EP3546125B1 - Alsc-legierung zum reinigungsstrahlen eines bauteils aus al und/oder mg - Google Patents

Alsc-legierung zum reinigungsstrahlen eines bauteils aus al und/oder mg Download PDF

Info

Publication number
EP3546125B1
EP3546125B1 EP19165209.8A EP19165209A EP3546125B1 EP 3546125 B1 EP3546125 B1 EP 3546125B1 EP 19165209 A EP19165209 A EP 19165209A EP 3546125 B1 EP3546125 B1 EP 3546125B1
Authority
EP
European Patent Office
Prior art keywords
component
alloy
blasting
blasting medium
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19165209.8A
Other languages
English (en)
French (fr)
Other versions
EP3546125A1 (de
Inventor
Frank Palm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Airbus Defence and Space GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Defence and Space GmbH filed Critical Airbus Defence and Space GmbH
Publication of EP3546125A1 publication Critical patent/EP3546125A1/de
Application granted granted Critical
Publication of EP3546125B1 publication Critical patent/EP3546125B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C11/00Selection of abrasive materials or additives for abrasive blasts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C3/00Abrasive blasting machines or devices; Plants
    • B24C3/32Abrasive blasting machines or devices; Plants designed for abrasive blasting of particular work, e.g. the internal surfaces of cylinder blocks
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/68Cleaning or washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/247Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/058Magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent

Definitions

  • the present invention relates to a blasting agent for blasting a component, the component comprising Al and/or Mg, in particular an Al and/or Mg alloy, a method for blasting a component, the component comprising Al and/or Mg, in particular an Al and/or Mg alloy, a method for producing a blasting medium, and a method for producing a blasted component.
  • powder residues adhering to the machine should be removed after production, which in further processing can be disadvantageous, for example due to the roughness produced in this way.
  • the corresponding blasting agents differ from the material of the component and can lead to contamination if, for example, blasting agents get stuck in the surface and/or abrasion occurs on the surfaces of the Al or Mg components chemically stressed with foreign alloy material, which can lead to corrosion problems or strength problems.
  • This is particularly the case when high-strength alloys such as AlMgSc alloys, such as Scalmalloy ® alloys, are blasted.
  • a further pickling step can therefore follow in order to remove this blasting material.
  • a corresponding step is associated with additional effort.
  • the CN 104846239A discloses an aluminum alloy shot, and a method of making the same.
  • the object of the present invention is to provide an improved method for blasting a component that contains Al and/or Mg, and also a blasting material that can be used in such a method.
  • this object is achieved by a blasting agent with the features of patent claim 1, by a method with the features of patent claim 6, by a method with the features of patent claim 12, and by a method with the features of patent claim 14.
  • the component comprising Al and/or Mg is blasted with a blasting agent which comprises an AlSC alloy, the blasting agent comprising particles of the AlSc alloy with a size of 45 ⁇ m or more, i.e. the blasting agent of the same species or is at least similar to the material of the component, whereby contamination can be reduced or even avoided.
  • a blasting agent also referred to as blasting material
  • blasting material is an auxiliary material that can be used in blasting. It comprises a large number of particles, which usually all essentially consist of the same material.
  • the shape of the particles of the blasting agent is not particularly restricted within the scope of the invention, with regard to the blasting agent according to the invention and the method according to the invention, and the particles can be round, angular and/or angular and are, for example, angular and angular.
  • the blasting medium usually has a higher hardness than the component to be blasted, in particular so that it can also perform its function.
  • the blasting agent according to the invention consists of an alloy or a plurality of alloys, in particular an alloy, ie includes in particular no ceramic parts.
  • the blasting agent is used in particular for cleaning and/or surface smoothing, ie it is a cleaning and/or surface smoothing blasting agent.
  • the blasting agent according to the invention is chemically inert to the material of the component to be blasted, ie it does not damage the component, for example through corrosion.
  • the present invention relates to a blasting agent for blasting a component, the component comprising Al and/or Mg, in particular an Aland/or Mg alloy, the blasting agent comprising an AlSc alloy, the blasting agent particles of AlSc -Alloy with a size of 45 ⁇ m or more.
  • the component is not particularly limited here, provided it includes Al and/or Mg, in particular Al, and can have any shape and configuration.
  • at least one surface of the component to be blasted comprises Al and/or Mg, in particular an Al and/or Mg alloy, for example an alloy comprising Al and Mg.
  • the component consists essentially of an Al and/or Mg or Mg alloy or consists of the Al and/or Mg alloy.
  • the Al and/or Mg alloy is not particularly restricted here and can, for example, be an alloy of Al with a suitable material, ie for example a 1xxx, 2xxx, 3xxx, 4xxx, 5xxx, 6xxx, 7xxx or 8xxx alloy.
  • the component comprises Sc, in particular in an amount of 0.3% by weight or more, preferably 0.5% by weight or more, for example 0.5-3% by weight Sc, for example 0.7-0. 8 wt% Sc.
  • the component comprises an AlSc alloy, in particular an AlMgSc alloy, and the component preferably consists of an AISc alloy, in particular an AlMgSc alloy, in particular with an Sc content of 0.3% by weight or more, preferably 0 .5% by weight or more, for example 0.5-3% by weight, for example 0.7-0.8% by weight.
  • the component in particular in addition to Sc, can also include other alloying components, which are not particularly restricted.
  • the component includes Zr and/or Mn.
  • the component comprises an AlSc alloy, in particular an AlMgSc alloy, which comprises Zr and/or Mn, in particular Zr, and consists in particular of such an alloy.
