EP3568346B1 - Dispositif et procédé de commande d'un véhicule sous-marin - Google Patents

Dispositif et procédé de commande d'un véhicule sous-marin Download PDF

Info

Publication number
EP3568346B1
EP3568346B1 EP18700846.1A EP18700846A EP3568346B1 EP 3568346 B1 EP3568346 B1 EP 3568346B1 EP 18700846 A EP18700846 A EP 18700846A EP 3568346 B1 EP3568346 B1 EP 3568346B1
Authority
EP
European Patent Office
Prior art keywords
acceleration
speed
keel
trim
free travel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18700846.1A
Other languages
German (de)
English (en)
Other versions
EP3568346B8 (fr
EP3568346A1 (fr
Inventor
Hans Jürgen Dr. BOHLMANN
Manuel Scharmacher
Tim Klusmeier
Sönke Markmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp AG
ThyssenKrupp Marine Systems GmbH
Original Assignee
ThyssenKrupp AG
ThyssenKrupp Marine Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp AG, ThyssenKrupp Marine Systems GmbH filed Critical ThyssenKrupp AG
Publication of EP3568346A1 publication Critical patent/EP3568346A1/fr
Publication of EP3568346B1 publication Critical patent/EP3568346B1/fr
Application granted granted Critical
Publication of EP3568346B8 publication Critical patent/EP3568346B8/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth
    • B63G8/22Adjustment of buoyancy by water ballasting; Emptying equipment for ballast tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/20Monitoring properties or operating parameters of vessels in operation using models or simulation, e.g. statistical models or stochastic models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth

