EP3567874B1 - Verfahren zum betrieb eines hörgeräts sowie hörgerät - Google Patents

Verfahren zum betrieb eines hörgeräts sowie hörgerät Download PDF

Info

Publication number
EP3567874B1
EP3567874B1 EP19167648.5A EP19167648A EP3567874B1 EP 3567874 B1 EP3567874 B1 EP 3567874B1 EP 19167648 A EP19167648 A EP 19167648A EP 3567874 B1 EP3567874 B1 EP 3567874B1
Authority
EP
European Patent Office
Prior art keywords
input signal
scheme
signal
directions
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19167648.5A
Other languages
English (en)
French (fr)
Other versions
EP3567874A1 (de
Inventor
Sebastian BEST
Thomas Pilgrim
Christoph LÜKEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos Pte Ltd
Original Assignee
Sivantos Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sivantos Pte Ltd filed Critical Sivantos Pte Ltd
Publication of EP3567874A1 publication Critical patent/EP3567874A1/de
Application granted granted Critical
Publication of EP3567874B1 publication Critical patent/EP3567874B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • H04R25/505Customised settings for obtaining desired overall acoustical characteristics using digital signal processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/35Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using translation techniques
    • H04R25/356Amplitude, e.g. amplitude shift or compression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/407Circuits for combining signals of a plurality of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/41Detection or adaptation of hearing aid parameters or programs to listening situation, e.g. pub, forest
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/43Signal processing in hearing aids to enhance the speech intelligibility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/55Communication between hearing aids and external devices via a network for data exchange

