hohem Aufwand auch eine Kombination von Lack, Gaspha- senabscheidung, beispielsweise eine PVD-Beschichtung, und einem getönten, also schwach pigmentierten Lack, angewandt werden. Eine solche Technologie wird in der DE 102 33 120 A1 beschrieben. Auch ist es möglich die abzuscheidenden Metallschichten direkt über spezielle Metalflegierungen farblich auf das Substrat abzuscheiden. In der EP 2 369 032 A1 wird ein solcher Ansatz beschreiben. Hierbei ist jedoch ebenso eine Grundierung zur Haftvermittlung sowie eine nachgeschaltete, nämlich eine Klariackierung, notwendig. Das Farbspektrum ist hierbei allerdings eingeschränkt und die haptische Empfindung durch die Lackschicht reduziert. Hier will die Erfindung Abhilfe schaffen. Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung korrosionsstabiler und optional farblich metallisch beschichteter, dekorativer Kunststoffbauteile zu schaffen, bei dem mit einer chemischen und galvanischen Vorbehandlung und wenigstens einer galvanischen Metallabscheidung eine hochwertige, kor- rosionsstabile sowie optional einzufärbende dekorative Metallschicht ausgebildet werden kann.
Gelöst wird diese Aufgabe durch ein Verfahren mit den Merkmalen des Patentanspruchs 1. Danach wird die abgeschiedene Aluminiumoberfläche in einem anschließenden Eloxal-Verfahren oxidiert.
Mit der Erfindung ist ein Verfahren zur Herstellung korrosionsstabiler und optional farblich metallisch beschichteter, dekorativer Kunststoffbauteile geschaffen, bei dem mit einer chemischen und galvanischen Vorbehand- lung und wenigstens einer galvanischen Metallabscheidung eine hochwertige, korrosionsstabile sowie optional einzufärbende dekorative Metallschicht ausgebildet werden kann.
Bevorzugt wird die chemische Vorbehandlung mittels ausgewählter Tech- nologien mit mechanischem und chemischem Aufrauen, Quellen und Beizen und anderen Technologien zum Bereitstellen eines Haftungsmechanismus für eine erste leitende Metallschicht durchgeführt. Hierdurch besteht die Möglichkeit, auf den klassischen Vorbehandlungsprozess zu verzichten und andere Vorbehandlungsmethoden einzusetzen. Es hat sich erwiesen, dass man eine Haftung auch durch Strahlen, Behandeln mit quellenden und beizenden Säuren über der Chromschwefelsäure (klassisch) hinaus, Aufbringen einer ersten leitenden Schicht durch PVD oder sogar Einmischen von leitenden Pigmenten erhält, um an diesen den Aufbau und die Abscheidung einer ersten leitenden Schicht abzubilden. ln Weiterbildung der Erfindung wird die eloxierte Schicht verdichtet. Beim Verdichten werden die durch das Eloxieren geöffneten Poren wieder verschlossen. Dadurch wird die Einlagerung von korrosionsfördernden Stoffen verhindert.
Andere Weiterbildungen und Ausgestaltungen der Erfindung sind in den übrigen Unteransprüchen angegeben. Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird nachfolgend im Einzelnen beschrieben. Es zeigen:
Figur 1 das Ablaufdiagramm des erfindungsgemäßen Verfahrens
Hierzu werden die zu beschichteten Bauteile zunächst im Kunststoffspritzgussverfahren (a) aus einem galvanisierbaren Kunststoff, bevorzugt aus einem butadienhaltigen Copolymensat wie ABS oder ABS/PC, hergestellt. Nach dem Spritzgieß-Vorgang werden die Bauteile in einem konventionellen Kunststoffgalvanikprozess (b) chemisch vorbehandelt, um auf dieser bearbeiteten Oberfläche anschließend autokaitalytisch eine erste dünne Metallschicht abzuscheiden (c), bei der es sich in der Regel um eine dünne Nickel- oder Kupferschicht handelt. Als Autokatalyse (griechisch für„die Selbstauflösung") wird eine besondere Form der katalyti- schen chemischen Reaktion bezeichnet, bei der ein Endprodukt als Katalysator für die Reaktion wirkt. Durch die fortlaufende Bildung dieses Katalysators wird die Reaktion ständig beschleunigt.
Im weiteren Galvanikprozess wird dann elektrolytisch wenigstens eine Metallschicht aufgebracht (d) oder es wird direkt in einem weiteren galvanischen Verfahrensschritt Aluminium abgeschieden (e), welches in einem nachgeschalteten Eloxal-Verfahren zu einem Aluminiumoxid oxidiert (f) und optional eingefärbt werden kann (g).