Definitions

  • the invention relates to a device and a method for controlling an underwater vehicle, the device being designed to carry out a method for determining hydrodynamic coefficients of an underwater vehicle.
  • the z-direction is the direction perpendicular to the longitudinal axis of the submarine, with positive values pointing downwards.
  • the y-direction is the direction transverse to the longitudinal axis of the submarine, with positive values pointing to starboard.
  • ⁇ s is the aft depth rudder angle
  • ⁇ b is the forward depth rudder angle
  • is the angle of attack of the submarine
  • is the drift angle of the submarine
  • f x a factor for rudder
  • X rudder f x 4
  • cross rudder f x 1
  • W is the weight of the submarine including flooded clearances
  • W. ′ W. ⁇ 2 ⁇ L. 2 ⁇ U ⁇ 2 a dimensionless value
  • B is the buoyancy of the submarine
  • B. ′ B. ⁇ 2 ⁇ L.
  • C is the origin of the boat-based coordinate system
  • L is the length of the submarine
  • is the density of the surrounding water
  • g is the acceleration due to gravity
  • U the speed of the submarine when traveling through the water
  • u is the speed component in the x-direction
  • U the speed of the submarine during stationary travel through the water for a freely selectable reference travel state
  • u c is the propulsion speed, which corresponds to the speed u that the boat would achieve at the current propeller speed when traveling ahead on a level keel with zero rudder angles
  • u c ′ u U ⁇ a dimensionless value
  • v is the speed component in the y -direction across the submarine
  • v ′ v U ⁇ a dimensionless value
  • w is the speed component in the z-direction normal to the submarine
  • w ′ w U ⁇ a dimensionless value
  • Z is the hydrodynamic force in the z-direction
  • Z the coefficient to describe the
  • Z w is the coefficient describing the normal force Z as a function of the product u w
  • Z w ′ Z w ⁇ 2 L. 2 a dimensionless value
  • , Z w ′ Z w ⁇ 2 L. 2 a dimensionless value
  • Z w w ′ Z w w ⁇ 2 L. 2 a dimensionless value
  • Z ww is the coefficient describing the normal force Z as a function of
  • Z ww ′ Z ww ⁇ 2 L. 2 a dimensionless value
  • is the coefficient to describe the normal force Z as a function of w v 2 + w 2 ⁇ ⁇ ⁇ C. - 1
  • Z w w ⁇ ′ Z w w ⁇ ⁇ 2 L. 2 a dimensionless value
  • Z ⁇ s is the coefficient describing the normal force Z as a function of u 2 ⁇ s
  • Z ⁇ s ′ Z ⁇ s ′ ⁇ 2 L.
  • Z ⁇ b is the coefficient describing the normal force Z as a function of u 2 ⁇ b
  • Z ⁇ b ′ Z ⁇ b ′ ⁇ 2 L. 2 a dimensionless value
  • Z ⁇ s ⁇ is the coefficient to describe the normal force Z as a function of u 2 ⁇ s ( ⁇ C -1)
  • Z ⁇ s ⁇ ′ Z ⁇ s ⁇ ′ ⁇ 2 L. 2 a dimensionless value
  • M is the hydrodynamic torque around the y- axis, also called pitching torque
  • M * is the coefficient describing the pitching moment M
  • M. ⁇ ′ M. ⁇ ⁇ 2 L.
  • M w is the coefficient to describe the pitching moment M as a function of u w
  • M. w ′ M. w ⁇ 2 L. 3 a dimensionless value, M
  • , M. w ′ M. w ⁇ 2 L. 3 a dimensionless value, M w
  • the coefficient to describe the pitching moment M as a function of w v 2 + w 2 , M. w w ′ M. w w ⁇ 2 L.
  • M ww is the coefficient to describe the pitching moment M as a function of
  • M. ww ′ M. ww ⁇ 2 L. 3 a dimensionless value
  • is the coefficient to describe the pitching moment M as a function of w v 2 + w 2 ⁇ ⁇ ⁇ C. - 1
  • M. w w ⁇ ′ M. w w ⁇ ⁇ 2 L. 3 a dimensionless value
  • M ⁇ b is the coefficient describing the pitching moment M as a function of u 2 ⁇ b
  • M. ⁇ b ′ M. ⁇ b ⁇ 2 L. 3 a dimensionless value
  • M ⁇ s ⁇ is the coefficient to describe the pitching moment M as a function of u 2 ⁇ s ( ⁇ C -1)
  • M. ⁇ b ⁇ ′ M. ⁇ b ⁇ ⁇ 2 L. 3 a dimensionless value.
  • the object of the invention is to provide a device, the device using a method to determine the hydrodynamic coefficients on a real submarine and using them for precise control.
  • the device according to the invention for controlling an underwater vehicle has at least one front down elevator and at least one rear down elevator.
  • the underwater vehicle has at least one first ballast tank and at least one first trim tank and at least one second trim tank.
  • the control device has means for controlling the at least one front down rudder, the at least one rear down rudder, the at least one first ballast tank, the at least one first trim tank and the at least one second trim tank.
