EP3551532B1 - Procédé et dispositif de réduction du couple azimutal agissant sur une unité de propulseur en nacelle ou sur un propulseur azimutal - Google Patents

Procédé et dispositif de réduction du couple azimutal agissant sur une unité de propulseur en nacelle ou sur un propulseur azimutal Download PDF

Info

Publication number
EP3551532B1
EP3551532B1 EP17829133.2A EP17829133A EP3551532B1 EP 3551532 B1 EP3551532 B1 EP 3551532B1 EP 17829133 A EP17829133 A EP 17829133A EP 3551532 B1 EP3551532 B1 EP 3551532B1
Authority
EP
European Patent Office
Prior art keywords
fins
pod
pod housing
distance
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17829133.2A
Other languages
German (de)
English (en)
Other versions
EP3551532A1 (fr
Inventor
Anders LOBELL
Rikard Johansson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kongsberg Maritime Sweden AB
Original Assignee
Kongsberg Maritime Sweden AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kongsberg Maritime Sweden AB filed Critical Kongsberg Maritime Sweden AB
Publication of EP3551532A1 publication Critical patent/EP3551532A1/fr
Application granted granted Critical
Publication of EP3551532B1 publication Critical patent/EP3551532B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/28Other means for improving propeller efficiency

Definitions

  • the present invention relates to a method of reducing the azimuthal torque acting on a pulling pod unit or azimuth thruster having a rotary pod housing with a substantially vertical slewing axis and a downwardly directed fin means carried by the pod housing abaft the slewing axis.
  • It also relates to a device for reducing the azimuthal torque acting on a pulling pod unit or azimuth thruster having a rotary pod housing with a substantially vertical slewing axis and a downwardly directed fin means carried by the pod housing abaft the slewing axis.
  • the azimuthal torque around the slewing axis of a pulling pod unit or azimuthal thruster has to be handled by an installed steering machine for all combinations of steering angles, propeller speeds and ship speeds.
  • the main causes of the azimuthal torque are:
  • a common way of reducing the azimuthal torque for pulling pod units and azimuth thrusters is to place a fin with a wing profile abaft the slewing axis.
  • the fin creates a lateral force due to the angle of attack, especially at turning of the pod unit.
  • the lateral force gives rise to a torque that acts in a direction opposite to the sum of other torque contributions and therefore it reduces the maximum azimuthal torque.
  • a fin with a wing profile placed in the slip stream of a propeller may generate a forward directed force, which is greater than the total drag on the fin that acts in the opposite direction. Thereby, this regain of the rotational energy in the slip stream will give a positive thrust contribution that increases the efficiency of the pod unit.
  • the distance between the slewing axis and a center of the lateral forces acting on the fin forms a second arm of the lever.
  • JP 2009214650 (A ) (Universal Shipbuilding Corp.) discloses a pulling pod type propulsion unit capable of reducing propulsion resistance, wherein rectangular-plate vanes (current plates) are fixed to the side surface of the pod body so as to be disposed parallel to the axial direction of the pod body and in the direction normal to (the same as the radial direction of) the side surface of the pod body.
  • the amount of projection of the vane is 40 % or smaller of the radius of the propeller, i.e. the projection is extremely small compared to conventional known fins and therefore may not provide sufficient capability.
  • the object of the present invention is to improve in comparison to that for a pod unit or azimuth thruster having a conventional downward extending fin.
  • the fins having a thickness t that is relatively smaller in relation to the flow length C compared to a conventional single fin, wherein preferably the total thickness of the two fins is smaller than the thickness of one fin.