Das erfindungsgemäße Verfahren ist somit gemäß den beschriebenen Verfahrensschritten in der Lage korrosionstabile und optional farbliche metallisch beschichtete dekorative Kunststoffbauteile bereitzustellen (h). ln dem der chemischen Vorbehandlung folgenden galvanischen Verfahrensschritt wird ein Aluminium abgeschieden, welches in dem nachgeschalteten Eloxal-Verfahren zu einem Aluminiumoxid oxidiert und optional eingefärbt werden kann.
Das Aluminium wird ebenso aus Elektrolyten oder aus Aluminiumsalzen in organischen Lösungen sowie optional durch ionische Flüssigkeiten galvanisch abgeschieden. Das erfindungsgemäße Verfahren kann somit verfahrensgemäß eine korrosionsstabile, optional farbliche und dekorative metallische Oberfiächen- beschichtung auf Kunststoffbauteilen ausbilden.
Das beschriebene Eloxal-Verfahren bedient sich wie der zuvor beschrie- bene galvanische Prozess der Kunststoffgalvanisierung der Elektrolyse, wobei in der Regel an der Anode die Oxidation des Aluminiums zu Alumi- nium(lll)-oxid unter Gleichstrom durchgeführt wird. Die umgewandelte Aluminiumoxidschicht ist im Anschluss hoch korrosionsbeständig und hat eine hohe optische Anmutung.
Vor dem Eloxal-Verfahren werden die aluminiumbeschichteten Bauteile in der Regel entfettet und gebeizt, um Verunreinigungen, Ablagerungen und ggf. gebildete Oxidschichten zu entfernen. Beim Beizen werden vorhandene kleine Oberflächenfehler wie z.B. Riefen, Kratzer, Lunker, Ein- Schlüsse usw. durch Materialabtrag beseitigt.
Nach dem Eloxieren kann das aluminiumbeschichtete Bauteil in heiße Farbstofflösung getaucht und anschließend gespült werden. Beim Färben mit diesem Verfahren lagern sich die Farbstoffmoieküie vorwiegend in den oberen Bereichen der Poren der Eloxal-Schicht an und gehen Bindungen mit der Oxidschicht ein.
Unter Verwendung anorganischer Farbstoffe kann ebenso eine Färbung der oxidierten Aluminiumschichten vorgenommen werden. Hierzu wird das Bauteil nach dem Eloxieren neutralisiert, gespült und in Farbbädern mit Metallsalzlösungen eingefärbt. Die Ionen der Lösung sammeln sich in den Poren der Eloxal-Schicht an und werden zu einem Feststoff.
Eine weitere Möglichkeit des Färbens ist das elektrolytische Colinalverfah- ren, welches mit Wechselspannung durchgeführt wird. Der Elektrolyt enthält ein färbendes Metallsalz. Die Metallionen dringen tief in die Poren der Schicht ein. Die so zum Teil mit Metall gefüllten Poren verursachen dann durch Aufnahme- und Streueffekte eine lichtechte Färbung. Viele unterschiedliche Farbtöne sind erzielbar. Die Dauer der Elektrolyse hängt von der erwünschten Farbtiefe ab.
Besonders ansprechende optische Ergebnisse erzielt man beim sogenannten Interferenzfärben, bei dem im Gegensatz zu den vorherigen Färbetechnologien die Farbe des Aluminiums nicht durch eingelagerte Fremdionen, sondern durch eine Interferenz innerhalb der Aluminiumoxidschicht erzeugt wird. Hierbei erscheint Licht, welches an dünnen Schichten optisch transparenter Materialien wie z. B. einem Ölfilm auf Wasser oder wie bei Seifenblasen reflektiert wird, häufig farbig. Bei diesem farblichen Effekt spricht man auch von„irisierenden Farben" in Folge von Bre- chung und Interferenz des Lichts an dünnen Oberflächenschichten eines Gegenstandes. Dadurch scheint dieser Gegenstand in den Farben des Regenbogens. Die Farben hängen vom Betrachtungswinkel ab. Je nach Schichtdicke der Oxidschicht und der damit verbundenen Lichtauslöschung, können unterschiedliche Farben (z. B. blau, grün, grau oder rot) reproduzierbar dargestellt werden.
Um die Einlagerung von korrosionsfördernden Stoffen zu verhindern, und um die Farbe dauerhaft zu versiegeln, müssen die Poren verdichtet werden. Das eloxierte und eventuell gefärbte Aluminium wird in einem letzten Bearbeitungsschritt in demineralisiertem Wasser durch einfaches Kochen verdichtet. Hier kann das Kochen in heißem bis zu kochendem Wasser zur Anwendung kommen. Dies kann einerseits durch Tauchfärben (ad- sorptives Färben) bei Temperaturen zwischen 55 und 85°C erfolgen, wobei der Vorgang zwischen 15 bis 30 Minuten bis 20 bis 35 Minuten an- dauern kann. Das Nachverdichten kann auch in Nachverdichterlösung bei einer Temperatur zwischen 90 und 100°C erfolgen. Pro 1 μm Schichtdicke werden ca. 3 Minuten bei dieser Behandlung benötigt. Alternativ kann die Behandlung in Heißwasser erfolgen, wobei es sich um entionisiertes Wasser handeln muss. Die Temperatur beträgt ebenfalls zwischen 90 und 100°C, wobei für 1 μm Schichtdicke ebenfalls eine Dauer von 3 Minuten erforderlich ist.