  • the device is designed to carry out a first operating state and to carry out a second operating state, the device automatically executing a method for determining hydrodynamic coefficients in the first operating state and controlling the underwater vehicle according to a predetermined course in the second operating state Operating condition certain hydrodynamic coefficients are used.
  • a pitch angle ⁇ of the submarine of ⁇ 1 ° ⁇ ⁇ ⁇ + 1 °, preferably of ⁇ 0.2 ° ⁇ ⁇ ⁇ + 0.2 °, particularly preferably of ⁇ 0.05 ° ⁇ ⁇ ⁇ + 0.05 ° to be understood.
  • the pitch angle is the angle between the longitudinal axis of the submarine and the projection of the longitudinal axis of the submarine into the plane and thus reflects the inclination in the z direction.
  • a particular pitch angle ⁇ of the submarine is
  • Acceleration-free travel is understood to mean an operating mode in which the boat moves at a constant speed, constant being to be regarded as constant within the scope of the detection accuracy and control accuracy.
  • the measured values are evaluated separately for journeys with a flat keel and with a sloping keel.
  • the measured values for journeys with a level keel are first evaluated.
  • the measured values obtained in steps a) to d) are shown as a function of 1 u ki 2 evaluated by calculating regression lines.
  • limit values for u ⁇ ⁇ the best-fit straight lines result in the rear depth rudder angle ⁇ sn and front depth rudder angle ⁇ bn for the so-called lift and torque-free travel. Only the limit values are evaluated here.
  • ⁇ ski ⁇ sn - G ⁇ L.
  • x CT is the x-coordinate of the center of gravity of the control cell
  • x CT ′ x CT L.
  • ⁇ x TT is the positive distance of the center of gravity from the front to the rear trim cell volume
  • ⁇ x TT ′ ⁇ x TT L.
  • x ⁇ s is the x-coordinate of the forward depth rudder
  • x ⁇ s ′ x ⁇ s L.
  • x ⁇ b is the x-coordinate of the rear depth rudder
  • x ⁇ b ′ x ⁇ b L.
  • V CT is the filling volume of the control cell
  • V CT ′ V CT 1 2 L. 3 a dimensionless value
  • V TT ′ V TT 1 2 L. 3 a dimensionless value.
  • the rudder angles are about 1 u ki 2 applied.
  • the slope of this straight line is not relevant, it is decisive for zero and thus for u ki 2 towards infinitely extrapolated limit value.
  • the x-coordinates of trim and control cells and rudder position are known from boat geometry.
  • V TTki ′ 1 ⁇ x TT ′ u i 2 G ⁇ L. ⁇ f x ⁇ M. ⁇ s ′ ⁇ ⁇ ski - ⁇ sn + M. ⁇ b ′ ⁇ ⁇ bki - ⁇ bn cos ⁇ ki - x CT ′ ⁇ V CTki ′
  • the coefficients Z ⁇ ′ , Z ⁇ s ′ , Z ⁇ b ′ , M. ⁇ ′ , M. ⁇ s ′ and M. ⁇ b ′ are determined for lift and torque-free travel.
  • Z W. ′ Z W. W. ′ Z ⁇ s ⁇ ′ tan ⁇ i tan ⁇ i tan ⁇ i f x ⁇ ⁇ i ⁇ C. - 1 ⁇ ⁇ si - G ⁇ L. ⁇ V CTi ′ u i 2 ⁇ cos ⁇ i ⁇ cos ⁇ i - Z ⁇ s ′ ⁇ f x ⁇ ⁇ si - ⁇ sn - Z ⁇ b ′ ⁇ ⁇ bi - ⁇ bn M. W. ′ M. W. W. ′ M.
  • z GB ′ z GB L. a dimensionless value
  • z Gn the z-component of the center of gravity of the boat including flooded free spaces for the state of buoyancy and torque-free travel
  • z B the z-coordinate of the center of buoyancy of the shape displacement in the boat-fixed coordinate system.
  • the determination is made from the measured data by means of multilinear regression using the variables already known from a).
  • the coefficients Z w ′ , Z w w ′ , Z ⁇ s ⁇ ′ , M. w ′ , M. w w ′ , and M. ⁇ s ⁇ ′ and the stability lever arm z GB determined.
  • first speeds in particular a total of five to eight first speeds, particularly preferably six first speeds, are particularly preferably used.
  • second speeds in particular a total of four to eight second speeds, particularly preferably five second speeds, are particularly preferably used.
  • the first speeds are selected from the range from 4 kn to 25 kn, preferably from the range from 5 kn to 20 kn, particularly preferably from the range from 6 kn to 15 kn.
  • the second speeds are selected from the range from 4 kn to 25 kn, preferably from the range from 5 kn to 20 kn, particularly preferably from the range from 6 kn to 14 kn.
  • an angle of + 15 ° to + 25 °, in particular + 18 ° to + 22 °, is selected as the first forward elevator position and an angle of -15 ° is selected as the second forward elevator position to -25 °, in particular from -18 ° to -22 °.