  • a further advantage that may be achieved with the invention is that the risk of grounding may be made lower than for a design using a single fin, since the two fins may be positioned to protrude a smaller distance below the POD
  • Fig. 1 shows a pulling pod unit or azimuth thruster 1 having a rotary neck 2.
  • a pod housing 4 having a central axis 3B extending generally horizontal.
  • the rotary neck 2 provides a substantially vertical slewing axis 3A, around which the pod unit 1 or azimuth thruster may be rotated.
  • a pulling propeller 7, having a radius R.
  • the slewing axis 3A may be positioned at different locations, as exemplified according to this embodiment, it may be positioned a distance x in front of the vertical center line 5 of the pod housing 4.
  • the pod housing carries two fixed, generally downwardly directed fins 6.
  • the fins 6 are positioned on the aft part 40 of the POD housing 4, at a first axial distance r (to a front attachment part of the fin) from the slewing axis 3A, which distance r may vary, but that in some applications preferably is greater than the radius R of the propeller 7.
  • the end surface 41 of the aft part 40 of the POD housing 4 is positioned at second axial distance L a from the slewing axis 3A which second axial distance is larger than the first axial distance r.
  • the aft end 65 of the fins 6 preferably terminate in line with or at a distance Y frontward from the aft part end 41.
  • the first axial distance r, i.e. between the POD azimuth rotation axis 3A, and the fins 6 should preferably be 10% to 85%, even more preferred 50% to 70%, of the second axial distance L a between the slewing axis 3A and the aft part end 41.
  • the fins 6 are positioned and extend on one side each in relation to a vertical longitudinal plane 30 of the pod housing 4.
  • the fins 6 comprise one starboard fin 6A, positioned on the starboard side of the aft part 40 in relation to the slewing axis 3, and one port fin 6B, positioned on the port side of it in relation to the slewing axis 3A.
  • the two fins 6 are preferably identically shaped and symmetrically positioned in relation to the vertical longitudinal plane 30 of the pod housing 4 and extend downwardly below the lower edge 42 of the pod housing, such that both fin tips 63 are positioned below the lower edge 42 of the pod housing.
  • the fins 6 extend substantially radially to present an angle ⁇ them between, which is in the range of 0° ⁇ ⁇ ⁇ 90°, more preferred ⁇ ⁇ 70°, even more preferred ⁇ ⁇ 50°.
  • the fins 6 may extend in different angles ⁇ , to fulfil the purpose of the invention.
  • the distance ⁇ between the inner portions of the centre plane 65 of the fins 6 shall advantagesly be smaller than the diameter Dp of the POD housing 4, preferably 0,1 Dp ⁇ ⁇ ⁇ 0,7 Dp, more preferred 0,2 Dp ⁇ ⁇ ⁇ 0,4 Dp and ⁇ is such that the crossing point of the center lines 65 of the fins 6 will cross at a point above the horizontal center plane of the pod housing 4.
  • Both fins are preferably in form of streamlined wing profiles having a largest thickness t and presenting a side area A, projected along the vertical longitudinal plane 30.
  • the fin span S f should preferably be about 40% to 100%, even more preferred 60% to 95%, of the radius R of the propeller 7.
  • the fins 6 will protrude a vertical distance L d from the lowest surface 42 of the POD housing 4, wherein preferably 0,1 S f ⁇ L d ⁇ 0,7 S f , more preferred 0,3 S f ⁇ L d ⁇ 0,6 S f .
  • the fins 6 have a front portion 61 that protrude downwards and abaft presenting an angle ⁇ in relation to a vertical axis, which angle ⁇ preferably is in the range of 0-80°, more preferred 30-60°.
  • the aft portions 62 protrude downwards and abaft presenting an angle ⁇ in relation to the vertical axis, which preferably is smaller than the angle ⁇ (in any direction in relation to the vertical) of the front portion 61, preferably in the range of 0-70°, more preferred 20-50°. Thanks to this design, a larger fin area may be exposed (compared to non-angled) within a vertical space limited by a desired depth level, e.g.