Claims

Patentansprüche 1 . Verfahren zur Herstellung korrosionsstabiler und optional farblich metallisch beschichteter, dekorativer Kunststoffbauteile (h), bei dem die zu beschichteten Bauteile zunächst im Kunststoffspritzgussverfahren (a) aus einem galvanisierbaren Kunststoff hergestellt werden und anschließend einer chemischen Vorbehandlung (b) unterzogen werden, bei der eine erste leitende Metallschicht (c) abgeschieden wird und anschließend galvanisch ein Aluminium abgeschieden wird (e), dadurch gekennzeichnet, dass die abgeschiedene Aluminiumoberfläche in einem anschließenden Eloxal-Verfahren oxidiert wird (f).
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die chemische Vorbehandlung (b) gemäß einer konventionellen Kunststoff- galvanik mit den folgenden Prozessen durchgeführt wird:
• Beizen mit oxidativen Metallsalzlösungen zum Aufrauen der Oberfläche,
• Aktivieren mit Metallkeimen, z. B. Palladium, sowie
• autokatalytisch ablaufende chemische Metallisierung (c) zur Bildung einer ersten leitenden Schicht aus Kupfer, Nickel oder eines anderen Metalls.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die chemische Vorbehandlung (b) gemäß ausgewählter Technologien mit mechanischem und chemischem Aufrauen, Quellen und Beizen und anderen Technologien zum Bereitstellen eines Haftungsmechanismus für eine erste leitende Metallschicht durchgeführt wird.
4. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass auf die vorbehandelten Bauteile in einem anschließenden ersten elektrolytischen Galvanikprozess (d) wenigstens eine Metallschicht aufgebracht wird, auf der in einem weiteren Verfahrensschritt Aluminium abgeschieden wird (e).
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das Aluminium in einem galvanischen Verfahrensschritt abgeschieden wird.
6. Verfahren nach einem der vorgenannten Ansprüche, dadurch ge- kennzeichnet, dass auf die derat vorbehandelten Bauteile in einem elektrolytischen Gaivanikprozess direkt Aluminium abgeschieden wird (e).
7. Verfahren nach einem der vorgenannten Ansprüche, dadurch ge- kennzeichnet, dass in einem nachgeschalteten Eloxal-Verfahren das abgeschiedene Aluminium zu einem Aluminiumoxid oxidiert (f).
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die zu einem Aluminiumoxid oxidierte Aluminiumschicht eingefärbt wird (g).
9. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die eloxierte Schicht verdichtet wird.
EP18703234.7A 2017-01-23 2018-01-23 Verfahren zur herstellung korrosionsstabiler und optional farblich metallisch beschichteter, und dekorativer kunststoffbauteile Withdrawn EP3571335A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202017000347.3U DE202017000347U1 (de) 2017-01-23 2017-01-23 Kunststoffbauteil mit galvanisierter und eloxierter Oberfläche zur Darstellung optional farblicher, korrosionsstabiler, dekorativer Metallschichten
PCT/EP2018/051567 WO2018134436A1 (de) 2017-01-23 2018-01-23 Verfahren zur herstellung korrosionsstabiler und optional farblich metallisch beschichteter, und dekorativer kunststoffbauteile

Publications (1)

Publication Number Publication Date
EP3571335A1 true EP3571335A1 (de) 2019-11-27

Family

ID=58224377

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18703234.7A Withdrawn EP3571335A1 (de) 2017-01-23 2018-01-23 Verfahren zur herstellung korrosionsstabiler und optional farblich metallisch beschichteter, und dekorativer kunststoffbauteile

Country Status (5)