Definitions

  • the invention relates to a method for operating a hearing device and a corresponding hearing device.
  • a hearing aid has a microphone, signal processing and a receiver, the receiver also being referred to as a loudspeaker.
  • a hearing device is used, for example, to care for a hearing-impaired user and to compensate for a hearing loss.
  • the microphone generates an input signal from sound signals in the environment, which is fed to the signal processing.
  • the signal processing modifies the input signal and thereby generates an output signal, which is therefore a modified input signal.
  • the input signal is amplified with a specific amplification factor, for example.
  • the output signal is output by means of the earphone, in which the latter converts the output signal into a sound signal.
  • the input signal and the output signal are electrical signals, which are therefore also referred to as signals for short.
  • the sound signals from the environment and the sound signal emitted by the listener are acoustic signals.
  • a hearing aid is typically either monaural and worn on only one side of the head or binaural and then has two individual devices that are worn on different sides of the head. Depending on the type, the hearing aid is worn on, in or behind the ear or a combination of these. Common types of hearing aids include BTE, RIC, and ITE hearing aids. These differ in particular in their design and carrying method.
  • a hearing aid it is possible with a hearing aid to use a so-called beamformer in order to realize directional hearing, i.e. to prefer sound signals from a certain direction relative to other sound signals and to amplify them more, i.e. to emphasize them.
  • a directional microphone is used, which is usually a microphone array made up of at least two microphones.
  • the directional microphone is housed in the hearing aid and picks up the sound signals from the environment in two different positions. Accordingly, several input signals are generated, which are then suitably combined by the signal processing in order to achieve a directivity, i.e. to align the beamformer in a certain direction and then to emphasize sound signals from this direction.
  • a speaker in the front area of the user is amplified in this way compared to the rest of the environment, which improves speech intelligibility.
  • the problem is using a beamformer in environments that are more demanding than those that only have one relevant sound source.
  • environments in which potentially relevant sound signals and in particular information for the user can arrive from several directions such relevant sound signals are sometimes suppressed because the beamformer is already directed at another sound source.
  • the user's back area is strongly suppressed relative to the front area, so that sound sources in the back area can only be perceived poorly or not at all by the user.
  • a binaural hearing aid system which has a compressor.
  • the gain of the compressor is controlled by a compressor control signal, which is a function of a signal level and a signal parameter of the hearing aid.
  • a binaural hearing aid system is described, with two hearing aids, each of which has a compressor.
  • the gain of the compressor of one hearing aid is controlled with a signal, with a Value which is essentially identical to the value of a signal that controls the gain of the compressor of the other hearing aid.
  • an object of the invention is to improve the emphasis of sound signals from a specific direction in a hearing aid, and thus in particular the speech intelligibility, while suppressing other potentially relevant sound signals as little as possible in order to be able to continue to perceive potentially relevant sound signals from other directions .
  • a method for operating a hearing device and a corresponding hearing device are to be specified.
  • the method is used to operate a hearing device.
  • the hearing device is worn in particular by a user.
  • the hearing device first generates an input signal from sound signals from the environment.
  • the hearing device has at least one microphone, which picks up the sound signals and converts them into the ambient signal.
  • the hearing device has a signal processor which is designed to modify the input signal and thereby generate an output signal.
  • the hearing aid also has an earphone for outputting the output signal, ie for converting the output signal into a sound signal which is output to the user. In particular, only one output signal is generated for each receiver of the hearing device. In the case of a monaural hearing aid, only one output signal is therefore generated.
  • a binaural hearing aid two output signals are generated, one for each side of the user's head.
  • the input signal is modified in particular with regard to a specific hearing profile of the user.
  • the hearing aid is a hearing aid for fitting to a hearing-impaired user, and the hearing profile deviates from the hearing profile of a person with normal hearing because of a hearing impairment away.
  • the input signal is modified in such a way that the hearing damage is at least partially, preferably completely, compensated.
  • the input signal is usually amplified for this purpose.
  • a respective output signal is therefore adapted to the hearing profile of the user on the respective ear
  • the signal processing has an automatic gain control (AGC for short, ie automatic gain control), which has a compressor that can be operated with a compression scheme.
  • AGC automatic gain control
  • the environment of the user is now divided into several directions, one of which is determined as a relevant direction by means of a direction determination unit is selected.
  • the relevant direction is to be emphasized in relation to other directions, so that sound signals from the relevant direction are emphasized in that these sound signals from the relevant direction experience greater amplification relative to other sound signals.
  • the input signal is modified depending on the direction by operating the compressor with a compression scheme that is adjusted depending on the relevant direction, so that sound signals from the relevant direction are emphasized compared to sound signals from other directions.
  • the information about the direction in which a relevant sound source is located is used to selectively modify the input signal and reproduce this sound source more clearly for the user.
  • a sound source is not specifically selected and specifically amplified in a certain direction; rather, a directional effect results automatically from the fact that the compression scheme is adapted to the sound source in the relevant direction, and thus precisely this sound source and thus the associated direction are selectively emphasized .
  • this is preferably carried out equally on both sides.
  • the relevant direction is selected according to its relevance to the user.
  • a direction is particularly relevant when there is a sound source of a certain type, e.g. a speaker, or when the sound source has a higher volume relative to other sound sources in the same direction, ie a higher level, e.g. a speaker in a crowd.
  • the direction determination unit is used to determine and in particular also to select the relevant direction.
  • the direction determination unit analyzes the input signal and uses it to determine the direction in which a sound source that is relevant to the user is located, so that this direction is then selected as the relevant direction.
  • the hearing device and specifically the direction determination unit has a classifier for this purpose in order to assign sound sources in the area to a specific type, so that that direction is then selected as a relevant direction in which a sound source of a specific type is located.
  • the beamformer is deactivated so that sound signals from unexpected directions, especially from the back area, i.e. from behind, are not accidentally suppressed. This is based on the consideration that, with a high SNR, no beamformer is required to increase speech intelligibility and its use is therefore dispensed with. With a comparatively low SNR, the beamformer is then activated and directed at a sound source that is relevant to the user, e.g. a speaker in the front area of the user, i.e. in front. The beamformer is now used to achieve high speech intelligibility despite the low SNR. It is essential here that the beamformer is only activated in special situations, i.e. as required. In the cases in which the beamformer is activated, however, this still happens as described at the expense of sound signals from other directions, which are then suppressed together with the background noise and possibly unintentionally.
  • AGC automatic gain control
  • an AGC generally has a compressor which controls the amplification of the input signal as a function of its level, ie the input level, and in connection with a specific compression scheme.
  • the compression scheme specifies what amplification factor is used for the input signal at a given input level.
  • the compression scheme is parameterized by one or more compression parameters, preferably one or more knee points, one or more compression ratios for one or more specific level ranges of the input level, a switch-on time (also referred to as attack), a switch-off time (also referred to as release) or a combination thereof .
  • a knee point indicates a transition between two level ranges with different compression ratios.
  • the compressor of the AGC is now operated depending on the direction with a suitable compression scheme, so that the sound signals from different directions are compressed differently.
  • the concept proposed here represents an alternative to a beamformer, but can in principle also be used profitably in combination with a beamformer.
  • the environment around the user is divided into a number of directions and the compressor is set in such a way that sound signals from the relevant direction, ie relevant sound signals, are emphasized for the user.
  • a correspondingly suitable compression scheme is selected and set. In this way, a classically strong directional effect is initially expediently dispensed with and instead an advantageously gradual adaptation of the modification of the input signal is carried out.
  • one of the directions is then selectively emphasized, preferably around in that direction to selectively increase speech intelligibility without causing suppression in the other directions at the same time.
  • a directional effect is generated by means of the compressor and generally by means of the AGC in such a way that a relevant sound source is emphasized in a specific direction by a special compression scheme in that same direction.
  • the emphasis is realized in particular by the selection of a suitable compression scheme, which is tailored to the sound source to be emphasized, so that other sound sources fade into the background relative to it, but are not completely suppressed.
  • a key concept here is direction-dependent compression to emphasize sound sources from a specific direction.
  • a direction-dependent parameterization of the compressor is carried out.
  • a gradual directivity is advantageously achieved by means of the compressor and generally by means of the AGC.
  • the AGC uses the AGC, one or more sound sources are emphasized in a certain direction.
  • a configuration is particularly preferred in which the direction determination unit has a beam former which is used to determine the relevant direction.
  • a beamformer is specially designed to generate directional signals and is therefore particularly suitable for dividing the environment into several directions.
  • the input signal is fed to the beamformer and then processed for each of the directions in such a way that a directed input signal is generated for each of the directions, which only or at least predominantly consists of sound signals results from a single direction.
  • Each directional input signal is thus assigned to one of the directions.
  • the directional input signals are then each examined for the presence of a sound source relevant to the user, eg by means of an additional classifier or simply based on a signal property of the directional input signal, eg its level or its SNR.
  • the direction of that directional input signal which contains a relevant sound source is then selected as the relevant direction.
  • the compression scheme is then adjusted in such a way that the same sound source is emphasized, so that the relevant direction is also emphasized as a result.
  • the beamformer is therefore initially used advantageously to subdivide the environment into different directions and to determine the relevant direction.
  • the beamformer is not used to generate an output signal that would also be directed by a combination of the directed input signals. Rather, this function results from the special control of the compressor.
  • the beamformer generates the directed input signals, in particular from a number of input signals, which are correspondingly generated by a number of microphones, which each convert the sound signals from the environment into a respective input signal.
  • the microphones are arranged at different positions on the hearing aid and in this way form a microphone array.
  • the various input signals can also be viewed as a single input signal, which is generated by the microphone array.
  • the input signals of the various microphones are suitably combined with one another by the beamformer.
  • the microphone array has two microphones and the beamformer generates four directional input signals for the four directions front, back, left and right.
  • other configurations are conceivable and also suitable.
  • the directed input signals which are generated by the beamformer, do not have to be used to generate the output signal.
  • the directed input signals are used rather only to determine the relevant direction and the AGC and especially the compressor act on the input signal as a whole.
  • the directional input signals are fed to the AGC, in particular instead of the input signal itself, and are processed separately from one another by means of the AGC in order to implement direction-dependent compression.
  • the AGC and especially the compressor affect individual parts of the input signal, namely the directional input signals, which represent the input signal divided according to direction, separately and independently of one another.
  • the separately processed directional input signals are then finally mixed together to form an output signal.
  • Preferred configurations of both concepts are presented in more detail below. In principle, the various configurations or parts thereof can also be combined with one another. The explanations for a special embodiment apply analogously to the other embodiments.
  • the compression scheme is defined by at least one compression parameter, in particular as described above, and the compression scheme is set depending on the relevant direction by changing the compression parameter depending on the relevant direction.
  • the compression parameter is continuously changed, i.e. continuously adjusted.
  • a respectively suitable parameterization for the compressor is selected and set as a function of the direction, and the compression of the input signal is controlled accordingly.
  • the compressor has a number of instances that are operated with different instance schemes. These instance schemes are inherently compression schemes as described above. A respective instance scheme is now designed to emphasize a specific type of sound signal, eg to emphasize speech or sound, eg music. In this context, the instances are referred to as compression instances.