  • L d Thanks to the invention there is an advantageous influence on the POD steering torque, i.e. by having a twin fin arrangement in the aft part of the POD unit.
  • a larger total fin area A tot is projected along the longitudinal vertical plane 30, compared to a conventional single fin configuration (see fig. 3 ).
  • a tot 2 x A, implying that a much larger surface A tot can be active in comparison with a single fin.
  • larger area A tot may be achieved at the same time as they 6 protrude a vertical distance L d that is significantly smaller than with a single fin.
  • Fig. 4 there are shown schematic views of fins 6 presenting results from analysis of low pressure zones at 7,5° steering angle for an arrangement according to the invention in the left hand side of Fig. 4 and for a single fin in the right hand side.
  • the width 61 of the cavitating part of a double fin 6 is significantly smaller than that of a single fin. Thanks to this result a larger cavitation free steering angle is easily achieved.
  • a part of the superior cavitation performance can also be traded to further increase the gain in hydrodynamic unit efficiency by making the fins relatively thinner, i.e. designing the fins 6 having a thickness t that is relatively smaller in relation to the flow length C compared to a conventional single fin, wherein preferably t/C is in the range of 0,05- 0,3, more preferred 0,1-0,2.
  • the diameter D of the propeller is preferably in the range of 1 meter - 10 meter, most preferred 1,5 meters to 8 meters.
  • the horizontal span C is preferably in the range such that C/R is from 0,4 to 0,8.
  • the diameter Dp of the pod housing 4 is in the range of 0,4 R - 1,2 R, more preferred 0,5 R - R.
  • the pod neck 2 itself and/or the transition zone between the pod housing 4 and the neck 2 may preferably be designed to achieve a further reduction of the azimuthal torque by presenting further areas and/or a kind of vane located along the upper part of the pod housing 4, whereby the unit efficiency will be slightly further improved.
  • Fig. 6 presents a diagram showing test results regarding efficiency at different fin axis intersection positions for a POD unit equipped with the two fins design according to the invention.
  • the fins 6 intersecting at a point above the horizontal center plane (including the centre line 3B) of the pod housing 4 and to use fins that are thin.
  • Three different arrangements have been tested, including two different fin designs, a first fin design, graphs a) and c), having a first fin thickness t1 and a second fin design b) having a second fin thickness t2, wherein t2 is larger than t1.
  • the fin designs are the same.
  • graph c presents an arrangement where the POD housing has irregularities (e.g.
  • the tests indicate (see graph c) that the efficiency is even more improved when the POD housing has irregularities to use a positioning of the fins, such that their intersecting point is above said centre plane (cf. point A and B).
  • the intersecting point A, B, C of the center lines 65 of the fins 6 is positioned between 0,1 to 0,7 times the diameter Dp of the POD housing 4 above the horizontal center plane of the pod housing 4, preferably 0,2-0,5 times the diameter Dp.
  • the invention is not limited by what that is described above but may be varied within the scope of the claims. For instance, it is evident that the skilled person knows that there is a big variety of different materials that can be used to fulfill the function of the fin 6, but that metal, e.g. steel, will often be preferred. Furthermore, in some applications, the fin may be bent or twisted to meet the flow in a way to improve efficiency at low steering angles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Movable Scaffolding (AREA)
  • Earth Drilling (AREA)
  • Wind Motors (AREA)