  • the method is carried out in such a way that the diving depth is selected so that at least 25 m, preferably at least 50 m, particularly preferably at least the length of the submarine, water above the submarine and at least 25 m , preferably at least 50 m, particularly preferably at least the length of the submarine, are water under the submarine.
  • This procedure determines the hydrodynamic coefficients in the unaffected deep water area.
  • the method is carried out in such a way that the diving depth is selected so that less than 25 m, preferably less than 15 m, water above the submarine and at least 25 m, preferably at least 50 m, particularly preferred are at least the length of the submarine, water under the submarine.
  • This method determines the hydrodynamic coefficients in the near-surface area and is important for snorkeling, for example. This method is preferably used in addition to the determination in the unaffected deep water area.
  • the method is carried out in such a way that the diving depth is selected such that at least 25 m, preferably at least 50 m, particularly preferably at least the length of the submarine, water above the submarine and less than 25 m, preferably less than 15 m, of water under the submarine.
  • This procedure determines the hydrodynamic coefficients close to the ground and is important, for example, for submerged trips in shallow water. This method is preferably used in addition to the determination in the unaffected deep water area.
  • the speed u of the submarine, the front depth rudder angle ⁇ s , the rear depth rudder angle ⁇ b , the change in volume of the trim tanks ⁇ V TT and the change in volume of the control cell ⁇ V CT are recorded during the acceleration-free journeys detected.
  • the speed of rotation n of the screw and the trim angle ⁇ are also recorded during the acceleration-free journeys.
  • the roll angle ⁇ and the change in volume of the ballast tank ⁇ V CT are also recorded during the acceleration-free journeys.
  • the weight distribution in the submarine is kept constant except for the targeted changes during the method. In particular, care is taken that the crew does not change their position, as this leads to non-detectable mass displacements and thus reduces the measurement accuracy of the method.
  • step m) in step m) the coefficients Z ⁇ ′ , Z ⁇ s ′ , Z ⁇ b ′ , M. ⁇ ′ , M. ⁇ s ′ and M. ⁇ b ′ , the filling volume of the control cell V CT 1 and V CT 2 , the trim cell fillings V TT 1 and V TT 2 and the rudder angles ⁇ sn and ⁇ bn are determined for lift and torque-free travel.
  • the first first trim position and the second first trim position are selected to be different by 500 kNm ⁇ 50 kNm.
  • a first, second trim position and a second second trim position are selected in steps e) and l), the first, second trim position and the second, second trim position being selected to be different by 1000 kNm ⁇ 100 kNm .
  • step m) in step m) the coefficients Z w ′ , Z w w ′ , Z ⁇ s ⁇ ′ , M. w ′ , M. w w ′ , and M. ⁇ s ⁇ ′ and the stability lever arm z GB determined.
  • the device is designed to change to the first operating state during operation in the second operating state with a suitable predetermined course.
  • the invention in another aspect, relates to a method for automatically controlling an underwater vehicle, the method for automatically controlling an underwater vehicle having a method for determining hydrodynamic coefficients and a method for calculating the control measures.
  • the method checks in step II) whether the control behavior of the underwater vehicle predicted with the hydrodynamic coefficients corresponds to the real control behavior of the underwater vehicle.
  • step I) is carried out again if there is a discrepancy in the control behavior.
  • step II) it is checked in step II) whether step I) can be carried out within a predetermined control specification.
  • step I) a change to step I) can be prevented in step II).
  • step I) of the method cannot be used during the operating modes crawl speed and combat.
  • Fig. 1 Representation of the vectors and angles on the submarine
  • Fig. 1 the angles and sizes are shown using the example of a submarine with a cross rudder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Claims (8)