  • the input signal is respectively the multiple Instances supplied, which then generate a corresponding number of modified input signals, which are then combined together to form the output signal. In principle, the same input signal is used for all instances, so that the compressor acts on the entire input signal as a whole. It is now essential that a proportional ratio of the modified input signals to one another in the output signal is set as a function of the relevant direction, so that the compression scheme is set as a mixture of the instance schemes.
  • a particular advantage of this embodiment is that the individual instances can each be operated with a fixed instance scheme and are preferably also operated, and yet there is an overall changeable compression scheme.
  • the input signal is processed differently in parallel by means of the individual instances, so that the compression scheme of the compressor as a whole is then adjusted by suitably selecting and adjusting the proportion of the modified input signal.
  • the proportion is continuously changed.
  • the proportional ratio for example, the level of the input signal before the respective entity is changed accordingly, or alternatively or additionally the level of the respective modified input signal after the respective entity.
  • An advantage of the above-mentioned embodiment consists in particular in the fact that the instances can be operated with a predefined, ie a fixed instance scheme and are preferably also operated, so that the respective instance scheme itself is not changed during operation.
  • the instances are therefore dedicated instances for different types of sound signals.
  • the individual instances can also be set, ie they have a changeable parameterization, which is then changed during operation, so that the instances are then dynamic rather than static, as described above.
  • the input signal has a number of directed, i.e. direction-dependent, input signals which are each assigned to one of the number of directions.
  • the compressor now has an instance for each of the directed input signals, which is operated with a respective instance scheme.
  • the instances are also referred to as directional instances and the instance schemes as directional schemes.
  • the instance schemes are inherently compression schemes as described above. A respective instance is supplied with one of the directional input signals, so that the compression scheme is set as a mixture of the instance schemes.
  • the statements regarding the previously mentioned embodiment with multiple compression entities also apply to the embodiment with multiple directional entities, with the difference that a single directional entity is not supplied with the entire input signal, but with a processed input signal, which is then modified . In this way, only a specific directional component of the input signal is modified by means of a respective direction instance, so that the individual directions are thus processed independently of one another in an optimal manner by means of the AGC.
  • a particular advantage of the aforementioned configuration with a plurality of instances, specifically direction instances, is in particular that it is possible to react separately in each direction to the situation specifically present there, and this is preferably also the case.
  • a respective instance scheme for the respective directed input signal is set for each of the directions as a function of a type of sound signal in the assigned, ie the associated direction. In other words: for a given direction, it is determined whether there is a sound source that emits sound signals of a specific type, eg speech or music. In addition, the guy will determined, for example by means of a classifier. Depending on the type of sound signal, a corresponding instance scheme is then set for the instance.
  • the directions can advantageously also be processed independently of one another and are expediently modified as required.
  • the directed input signals are preferably generated by means of a beam former.
  • a beamformer is characterized by the fact that it emphasizes sound signals from a specific direction, so that a beamformer is suitable for generating directional input signals.
  • the beamformer is applied in particular to each of the multiple directions in order to then generate an associated directed input signal for each of these directions.
  • a conventional beamformer only a direction-dependent input signal would be used and, after modification, output as an output signal.
  • the plurality of directional input signals in the different directions are modified in each case by means of the AGC, with the result that input signals compressed in a direction-dependent manner are generated. These are then combined into an output signal and finally output.
  • the configurations with several directional instances and the configuration with several compression instances are combined with one another in one configuration. For example, in such a way that a respective directional instance is composed of several compression instances, so that a single directional input signal is then modified, for example, with different fixed instance schemes and the different modified directional input signals are then mixed together to form the output signal.
  • the compression scheme in particular the instance scheme, which is set, is preferably selected from a set of compression schemes, comprising: a speech scheme for emphasizing speech components, a sound scheme for adapting only to a hearing profile of a user of the hearing aid.
  • a voice scheme which is designed for the best possible speech intelligibility
  • a sound scheme which is designed for a reproduction of the sound signals from the environment that is as true to nature as possible.
  • the particularly important case of the presence of speech in the environment is taken into account by the possibility of selecting the speech scheme.
  • a compression scheme is set which improves speech intelligibility.
  • the realistic reproduction of other sound signals or noises is of secondary importance; instead, speech is primarily made recognizable for the user.
  • the best possible sound quality is understood in particular to mean that hearing damage to the user is compensated for as optimally as possible, ie maximum hearing loss compensation is carried out. This is particularly important for music, which may be severely distorted by a compression scheme used to improve speech intelligibility. The same applies to other sound signals in the environment, which are sometimes distorted to such an extent that they are no longer recognizable to the user and can no longer be assigned.
  • a particular advantage of direction-dependent compression is that it circumvents the problem that a single compression scheme designed for a specific situation, e.g. speech or sound, is not optimal in an environment in which both speech and other sound signals, especially music, available.
  • the environment is divided into several directions as part of the direction-dependent compression and the sound signals of a respective direction are each modified with an optimal compression scheme, i.e. one that is matched to the respective sound signals.
  • the input signal is only modified in a direction-dependent manner if a directed sound signal is detected in the surroundings, and otherwise the input signal is modified in a direction-independent manner, ie all directions are modified in the same way.
  • the hearing aid has a basic operation in which none of the directions are specially emphasized by adjusting the compressor. In principle, therefore, there is also the possibility that none of the directions is a relevant direction and accordingly no relevant direction can be selected, ie the determination fails.
  • a basic scheme is preferably used as a compression scheme for this direction.
  • the basic scheme is then used for each direction.
  • the basic scheme is advantageously the sound scheme described above, which a particularly lifelike reproduction of all sound signals in the environment as a whole is guaranteed. If there is no special sound signal in one direction, the type of sound signal that results is in particular the "background" type.
  • several directions are each selected as a relevant direction. This is made possible in particular by the special direction-dependent compression. In contrast, only a single direction can typically be emphasized with a beamformer alone. In the present case, however, several directions can be selected as relevant directions at the same time. In this way, for example, several speakers in the area are advantageously highlighted for the user. Alternatively or additionally, suddenly occurring warning or alarm signals are emphasized without suppressing other relevant sound signals.
  • the different directions are preferably regions that result from dividing the environment into sectors based on the user.
  • the user of the hearing device forms a center point in the area, starting from which the area is divided into a number of sectors, ie angular sections. Each region corresponds to a sector and the sectors line up around the user.
  • the environment is divided into exactly four directions, namely front, back, left and right. This directional information relates to the user's viewing direction, so that "in front” designates a front area, "rear” a back area and "left” and “right” a left or right side area.
  • each of the four directions includes an angular section of 90°.
  • the environment is thus divided into four quadrants.
  • a subdivision into only two regions for example front and back, ie a front area and a back area, is also suitable in principle.
  • a subdivision into regions does not only take place in one plane, but in space.
  • an additional region is formed towards the top. Accordingly, an additional downward region is also advantageous.
  • a hearing aid according to the invention is designed to carry out the method described above.
  • the hearing device has a signal processor that is designed to carry out the method.
  • the hearing device is either monaural or binaural, has one or two individual devices that are worn in or on the ear.
  • the hearing device is used in particular to care for a hearing-impaired user.
  • the hearing aid has at least one microphone and at least one earphone, with each individual device of the hearing aid, more precisely, having at least one, preferably a plurality of microphones and an earphone.
  • Each individual device has its own housing in which the associated microphones are housed.
  • the receiver is also accommodated in the housing or at least connected to the housing via a feed line.
  • Each individual device also has an earpiece that can be inserted in particular into the user's ear in order to output the sound signals that the earpiece generates from the output signal to the user there.
  • the hearing device expediently has a battery for supplying energy, with each individual device advantageously having its own battery, which is accommodated in particular in the housing.
  • FIG. 1 shows an exemplary embodiment of a hearing aid 2.
  • the hearing aid 2 has a signal processing unit 4.
  • the hearing device 2 is either monaural or binaural, ie it has one or two individual devices that are worn in or on the ear. In 1 only a single device is shown. In the present case, the hearing device 2 is used to supply a hearing-impaired user N.
  • the hearing device 2 has at least one microphone 7 and at least one earphone 6 . This in 1
  • the individual device shown as an example has two microphones 7 and a receiver 6, which is arranged here externally with respect to a housing 8, so that the hearing device 2 shown is a so-called RIC device.
  • the signal processing 4 is designed for direction-dependent compression. Two embodiments are in the 2 and 3 shown. These each show a block diagram of a hearing device 2 .
  • the signal processing 4 generally has an automatic gain control 10 , AGC for short, which in turn has a compressor 12 .
  • the signal processor 4 also has a direction determination unit 14, by means of which the compressor 12 is controlled. For this purpose, the direction determination unit 14 determines a relevant direction R, depending on which the compressor 12 is controlled.
  • An input signal E which is generated by a microphone 7 , is generally fed to the signal processor 4 .
  • the input signal E is then fed to the AGC 10, which modifies the input signal E and forwards it as an output signal A to the earphone 6 for output.
  • the input signal E is also used to determine the relevant direction R, ie to determine the direction, and is supplied to the direction determination unit 14 for this purpose.
  • the compressor 12 is then adjusted as a result of the direction determination.
  • the behavior of the compressor 12 is defined by a compression scheme K, which is then changed as a function of the relevant direction R in order to achieve an emphasis of a relevant sound source in this direction.
  • a compression scheme K is an example in 4 shown, here in a representation as gain G as a function of an input level EP, ie a level of the input signal E.
  • the compression scheme K shown has a knee point 16 which defines two level ranges with different compression ratios. A constant amplification is carried out on a lower level range, on an upper level range the amplification is reduced as the input level increases.
  • the compression scheme is now changed as a function of the relevant direction R, for example by shifting the knee point 16 in order to bring about a changed behavior of the compressor 12.
  • the environment of user N is divided into several directions, e.g. as in figure 5 shown in four directions “front” V, “back” H, “left” L and “right” S. Of these directions, one is selected as a relevant direction R by means of the direction determining unit 14 and is then to be emphasized over the other directions.
  • the input signal E is modified as a function of the direction, in that the compressor 12 is operated with a compression scheme K, which is set as a function of the relevant direction R.
  • the information about the direction in which a relevant sound source is located is therefore used in order to selectively modify the input signal E and to reproduce this sound source more clearly for the user N.
  • the relevant direction R is selected according to its relevance for the user N.
  • a direction is particularly relevant when there is a sound source of a certain type, e.g. a speaker, or when the sound source has a higher volume relative to other sound sources in the same direction, ie a higher level, e.g. a speaker in a crowd.
  • the input signal E is analyzed by the direction determination unit 14 and used to determine the direction in which a sound source that is relevant for the user N is located, so that this direction is then selected as the relevant direction R.
  • the hearing aid 2 has a classifier (not shown) for this purpose, in order to assign sound sources in the area to a specific type, so that then that direction is selected as a relevant direction R, in which a sound source of a certain type lies.
  • an input signal E is now generated by a single microphone 7 and fed to the compressor 12 and the direction determination unit 14 .
  • the direction determination unit 14 uses the input signal E to determine a relevant direction R and thus controls the compressor 12 in that the compression scheme K is changed as a function of the relevant direction R.
  • a modified input signal Emod is generated depending on the direction, which is then output as output signal A via the earphone 6 .
  • the direction determination unit 14 has a beamformer which generates a plurality of directional input signals Eger from an input signal E from a plurality of microphones 7, ie the input signal E breaks down into a plurality of directional input signals Eger.