Claims (14)

  1. Procédé de réduction du couple azimutal agissant sur une unité de propulseur omnidirectionnel de traction ou un propulseur azimutal (1) ayant un logement de propulseur omnidirectionnel rotatif (4) avec un axe central (3B) s'étendant généralement horizontalement et avec un axe de pivotement sensiblement vertical (3A). une hélice de traction (7), et deux ailettes dirigées vers le bas (6) portées par le logement de propulseur omnidirectionnel (4) derrière l'axe de pivotement (3) adjacent à l'extrémité arrière (41) du logement de propulseur omnidirectionnel (4) et positionnant lesdites deux ailettes dirigées vers le bas (6) à une distance (δ) l'une de l'autre, une de chaque côté d'un plan longitudinal (30) à travers l'axe de pivotement (3A) sur une partie arrière (40) du logement de propulseur omnidirectionnel (4) pour s'étendre sensiblement radialement vers l'extérieur depuis le logement de propulseur omnidirectionnel (4), et positionnant les plans centraux (65) desdites deux ailettes dirigées vers le bas (6) pour présenter un angle (β) qui est supérieur à 0° entre les deux ailettes (6), caractérisé par le positionnement desdites ailettes (6) pour que lesdits plans centraux (65) présentent un angle aigu (β) qui est inférieur à 90° entre les deux ailettes (6), dans lequel le point d'intersection des lignes centrales (65) des ailettes (6) se coupera au niveau d'un point entre 0,1 et 0,7 fois le diamètre (Dp) du logement de POD (4) au-dessus d'un plan central horizontal du logement de propulseur omnidirectionnel (4) incluant l'axe central (3B).
  2. Procédé selon la revendication 1, caractérisé par le positionnement desdites ailettes (6) s'étendant vers le bas en dessous du bord inférieur (42) du logement de propulseur omnidirectionnel, de telle sorte que les deux pointes d'ailettes (63) sont positionnées en dessous du bord inférieur (42) du logement de propulseur omnidirectionnel.
  3. Procédé selon la revendication 1 ou 2, caractérisé par le positionnement desdites ailettes (6) pour qu'elles s'étendent sensiblement radialement vers l'extérieur depuis le logement de propulseur omnidirectionnel (4) pour que leurs plans centraux (65) présentent un angle (β) entre les ailettes (6) dans la plage de β < 70° et de manière davantage préférée β < 50°.
  4. Procédé selon la revendication 1, 2 ou 3, caractérisé par l'agencement du point d'intersection (A, B, C) des lignes centrales (65) des ailettes (6) entre 0,2 et 0,5 fois le diamètre (Dp) du logement de POD (4) au-dessus du plan central horizontal du logement de propulseur omnidirectionnel (4).
  5. Procédé selon la revendication 1, 2, 3 ou 4, caractérisé par le positionnement desdites ailettes (6) à une distance (δ) l'une de l'autre par rapport aux parties intérieures des plans centraux (65) des ailettes (6) qui est plus petite que le diamètre (Dp) du logement de POD (4), de préférence la distance (δ) est dans la plage 0,1 Dp < δ < 0,7 Dp.
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le positionnement desdites ailettes (6) pour faire saillie sensiblement radialement d'une distance verticale maximale (Ld) depuis la surface la plus basse (42) du logement de POD (4) dans la plage de 0,1 Sf < Ld < 0,7 Sf, de préférence 0,3 Sf < Ld < 0,6 Sf, dans lequel Sf est l'étendue radiale d'une ailette (6).
  7. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le positionnement desdites ailettes (6) de telle sorte que la distance axiale (r), entre l'axe de pivotement (3A, et la partie avant des ailettes (6) est dans la plage de 10 % à 85 % d'une seconde distance axiale (La), de préférence de 50 % à 70 % de ladite seconde distance axiale (La), dans lequel ladite seconde distance axiale (La) est la distance entre l'axe de pivotement (3A) et l'extrémité de partie arrière (41) du logement de POD (4).