  1. Dispositif de manœuvre d'un véhicule sous-marin, le véhicule sous-marin présentant au moins une barre de plongée avant et au moins une barre de plongée arrière, le véhicule sous-marin présentant au moins un premier compartiment de ballast et au moins un premier compartiment d'assiette et au moins un deuxième compartiment d'assiette, le dispositif de manœuvre présentant des moyens permettant de piloter ladite au moins une barre de plongée avant, ladite au moins une barre de plongée arrière, ledit au moins un premier compartiment de ballast, ledit au moins un premier compartiment d'assiette et ledit au moins un deuxième compartiment d'assiette,
    caractérisé en ce que le dispositif est réalisé pour effectuer un premier état de fonctionnement et pour effectuer un deuxième état de fonctionnement, dans le premier état de fonctionnement, le dispositif effectuant automatiquement un procédé permettant de déterminer des coefficients hydrodynamiques et, dans le deuxième état de fonctionnement, manœuvrant le véhicule sous-marin selon un cap prédéfini, les coefficients hydrodynamiques déterminés dans le premier état de fonctionnement étant utilisés dans le deuxième état de fonctionnement, le procédé permettant de déterminer des coefficients hydrodynamiques présentant les étapes suivantes :
    a) le déplacement sans accélération à quille égale à profondeur constante et selon une première première vitesse et une première première assiette,
    b) le déplacement sans accélération à quille égale à profondeur constante et selon la première première vitesse et une deuxième première assiette,
    c) le déplacement sans accélération à quille égale à profondeur constante et selon une deuxième première vitesse et la première première assiette,
    d) le déplacement sans accélération à quille égale à profondeur constante et selon la deuxième première vitesse et la deuxième première assiette,
    e) le déplacement sans accélération à quille inclinée à profondeur constante et selon une première deuxième vitesse et une première position de barre de plongée avant et avec un premier remplissage de compartiment d'assiette,
    f) le déplacement sans accélération à quille inclinée à profondeur constante et selon la première deuxième vitesse et une deuxième position de barre de plongée avant et avec le premier remplissage de compartiment d'assiette,
    g) le déplacement sans accélération à quille inclinée à profondeur constante et selon la première deuxième vitesse et la première position de barre de plongée avant et avec un deuxième remplissage de compartiment d'assiette,
    h) le déplacement sans accélération à quille inclinée à profondeur constante et selon la première deuxième vitesse et la deuxième position de barre de plongée avant et avec le deuxième remplissage de compartiment d'assiette,
    i) le déplacement sans accélération à quille inclinée à profondeur constante et selon une deuxième deuxième vitesse et la première position de barre de plongée avant et avec le premier remplissage de compartiment d'assiette,
    j) le déplacement sans accélération à quille inclinée à profondeur constante et selon la deuxième deuxième vitesse et la deuxième position de barre de plongée avant et avec le premier remplissage de compartiment d'assiette,
    k) le déplacement sans accélération à quille inclinée à profondeur constante et selon la deuxième deuxième vitesse et la première position de barre de plongée avant et avec le deuxième remplissage de compartiment d'assiette,
    l) le déplacement sans accélération à quille inclinée à profondeur constante et selon la deuxième deuxième vitesse et la deuxième position de barre de plongée avant et avec le deuxième remplissage de compartiment d'assiette,
    m) la détermination de coefficients hydrodynamiques à partir des grandeurs mesurées déterminées lors des étapes précédentes,
    les étapes a) à l) étant exécutées dans un ordre quelconque, l'étape m) étant exécutée après les étapes a) à l).
  2. Dispositif selon la revendication 1, caractérisé en ce que le dispositif est réalisé pendant le fonctionnement dans le deuxième état de fonctionnement pour passer au premier état de fonctionnement dans le cas d'un cap prédéfini approprié.
  3. Procédé de manœuvre automatique d'un véhicule sous-marin, le procédé de manœuvre automatique d'un véhicule sous-marin présentant un procédé de détermination de coefficients hydrodynamiques et un procédé de calcul de mesures de manœuvre, le procédé présentant les étapes suivantes :
    I) la détermination de coefficients hydrodynamiques au moyen du procédé de détermination de coefficients hydrodynamiques,
    II) la manœuvre du véhicule sous-marin en utilisant les coefficients hydrodynamiques déterminés à l'étape I),
    le procédé de détermination de coefficients hydrodynamiques présentant les étapes suivantes :
    a) le déplacement sans accélération à quille égale à profondeur constante et selon une première première vitesse et une première première assiette,
    b) le déplacement sans accélération à quille égale à profondeur constante et selon la première première vitesse et une deuxième première assiette,
    c) le déplacement sans accélération à quille égale à profondeur constante et selon une deuxième première vitesse et la première première assiette,
    d) le déplacement sans accélération à quille égale à profondeur constante et selon la deuxième première vitesse et la deuxième première assiette,
    e) le déplacement sans accélération à quille inclinée à profondeur constante et selon une première deuxième vitesse et une première position de barre de plongée avant et avec un premier remplissage de compartiment d'assiette,
    f) le déplacement sans accélération à quille inclinée à profondeur constante et selon la première deuxième vitesse et une deuxième position de barre de plongée avant et avec le premier remplissage de compartiment d'assiette,
    g) le déplacement sans accélération à quille inclinée à profondeur constante et selon la première deuxième vitesse et la première position de barre de plongée avant et avec un deuxième remplissage de compartiment d'assiette,
    h) le déplacement sans accélération à quille inclinée à profondeur constante et selon la première deuxième vitesse et la deuxième position de barre de plongée avant et avec le deuxième remplissage de compartiment d'assiette,
    i) le déplacement sans accélération à quille inclinée à profondeur constante et selon une deuxième deuxième vitesse et la première position de barre de plongée avant et avec le premier remplissage de compartiment d'assiette,
    j) le déplacement sans accélération à quille inclinée à profondeur constante et selon la deuxième deuxième vitesse et la deuxième position de barre de plongée avant et avec le premier remplissage de compartiment d'assiette,
    k) le déplacement sans accélération à quille inclinée à profondeur constante et selon la deuxième deuxième vitesse et la première position de barre de plongée avant et avec le deuxième remplissage de compartiment d'assiette,
    l) le déplacement sans accélération à quille inclinée à profondeur constante et selon la deuxième deuxième vitesse et la deuxième position de barre de plongée avant et avec le deuxième remplissage de compartiment d'assiette,
    m) la détermination de coefficients hydrodynamiques à partir des grandeurs de mesure déterminées aux étapes précédentes,
    les étapes a) à l) étant exécutées dans un ordre quelconque, l'étape m) étant exécutée après les étapes a) à l).
  4. Procédé selon la revendication 3, caractérisé en ce que le procédé vérifie à l'étape II) si le comportement de manœuvre prédit avec les coefficients hydrodynamiques du véhicule sous-marin coïncide avec le comportement de manœuvre réel du véhicule sous-marin.
  5. Procédé selon la revendication 4, caractérisé en ce que l'étape I) est à nouveau exécutée en cas d'écart du comportement de manœuvre.
  6. Procédé selon l'une quelconque des revendications 3 à 5, caractérisé en ce qu'il est vérifié à l'étape II) si l'étape I) peut être exécutée dans la limite d'une spécification de manœuvre prédéfinie.
  7. Procédé selon l'une quelconque des revendications 3 à 6, caractérisé en ce qu'un passage à l'étape I) peut être empêché à l'étape II).
  8. Procédé selon l'une quelconque des revendications 3 à 7, caractérisé en ce que le procédé de l'étape I) ne peut pas être mis en œuvre pendant les modes de fonctionnement de déplacement lent et de combat.
EP18700846.1A 2017-01-12 2018-01-02 Dispositif et procédé de commande d'un véhicule sous-marin Active EP3568346B8 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017200470.3A DE102017200470B4 (de) 2017-01-12 2017-01-12 Vorrichtung und Verfahren zur Steuerung eines Unterwasserfahrzeugs
PCT/EP2018/050038 WO2018130431A1 (fr) 2017-01-12 2018-01-02 Dispositif et procédé de commande d'un véhicule sous-marin