  • each of the directed input signals Eger is assigned to one of the directions and is therefore generated solely or at least predominantly from sound signals from this one direction.
  • the directed input signals are then fed to the compressor 12 and modified there separately, so that a plurality of modified input signals Emod are generated, which are then combined to form the output signal A.
  • a possible configuration of a compressor 12 suitable for this is shown in 6 shown.
  • the compressor 12 shown there has a plurality of instances 18, each of which is supplied with one of the directed input signals Eger.
  • These entities 18 are therefore also referred to as directional entities.
  • each entity 18 is operated with its own entity scheme, which is set depending on the relevant direction R.
  • each directional input signal Eger is modified separately and accordingly a separate compression scheme, namely the respective instance scheme, is used for each direction, so that the sound signals of each individual direction are optimally compressed independently of the sound signals of the other directions.
  • the modified input signals Emod are then mixed together in a mixer 20.
  • a proportion of the modified input signals Emod is suitably set at the output signal A in such a way that an optimal compression scheme K results overall.
  • a compressor 12 which has a plurality of instances 18, to which the complete input signal E is supplied in each case.
  • each instance 18 is supplied with a different signal, namely a directed input signal Eger
  • each of the instances 18 in 7 the same signal, in this case the input signal E is supplied.
  • the individual instances 18 are operated with different instance schemes, so that the input signal E is modified differently in each instance 18 and different modified input signals Emod result, which are then combined in a mixer 20 to form the output signal.
  • the individual instances 18 are also referred to as compression instances.
  • several or all instances are 18 in 6 If necessary, also operated with the same instance scheme.
  • the different instance schemes in 7 are designed for different sound sources and generally different situations, one of the instance schemes is a speech scheme for emphasizing speech, and the other instance scheme is a sound scheme, which reproduces sound signals from the environment as realistically as possible and adapted to the hearing impairment of the user N.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Betrieb eines Hörgeräts sowie ein entsprechendes Hörgerät.
  • Ein Hörgerät weist ist einer allgemeinsten Ausgestaltung ein Mikrofon, eine Signalverarbeitung und einen Hörer auf, wobei der Hörer auch als Lautsprecher bezeichnet wird. Ein Hörgerät dient beispielsweise zur Versorgung eines hörgeschädigten Nutzers und zum Ausgleich eines Hörverlusts. Das Mikrofon erzeugt aus Schallsignalen in der Umgebung ein Eingangssignal, welches der Signalverarbeitung zugeführt wird. Die Signalverarbeitung modifiziert das Eingangssignal und erzeugt dadurch ein Ausgangssignal, welches also ein modifiziertes Eingangssignal ist. Zum Ausgleich eines Hörverlusts wird das Eingangssignal beispielsweise mit einem bestimmten Verstärkungsfaktor verstärkt. Das Ausgangssignal wird schließlich mittels des Hörers ausgegeben, in dem dieser das Ausgangssignal in ein Schallsignal umwandelt. Bei dem Eingangssignal und dem Ausgangssignal handelt es sich um elektrische Signale, welche daher auch kurz jeweils als Signal bezeichnet werden. Die Schallsignale der Umgebung und das vom Hörer ausgegebene Schallsignal sind demgegenüber akustische Signale.
  • Ein Hörgerät ist typischerweise entweder monaural und wird nur auf einer Seite des Kopfs getragen oder binaural und weist dann zwei Einzelgeräte auf, welche auf unterschiedlichen Seiten des Kopfs getragen werden. Je nach Typ wird das Hörgerät am, im oder hinter dem Ohr getragen oder eine Kombination hiervon. Gängige Typen von Hörgeräten sind z.B. BTE-, RIC- und ITE-Hörgeräte. Diese unterscheiden sich insbesondere in Bauform und Trageweise.
  • Grundsätzlich ist es bei einem Hörgerät möglich, einen sogenannten Beamformer zu verwenden, um ein Richtungshören zu realisieren, d.h. um Schallsignale aus einer bestimmten Richtung relativ zu anderen Schallsignalen zu bevorzugen und stärker zu verstärken, d.h. hervorzuheben. Hierzu wird ein direktionales Mikrofon verwendet, welches üblicherweise ein Mikrofonarray aus zumindest zwei Mikrofonen ist. Das direktionale Mikrofon ist im Hörgerät untergebracht und nimmt die Schallsignale der Umgebung in zwei unterschiedlichen Positionen auf. Entsprechend werden mehrere Eingangssignale erzeugt, welche dann von der Signalverarbeitung geeignet kombiniert werden, um eine Richtwirkung zu erzielen, d.h. um den Beamformer in einer bestimmten Richtung auszurichten und Schallsignale aus dieser Richtung dann hervorzuheben. Beispielsweise wird auf diese Weise ein Sprecher im Frontbereich des Nutzers gegenüber der restlichen Umgebung verstärkt, wodurch die Sprachverständlichkeit verbessert wird.
  • Problematisch ist die Verwendung eines Beamformers in Umgebungen, welche anspruchsvoller sind, als solche, welche nur eine relevante Schallquelle aufweisen. In Umgebungen, in welchen potentiell aus mehreren Richtungen relevante Schallsignale und insbesondere Informationen für den Nutzer eintreffen können, werden solche relevanten Schallsignale unter Umständen unterdrückt, weil der Beamformer bereits auf eine andere Schallquelle gerichtet ist. Im obigen Beispiel mit dem Sprecher im Frontbericht wird der Rückenbereich des Nutzers relativ zum Frontbereich stark unterdrückt, sodass Schallquellen im Rückenbereich vom Nutzer nur schlecht oder gar nicht wahrgenommen werden können.
  • In der EP 2 544 462 A1 wird en binaurales Hörgerätesystem beschrieben, welches einen Kompressor aufweist. In wenigstens einem Frequenzkanal des Kompressors wird die Verstärkung des Kompressors von einem Kompressorsteuersignal gesteuert, welches eine Funktion ist eines Signalpegels und eines Signalparameters des Hörgeräts.
  • In der EP 2 544 463 A1 wird ein binaurales Hörgerätesystem beschrieben, mit zwei Hörgeräten, welche jeweils einen Kompressor aufweisen. Die Verstärkung des Kompressors des einen Hörgeräts wird gesteuert mit einem Signal, mit einem Wert, welcher im Wesentlichen identisch ist mit dem Wert eines Signals, welches die Verstärkung des Kompressors des anderen Hörgeräts steuert.
  • Vor diesem Hintergrund ist es eine Aufgabe der Erfindung, bei einem Hörgerät die Hervorhebung von Schallsignalen aus einer bestimmten Richtung und damit insbesondere die Sprachverständlichkeit zu verbessern und dabei andere potentiell relevante Schallsignale möglichst wenig zu unterdrücken, um potentiell relevante Schallsignale aus anderen Richtungen weiterhin wahrnehmen zu können. Hierzu sollen ein Verfahren zum Betrieb eines Hörgeräts sowie ein entsprechendes Hörgerät angegeben werden.
  • Die Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren mit den Merkmalen gemäß Anspruch 1 sowie durch ein Hörgerät mit den Merkmalen gemäß Anspruch 9. Vorteilhafte Ausgestaltungen, Weiterbildungen und Varianten sind Gegenstand der Unteransprüche. Dabei gelten die Ausführungen im Zusammenhang mit dem Verfahren sinngemäß auch für das Hörgerät und umgekehrt.
  • Das Verfahren dient zum Betrieb eines Hörgeräts. Im Betrieb wird das Hörgerät insbesondere von einem Nutzer getragen. Das Hörgerät erzeugt zunächst aus Schallsignalen der Umgebung ein Eingangssignal. Hierzu weist das Hörgerät zumindest ein Mikrofon auf, welches die Schallsignale aufnimmt und in das Umgebungssignal umwandelt. Weiter weist das Hörgerät eine Signalverarbeitung auf, welche ausgebildet ist, das Eingangssignal zu modifizieren und dadurch ein Ausgangssignal zu erzeugen. Das Hörgerät weist weiter einen Hörer auf, zur Ausgabe des Ausgangssignals, d.h. zur Umwandlung des Ausgangssignals in ein Schallsignal, welches an den Nutzer ausgegeben wird. Insbesondere wird für jeden Hörer des Hörgeräts lediglich ein Ausgangssignal erzeugt. Bei einem monauralen Hörgerät wird also nur ein Ausgangssignal erzeugt. Bei einem binauralen Hörgerät werden zwei Ausgangssignale erzeugt, nämlich eines für jede der Seiten des Kopfs des Nutzers. Das Eingangssignal wird insbesondere im Hinblick auf ein bestimmtes Hörprofil des Nutzers modifiziert. In einer bevorzugten Ausgestaltung ist das Hörgerät ein Hörgerät zur Versorgung eines hörgeschädigten Nutzers und das Hörprofil weicht aufgrund eines Hörschadens vom Hörprofil eines Normalhörenden ab. Insofern wird das Eingangssignal also derart modifiziert, dass der Hörschaden zumindest teilweise, vorzugsweise vollständig kompensiert wird. Üblicherweise wird hierzu das Eingangssignal verstärkt. Insbesondere wird also ein jeweiliges Ausgangssignal an das Hörprofil des Nutzers auf dem jeweiligen Ohr angepasst ist
  • Zur Modifizierung des Eingangssignals weist die Signalverarbeitung eine automatische Verstärkungsregelung (kurz: AGC, d.h. automatic gain control) auf, welche einen Kompressor aufweist, welcher mit einem Kompressionsschema betreibbar ist. Die Umgebung des Nutzers ist nun in mehrere Richtungen unterteilt, von welchen eine mittels einer Richtungsbestimmungseinheit als eine relevante Richtung ausgewählt wird. Die relevante Richtung soll gegenüber anderen Richtungen hervorgehoben werden, sodass Schallsignale aus der relevanten Richtung hervorgehoben werden, indem diese Schallsignale aus der relevanten Richtung eine relativ zu anderen Schallsignalen stärkere Verstärkung erfahren. Hierzu wird das Eingangssignal richtungsabhängig modifiziert, indem der Kompressor mit einem Kompressionsschema betrieben wird, welches abhängig von der relevanten Richtung eingestellt wird, sodass Schallsignale aus der relevanten Richtung gegenüber Schallsignalen aus anderen Richtungen hervorgehoben werden. Es wird also die Information, in welcher Richtung sich eine relevante Schallquelle befindet, genutzt, um das Eingangssignal selektiv zu modifizieren und diese Schallquelle für den Nutzer deutlicher wiederzugeben. Dabei wird zunächst nicht spezifisch eine Schallquelle in einer bestimmten Richtung ausgewählt und gezielt verstärkt, sondern eine Richtwirkung ergibt sich vielmehr automatisch dadurch, dass das Kompressionsschema auf die Schallquelle in der relevanten Richtung angepasst wird und somit gerade diese Schallquelle und damit die zugehörige Richtung selektiv hervorgehoben werden. Dies wird bei einem binauralen Hörgerät auf beiden Seiten vorzugsweise gleichermaßen durchgeführt.
  • Die relevante Richtung wird nach ihrer Relevanz für den Nutzer ausgewählt. Relevant ist eine Richtung insbesondere dann, wenn dort eine Schallquelle eines bestimmten Typs vorhanden ist, z.B. ein Sprecher, oder wenn die Schallquelle relativ zu anderen Schallquellen in derselben Richtung eine höhere Lautstärke aufweist, d.h. einen höheren Pegel, z.B. ein Sprecher in einer Menschenmenge. Zur Ermittlung und insbesondere auch zur Auswahl der relevanten Richtung dient die Richtungsbestimmungseinheit. In einer geeigneten Ausgestaltung wird hierzu von der Richtungsbestimmungseinheit das Eingangssignal analysiert und anhand dessen ermittelt, in welcher Richtung eine Schallquelle liegt, welche für den Nutzer relevant ist, sodass diese Richtung dann als relevante Richtung ausgewählt wird. In einer vorteilhaften Ausgestaltung weist das Hörgerät und speziell die Richtungsbestimmungseinheit hierzu einen Klassifikator auf, um Schallquellen in der Umgebung einem bestimmten Typ zuzuordnen, sodass dann diejenige Richtung als eine relevante Richtung ausgewählt wird, in welcher eine Schallquelle eines bestimmten Typs liegt.
  • Grundsätzlich ist es möglich, die oben beschriebene Wirkung zwar nicht identisch aber jedoch ansatzweise mit einem Beamformer zu realisieren, welcher durch geeignete Kombination mehrerer Eingangssignale eine bestimmte Richtung gegenüber anderen Richtungen verstärkt und die anderen Richtungen entsprechend unterdrückt. Daraus ergeben sich die eingangs bereits genannten Nachteile. Geeigneter ist eine Ausgestaltung, welche diese Nachteile wenigstens zeitweise abwendet, indem der Beamformer lediglich in bestimmten Situationen eingeschaltet wird und hierzu abhängig von einem Störgeräuschpegel der Umgebung zu aktivieren, d.h. abhängig davon, wie stark Störgeräusche in der Umgebung im Vergleich zu Nutzsignalen sind. Dies wird über das Signal-zu-Rausch-Verhältnis, kurz SNR (signal to noise ratio) angegeben. Bei hohem SNR wird zweckmäßigerweise der Beamformer deaktiviert, sodass Schallsignale aus unerwarteten Richtungen, insbesondere aus dem Rückenbereich, d.h. von hinten, nicht versehentlich unterdrückt werden. Dem liegt die Überlegung zugrunde, dass bei hohem SNR kein Beamformer zur Erhöhung der Sprachverständlichkeit benötigt wird und daher zweckmäßig auf dessen Nutzung verzichtet wird. Bei einem im Vergleich dazu geringen SNR wird der Beamformer dann aktiviert und auf eine Schallquelle gerichtet, welche für den Nutzer relevant ist, z.B. ein Sprecher im Frontbereich des Nutzers, d.h. vorn. Der Beamformer wird nun genutzt, um trotz geringem SNR eine hohe Sprachverständlichkeit zu erzielen. Wesentlich hierbei ist, dass der Beamformer lediglich in speziellen Situationen, also bedarfsweise aktiviert wird. In den Fällen, in welchen der Beamformer aktiviert wird, geschieht dies jedoch weiterhin wie beschrieben auf Kosten von Schallsignalen aus anderen Richtungen, welche dann gemeinsam mit den Störgeräuschen und möglicherweise ungewollt unterdrückt werden.
  • Die bei einem Beamformer - wie beschrieben - prinzipbedingt starke Unterdrückung von Schallsignalen aus anderen Richtungen als der relevanten Richtung soll vorliegend vermieden werden. Daher wird nun zur Verbesserung der Hervorhebung einer bestimmten Richtung, genauer von einem oder mehreren Schallsignalen aus dieser Richtung, nicht die Richtwirkung eines Beamformers genutzt, sondern eine automatische Verstärkungsregelung, kurz AGC. Eine AGC ist insbesondere dadurch gekennzeichnet, dass diese eine pegelabhängige Modifizierung des Eingangssignals vornimmt, um das Ausgangssignal derart zu erzeugen, dass dieses möglichst optimal auf das Hörprofil und insbesondere einen Hörschaden des Nutzers abgestimmt ist. Die AGC ist insbesondere ein Teil der Signalverarbeitung des Hörgeräts. Zur pegelabhängigen Modifizierung weist eine AGC allgemein einen Kompressor auf, welcher die Verstärkung des Eingangssignals in Abhängigkeit von dessen Pegel, d.h. dem Eingangspegel, und in Verbindung mit einem bestimmten Kompressionsschema steuert. Das Kompressionsschema gibt an, welcher Verstärkungsfaktor für das Eingangssignal bei einem bestimmten Eingangspegel verwendet wird. Das Kompressionsschema ist parametrisiert durch einen oder mehrere Kompressionsparameter, vorzugsweise einen oder mehrere Kniepunkte, ein oder mehrere Kompressionsverhältnisse für einen oder mehrere bestimmte Pegelbereiche des Eingangspegels, eine Einschaltzeit (auch als attack bezeichnet), eine Ausschaltzeit (auch als release bezeichnet) oder eine Kombination hiervon. Dabei gibt ein Kniepunkt einen Übergang zwischen zwei Pegelbereichen mit unterschiedlichen Kompressionsverhältnissen an.
  • Der Kompressor der AGC wird nun richtungsabhängig mit einem jeweils geeigneten Kompressionsschema betrieben, sodass die Schallsignale aus unterschiedlichen Richtungen unterschiedlich komprimiert werden. Insofern stellt das hier vorgeschlagene Konzept eine Alternative zu einem Beamformer dar, lässt sich aber grundsätzlich auch in Kombination mit einem Beamformer gewinnbringend verwenden. Vorliegend wird die Umgebung des Nutzers in mehrere Richtungen unterteilt und der Kompressor derart eingestellt, dass Schallsignale aus der relevanten Richtung, also relevante Schallsignale, für den Nutzer hervorgehoben werden. Je nachdem, was für eine Schallquelle sich in welcher Richtung befindet, wird ein entsprechend geeignetes Kompressionsschema ausgewählt und eingestellt. Auf diese Weise wird zunächst zweckmäßigerweise auf eine klassisch starke Richtwirkung verzichtet und stattdessen eine vorteilhaft graduelle Anpassung der Modifizierung des Eingangssignals vorgenommen.