  • the ratio of Zr to Sc is in particular in a range from 1:10 to 2:1, preferably 1:7 to 1:1, more preferably 1:5 to 1:2.
  • unavoidable impurities can also be contained according to certain embodiments.
  • the component is produced by a powder melting process or a powder sintering process, preferably by a laser powder bed melting process.
  • the powder melting method and the powder sintering method are not particularly limited, and examples of such methods include selective laser sintering, electron beam melting or selective laser melting, which methods are not particularly limited.
  • the device is manufactured by Laser Powder Bed Melting (LBP-S), such as that used for 3D printing.
  • LBP-S Laser Powder Bed Melting
  • the method itself is again not particularly limited.
  • the production takes place with powders having a particle size of 20 to 75 ⁇ m, preferably 20 to 65 ⁇ m, more preferably 20 to 45 ⁇ m.
  • Corresponding powder fractions can be obtained correspondingly with a sieve analysis with corresponding Sieves with mesh sizes of 20 ⁇ m, 45 ⁇ m, 65 ⁇ m and 75 ⁇ m, depending on the desired fraction.
  • the blasting agent is not particularly limited as long as it comprises an AISc alloy, wherein the blasting agent comprises particles of the AlSc alloy having a size of 45 ⁇ m or more.
  • a powder for the production of the blasting agent can be produced by conventional methods for producing powders for powder metallurgy and/or for powder melting methods or powder sintering methods, preferably laser powder bed melting methods, which are not particularly restricted.
  • the powder for producing the blasting agent can be produced by atomizing a metal melt or a melt of a metal alloy and separating off a suitable particle fraction.
  • the powder for the abrasive is produced by the same process as the material for the production of the component.
  • the powder for the blasting agent and the powder for producing the component are produced in the same process, in particular in the same process step, e.g.
  • a powder production campaign so that, for example, both powders from the production campaign can be separated from one another, for example by screening.
  • particles of the powder produced are used for the production of the blasting medium, which are not used for the production of the component, for example due to the particle size.
  • the particles for producing the blasting agent are larger than the particles for producing the component.
  • the blasting agent comprises Sc, in particular in an amount of 0.3% by weight or more, preferably 0.5% by weight or more, for example 0.5-3
  • the blasting agent comprises an AISc alloy, in particular an AlMgSc alloy, and the component preferably consists of an AlSc alloy, in particular an AlMgSc alloy, in particular with an Sc content of 0.3% by weight or more, preferably 0. 5 wt% or more, e.g. 0.5 - 3 wt%, e.g. 0.7 - 0.8 wt%.
  • the advantage of using such an alloy is, in particular, that chemically it can essentially behave like pure aluminum.
  • the blasting agent can also include other alloy components, which are not particularly restricted.
  • the blasting agent comprises Zr and/or Mn.
  • the blasting agent comprises an AlSc alloy, in particular an AlMgSc alloy, which comprises Zr and/or Mn, in particular Zr, and consists in particular of such an alloy.
  • the ratio of Zr to Sc is in particular in a range from 1:10 to 2:1, preferably 1:7 to 1:1, more preferably 1:5 to 1:2.
  • unavoidable impurities can also be contained according to certain embodiments.
  • the blasting agent comprises particles of the Al and/or Mg alloy with a size of 45 ⁇ m or more, preferably 65 ⁇ m or more, more preferably 75 ⁇ m or more, even more preferably at least 80 ⁇ m, for example with a particle size x of 45 ⁇ m ⁇ x ⁇ 200 ⁇ m, preferably 65 ⁇ m ⁇ x ⁇ 200 ⁇ m, more preferably 75 ⁇ m ⁇ x ⁇ 200 ⁇ m, even more preferably 80 ⁇ m ⁇ x ⁇ 200 ⁇ m, and particularly preferably it consists of these.
  • Corresponding particles can in turn be obtained, for example, by means of a sieve analysis with sieves with mesh sizes of 45 ⁇ m, 65 ⁇ m, 75 ⁇ m, 80 ⁇ m and 200 ⁇ m, depending on the desired fraction. If the abrasive particles are too small, they will not produce enough blasting effect. If the particles are too large, they are more difficult to accelerate sufficiently to radiate to have an appropriate effect.
  • the blasting agent was heated by a heat treatment at a temperature of 250°C - 400°C, preferably 275°C - 350°C, more preferably 300 - 325°C, e.g. 325°C, and/or in a period of 15 - 6000 min, preferably 60 to 240 min, more preferably 90 to 150 min, eg 120 min.
  • the blasting agent can be further solidified compared to untreated particles.
  • the blasting agent comprises Al and Sc, preferably Al, Mg and Sc, precipitation hardening of the Sc can take place here, so that a coherent Al3Sc phase can form.
  • an Al3ScZr phase can also form, which can further contribute to the hardness of the blasting abrasive.
  • the blasting agent was preferably treated by heat treatment at a temperature of 250°C - 400°C, preferably 275°C - 350°C, more preferably 300 - 325°C, e.g. 325°C, for a period of 15 - 6000 min. preferably cured for 60 to 240 minutes, more preferably 90 to 150 minutes, for example 120 minutes.
  • the higher the temperature of the heat treatment the shorter the period of time is preferably.
  • the blasting agent has a hardness of >150 HB.
  • the hardness can be suitably determined here, for example according to Brinell, for example according to EN ISO 6506 (EN ISO 6506-1 to EN ISO 6506-4).