  8. Unité de propulseur omnidirectionnel de traction ou propulseur azimutal ayant un agencement d'ailettes pour la réduction du couple azimutal agissant sur une unité de propulseur omnidirectionnel de traction ou un propulseur azimutal (1) ayant un logement de propulseur omnidirectionnel rotatif (4) avec un axe central (3B) s'étendant généralement horizontalement et avec un axe de pivotement sensiblement vertical (3A). une hélice de traction (7), et deux ailettes dirigées vers le bas (6) portées par le logement de propulseur omnidirectionnel (4) derrière l'axe de pivotement (3) adjacent à l'extrémité arrière (41) du logement de propulseur omnidirectionnel (4), dans laquelle lesdites deux ailettes dirigées vers le bas (6) sont positionnées, une sur chaque côté sur une partie arrière (40) du logement de propulseur omnidirectionnel (4) et à une distance (δ) espacée par rapport à un plan longitudinal (30) incluant l'axe de pivotement (3A) et lesdites deux ailettes (6) s'étendant sensiblement radialement vers l'extérieur depuis le logement de propulseur omnidirectionnel, avoir les plans centraux (65) desdites deux ailettes dirigées vers le bas (6) présentant un angle (β) qui est supérieur à 0° entre les deux ailettes (6), caractérisée en ce que les plans centraux (65) desdites deux ailettes (6) présentent un angle aigu (β) qui est inférieur à 90° entre les ailettes (6), dans laquelle le point d'intersection des lignes centrales (65) des ailettes (6) se coupera au niveau d'un point entre 0,1 et 0,7 fois le diamètre (Dp) du logement de POD (4) au-dessus d'un plan central horizontal du logement de propulseur omnidirectionnel (4) incluant l'axe central (3B).
  9. Unité de propulseur omnidirectionnel de traction ou propulseur azimutal ayant un agencement d'ailettes selon la revendication 8, caractérisée en ce que lesdites ailettes (6) sont agencées pour s'étendre vers le bas en dessous du bord inférieur (42) du logement de propulseur omnidirectionnel, de sorte que les deux pointes d'ailettes (63) sont positionnées en dessous du bord inférieur (42) du logement de propulseur omnidirectionnel.
  10. Unité de propulseur omnidirectionnel de traction ou propulseur azimutal ayant un agencement d'ailettes selon la revendication 8 ou 9, caractérisée en ce que lesdites ailettes (6) sont agencées pour s'étendre radialement vers l'extérieur depuis le logement de propulseur omnidirectionnel (4) pour avoir leurs plans centraux (65) présentant un angle (β) entre les ailettes (6) dans la plage de β < 70° et de manière davantage préférée β < 50°.
  11. Unité de propulseur omnidirectionnel de traction ou propulseur azimutal ayant un agencement d'ailettes selon la revendication 8, 9 ou 10, caractérisée en ce que le point d'intersection (A, B, C) des lignes centrales (65) des ailettes (6) est positionné entre 0,2 et 0,5 fois le diamètre (Dp) du logement de POD (4) au-dessus du plan central horizontal du logement de propulseur omnidirectionnel (4).
  12. Unité de propulseur omnidirectionnel de traction ou propulseur azimutal ayant un agencement d'ailettes selon l'une quelconque des revendications 8 à 11, caractérisée en ce que les parties intérieures des plans centraux (65) desdites ailettes (6) sont espacées d'une distance (δ) qui est plus petite que le diamètre (Dp) du logement de POD (4), de préférence la distance (δ) est dans la plage de 0,1 Dp < δ < 0,7 Dp.
  13. Unité de propulseur omnidirectionnel de traction ou propulseur azimutal ayant un agencement d'ailettes selon l'une quelconque des revendications 8 à 12, caractérisée en ce que lesdites ailettes (6) sont agencées pour faire saillie radialement d'une distance verticale maximale (Ld) depuis la surface la plus basse (42) du logement de POD (4) dans la plage de 0,1 Sf < Ld < 0,7 Sf, de préférence 0,3 Sf < Ld < 0,6 Sf, dans laquelle Sf est l'étendue radiale d'une ailette (6).
  14. Unité de propulseur omnidirectionnel de traction ou propulseur azimutal ayant un agencement d'ailettes selon l'une quelconque des revendications 8 à 13, caractérisée en ce que la distance axiale (r) entre la partie avant desdites ailettes (6) et l'axe de pivotement (3A), est dans la plage de 10 % à 85 % d'une seconde distance axiale (La), de préférence 50 % à 70 % de ladite seconde distance axiale (La), dans laquelle ladite seconde distance axiale (La) est la distance entre l'axe de pivotement (3A) et l'extrémité de partie arrière (41) du logement de POD (4) .
EP17829133.2A 2016-12-07 2017-12-07 Procédé et dispositif de réduction du couple azimutal agissant sur une unité de propulseur en nacelle ou sur un propulseur azimutal Active EP3551532B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE1651610A SE542122C2 (en) 2016-12-07 2016-12-07 A pod unit or azimuth thruster having a fin arrangement for reducing the azimuthal torque
PCT/EP2017/081773 WO2018104420A1 (fr) 2016-12-07 2017-12-07 Procédé et dispositif de réduction du couple azimutal agissant sur une unité de propulseur en nacelle ou sur un propulseur azimutal