  • Durch die Auswahl eines entsprechenden Kompressionsschemas wird dann selektiv eine der Richtungen hervorgehoben, vorzugsweise um in dieser Richtung selektiv die Sprachverständlichkeit zu erhöhen, ohne zugleich in den anderen Richtungen eine Unterdrückung zu bewirken. Insofern wird mittels des Kompressors und allgemein mittels der AGC eine Richtwirkung derart erzeugt, dass in einer bestimmten Richtung durch ein spezielles Kompressionsschema eine Hervorhebung einer relevanten Schallquelle in ebenjener Richtung erfolgt. Die Hervorhebung wird dabei insbesondere durch die Wahl eines geeigneten Kompressionsschemas realisiert, welches auf die hervorzuhebende Schallquelle abgestimmt ist, sodass andere Schallquellen relativ dazu in den Hintergrund treten, jedoch nicht völlig unterdrückt werden. Dadurch wird vorteilhaft eine im Vergleich zu einem Beamformer verringerte Richtwirkung erzielt und insgesamt ein Kompromiss gefunden zwischen einer möglichst starken Hervorhebung in einer Richtung und einer möglichst schwachen Unterdrückung in den anderen Richtungen. Bei einer Hervorhebung des Frontbereichs beispielsweise, können dann vom Nutzer weiterhin Schallsignale aus dem Rückenbereich wahrgenommen werden.
  • Ein wesentliches Konzept ist vorliegend die richtungsabhängige Kompression zur Hervorhebung von Schallquellen aus einer bestimmten Richtung. Mit anderen Worten: es wird eine richtungsabhängige Parametrisierung des Kompressors durchgeführt. Dadurch wird mittels des Kompressors und allgemein mittels der AGC vorteilhaft eine graduelle Richtwirkung erzielt. Mittels der AGC werden also eine oder mehrere Schallquellen in einer bestimmten Richtung hervorgehoben. Außerdem ist es möglich in mehrere Richtungen gleichzeitig eine entsprechende Richtwirkung zu erzielen, sodass die übliche Beschränkung eines Beamformers auf lediglich eine hervorgehobene Richtung vorteilhaft entfällt.
  • Besonders bevorzugt ist eine Ausgestaltung, bei welcher die Richtungsbestimmungseinheit einen Beamformer aufweist, welcher zur Ermittlung der relevanten Richtung verwendet wird. Dem liegt der Gedanke zugrunde, dass ein Beamformer speziell dazu ausgelegt ist, gerichtete Signale zu erzeugen und somit besonders geeignet ist, die Umgebung in mehrere Richtungen zu unterteilen. Hierzu wird dem Beamformer das Eingangssignal zugeführt und dann für jede der Richtungen derart bearbeitet, dass für jede der Richtungen ein gerichtetes Eingangssignal erzeugt wird, welches lediglich oder zumindest überwiegend aus Schallsignalen aus einer einzelnen Richtung resultiert. Jedes gerichtete Eingangssignal ist somit einer der Richtungen zugeordnet. Die gerichteten Eingangssignale werden dann jeweils auf das Vorhandensein einer für den Nutzer relevanten Schallquelle untersucht, z.B. mittels eines zusätzlichen Klassifikators oder einfach anhand einer Signaleigenschaft des gerichteten Eingangssignals, z.B. dessen Pegels oder dessen SNR. Die Richtung desjenigen gerichteten Eingangssignals, welche eine relevante Schallquelle enthält, wird dann als relevante Richtung ausgewählt. Das Kompressionsschema wird dann derart eingestellt, dass ebenjene Schallquelle hervorgehoben wird, sodass im Ergebnis auch die relevante Richtung hervorgehoben wird. Der Beamformer dient also zunächst vorteilhaft zur Unterteilung der Umgebung in verschiedene Richtungen und zur Bestimmung der relevanten Richtung. Demgegenüber dient der Beamformer aber gerade nicht zur Erzeugung eines Ausgangssignals, welches durch eine Kombination der gerichteten Eingangssignale ebenfalls gerichtet wäre. Diese Funktion ergibt sich vielmehr aus der speziellen Ansteuerung des Kompressors.
  • Der Beamformer erzeugt die gerichteten Eingangssignale insbesondere aus mehreren Eingangssignalen, welche entsprechend durch mehrere Mikrofone erzeugt werden, welche jeweils die Schallsignale der Umgebung in ein jeweiliges Eingangssignal umwandeln. Die Mikrofone sind an unterschiedlichen Positionen des Hörgeräts angeordnet und bilden auf diese Weise ein Mikrofonarray. Insofern können die diversen Eingangssignale auch zusammengefasst als ein einzelnes Eingangssignal angesehen werden, welches von dem Mikrofonarray erzeugt wird. Zur Erzeugung der einzelnen gerichteten Eingangssignale werden die Eingangssignale der diversen Mikrofone durch den Beamformer geeignet miteinander kombiniert. In einer bevorzugten Ausgestaltung weist das Mikrofonarray zwei Mikrofone auf und der Beamformer erzeugt vier gerichtete Eingangssignale für die vier Richtungen vorn, hinten, links und rechts. Andere Ausgestaltungen sind aber denkbar und ebenfalls geeignet.
  • Die gerichteten Eingangssignale, welche vom Beamformer erzeugt werden müssen grundsätzlich nicht weiter zur Erzeugung des Ausgangssignals verwendet werden. In einer geeigneten Ausgestaltung dienen die gerichteten Eingangssignale vielmehr lediglich zur Ermittlung der relevanten Richtung und die AGC und speziell der Kompressor wirken auf das Eingangssignal insgesamt ein. In einer vorteilhaften Variante werden die gerichteten Eingangssignale dagegen der AGC zugeführt, insbesondere anstelle des Eingangssignals an sich, und mittels der AGC separat voneinander verarbeitet, um eine richtungsabhängige Kompression zu realisieren. In diesem Fall wirken die AGC und speziell der Kompressor auf einzelne Teile des Eingangssignal, nämlich die gerichteten Eingangssignale, welche ja das nach Richtungen aufgeteilte Eingangssignal darstellen, separat und unabhängig voneinander ein. Die separat verarbeiteten gerichteten Eingangssignale werden dann abschließend zu einem Ausgangssignal zusammengemischt. Bevorzugte Ausgestaltungen beider Konzepte werden nachfolgend ausführlicher dargestellt. Die diversen Ausgestaltungen oder Teile davon können grundsätzlich auch miteinander kombiniert werden. Die Ausführungen zu einer speziellen Ausgestaltung gelten sinngemäß auch für die anderen Ausgestaltungen.
  • In einer besonders einfachen und vorteilhaften Ausgestaltung ist das Kompressionsschema durch zumindest einen Kompressionsparameter definiert, insbesondere wie oben beschrieben, und das Kompressionsschema wird abhängig von der relevanten Richtung eingestellt, indem der Kompressionsparameter abhängig von der relevanten Richtung verändert wird. In einer ersten Variante wird hierbei lediglich zwischen wenigstens zwei diskreten Werten umgeschaltet. In einer zweiten Variante wird der Kompressionsparameter dagegen kontinuierlich verändert, d.h. kontinuierlich eingestellt. In dieser Ausgestaltung wird als richtungsabhängig eine jeweils geeignete Parametrisierung für den Kompressor ausgewählt und eingestellt und entsprechend die Kompression des Eingangssignals gesteuert.
  • In einer Ausgestaltung weist der Kompressor mehrere Instanzen auf, welche mit unterschiedlichen Instanzschemata betrieben werden. Diese Instanzschemata sind an sich Kompressionsschemata wie oben beschrieben. Ein jeweiliges Instanzschema ist nun zur Hervorhebung eines bestimmten Typs von Schallsignal ausgebildet ist, z.B. zur Hervorhebung von Sprache oder von Klang, z.B. Musik. In diesem Zusammenhang werden die Instanzen aus als Kompressions-Instanzen bezeichnet. Das Eingangssignal wird jeweils den mehreren Instanzen zugeführt, welche dann entsprechend viele modifizierte Eingangssignale erzeugen, welche anschließend gemeinsam zu dem Ausgangssignal kombiniert werden. Dabei wird grundsätzlich dasselbe Eingangssignal für alle Instanzen verwendet, sodass der Kompressor insgesamt auf das gesamte Eingangssignal wirkt. Wesentlich ist nun, dass ein Anteilsverhältnis der modifizierten Eingangssignale zueinander in dem Ausgangssignal abhängig von der relevanten Richtung eingestellt wird, sodass das Kompressionsschema als eine Mischung der Instanzschemata eingestellt wird. Es werden also unterschiedliche Versionen des Eingangssignals richtungsabhängig gemischt, d.h. je nach relevanter Richtung hat die eine oder die andere Instanz mehr oder weniger Einfluss auf das Ausgangssignal. Das Mischen, auch zusammenführen oder kombinieren, erfolgt zweckmäßigerweise mittels eines Mischers, welcher dann das Ausgangssignal erzeugt.
  • Ein besonderer Vorteil an dieser Ausgestaltung ist, dass die einzelnen Instanzen jeweils mit einem festen Instanzschema betrieben werden können und vorzugsweise auch betrieben werden und dennoch ein insgesamt veränderliches Kompressionsschema vorliegt. Das Eingangssignal wird mittels der einzelnen Instanzen parallel unterschiedlich bearbeitet, sodass dann das Kompressionsschema des Kompressors insgesamt dadurch eingestellt wird, dass das Anteilsverhältnis des modifizierten Eingangssignals geeignet ausgewählt und eingestellt wird. In einer ersten Variante wird zwischen zwei diskreten Anteilsverhältnissen umgeschaltet, in einer zweiten Variante wird dagegen das Anteilsverhältnis kontinuierlich verändert. Zur Einstellung oder Veränderung des Anteilsverhältnisses wird z.B. der Pegel des Eingangssignals vor der jeweiligen Instanz entsprechend verändert oder alternativ oder zusätzlich der Pegel des jeweiligen modifizierten Eingangssignals nach der jeweiligen Instanz.
  • Ein Vorteil der zuvor genannten Ausgestaltung besteht insbesondere darin, dass die Instanzen mit einem vordefinierten, d.h. einem fixen Instanzschema betreibbar sind und vorzugsweise auch betrieben werden, sodass im Betrieb das jeweilige Instanzschema an sich nicht verändert wird. Die Instanzen sind also dezidierte Instanzen für unterschiedliche Typen von Schallsignalen. In einer ebenfalls geeigneten Variante sind aber auch die einzelnen Instanzen einstellbar, d.h. weisen eine veränderbare Parametrisierung auf, welche dann im Betrieb geändert wird, sodass die Instanzen dann nicht wie zuvor beschrieben statisch, sondern dynamisch sind.
  • In einer weiteren Ausgestaltung weist das Eingangssignal mehrere gerichtete, d.h. richtungsabhängige Eingangssignale auf, welche jeweils einer der mehreren Richtungen zugeordnet sind. Der Kompressor weist nun für jedes der gerichteten Eingangssignale eine Instanz auf, welche mit einem jeweiligen Instanzschema betrieben wird. In diesem Zusammenhang werden die Instanzen auch als Richtungs-Instanzen bezeichnet und die Instanzschemata als Richtungsschemata. Die Instanzschemata sind an sich Kompressionsschemata wie oben beschrieben. Einer jeweiligen Instanz wird eines der gerichteten Eingangssignale zugeführt, sodass das Kompressionsschema als eine Mischung der Instanzschemata eingestellt wird. Prinzipiell gelten die Ausführungen bezüglich der zuvor genannten Ausgestaltung mit mehreren Kompressions-Instanzen auch für die Ausgestaltung mit mehreren Richtungs-Instanzen, mit dem Unterschied, dass einer einzelnen Richtungs-Instanz nicht das gesamte Eingangssignal zugeführt wird, sondern ein aufbereitetes Eingangssignal, welches dann modifiziert wird. Auf diese Weise erfolgt also mittels einer jeweiligen Richtungs-Instanz eine Modifikation lediglich eines bestimmten Richtungsanteils des Eingangssignals, sodass die einzelnen Richtungen also unabhängig voneinander in optimaler Weise mittels der AGC verarbeitet werden.
  • Ein spezieller Vorteil der vorgenannten Ausgestaltung mit mehreren Instanzen, speziell Richtung-Instanzen ist insbesondere, dass in jeder Richtung separat auf die dort speziell vorliegende Situation reagiert werden kann und vorzugsweise auch reagiert wird. In einer vorteilhaften Weiterbildung wird hierzu für jede der Richtungen ein jeweiliges Instanzschema für das jeweilige gerichtete Eingangssignal abhängig von einem Typ eines Schallsignals in der zugeordneten, d.h. der zugehörigen Richtung eingestellt. Mit anderen Worten: für eine jeweilige Richtung wird ermittelt, ob dort eine Schallquelle vorhanden ist, welche Schallsignale eines bestimmten Typs, z.B. Sprache oder Musik, aussendet. Zudem wird auch der Typ bestimmt, z.B. mittels eines Klassifikators. Abhängig vom Typ des Schallsignals wird dann für die Instanz ein entsprechendes Instanzschema eingestellt.
  • Durch die Unterteilung in verschiedene Richtungen in Verbindung mit der Möglichkeit, für diese auch unterschiedliche Kompressionsschemata, d.h. genauer Instanzschemata zu verwenden, sind die Richtungen vorteilhaft auch unabhängig voneinander verarbeitbar und werden zweckmäßigerweise je nach Bedarf modifiziert. Die Erzeugung der gerichteten Eingangssignale erfolgt vorzugsweise mittels eines Beamformers. Ein Beamformer zeichnet sich gerade dadurch aus, dass dieser Schallsignale aus einer bestimmten Richtung hervorhebt, sodass ein Beamformer entsprechend geeignet ist, gerichtete Eingangssignale zu erzeugen. Hierzu wird der Beamformer insbesondere auf jede der mehreren Richtungen angewendet, um dann für jede dieser Richtungen ein zugehöriges gerichtetes Eingangssignal zu erzeugen. Bei einem herkömmlichen Beamformer würde lediglich ein richtungsabhängiges Eingangssignal verwendet und nach einer Modifizierung als Ausgangssignal ausgegeben werden. Demgegenüber werden vorliegend die mehreren gerichteten Eingangssignale der unterschiedlichen Richtungen jeweils mittels der AGC modifiziert, sodass im Ergebnis richtungsabhängig komprimierte Eingangssignale erzeugt werden. Diese werden dann zu einem Ausgangssignal zusammengefasst und schließlich ausgegeben.
  • Die Ausgestaltungen mit mehreren Richtungs-Instanzen und die Ausgestaltung mit mehreren Kompressions-Instanzen sind in einer Ausgestaltung miteinander kombiniert. Beispielsweise derart, dass eine jeweilige Richtungs-Instanz aus mehreren Kompressions-Instanzen zusammengesetzt ist, sodass ein einzelnes gerichtetes Eingangssignal dann beispielsweise mit unterschiedlichen fixen Instanzschemata modifiziert wird und anschließend die unterschiedlichen modifizierten gerichteten Eingangssignale zum Ausgangssignal zusammengemischt werden.
  • Äquivalent zu der gewählten Formulierung mit mehreren Instanzen des Kompressor kann auch von einer AGC mit mehreren AGC-Instanzen gesprochen werden, welche dann jeweils einen oder mehrere entsprechend ausgebildete Kompressoren aufweisen. Diese unterschiedlichen Formulierungen werden als äquivalent angesehen und unterscheiden sich höchstens insbesondere in der konkreten schaltungstechnischen Umsetzung, nicht jedoch in der erreichten Funktionalität, auf welche es hier im Besonderen ankommt.
  • Vorzugsweise wird das Kompressionsschema, insbesondere das Instanzschema, welches eingestellt wird, ausgewählt aus einer Menge an Kompressionsschemata, umfassend: ein Sprachschema, zur Hervorhebung von Sprachbestandteilen, ein Klangschema, zur Anpassung lediglich an ein Hörprofil eines Nutzers des Hörgeräts. Dadurch erfolgt vorteilhaft ein bedarfsweises Umschalten zwischen einem Sprachschema, welches auf eine möglichst gute Sprachverständlichkeit hin ausgelegt ist, und einem Klangschema, welches auf eine möglichst naturgetreue Wiedergabe der Schallsingale aus der Umgebung hin ausgelegt ist. Bei Anwendung des Sprachschemas wird durch die Kompression also Sprache hervorgehoben, wohingegen bei dem Klangschema die Umgebung an sich hervorgehoben, insbesondere ohne spezielle Berücksichtigung einzelner Schallquellen oder einzelner Typen von Schallsignalen. Dadurch erfolgt eine besonders wirklichkeitsgetreue Klangwiedergabe, welche besonders bei Musik als ein Schallsignal vorteilhaft ist.
  • Durch die Möglichkeit zur Auswahl des Sprachschemas wird dem besonders wichtigen Fall eines Vorhandenseins von Sprache in der Umgebung Rechnung getragen. Um solche Sprache, d.h. ein Schallsignal eines Sprechers, für den Nutzer maximal verständlich zu machen, wird ein Kompressionsschema eingestellt, welches die Sprachverständlichkeit verbessert. Hierbei ist die wirklichkeitsgetreu Wiedergabe von anderen Schallsignalen oder Geräuschen von untergeordneter Bedeutung, vielmehr wird vorrangig Sprache für den Nutzer erkennbar gemacht. Andersherum wird in einer Umgebung ohne Sprache zweckmäßigerweise eine möglichst realitätsnahe Wiedergabe der akustischen Umgebung angestrebt, es soll also eine möglichst gute Klangqualität erzielt werden. Dies wird durch die Möglichkeit der Auswahl des Klangschemas realisiert. Unter möglichst guter Klangqualität wird insbesondere verstanden, dass ein Hörschaden des Nutzers möglichst optimal ausgeglichen wird, also eine maximale Hörverlustkompensation durchgeführt wird. Dies ist besonders wichtig bei Musik, welche durch ein Kompressionsschema zur verbesserten Sprachverständlichkeit unter Umständen stark verzerrt wird. Gleiches gilt für andere Schallsignale in der Umgebung, welche mitunter derart stark verzerrt werden, dass diese für den Nutzer nicht mehr erkennbar sind und nicht mehr zugeordnet werden können.