  • Another aspect of the present invention relates to a method for blasting a component, the component comprising Al and/or Mg, in particular an Al and/or Mg alloy, the blasting agent comprising an AlSc alloy, the blasting agent particles of AlSc alloy with a size of 45 ⁇ m or more includes, wherein the component is blasted with the blasting medium.
  • the blasting agent in this method is the blasting agent according to the invention.
  • the blasting agent comprises an AISc alloy, preferably an AlMgSc alloy.
  • the blasting agent comprises particles with a size of preferably 65 ⁇ m or more, more preferably 75 ⁇ m or more, even more preferably at least 80 ⁇ m, for example with a particle size x of 45 ⁇ m ⁇ x ⁇ 200 ⁇ m, preferably 65 ⁇ m ⁇ x ⁇ 200 ⁇ m, more preferably 75 ⁇ m ⁇ x ⁇ 200 ⁇ m, even more preferably 80 ⁇ m ⁇ x ⁇ 200 ⁇ m, and particularly preferably it consists of these.
  • Corresponding particles can in turn be obtained, for example, by means of a sieve analysis with sieves with mesh sizes of 45 ⁇ m, 65 ⁇ m, 75 ⁇ m, 80 ⁇ m and 200 ⁇ m, depending on the desired fraction.
  • the Sc content in the steel shot is at least 0.5% by weight, based on the shot.
  • the blasting agent was heated by a heat treatment at a temperature of 250°C - 400°C, preferably 275°C - 350°C, more preferably 300 - 325°C, e.g. 325°C, and/or in a period of 15 - 6000 min, preferably 60 to 240 min, more preferably 90 to 150 min, eg 120 min.
  • the blasting agent has a hardness of >150 HB.
  • the component was produced by a powder melting process or a powder sintering process, preferably by a laser powder bed melting process.
  • the component consists of a material of the same type and/or similar to the blasting agent.
  • the component preferably consists of the same material as the blasting medium.
  • an AlSc alloy is atomized from a melt and a particle fraction is screened out of the particles produced in this way, with particles having a size of 45 ⁇ m being screened out of the particles produced as blasting agent.
  • particles with a size of preferably 65 ⁇ m or more, more preferably 75 ⁇ m or more, even more preferably at least 80 ⁇ m for example with a particle size x of 45 ⁇ m ⁇ x ⁇ 200 ⁇ m, preferably 65 ⁇ m ⁇ x ⁇ 200 ⁇ m, more preferably 75 ⁇ m ⁇ x ⁇ 200 ⁇ m, even more preferably 80 ⁇ m ⁇ x ⁇ 200 ⁇ m, screened out from the particles produced as blasting agent.
  • Corresponding particles can be obtained, for example, by sieving with sieves with mesh sizes of 45 ⁇ m, 65 ⁇ m, 75 ⁇ m, 80 ⁇ m and 200 ⁇ m, depending on the desired fraction.
  • the sieved particles are at a temperature of 250 ° C - 400 ° C, preferably 275 ° C - 350 ° C, more preferably 300 - 325 ° C, for example 325 ° C, and / or in a period of 15 - 6000 min, preferably 60 to 240 min, more preferably 90 to 150 min, for example 120 min, cured.
  • the particles screened out are preferably treated by heat treatment at a temperature of 250° C.-400° C., preferably 275° C.-350° C., more preferably 300-325° C., eg 325° C., for a period of 15-6000 minutes , preferably 60 to 240 min, more preferably 90 to 150 min, for example 120 min, cured.
  • the particles for the production of the component can be screened out from the remaining particles, for example as indicated above.
  • One advantage of this method according to the invention is that after the component has been blasted, the blasting agent can again be separated off by sieving and can therefore be reused, for example in a new blasting process or blasting method.
  • the present invention relates to a method for producing a blasted component, the component comprising Al and/or Mg, in particular an Al and/or Mg alloy, the component being produced by a powder melting process or a powder -Sintering process is produced and is blasted with the blasting agent according to the invention.
  • the component is not particularly limited here, provided it includes Al and/or Mg, in particular Al, and can have any shape and configuration.
  • at least one surface of the component to be blasted comprises Al and/or Mg, in particular an Al and/or Mg alloy, for example an alloy comprising Al and Mg.
  • the component consists essentially of an Al and/or Mg or Mg alloy or consists of the Al and/or Mg alloy.
  • the Al and/or Mg alloy is not particularly restricted here and can, for example, be an alloy of Al with a suitable material, ie for example a 1xxx, 2xxx, 3xxx, 4xxx, 5xxx, 6xxx, 7xxx or 8xxx alloy.
  • the component comprises Sc, in particular in an amount of 0.3% by weight or more, preferably 0.5% by weight or more, for example 0.5 - 3 wt% Sc, for example 0.7 - 0.8 wt% Sc.
  • the component comprises an AlSc alloy, in particular an AlMgSc alloy, and the component preferably consists of an AISc alloy, in particular an AlMgSc alloy, in particular with an Sc content of 0.3% by weight or more. preferably 0.5% by weight or more, for example 0.5-3% by weight, for example 0.7-0.8% by weight.
  • the component in particular in addition to Sc, can also include other alloying components, which are not particularly restricted.
  • the component includes Zr and/or Mn.
  • the component comprises an AlSc alloy, in particular an AlMgSc alloy, which comprises Zr and/or Mn, in particular Zr, and consists in particular of such an alloy.
  • the ratio of Zr to Sc is in particular in a range from 1:10 to 2:1, preferably 1:7 to 1:1, more preferably 1:5 to 1:2.
  • the component is produced by a powder melting process or a powder sintering process, preferably by a laser powder bed melting process.