Country Link
US (1) US20190345611A1 (de)
EP (1) EP3571335A1 (de)
CN (1) CN110382746A (de)
DE (1) DE202017000347U1 (de)
WO (1) WO2018134436A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240287682A1 (en) * 2021-06-19 2024-08-29 Gerhardi Kunststofftechnik Gmbh Decorative plastic component and method for producing such a component
DE202021002143U1 (de) 2021-06-19 2021-10-13 Gerhardi Kunststofftechnik Gmbh Dekoratives Kunststoffbauteil mit Zink, Zink-Nickel oder Nickelbeschichtung zur Darstellung optional farblicher, korrosionsstabiler Metallschichten

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101386A (en) * 1971-05-07 1978-07-18 Siemens Aktiengesellschaft Methods of coating and surface finishing articles made of metals and their alloys
JPS57181391A (en) * 1981-04-30 1982-11-08 Nisshin Steel Co Ltd External parts made of synthetic resin for timepieces
DE10233120A1 (de) 2002-07-20 2004-02-05 Eichler Pulverbeschichtung Gmbh Dekorative universelle Oberflächenbeschichtung
US6790335B2 (en) * 2002-11-15 2004-09-14 Hon Hai Precision Ind. Co., Ltd Method of manufacturing decorative plate
CN101922010B (zh) * 2009-06-16 2012-11-21 比亚迪股份有限公司 一种铝合金表面处理方法
EP2369032B1 (de) 2010-03-25 2012-08-22 Odelo GmbH Verfahren zur Herstellung farbiger Oberflächen

Also Published As

Publication number Publication date
DE202017000347U1 (de) 2017-02-15
CN110382746A (zh) 2019-10-25
WO2018134436A1 (de) 2018-07-26
US20190345611A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
DE102007057777B4 (de) Verfahren zur Herstellung eines Bauteils aus Aluminium und/oder einer Aluminiumlegierung sowie Verwendung des Verfahrens
EP3228727A2 (de) Verfahren zur herstellung beschichteter substrate, beschichtete substrate und deren verwendung
EP1870489A1 (de) Verfahren zur Herstellung eines korrosionsgeschützten und hochglänzenden Substrats
DE60010604T2 (de) Glänzende Oberflächenstruktur und Verfahren zu ihrer Herstellung
DE102016208184A1 (de) Verfahren zum Erzeugen mehrerer elektrischer Strompfade auf einem Werkstück
EP3571335A1 (de) Verfahren zur herstellung korrosionsstabiler und optional farblich metallisch beschichteter, und dekorativer kunststoffbauteile
US6800190B1 (en) Method to obtain a variety of surface colors by electroplating zinc nickel and nickel alloy oxides
EP3120939A1 (de) Beschichtete substrate und deren verwendung sowie anlagen zur herstellung der beschichteten substrate
EP0090268A2 (de) Verfahren zum Anodisieren von Aluminiumwerkstoffen und aluminierten Teilen
EP3498879B1 (de) Verfahren zur herstellung beschichteter substrate, beschichtete substrate und deren verwendung
DE10000791A1 (de) Leuchtende Metalloberflächen
DE4240903C2 (de) Verfahren zum elektrolytischen Färben eines mit Zink beschichteten Stahlgegenstandes
DE10025643B4 (de) Verfahren zum Beschichten von Aluminium- und Magnesium-Druckgusskörpern mit einer kataphoretischen Elektrotauchlackierungsschicht und mit diesem Verfahren hergestellte Aluminium- und Magnesium-Druckgusskörper
KR101334323B1 (ko) 다이캐스팅 합금의 표면처리 방법 및 이에 의하여 제조된 표면구조를 가지는 다이캐스팅 합금재
CN1827839A (zh) 金属表面处理方法
EP1454999A1 (de) Werkstoff oder Bauteil mit einer Metallbeschichtung
DE3035319A1 (de) Verfahren zur erzeugung von anodisch gefaerbten gegenstaenden aus aluminium oder einer aluminiumlegierung
DE2909360C2 (de) Gefärbter Gegenstand aus Zink oder einer Zinklegierung und Verfahren zu seiner Herstellung
DE102005054463A1 (de) Beschichteter Sanitärgegenstand
WO2022263681A2 (de) Dekoratives kunststoffbauteil und verfahren zur herstellung eines solchen bauteils
WO2019115682A1 (de) Verfahren zur herstellung beschichteter substrate, beschichtete substrate und deren verwendung
DE102021127112A1 (de) Dekoratives Kunststoffbauteil und Verfahren zur Herstellung eines solchen Bauteils
CN109652792B (zh) 一种铝合金装饰件的生产方法
DE10356944A1 (de) Beschichtungsverfahren zur Beschichtung eines Substrates mit Metall
DE102016208185A1 (de) Werkstück mit elektrischen Strompfaden

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190715

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20221221

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20230208