  • Besonders Vorteilhaft an der richtungsabhängigen Kompression ist insbesondere die Umgehung des Problems, dass ein einzelnes Kompressionsschema, welches für eine bestimmte Situation, z.B. Sprache oder Klang ausgelegt ist, nicht optimal ist in einer Umgebung, in welcher sowohl Sprache als auch andere Schallsignale, insbesondere Musik, vorhanden sind. In einer besonders vorteilhaften Ausgestaltung wird im Rahmen der richtungsabhängigen Kompression die Umgebung in mehrere Richtungen unterteilt und die Schallsignale einer jeweiligen Richtung werden jeweils mit einem optimalen, d.h. auf die jeweiligen Schallsignale abgestimmten Kompressionsschema modifiziert. Anstatt also die gesamte Umgebung im Ganzen zu analysieren und für die Umgebung als Ganzes dieselbe Kompression durchzuführen, wird eine entsprechende Betrachtung separat für jede einzelne der mehreren Richtungen durchgeführt.
  • Zweckmäßigerweise wird das Eingangssignal lediglich dann richtungsabhängig modifiziert, wenn in der Umgebung ein gerichtetes Schallsignal erkannt wird, und ansonsten wird das Eingangssignal richtungsunabhängig modifiziert, d.h. alle Richtungen werden in gleicher Weise modifiziert. Mit anderen Worten: das Hörgerät weist einen Grundbetrieb auf, in welchem keine der Richtungen durch Einstellung des Kompressors speziell hervorgehoben wird. Grundsätzlich besteht somit auch die Möglichkeit, dass keine der Richtungen eine relevante Richtung ist und entsprechend auch keine relevante Richtung ausgewählt werden kann, die Ermittlung also fehlschlägt. Allgemein für den Fall, dass in einer jeweiligen Richtung keine relevante Schallquelle oder kein relevantes Schallsignal ermittelt wird oder werden kann, also falls kein relevantes Schallsignal vorhanden ist, wird vorzugsweise für diese Richtung ein Grundschema als Kompressionsschema verwendet. Im Grundbetrieb wird dann für jede Richtung das Grundschema verwendet. Das Grundschema ist vorteilhafterweise das oben beschriebene Klangschema, welches eine besonders naturgetreue Wiedergabe aller Schallsignale in der Umgebung insgesamt gewährleistet. Liegt in einer Richtung kein spezielles Schallsignal vor, so ergibt sich als Typ des Schallsignals insbesondere der Typ "Hintergrund".
  • In einer geeigneten Ausgestaltung werden mehrere Richtungen jeweils als eine relevante Richtung ausgewählt. Dies wird insbesondere durch die spezielle richtungsabhängige Kompression ermöglicht. Demgegenüber ist mit einem Beamformer alleine typischerweise nur eine einzelne Richtung hervorhebbar. Vorliegend lassen sich jedoch mehrere Richtungen gleichzeitig als relevante Richtungen auswählen. Auf diese Weise werden z.B. vorteilhaft mehrere Sprecher in der Umgebung für den Nutzer hervorgehoben. Alternativ oder zusätzlich werden plötzlich auftretende Warn- oder Alarmsignale hervorgehoben, ohne dabei andere relevante Schallsignale zu unterdrücken.
  • Die unterschiedlichen Richtungen sind vorzugsweise Regionen, welche sich durch eine Unterteilung der Umgebung in Sektoren ausgehend vom Nutzer ergeben. Der Nutzer des Hörgeräts bildet in der Umgebung einen Mittelpunkt, von welchem ausgehend die Umgebung in mehrere Sektoren, d.h. Winkelabschnitte unterteilt ist. Jede Region entspricht also einem Sektor und die Sektoren reihen sich umlaufend um den Nutzer aneinander an. In einer besonders zweckmäßigen Ausgestaltung wird die Umgebung in genau vier Richtungen unterteilt, nämlich vorn, hinten, links und rechts. Diese Richtungsangaben beziehen sich auf die Blickrichtung des Nutzers, so dass also "vorn" einen Frontbereich kennzeichnet, "hinten" einen Rückenbereich und "links" und "rechts" einen linken beziehungsweise rechten Seitenbereich. Jede der vier Richtungen umfasst insbesondere einen Winkelabschnitt von 90°. Die Umgebung ist somit in vier Quadranten unterteilt. Grundsätzlich geeignet ist auch eine Unterteilung in lediglich zwei Regionen, z.B. vorn und hinten, d.h. einen Frontbereich und einen Rückenbereich. In einer Variante erfolgt eine Unterteilung in Regionen nicht lediglich in einer Ebene, sondern im Raum. Hierbei ist in einer zweckmäßigen Ausgestaltung eine zusätzlich Region nach oben hin ausgebildet. Entsprechend ist auch eine zusätzliche Region nach unten hin vorteilhaft.
  • Ein erfindungsgemäßes Hörgerät ist zur Durchführung des oben beschriebenen Verfahrens ausgebildet. Insbesondere weist das Hörgerät eine Signalverarbeitung auf, welche zur Durchführung des Verfahrens ausgebildet ist. Das Hörgerät ist entweder monaural oder binaural ausgebildet, weist als ein beziehungsweise zwei Einzelgeräte auf, welche jeweils im oder am Ohr getragen werden. Das Hörgerät dient insbesondere der Versorgung eines hörgeschädigten Nutzers. Das Hörgerät weist wenigstens ein Mikrofon und wenigstens einen Hörer auf, wobei genauer gesagt jedes Einzelgerät des Hörgeräts zumindest ein, vorzugsweise mehrere Mikrofone aufweist sowie einen Hörer. Jedes Einzelgerät weist ein eigenes Gehäuse auf, in welchem die zugehörigen Mikrofone untergebracht sind. Je nach Typ des Hörgeräts ist auch der Hörer in dem Gehäuse untergebracht oder über eine Zuleitung mit dem Gehäuse zumindest verbunden. Jedes Einzelgerät weist zudem ein Ohrstück auf, welches insbesondere in das Ohr des Nutzers einsetzbar ist, um dort die Schallsignale, welche der Hörer aus dem Ausgangssignal erzeugt, an den Nutzer auszugeben. Zweckmäßigerweise weist das Hörgerät eine Batterie auf, zur Energieversorgung, wobei vorteilhafterweise jedes Einzelgerät eine eigene Batterie aufweist, welche insbesondere in dem Gehäuse untergebracht ist.
  • Nachfolgend werden Ausführungsbeispiele der Erfindung anhand einer Zeichnung näher erläutert. Die obigen, allgemeinen Ausführungen finden sinngemäß Anwendung auf die nachfolgend gezeigten, speziellen Ausführungsbeispiele. In der Zeichnung zeigen jeweils schematisch:
  • Fig. 1
    ein Hörgerät,
    Fig. 2
    ein Blockschaltbild eines Hörgeräts,
    Fig. 3
    ein Blockschaltbild eines weiteren Hörgeräts,
    Fig. 4
    ein Kompressionsschema,
    Fig. 5
    eine Unterteilung einer Umgebung in mehrere Richtungen,
    Fig. 6
    einen Kompressor mit mehreren Instanzen.
  • Fig. 1 zeigt ein Ausführungsbeispiel eines Hörgeräts 2. Das Hörgerät 2 weist eine Signalverarbeitung 4 auf. Das Hörgerät 2 ist entweder monaural oder binaural ausgebildet, weist also ein beziehungsweise zwei Einzelgeräte auf, welche jeweils im oder am Ohr getragen werden. In Fig. 1 ist lediglich ein Einzelgerät dargestellt. Das Hörgerät 2 dient vorliegend der Versorgung eines hörgeschädigten Nutzers N. Das Hörgerät 2 weist wenigstens ein Mikrofon 7 und wenigstens einen Hörer 6 auf. Das in Fig. 1 beispielhaft gezeigte Einzelgerät weist zwei Mikrofone 7 auf sowie einen Hörer 6, welcher hier extern bezüglich eines Gehäuses 8 angeordnet ist, sodass das gezeigte Hörgerät 2 ein sogenanntes RIC-Gerät ist.
  • Die Signalverarbeitung 4 ist zur richtungsabhängigen Kompression ausgebildet. Zwei Ausführungsbeispiele sind in den Fig. 2 und 3 dargestellt. Diese zeigen jeweils ein Blockschaltbild eines Hörgeräts 2. Die Signalverarbeitung 4 weist allgemein eine automatische Verstärkungsregelung 10, kurz AGC auf, welche wiederum einen Kompressor 12 aufweist. Die Signalverarbeitung 4 weist zudem eine Richtungsbestimmungseinheit 14 auf, mittels welcher der Kompressor 12 gesteuert wird. Hierzu bestimmt die Richtungsbestimmungseinheit 14 eine relevante Richtung R, von welcher abhängig der Kompressor 12 gesteuert wird.
  • Der Signalverarbeitung 4 wird allgemein ein Eingangssignal E zugeführt, welches von einem Mikrofon 7 erzeugt wird. Das Eingangssignal E wird dann der AGC 10 zugeführt, welche das Eingangssignal E modifiziert und als ein Ausgangssignal A zur Ausgabe an den Hörer 6 weitergibt. Vorliegend wird das Eingangssignal E auch zur Ermittlung der relevanten Richtung R, d.h. zur Richtungsbestimmung verwendet und hierzu der Richtungsbestimmungseinheit 14 zugeführt. Als Ergebnis der Richtungsbestimmung wird dann der Kompressor 12 eingestellt. Das Verhalten des Kompressors 12 ist durch ein Kompressionsschema K definiert, welches dann abhängig von der relevanten Richtung R verändert wird, um in dieser eine Hervorhebung einer relevanten Schallquelle zu erzielen.
  • Ein Kompressionsschema K ist beispielhaft in Fig. 4 gezeigt, hier in einer Darstellung als Verstärkung G als Funktion eines Eingangspegels EP, d.h. eines Pegels des Eingangssignals E. Das gezeigte Kompressionsschema K weist einen Kniepunkt 16 auf, welcher zwei Pegelbereiche mit unterschiedlichem Kompressionsverhältnis definiert. Auf einem unteren Pegelbereich wird eine konstante Verstärkung durchgeführt, auf einem oberen Pegelbereich wird die Verstärkung mit steigendem Eingangspegel reduziert. Das Kompressionsschema wird nun in Abhängigkeit der relevanten Richtung R verändert, beispielsweise indem der Kniepunkt 16 verschoben wird, um ein verändertes Verhalten des Kompressors 12 zu bewirken.
  • Die Umgebung des Nutzers N ist in mehrere Richtungen unterteilt, beispielsweise wie in Fig. 5 gezeigt in vier Richtungen "vorn" V, "hinten" H, "links" L und "rechts" S. Von diesen Richtungen wird eine mittels der Richtungsbestimmungseinheit 14 als eine relevante Richtung R ausgewählt und soll dann gegenüber den anderen Richtungen hervorgehoben werden. Hierzu wird das Eingangssignal E richtungsabhängig modifiziert, indem der Kompressor 12 mit einem Kompressionsschema K betrieben wird, welches abhängig von der relevanten Richtung R eingestellt wird. Es wird also die Information, in welcher Richtung sich eine relevante Schallquelle befindet, genutzt, um das Eingangssignal E selektiv zu modifizieren und diese Schallquelle für den Nutzer N deutlicher wiederzugeben.
  • Die relevante Richtung R wird dabei nach ihrer Relevanz für den Nutzer N ausgewählt. Relevant ist eine Richtung insbesondere dann, wenn dort eine Schallquelle eines bestimmten Typs vorhanden ist, z.B. ein Sprecher, oder wenn die Schallquelle relativ zu anderen Schallquellen in derselben Richtung eine höhere Lautstärke aufweist, d.h. einen höheren Pegel, z.B. ein Sprecher in einer Menschenmenge. Zur Ermittlung der relevanten Richtung R wird das Eingangssignal E von der Richtungsbestimmungseinheit 14 analysiert und anhand dessen ermittelt, in welcher Richtung eine Schallquelle liegt, welche für den Nutzer N relevant ist, sodass diese Richtung dann als relevante Richtung R ausgewählt wird. Beispielsweise weist das Hörgerät 2 hierzu einen nicht dargestellten Klassifikator auf, um Schallquellen in der Umgebung einem bestimmten Typ zuzuordnen, sodass dann diejenige Richtung als eine relevante Richtung R ausgewählt wird, in welcher eine Schallquelle eines bestimmten Typs liegt.
  • In Fig. 2 wird nun von einem einzelnen Mikrofon 7 ein Eingangssignal E erzeugt und dem Kompressor 12 sowie der Richtungsbestimmungseinheit 14 zugeführt. Die Richtungsbestimmungseinheit 14 ermittelt anhand des Eingangssignals E eine relevante Richtung R und steuert damit den Kompressor 12, indem das Kompressionsschema K abhängig von der relevanten Richtung R verändert wird. Dadurch wird richtungsabhängig ein modifiziertes Eingangssignal Emod erzeugt, welches dann als Ausgangssignal A über den Hörer 6 ausgegeben wird.
  • In Fig. 3 weist die Richtungsbestimmungseinheit 14 einen Beamformer auf, welcher aus einem Eingangssignal E von mehreren Mikrofonen 7 mehrere gerichtete Eingangssignale Eger erzeugt, d.h. das Eingangssignal E zerfällt in mehrere gerichtete Eingangssignale Eger. Dabei ist jedes der gerichteten Eingangssignale Eger einer der Richtungen zugeordnet und ist also lediglich oder zumindest überwiegend aus Schallsignalen aus dieser einen Richtung erzeugt. Die gerichteten Eingangssignale werden dann dem Kompressor 12 zugeführt und dort separat modifiziert, sodass mehrere modifizierte Eingangssignale Emod erzeugt werden, welche anschließend zum Ausgangssignal A zusammengefügt werden.
  • Eine mögliche Ausgestaltung eines hierzu geeigneten Kompressors 12 ist in Fig. 6 gezeigt. Der dort gezeigte Kompressor 12 weist mehrere Instanzen 18 auf, welchen jeweils eines der gerichteten Eingangssignale Eger zugeführt wird. Diese Instanzen 18 werden daher auch als Richtungs-Instanzen bezeichnet. Zudem wird jede Instanz 18 mit einem eigenen Instanzschema betrieben, welches abhängig von der relevanten Richtung R eingestellt wird. Dadurch wird also jedes gerichtete Eingangssignal Eger separat modifiziert und entsprechend wird für jede Richtung ein eigenes Kompressionsschema, nämlich das jeweilige Instanzschema verwendet, sodass die Schallsignale jeder einzelnen Richtung unabhängig von den Schallsignalen der anderen Richtungen optimal komprimiert werden. Die modifizierten Eingangssignale Emod werden dann in einem Mischer 20 zusammengemischt. Dabei wird insbesondere ein Anteilsverhältnis der modifizierten Eingangssignale Emod am Ausgangssignal A derart geeignet eingestellt, dass sich insgesamt ein optimale Kompressionsschema K ergibt.
  • In Fig. 7 ist ein Kompressor 12 gezeigt, welcher mehrere Instanzen 18 aufweist, welchen jeweils das vollständige Eingangssignal E zugeführt wird. Im Gegensatz zu Fig. 6, wo jeder Instanz 18 ein anderes Signal, nämlich je ein gerichtetes Eingangssignal Eger zugeführt wird, wird jeder der Instanzen 18 in Fig. 7 das gleiche Signal, vorliegend das Eingangssignal E zugeführt. Die einzelnen Instanzen 18 werden mit unterschiedlichen Instanzschemata betrieben, sodass das Eingangssignal E in jeder Instanz 18 unterschiedlich modifiziert wird und sich unterschiedliche modifizierte Eingangssignale Emod ergeben, welche dann in einem Mischer 20 zum Ausgangssignal kombiniert werden. Die einzelnen Instanzen 18 werden in diesem Fall auch als Kompressions-Instanzen bezeichnet. Demgegenüber werden mehrere oder alle Instanzen 18 in Fig. 6 bedarfsweise auch mit dem gleichen Instanzschema betrieben. Die unterschiedlichen Instanzschemata in Fig. 7 sind vorliegend für unterschiedliche Schallquellen und allgemein unterschiedliche Situationen ausgebildet, so eines der Instanzschemata ein Sprachschema, zur Hervorhebung von Sprache, und das andere Instanzschema ein Klangschema, welches eine möglichst wirklichkeitsgetreue und an den Hörschaden des Nutzers N angepasst Wiedergabe von Schallsignalen der Umgebung realisiert.
  • Die Ausführungen der Fig. 6 und 7 sind in einer nicht gezeigten Variante derart kombiniert, dass anstelle der jeder einzelnen der Instanzen 18 in Fig. 6 ein jeweiliges gerichtetes Eingangssignal Eger mehreren Instanzen 18 wie in Fig. 7 zugeführt wird, um beispielsweise eine Mischung verschiedener Instanzschemata für eine einzelne Richtung zu realisieren. Für den konkreten Fall der Fig. 6 und 7 würde der Kompressor 12 dann acht Instanzen aufweisen, nämlich für jede Richtung eine Instanz mit Sprachschema und eine mit Klangschema.
  • Bezugszeichenliste
  • 2
    Hörgerät
    4
    Signalverarbeitung
    6
    Hörer
    7
    Mikrofon
    8
    Gehäuse
    10
    automatische Verstärkungsregelung, AGC
    12
    Kompressor
    14
    Richtungsbestimmungseinheit
    16
    Kniepunkt
    18
    Instanz
    20
    Mischer
    A
    Ausgangssignal
    E
    Eingangssignal
    Eger
    gerichtetes Eingangssignal
    Emod
    modifiziertes Eingangssignal
    EP
    Eingangspegel
    G
    Verstärkung
    H
    hinten
    K
    Kompressionsschema
    L
    links
    N
    Nutzer
    R
    relevante Richtung
    S
    rechts
    V
    vorn