  • the powder melting method and the powder sintering method are not particularly limited, and examples of such methods include selective laser sintering, electron beam melting or selective laser melting, which methods are not particularly limited.
  • the device is manufactured by Laser Powder Bed Melting (LBP-S), such as that used for 3D printing. In this case, the method itself is again not particularly limited.
  • the production takes place with powders having a particle size of 20 to 75 ⁇ m, preferably 20 to 65 ⁇ m, more preferably 20 to 45 ⁇ m.
  • Corresponding powder fractions can be analyzed with a sieve analysis are obtained with appropriate sieves with mesh sizes of 20 ⁇ m, 45 ⁇ m, 65 ⁇ m and 75 ⁇ m, depending on the desired fraction.
  • the powder for the abrasive is produced by the same process as the material for the production of the component.
  • the powder for the blasting agent and the powder for producing the component are produced in the same process, in particular in the same process step, e.g. a powder production campaign, so that, for example, both powders from the production campaign can be separated from one another, for example by screening.
  • particles of the powder produced are used for the production of the blasting medium, which are not used for the production of the component, for example due to the particle size.
  • the particles for producing the blasting agent are larger than the particles for producing the component.
  • a component is described and not according to the invention, the component comprising Al and/or Mg, in particular an Al and/or Mg alloy, the component being produced by a powder melting process or a powder sintering process and with the blasting agent according to the invention is blasted.
  • the component is again not particularly limited, provided it comprises Al and/or Mg, in particular Al, and can have any shape and configuration.
  • at least one surface of the component to be blasted comprises Al and/or Mg, in particular an Al and/or Mg alloy, for example an alloy comprising Al and Mg.
  • the component consists essentially of an Al and/or Mg alloy or consists of the Al and/or Mg alloy.
  • the Al and / or Mg alloy is not particularly limited and can, for example an alloy of Al with a suitable material, for example a 1xxx, 2xxx, 3xxx, 4xxx, 5xxx, 6xxx, 7xxx or 8xxx alloy.
  • the component comprises Sc, in particular in an amount of 0.3% by weight or more, preferably 0.5% by weight or more, for example 0.5-3% by weight Sc, for example 0.7-0. 8 wt% Sc.
  • the component comprises an AlSc alloy, in particular an AlMgSc alloy, and the component preferably consists of an AISc alloy, in particular an AlMgSc alloy, in particular with an Sc content of 0.3% by weight or more. preferably 0.5% by weight or more, for example 0.5-3% by weight, for example 0.7-0.8% by weight.
  • the component in particular in addition to Sc, can also include other alloying components, which are not particularly restricted.
  • the component includes Zr and/or Mn.
  • the component comprises an AlSc alloy, in particular an AlMgSc alloy, which comprises Zr and/or Mn, in particular Zr, and consists in particular of such an alloy.
  • the ratio of Zr to Sc is in particular in a range from 1:10 to 2:1, preferably 1:7 to 1:1, more preferably 1:5 to 1:2.
  • the component is produced by a powder melting process or a powder sintering process, preferably by a laser powder bed melting process.
  • the powder melting method and the powder sintering method are not particularly limited, and examples of such methods include selective laser sintering, electron beam melting or selective laser melting, which methods are not particularly limited.
  • the component is manufactured by laser powder bed melting (LBP-S), such as that shown in FIG used for 3D printing. In this case, the method itself is again not particularly limited.
  • the production takes place with powders having a particle size of 20 to 75 ⁇ m, preferably 20 to 65 ⁇ m, more preferably 20 to 45 ⁇ m.
  • Corresponding powder fractions can be obtained with a sieve analysis using appropriate sieves with mesh sizes of 20 ⁇ m, 45 ⁇ m, 65 ⁇ m and 75 ⁇ m, depending on the desired fraction.
  • the powder for the abrasive is produced by the same process as the material for the production of the component.
  • the powder for the blasting agent and the powder for producing the component are produced in the same process, in particular in the same process step, e.g. a powder production campaign, so that, for example, both powders from the production campaign can be separated from one another, for example by screening.
  • particles of the powder produced are used for the production of the blasting medium, which are not used for the production of the component, for example due to the particle size.
  • the particles for producing the blasting agent are larger than the particles for producing the component.
  • FIG. 1 shows a schematic sequence of how an exemplary component and an exemplary blasting agent can be produced in a method and how the component can be blasted with the blasting agent.
  • a melt comprising Al, Mg and Sc is produced in a first step 1 .
  • An example of such a melt is a melt of AlMg 4.5 SC 0.75 Zr 0.3 , which can be produced at a temperature of approx. 800° C., for example.
  • the melt comprising Al, Mg and Sc for example the AlMg 4.5 Sc 0.75 Zr 0.3 melt, is then atomized, which is not particularly restricted. This results in a powder of the alloy, which is referred to below as AlMgSc powder.
  • the AlMgSc powder produced is separated and screened out.
  • a component can then be produced in step 4 using a first powder fraction and a further powder fraction can be provided for the production of a blasting agent.
  • a fraction with a particle size of less than 20 ⁇ m can be separated from the AlMgSc powder, which fraction can be fed back to step 1, for example, since the particles of the fraction can be too small for the production of a component.
  • a further fraction can, for example, have a particle size in a range from 20 to ⁇ 65 ⁇ m, which is used to produce a component by means of a laser powder bed melting process (which is not particularly restricted).
  • a further, third fraction of the powder with a particle size of, for example, 65 ⁇ m and more, for example 75 ⁇ m-200 ⁇ m, can then be used to produce a blasting medium.