Publications (3)

Publication Number Publication Date
EP3568346A1 EP3568346A1 (fr) 2019-11-20
EP3568346B1 true EP3568346B1 (fr) 2020-09-09
EP3568346B8 EP3568346B8 (fr) 2020-11-04

Family

ID=61007664

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18700846.1A Active EP3568346B8 (fr) 2017-01-12 2018-01-02 Dispositif et procédé de commande d'un véhicule sous-marin

Country Status (3)

Country Link
EP (1) EP3568346B8 (fr)
DE (1) DE102017200470B4 (fr)
WO (1) WO2018130431A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109436196B (zh) * 2018-10-23 2020-10-30 上海船舶研究设计院(中国船舶工业集团公司第六0四研究院) 船舶倾斜试验装置、船舶及船舶倾斜试验方法
DE102018218231B3 (de) 2018-10-24 2020-02-13 Thyssenkrupp Ag Verfahren zum Navigieren eines Unterwasserfahrzeugs und Unterwasserfahrzeug

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343896A (ja) * 1986-08-11 1988-02-24 Nec Corp 潜水船自動重量ツリム制御装置
DE19635670A1 (de) 1996-09-03 1998-03-05 Gabler Ing Kontor Luebeck Überwachungssystem für den Fahrzustand eines U-Bootes
JP3033571B1 (ja) * 1999-01-21 2000-04-17 日本電気株式会社 潜水船の深度保持制御方式
JP2004334714A (ja) * 2003-05-09 2004-11-25 Yamaha Motor Co Ltd パラメータ最適化方法、パラメータ最適化装置、パラメータ最適化プログラム、及び、航走制御装置
RU2537080C1 (ru) 2013-10-18 2014-12-27 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Система определения гидродинамических коэффициентов математической модели движения судна