Claims (9)

  1. Verfahren zum Betrieb eines Hörgeräts (2),
    - wobei das Hörgerät (2) aus Schallsignalen der Umgebung ein Eingangssignal (E) erzeugt,
    - wobei das Hörgerät (2) eine Signalverarbeitung (4) aufweist, welche ausgebildet ist, das Eingangssignal (E) zu modifizieren und dadurch ein Ausgangssignal (A) zu erzeugen,
    - wobei die Signalverarbeitung (4) zur Modifizierung des Eingangssignals (E) eine automatische Verstärkungsregelung (10) aufweist, welche einen Kompressor (12) aufweist, welcher mit einem Kompressionsschema (K) betreibbar ist,
    - wobei die Umgebung in mehrere Richtungen (V, H, L, S) unterteilt ist, von welchen eine mittels einer Richtungsbestimmungseinheit (14) als eine relevante Richtung (R) ausgewählt wird,
    - wobei das Eingangssignal (E) richtungsabhängig modifiziert wird, indem der Kompressor (12) mit einem Kompressionsschema (K) betrieben wird, welches abhängig von der relevanten Richtung (R) eingestellt wird, sodass Schallsignale aus der relevanten Richtung (R) gegenüber Schallsignalen aus anderen Richtungen hervorgehoben werden,
    dadurch gekennzeichnet,
    dass der Kompressor (12) mehrere Instanzen (18) aufweist, welche mit unterschiedlichen Instanzschemata betrieben werden, wobei ein jeweiliges Instanzschema zur Hervorhebung eines bestimmten Typs von Schallsignal ausgebildet ist, wobei das Eingangssignal (E) jeweils den mehreren Instanzen (18) zugeführt wird, welche dann entsprechend viele modifizierte Eingangssignale (Emod) erzeugen, welche anschließend gemeinsam zu dem Ausgangssignal (A) kombiniert werden, wobei ein Anteilsverhältnis der modifizierten Eingangssignale (Emod) zueinander in dem Ausgangssignal (A) abhängig von der relevanten Richtung (R) eingestellt wird, sodass das Kompressionsschema (K) als eine Mischung der Instanzschemata eingestellt wird,
    oder
    dass das Eingangssignal (E) mehrere gerichtete Eingangssignale (Eger) aufweist, welche jeweils einer der mehreren Richtungen (V, H, L, S) zugeordnet sind, wobei der Kompressor (12) für jedes der gerichteten Eingangssignale (Eger) eine Instanz (18) aufweist, welche mit einem jeweiligen Instanzschema betrieben wird, wobei einer jeweiligen Instanz (18) eines der gerichteten Eingangssignale (Eger) zugeführt wird, sodass das Kompressionsschema (K) als eine Mischung der Instanzschemata eingestellt wird, wobei jedes gerichtete Eingangssignal (Eger) separat modifiziert wird und die modifizierten Eingangssignale (Emod) dann in einem Mischer (20) zusammengemischt werden, wobei ein Anteilsverhältnis der modifizierten Eingangssignale (Emod) am Ausgangssignal (A) derart eingestellt wird, dass sich insgesamt ein optimales Kompressionsschema (K) ergibt.
  2. Verfahren nach dem vorhergehenden Anspruch,
    wobei die Richtungsbestimmungseinheit (14) einen Beamformer aufweist, mittels welchem die Umgebung in mehrere Richtungen (V, H, L, S) unterteilt wird und welcher zur Ermittlung der relevanten Richtung (R) verwendet wird.
  3. Verfahren nach einem der vorhergehenden Ansprüche,
    wobei das Kompressionsschema (K) durch zumindest einen Kompressionsparameter definiert ist, und
    wobei das Kompressionsschema (K) abhängig von der relevanten Richtung (R) eingestellt wird, indem der Kompressionsparameter abhängig von der relevanten Richtung (R) verändert wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche,
    wobei, sofern das Eingangssignal (E) mehrere gerichtete Eingangssignale (Eger) aufweist, für jede der Richtungen (V, H, L, S) ein jeweiliges Instanzschema für das jeweilige gerichtete Eingangssignal (Eger) abhängig von einem Typ eines Schallsignals in der zugeordneten Richtung (V, H, L, S) eingestellt wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche,
    wobei das Kompressionsschema (K), insbesondere das Instanzschema, welches eingestellt wird, ausgewählt wird aus einer Menge an Kompressionsschemata (K), umfassend: ein Sprachschema, zur Hervorhebung von Sprachbestandteilen, ein Klangschema, zur Anpassung lediglich an ein Hörprofil eines Nutzers (N) des Hörgeräts (2).
  6. Verfahren nach einem der vorhergehenden Ansprüche,
    wobei das Eingangssignal (E) lediglich dann richtungsabhängig modifiziert wird, wenn in der Umgebung ein gerichtetes Schallsignal erkannt wird, und wobei ansonsten das Eingangssignal (E) richtungsunabhängig modifiziert wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche,
    wobei mehrere Richtungen (V, H, L, S) jeweils als eine relevante Richtung (R) ausgewählt werden.
  8. Verfahren nach einem der vorhergehenden Ansprüche,
    wobei die Umgebung in genau vier Richtungen (V, H, L, S) unterteilt wird, nämlich vorn (V), hinten (H), links (L) und rechts (S).
  9. Hörgerät (2), welches ausgebildet ist zur Durchführung eines Verfahrens nach einem der vorhergehenden Ansprüche.
EP19167648.5A 2018-05-11 2019-04-05 Verfahren zum betrieb eines hörgeräts sowie hörgerät Active EP3567874B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018207346.5A DE102018207346B4 (de) 2018-05-11 2018-05-11 Verfahren zum Betrieb eines Hörgeräts sowie Hörgerät