Publications (2)

Publication Number Publication Date
EP3551532A1 EP3551532A1 (fr) 2019-10-16
EP3551532B1 true EP3551532B1 (fr) 2021-07-28

Family

ID=60972169

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17829133.2A Active EP3551532B1 (fr) 2016-12-07 2017-12-07 Procédé et dispositif de réduction du couple azimutal agissant sur une unité de propulseur en nacelle ou sur un propulseur azimutal

Country Status (4)

Country Link
EP (1) EP3551532B1 (fr)
RU (1) RU2747323C2 (fr)
SE (1) SE542122C2 (fr)
WO (1) WO2018104420A1 (fr)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07196085A (ja) * 1994-01-06 1995-08-01 Kawasaki Heavy Ind Ltd 船の推進装置
RU2128126C1 (ru) * 1998-03-04 1999-03-27 Центральный научно-исследовательский институт им.акад.А.Н.Крылова Судовая винторулевая колонка для движения и маневрирования судна в ледовых условиях
FI115042B (fi) 2000-01-28 2005-02-28 Abb Oy Aluksen moottoriyksikkö
JP4301748B2 (ja) * 2001-06-29 2009-07-22 三菱重工業株式会社 船舶の推進装置
JP3842189B2 (ja) * 2002-09-03 2006-11-08 川崎重工業株式会社 ポッドプロペラ
NO324501B1 (no) 2003-08-01 2007-11-05 Rolls Royce Marine As Anordning til okning av giringsstabiliteten for skip
JP2009214650A (ja) 2008-03-10 2009-09-24 Universal Shipbuilding Corp Pod型推進装置および船舶
RU2384457C2 (ru) * 2008-04-25 2010-03-20 Василий Николаевич Храмушин Активный стабилизатор килевой и бортовой качки корабля - штормовой аварийный движитель
DE202008011699U1 (de) * 2008-09-03 2008-11-06 Dl Fischer Gmbh Motorischer Propellerantrieb für ein Wasserfahrzeug
JP5294265B2 (ja) * 2009-03-25 2013-09-18 株式会社Ihi ポッド推進器
JP5360887B2 (ja) * 2009-03-25 2013-12-04 株式会社Ihi ポッド推進器
JP5388184B2 (ja) * 2009-03-25 2014-01-15 株式会社Ihi ポッド推進器
KR102095421B1 (ko) * 2013-11-05 2020-03-31 대우조선해양 주식회사 아지무스 스러스터

Also Published As

Publication number Publication date
RU2019118777A (ru) 2021-01-11
RU2747323C2 (ru) 2021-05-04
SE1651610A1 (sv) 2018-06-08
WO2018104420A1 (fr) 2018-06-14
RU2019118777A3 (fr) 2021-03-15
EP3551532A1 (fr) 2019-10-16
SE542122C2 (en) 2020-02-25

Similar Documents

Publication Publication Date Title
EP3495257B1 (fr) Petit conduit de réglage d&#39;hélice et navire
KR101554522B1 (ko) 선박의 추진 장치와 이를 구비한 선박
JP5113899B2 (ja) 船舶の船尾構造
US8403716B2 (en) Twin-skeg ship
KR200447816Y1 (ko) 선박용 방향타
KR20110010079A (ko) 선박용 노즐 프로펠러
WO2016158725A1 (fr) Vaisseau
KR20210062729A (ko) 선미용 덕트, 선미용 부가물, 선미용 덕트의 설계 방법, 및 선미용 덕트를 장착한 선박
EP2780225B1 (fr) Procédé et dispositif pour réduire le couple azimutal agissant sur une nacelle d&#39;hélice ou sur un propulseur orientable
KR20160031790A (ko) 선박용 추진 조향 시스템 및 그 선박용 추진 조향 시스템의 전가동러더
EP1955944B1 (fr) Stator de tourbillon asymétrique pour navire
EP3551532B1 (fr) Procédé et dispositif de réduction du couple azimutal agissant sur une unité de propulseur en nacelle ou sur un propulseur azimutal
JP5510798B2 (ja) 船舶用推進性能向上装置
US9021970B2 (en) Propulsion device and ship using the same
KR102144276B1 (ko) 소형 덕트 부착 선박 및 선박에의 소형 덕트 적용 판단방법
KR101225147B1 (ko) 보스 캡 및 이를 구비한 선박
KR20140131767A (ko) 선박용 방향타
KR20180001134U (ko) 공진 회피 타입 전류고정날개
KR20120105228A (ko) 핀을 구비한 프로펠러 보스캡
TWI508897B (zh) 船舶之推進裝置及具備此裝置之船舶
CN219821727U (zh) 一种推进效率高的螺旋桨导流帽
KR20140145242A (ko) 선박용 방향타
KR102026500B1 (ko) 선박용 방향타
KR20060033091A (ko) 리블렛 표면을 적용한 선박용 프로펠러
CN115583326A (zh) 栉比鳍节能毂帽

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190617

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210325

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017043066

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1414534

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1414534

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210728

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211028

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211129

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211028

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017043066

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211207

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211207

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211207

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231218

Year of fee payment: 7

Ref country code: NL

Payment date: 20231218

Year of fee payment: 7

Ref country code: FR

Payment date: 20231215

Year of fee payment: 7

Ref country code: FI

Payment date: 20231214

Year of fee payment: 7

Ref country code: DE

Payment date: 20231218

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728