  • this additional, third powder fraction is then hardened to produce the blasting agent, for example at a temperature of 325°C for a period of 120 minutes. This makes the blasting agent harder than the component, making it well suited for abrasive cleaning blasting.
  • step 6 the component produced in step 4 is blasted with the blasting agent produced in step 5, for example for a cleaning and/or smoothing blasting and/or shot peening of the component manufactured using the laser powder bed melting process.
  • This production step 6 can be followed by an optional step 7 in which the blasting agent is reused or is used again, for example by being separated again by sieving after blasting.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Strahlmittel zum Strahlen eines Bauteils, wobei das Bauteil Al und/oder Mg, insbesondere eine Al- und/oder Mg-Legierung, umfasst, ein Verfahren zum Strahlen eines Bauteils, wobei das Bauteil Al und/oder Mg, insbesondere eine Al- und/oder Mg-Legierung, umfasst, ein Verfahren zum Herstellen eines Strahlmittels, sowie ein Verfahren zur Herstellung eines gestrahlten Bauteils.
  • Insbesondere bei Bauteilen, welche Aluminium oder Magnesium enthalten, beispielsweise Al- und/oder Mg-Legierungen, und die insbesondere mittels eines Pulver-Schmelzverfahren oder ein Pulver-Sinterverfahren hergestellt wurden, sollten nach der Herstellung in der Maschine anhaftende Pulverreste entfernt werden, welche in einer Weiterverarbeitung nachteilig sein können, beispielsweise aufgrund der so erzeugten Rauigkeit.
  • Üblicherweise werden Oberflächen von solchen Bauteilen mittels Sandstrahlen oder Strahlen mit Korund gereinigt. Als Alternative können auch Materialien auf Keramikbasis oder Kies zum Strahlen verwendet werden, wie auch beispielsweise Materialien auf Basis von Eisenlegierungen, wie beispielsweise in der US2016375549 beschrieben.
  • Die entsprechenden Strahlmittel unterscheiden sich aber bei Bauteilen, welche Aluminium oder Magnesium, insbesondere Al, enthalten, vom Material des Bauteils und können zu Kontaminationen führen, wenn beispielsweise Strahlmittel in der Oberfläche hängen bleiben und/oder Abrieb die Oberflächen der Al- oder Mg-Bauteile chemisch mit Fremdlegierungsmaterial belastet, was zu Korrosionsproblemen oder Festigkeitsproblemen führen kann. Dies ist insbesondere der Fall, wenn hochfeste Legierungen wie AlMgSc-Legierungen, beispielsweise Scalmalloy®-Legierungen, gestrahlt werden. Deshalb kann sich hierbei noch ein weiterer Beizschritt anschließen, um dieses Strahlmaterial zu entfernen. Ein entsprechender Schritt ist jedoch mit weiterem Aufwand verbunden.
  • Die CN 104846239 A offenbart ein Aluminiumlegierung-Strahlmittel, und ein Verfahren zu dessen Herstellung.
  • Vor diesem Hintergrund liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein verbessertes Verfahren zum Strahlen eines Bauteils, welches Al und/oder Mg enthält, bereitzustellen, sowie ein Strahlmaterial, welches in einem solchen Verfahren eingesetzt werden kann.
  • Erfindungsgemäß wird diese Aufgabe gelöst durch ein Strahlmittel mit den Merkmalen des Patentanspruchs 1, durch ein Verfahren mit den Merkmalen des Patentanspruchs 6, durch einen Verfahren mit den Merkmalen des Patentanspruchs 12, und durch ein Verfahren mit den Merkmalen des Patentanspruchs 14.
  • Die der vorliegenden Erfindung zugrunde liegende Idee besteht darin, dass das Bauteil umfassend Al und/oder Mg mit einem Strahlmittel gestrahlt wird, welches eine AlSC-Legierung umfasst, wobei das Strahlmittel Partikel der AlSc-Legierung mit einer Größe von 45 µm oder mehr umfasst, also das Strahlmittel artgleich oder zumindest ähnlich zum Material des Bauteils ist, wodurch eine Kontamination verringert oder sogar vermieden werden kann.
  • Vorteilhafte Ausgestaltungen und Weiterbildungen ergeben sich aus den weiteren Unteransprüchen sowie aus der Beschreibung unter Bezugnahme auf die Figuren.
  • Definitionen
  • So nicht anderweitig definiert haben hierin verwendete technische und wissenschaftliche Ausdrücke dieselbe Bedeutung, wie sie von einem Fachmann auf dem Fachgebiet der Erfindung gemeinhin verstanden wird.
  • Mengenangaben im Rahmen der vorliegenden Erfindung beziehen sich auf Gew.%, soweit nicht anderweitig angegeben oder aus dem Kontext ersichtlich ist. Im erfindungsgemäßen Strahlmittel ergänzen sich die Gew.%-Anteile auf 100 Gew.%, so nicht aus dem Kontext anderweitig ersichtlich.