Publications (2)

Publication Number Publication Date
EP3567874A1 EP3567874A1 (de) 2019-11-13
EP3567874B1 true EP3567874B1 (de) 2022-06-01

Family

ID=66102418

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19167648.5A Active EP3567874B1 (de) 2018-05-11 2019-04-05 Verfahren zum betrieb eines hörgeräts sowie hörgerät

Country Status (6)

Country Link
US (1) US10856089B2 (de)
EP (1) EP3567874B1 (de)
JP (1) JP6870025B2 (de)
CN (1) CN110475194B (de)
DE (1) DE102018207346B4 (de)
DK (1) DK3567874T3 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4040806A3 (de) * 2021-01-18 2022-12-21 Oticon A/s Hörgerät mit einem geräuschreduzierungssystem
CN113660593A (zh) * 2021-08-21 2021-11-16 武汉左点科技有限公司 一种消除头影效应的助听方法及装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4712866A (en) 1986-07-24 1987-12-15 Andrew Corporation Indium-clad fiber-optic polarizer
US6751325B1 (en) 1998-09-29 2004-06-15 Siemens Audiologische Technik Gmbh Hearing aid and method for processing microphone signals in a hearing aid
US20030007657A1 (en) * 2001-07-09 2003-01-09 Topholm & Westermann Aps Hearing aid with sudden sound alert
CA2354858A1 (en) * 2001-08-08 2003-02-08 Dspfactory Ltd. Subband directional audio signal processing using an oversampled filterbank
US7630507B2 (en) * 2002-01-28 2009-12-08 Gn Resound A/S Binaural compression system
EP1448022A1 (de) * 2003-02-14 2004-08-18 GN ReSound A/S Dynamische Kompression in einem Hörhilfegerät
DE10327889B3 (de) * 2003-06-20 2004-09-16 Siemens Audiologische Technik Gmbh Verfahren zum Betrieb eines Hörhilfegerätes sowie Hörhilfegerät mit einem Mikrofonsystem, bei dem unterschiedliche Richtcharakteristiken einstellbar sind und Programmiergerät dafür
US7212643B2 (en) * 2004-02-10 2007-05-01 Phonak Ag Real-ear zoom hearing device
WO2010028683A1 (en) * 2008-09-10 2010-03-18 Widex A/S Method for sound processing in a hearing aid and a hearing aid
US8755546B2 (en) * 2009-10-21 2014-06-17 Pansonic Corporation Sound processing apparatus, sound processing method and hearing aid
DE102010041740A1 (de) * 2010-09-30 2012-04-05 Siemens Medical Instruments Pte. Ltd. Verfahren zur Signalverarbeitung in einem Hörhilfegerät sowie Hörhilfegerät
CN106851512B (zh) * 2010-10-14 2020-11-10 索诺瓦公司 调整听力设备的方法及根据所述方法可操作的听力设备
DK3396980T3 (da) * 2011-07-04 2021-04-26 Gn Hearing As Binaural kompressor til opnåelse af retningsanvisninger
EP2544462B1 (de) * 2011-07-04 2018-11-14 GN Hearing A/S Drahtloser binauraler Verdichter
DE102015210652B4 (de) * 2015-06-10 2019-08-08 Sivantos Pte. Ltd. Verfahren zur Verbesserung eines Aufnahmesignals in einem Hörsystem

Also Published As

Publication number Publication date
JP2019198073A (ja) 2019-11-14
US10856089B2 (en) 2020-12-01
DE102018207346B4 (de) 2019-11-21
DE102018207346A1 (de) 2019-11-14
CN110475194A (zh) 2019-11-19
EP3567874A1 (de) 2019-11-13
CN110475194B (zh) 2021-05-18
US20190349692A1 (en) 2019-11-14
DK3567874T3 (da) 2022-08-29
JP6870025B2 (ja) 2021-05-12

Similar Documents

Publication Publication Date Title
DE69431037T3 (de) Hörgerät mit mikrofonumschaltungssystem
EP1307072B1 (de) Verfahren zum Betrieb eines Hörgerätes sowie Hörgerät
DE10327889B3 (de) Verfahren zum Betrieb eines Hörhilfegerätes sowie Hörhilfegerät mit einem Mikrofonsystem, bei dem unterschiedliche Richtcharakteristiken einstellbar sind und Programmiergerät dafür
DE10331956B3 (de) Hörhilfegerät sowie Verfahren zum Betrieb eines Hörhilfegerätes mit einem Mikrofonsystem, bei dem unterschiedliche Richtcharakteistiken einstellbar sind
DE102014217344A1 (de) Lautsprechersystem
EP0942627A2 (de) Hörgerät mit einem Richtmikrofon-System sowie Verfahren zum Betrieb desselben
EP3567874B1 (de) Verfahren zum betrieb eines hörgeräts sowie hörgerät
DE102010041740A1 (de) Verfahren zur Signalverarbeitung in einem Hörhilfegerät sowie Hörhilfegerät
DE102006047983A1 (de) Verarbeitung eines Eingangssignals in einem Hörgerät
EP2077059B1 (de) Verfahren zum betreiben einer hörhilfe, sowie hörhilfe
EP1489882A2 (de) Verfahren zum Betrieb eines Hörhilfegerätes, sowie Hörhilfegerät mit einem Mikrofonsystem, bei dem unterschiedliche Richtcharakteristiken einstellbar sind
EP2200341B1 (de) Verfahren zum Betrieb eines Hörhilfegerätes sowie Hörhilfegerät mit einer Quellentrennungseinrichtung
AT507622B1 (de) Ohraufliegender kopfhörer
EP1503612B1 (de) Hörhilfegerät sowie Verfahren zum Betrieb eines Hörhilfegerätes mit einem Mikrofonsystem, bei dem unterschiedliche Richtcharakteristiken einstellbar sind
DE602006000772T2 (de) Hörinstrument
EP1432282B1 (de) Verfahren zum Anpassen eines Hörgerätes an eine momentane akustische Umgebungssituation und Hörgerätesystem
WO2019215200A1 (de) Verfahren zum betrieb eines hörsystems sowie hörsystem
EP3742759A1 (de) Hörgerät sowie verfahren zum betrieb eines hörgerätes
DE102009004185B3 (de) Verfahren zur Signalverarbeitung einer Hörvorrichtung und entsprechende Hörvorrichtung
EP2658289B1 (de) Verfahren zum Steuern einer Richtcharakteristik und Hörsystem
DE102022201706B3 (de) Verfahren zum Betrieb eines binauralen Hörvorrichtungssystems und binaurales Hörvorrichtungssystem
DE10215775A1 (de) Verfahren zur räumlichen Darstellung von Tonquellen
DE102022202646B3 (de) Verfahren zum Betrieb eines binauralen Hörsystems
EP4149121A1 (de) Verfahren zum betrieb eines hörgeräts
DE102022202266A1 (de) Verfahren zum Betrieb eines Hörgeräts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200508

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200629

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1496212

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220615

Ref country code: CH

Ref legal event code: EP

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019004480

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20220823

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220901

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220902

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221003

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019004480

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230417

Year of fee payment: 5

Ref country code: DK

Payment date: 20230419

Year of fee payment: 5

Ref country code: DE

Payment date: 20230418

Year of fee payment: 5

Ref country code: CH

Payment date: 20230502

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230420

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230405

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230405