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2018130431A1 (fr) 2018-07-19
DE102017200470A1 (de) 2018-07-12
DE102017200470B4 (de) 2019-02-21
EP3568346B8 (fr) 2020-11-04
EP3568346A1 (fr) 2019-11-20

Similar Documents

Publication Publication Date Title
EP3568345B1 (fr) Procédé de détermination de coefficients hydrodynamiques sur des sous-marins
EP2876041B1 (fr) Agencement de détermination d'une force agissant sur un gouvernail
EP2435998A1 (fr) Procédé de commande d'un bateau assisté par ordinateur
DE102008013212A1 (de) Automatische Stabilisierungseinheit für Wasserfahrzeuge
EP3568346B1 (fr) Dispositif et procédé de commande d'un véhicule sous-marin
EP3784557B1 (fr) Procédé de pilotage d'un convoi remorqué
DE2528073C2 (de) Verfahren zur selbsttätigen Positionierung eines Schiffes
DE102009001220B3 (de) Verfahren und Vorrichtung zur Bestimmung aerodynamischer Kenngrößen eines Flugzeuges
DE102018118496B3 (de) Verfahren zur Evaluierung des Flachwassereinflusses
DE3783054T2 (de) Kabelinstallierungsverfahren.
DE2547350A1 (de) Verfahren und anordnung zum ermitteln der bewegung eines schiffs
DE102021210294A1 (de) Lageunabhängiges Vermeiden von Kavitation an einem Propeller
DE1431318C3 (de) Vorrichtung zum dynamischen Verankern eines Schwimmkörpers, insbesondere einer Bohrinsel
DE102019212491A1 (de) Unterwasserfahrzeug ohne inertiales Navigationssystem
DD240715A1 (de) Verfahren zur bestimmung des tiefgangs und masseaenderung eines schiffes
DE2639192C3 (de) Einrichtung zur Tiefgangermittlung eines Schiffes
EP0166850A2 (fr) Procédé de détermination des contraintes dynamiques d'un navire
DD259385A1 (de) Verfahren und einrichtung zur automatischen kontrolle und regelung der schwimmlage, der stabilitaet und der gesamtfestigkeit eines schwimmkoerpers
DE102018218231B3 (de) Verfahren zum Navigieren eines Unterwasserfahrzeugs und Unterwasserfahrzeug
DE102006050248A1 (de) Verfahren und Anordnung zur Unterstützung der Navigation eines Schiffs
DE102023125613A1 (de) Automatische feststellung einer festmachrichtung eines bootes
EP3922544A1 (fr) Plateforme de mesure et procédé de détection et de surveillance des conduites sous-marines
EP0826595B1 (fr) Système de surveillance de l'état de navigation d'un sous-marin
DD251832A1 (de) Verfahren zur optimierung der manoevrierablaeufe von schiffen
DE1256564B (de) Vorrichtung zum Verankern eines Schwimmkoerpers

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190812

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KLUSMEIER, TIM

Inventor name: MARKMANN, SOENKE

Inventor name: BOHLMANN, HANS JUERGEN, DR.

Inventor name: SCHARMACHER, MANUEL

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502018002408

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B63B0009080000

Ipc: B63G0008220000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B63G 8/14 20060101ALI20200417BHEP

Ipc: B63G 8/22 20060101AFI20200417BHEP

INTG Intention to grant announced

Effective date: 20200512

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHARMACHER, MANUEL

Inventor name: MARKMANN, SOENKE

Inventor name: KLUSMEIER, TIM

Inventor name: BOHLMANN, HANS JUERGEN, DR.

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

Ref document number: 502018002408

Country of ref document: DE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1311265

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B8

Ref country code: DE

Ref legal event code: R107

Ref document number: 502018002408

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201210

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210102

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200923

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1311265

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240123

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240129

Year of fee payment: 7

Ref country code: FR

Payment date: 20240122

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909