  • Im Rahmen der Erfindung ist ein Strahlmittel, auch als Strahlgut bezeichnet, ein Hilfsstoff, der beim Strahlen eingesetzt werden kann. Es umfasst eine Vielzahl von Partikeln, welche üblicherweise alle im Wesentlichen aus demselben Material bestehen. Die Form der Partikel des Strahlmittels ist im Rahmen der Erfindung, als hinsichtlich des erfindungsgemäßen Strahlmittels wie auch der erfindungsgemäßen Verfahren, nicht besonders beschränkt, und die Partikel können rund, eckig und/oder kantig sein und sind beispielsweise eckig und kantig. In den erfindungsgemäßen Verfahren hat das Strahlmittel üblicherweise eine höhere Härte als das zu strahlende Bauteil, insbesondere damit es auch seine Funktion wahrnehmen kann. Insbesondere besteht das erfindungsgemäße Strahlmittel aus einer Legierung oder mehreren Legierungen, insbesondere einer Legierung, umfasst also insbesondere keine keramischen Anteile. Das Strahlmittel wird insbesondere zur Reinigung und/oder Oberflächenglättung verwendet, ist also ein Reinigungs- und/oder Oberflächenglättungs-Strahlmittel. Insbesondere verhält sich das erfindungsgemäße Strahlmittel gemäß bestimmten Ausführungsformen chemisch inert zum Material des zu strahlenden Bauteils, schädigt also das Bauteil nicht, beispielsweise durch Korrosion.
  • In einem ersten Aspekt betrifft die vorliegende Erfindung ein Strahlmittel zum Strahlen eines Bauteils, wobei das Bauteil Al und/oder Mg, insbesondere eine Alund/oder Mg-Legierung, umfasst, wobei das Strahlmittel eine AlSc-Legierung umfasst, wobei das Strahlmittel Partikel der AlSc-Legierung mit einer Größe von 45 µm oder mehr umfasst.
  • Das Bauteil ist hierbei nicht besonders beschränkt, sofern es Al und/oder Mg, insbesondere Al, umfasst, und kann jegliche Form und Ausgestaltung haben. Gemäß bestimmten Ausführungsformen umfasst zumindest eine zu strahlende Oberfläche des Bauteils Al und/oder Mg, insbesondere eine Al- und/oder Mg-Legierung, beispielsweise eine Legierung umfassend Al und Mg. Gemäß bestimmten Ausführungsformen besteht das Bauteil im Wesentlichen aus einer Al- und/oder Mg-Legierung oder besteht aus der Al- und/oder Mg-Legierung. Die Al- und/oder Mg-Legierung ist hierbei nicht besonders beschränkt und kann beispielsweise eine Legierung von Al mit einem geeigneten Material sein, also beispielsweise eine 1xxx, 2xxx, 3xxx, 4xxx, 5xxx, 6xxx, 7xxx oder 8xxx-Legierung.
  • Gemäß bestimmten Ausführungsformen umfasst das Bauteil Sc, insbesondere in einer Menge von 0,3 Gew.% oder mehr, bevorzugt 0,5 Gew.% oder mehr, beispielsweise 0,5 - 3 Gew.% Sc, beispielsweise 0,7 - 0,8 Gew.% Sc. Gemäß bestimmten Ausführungsformen umfasst das Bauteil eine AlSc-Legierung, insbesondere eine AlMgSc-Legierung, und bevorzugt besteht das Bauteil aus einer AISc-Legierung, insbesondere einer AlMgSc-Legierung, insbesondere mit einem Sc-Anteil von 0,3 Gew.% oder mehr, bevorzugt 0,5 Gew.% oder mehr, beispielsweise 0,5 - 3 Gew.%, beispielsweise 0,7 - 0,8 Gew.%.
  • Neben Al und/oder Mg kann das Bauteil, insbesondere neben Sc, noch weitere Legierungsbestandteile umfassen, welche nicht besonders beschränkt sind. Gemäß bestimmten Ausführungsformen umfasst das Bauteil Zr und/oder Mn. Gemäß bestimmten Ausführungsformen umfasst das Bauteil eine AlSc-Legierung, insbesondere eine AlMgSc-Legierung, welche Zr und/oder Mn, insbesondere Zr, umfasst, und besteht insbesondere aus einer solchen Legierung. Das Verhältnis von Zr zu Sc ist hierbei insbesondere in einem Bereich von 1: 10 bis 2:1, bevorzugt 1:7 bis 1: 1, weiter bevorzugt 1:5 bis 1:2. Auch können natürlich gemäß bestimmten Ausführungsformen unvermeidbare Verunreinigungen enthalten sein.
  • Gemäß bestimmten Ausführungsformen ist das Bauteil durch ein Pulver-Schmelzverfahren oder ein Pulver-Sinterverfahren, bevorzugt durch ein Laser-Pulverbett-Schmelzverfahren, hergestellt. Das Pulver-Schmelzverfahren und das Pulver-Sinterverfahren sind dabei nicht besonders beschränkt, und als Beispiele für solche Verfahren sind das selektive Lasersintern, das Elektronenstrahlschmelzen oder das selektive Laserschmelzen zu nennen, wobei die Verfahren nicht besonders beschränkt sind. Insbesondere wird das Bauteil durch ein Laser-Pulverbett-Schmelzen (LBP-S) hergestellt, wie es beispielsweise zum 3D-Drucken verwendet wird. Das Verfahren selbst ist hierbei wiederum nicht besonders beschränkt. Insbesondere erfolgt die Herstellung mit Pulvern mit einer Partikelgröße von 20 bis 75 µm, bevorzugt 20 bis 65 µm, weiter bevorzugt 20 bis 45 µm. Entsprechende Pulverfraktionen können entsprechend mit einer Siebanalyse erhalten werden mit entsprechenden Sieben mit Maschenweiten von 20 µm, 45 µm, 65 µm, und 75 µm, entsprechend der gewünschten Fraktion.
  • Auch das Strahlmittel ist nicht besonders beschränkt, sofern es eine AISc-Legierung umfasst, wobei das Strahlmittel Partikel der AlSc-Legierung mit einer Größe von 45 µm oder mehr umfasst.
  • Ein Pulver für die Herstellung des Strahlmittels kann durch übliche Verfahren zur Herstellung von Pulvern für die Pulvermetallurgie und/oder für Pulver-Schmelzverfahren oder Pulver-Sinterverfahren, bevorzugt Laser-Pulverbett-Schmelzverfahren, hergestellt werden, welche nicht besonders beschränkt sind. Beispielsweise kann das Pulver für die Herstellung des Strahlmittels durch Zerstäubung einer Metallschmelze bzw. einer Schmelze einer Metalllegierung und Abtrennung einer geeigneten Partikelfraktion erzeugt werden. Gemäß bestimmten Ausführungsformen wird das Pulver für das Strahlmittel durch dasselbe Verfahren hergestellt wie das Material für die Herstellung des Bauteils. Gemäß bestimmten Ausführungsformen werden das Pulver für das Strahlmittel und das Pulver zur Herstellung des Bauteils im selben Verfahren, insbesondere im selben Verfahrensschritt, z.B. einer Pulverherstellungskampagne, hergestellt, sodass beispielsweise beide Pulver aus der Herstellungskampagne voneinander getrennt werden können, beispielsweise durch Aussieben. Insbesondere werden für die Herstellung des Strahlmittels dabei Partikel des erzeugten Pulvers verwendet, welche nicht für die Herstellung des Bauteils verwendet werden, beispielsweise aufgrund der Partikelgröße. Insbesondere sind die Partikel zur Herstellung des Strahlmittels größer als die Partikel zur Herstellung des Bauteils.
  • Gemäß der Erfindung umfasst das Strahlmittel Sc, insbesondere in einer Menge von 0,3 Gew.% oder mehr, bevorzugt 0,5 Gew.% oder mehr, beispielsweise 0,5 - 3
  • Gew.% Sc, beispielsweise 0,7 - 0,8 Gew.% Sc. Das Strahlmittel umfasst eine AISc-Legierung, insbesondere eine AlMgSc-Legierung, und bevorzugt besteht das Bauteil aus einer AlSc-Legierung, insbesondere einer AlMgSc-Legierung, insbesondere mit einem Sc-Anteil von 0,3 Gew.% oder mehr, bevorzugt 0,5 Gew.% oder mehr, beispielsweise 0,5 - 3 Gew.%, beispielsweise 0,7 - 0,8 Gew.%. Der Vorteil in der Verwendung einer solchen Legierung besteht insbesondere darin, dass sie sich chemisch im Wesentlichen wie reines Aluminium verhalten kann.
  • Das Strahlmittel kann noch weitere Legierungsbestandteile umfassen, welche nicht besonders beschränkt sind. Gemäß bestimmten Ausführungsformen umfasst das Strahlmittel Zr und/oder Mn. Gemäß bestimmten Ausführungsformen umfasst das Strahlmittel eine AlSc-Legierung, insbesondere eine AlMgSc-Legierung, welche Zr und/oder Mn, insbesondere Zr, umfasst, und besteht insbesondere aus einer solchen Legierung. Das Verhältnis von Zr zu Sc ist hierbei insbesondere in einem Bereich von 1: 10 bis 2:1, bevorzugt 1:7 bis 1: 1, weiter bevorzugt 1:5 bis 1:2. Auch können natürlich gemäß bestimmten Ausführungsformen unvermeidbare Verunreinigungen enthalten sein.
  • Gemäß der Erfindung umfasst das Strahlmittel Partikel der Al- und/oder Mg-Legierung mit einer Größe von 45 µm oder mehr, bevorzugt 65 µm oder mehr, weiter bevorzugt 75 µm oder mehr, noch weiter bevorzugt mindestens 80 µm, beispielsweise mit einer Partikelgröße x von 45 µm ≤ x ≤ 200 µm, bevorzugt 65 µm ≤ x ≤ 200 µm, weiter bevorzugt 75 µm ≤ x ≤ 200 µm, noch weiter bevorzugt 80 µm ≤ x ≤ 200 µm, und insbesondere bevorzugt besteht es aus diesen. Entsprechende Partikel können wiederum beispielsweise durch eine Siebanalyse mit Sieben mit Maschenweiten von 45 µm, 65 µm, 75 µm, 80 µm, und 200 µm, entsprechend der gewünschten Fraktion, erhalten werden. Wenn die Partikel des Strahlmittels zu klein sind, erzeugen sie zu wenig Wirkung beim Strahlen. Wenn die Partikel zu groß sind, lassen sie sich schwerer ausreichend zum Strahlen beschleunigen, um eine geeignete Wirkung zu entfalten.
  • Gemäß bestimmten Ausführungsformen wurde das Strahlmittel durch eine Wärmebehandlung bei einer Temperatur von 250°C - 400°C, bevorzugt 275°C - 350°C, weiter bevorzugt 300 - 325°C, z.B. 325°C, und/oder in einer Zeitdauer von 15 - 6000 min, bevorzugt 60 bis 240 min, weiter bevorzugt 90 bis 150 min, z.B. 120 min, gehärtet. Hierdurch kann das Strahlmittel im Vergleich zu unbehandelten Partikeln weiterverfestigt werden. Insbesondere da das Strahlmittel Al und Sc, bevorzugt Al, Mg und Sc, umfasst, kann hierbei eine Ausscheidungshärtung des Sc erfolgen, sodass sich eine kohärente Al3Sc-Phase bilden kann. Wenn zusätzlich Zr enthalten ist, kann sich zudem eine Al3ScZr-Phase bilden, welche weiter zur Härte des Strahlmittels beitragen kann. Bevorzugt wurde das Strahlmittel durch eine Wärmebehandlung bei einer Temperatur von 250°C -400°C, bevorzugt 275°C - 350°C, weiter bevorzugt 300 - 325°C, z.B. 325°C, in einer Zeitdauer von 15 - 6000 min, bevorzugt 60 bis 240 min, weiter bevorzugt 90 bis 150 min, z.B. 120 min, gehärtet. Hierbei ist bevorzugt die Zeitdauer umso kürzer, je höher die Temperatur der Wärmebehandlung ist.
  • Gemäß bestimmten Ausführungsformen weist das Strahlmittel eine Härte von > 150 HB auf. Die Härte kann hierbei geeignet bestimmt werden, beispielsweise nach Brinell, beispielsweise gemäß EN ISO 6506 (EN ISO 6506-1 bis EN ISO 6506-4).
  • Ein weiterer Aspekt der vorliegenden Erfindung betrifft ein Verfahren zum Strahlen eines Bauteils, wobei das Bauteil Al und/oder Mg, insbesondere eine Al- und/oder Mg-Legierung, umfasst, wobei das Strahlmittel eine AlSc-Legierung umfasst, wobei das Strahlmittel Partikel der AlSc-Legierung mit einer Größe von 45 µm oder mehr umfasst, wobei das Bauteil mit dem Strahlmittel gestrahlt wird. Gemäß der Erfindung ist das Strahlmittel in diesem Verfahren das erfindungsgemäße Strahlmittel.
  • Gemäß bestimmten Ausführungsformen umfasst das Strahlmittel eine AISc-Legierung, bevorzugt eine AlMgSc-Legierung.
  • Gemäß bestimmten Ausführungsformen umfasst das Strahlmittel Partikel mit einer Größe von bevorzugt 65 µm oder mehr, weiter bevorzugt 75 µm oder mehr, noch weiter bevorzugt mindestens 80 µm, beispielsweise mit einer Partikelgröße x von 45 µm ≤ x ≤ 200 µm, bevorzugt 65 µm ≤ x ≤ 200 µm, weiter bevorzugt 75 µm ≤ x ≤ 200 µm, noch weiter bevorzugt 80 µm ≤ x ≤ 200 µm, und insbesondere bevorzugt besteht es aus diesen. Entsprechende Partikel können wiederum beispielsweise durch eine Siebanalyse mit Sieben mit Maschenweiten von 45 µm, 65 µm, 75 µm, 80 µm, und 200 µm, entsprechend der gewünschten Fraktion, erhalten werden.
  • Gemäß bestimmten Ausführungsformen beträgt ein Gehalt an Sc in dem Stahlmittel mindestens 0,5 Gew.%, bezogen auf das Strahlmittel.
  • Gemäß bestimmten Ausführungsformen wurde das Strahlmittel durch eine Wärmebehandlung bei einer Temperatur von 250°C - 400°C, bevorzugt 275°C - 350°C, weiter bevorzugt 300 - 325°C, z.B. 325°C, und/oder in einer Zeitdauer von 15 - 6000 min, bevorzugt 60 bis 240 min, weiter bevorzugt 90 bis 150 min, z.B. 120 min, gehärtet. Gemäß bestimmten Ausführungsformen weist das Strahlmittel eine Härte von > 150 HB auf.
  • Gemäß bestimmten Ausführungsformen wurde das Bauteil durch ein Pulver-Schmelzverfahren oder ein Pulver-Sinterverfahren, bevorzugt durch ein Laser-Pulverbett-Schmelzverfahren, hergestellt.
  • Gemäß bestimmten Ausführungsformen besteht das Bauteil aus einem artgleichen und/oder ähnlichem Material wie das Strahlmittel. Bevorzugt besteht das Bauteil aus demselben Material wie das Strahlmittel.
  • Gemäß der Erfindung wird eine AlSc-Legierung aus einer Schmelze zerstäubt und aus den so hergestellten Partikeln eine Partikelfraktion ausgesiebt, wobei Partikel mit einer Größe von 45 µm aus den hergestellten Partikeln als Strahlmittel ausgesiebt werden.
  • Gemäß bestimmten Ausführungsformen werden Partikel mit einer Größe von bevorzugt 65 µm oder mehr, weiter bevorzugt 75 µm oder mehr, noch weiter bevorzugt mindestens 80 µm, beispielsweise mit einer Partikelgröße x von 45 µm ≤ x ≤ 200 µm, bevorzugt 65 µm ≤ x ≤ 200 µm, weiter bevorzugt 75 µm ≤ x ≤ 200 µm, noch weiter bevorzugt 80 µm ≤ x ≤ 200 µm, aus den hergestellten Partikeln als Strahlmittel ausgesiebt. Entsprechende Partikel können beispielsweise durch Sieben mit Sieben mit Maschenweiten von 45 µm, 65 µm, 75 µm, 80 µm, und 200 µm, entsprechend der gewünschten Fraktion, erhalten werden.
  • Gemäß bestimmten Ausführungsformen werden die ausgesiebten Partikel bei einer Temperatur von 250°C - 400°C, bevorzugt 275°C - 350°C, weiter bevorzugt 300 - 325°C, z.B. 325°C, und/oder in einer Zeitdauer von 15 - 6000 min, bevorzugt 60 bis 240 min, weiter bevorzugt 90 bis 150 min, z.B. 120 min, gehärtet. Bevorzugt werden die ausgesiebten Partikel durch eine Wärmebehandlung bei einer Temperatur von 250°C - 400°C, bevorzugt 275°C - 350°C, weiter bevorzugt 300 - 325°C, z.B. 325°C, in einer Zeitdauer von 15 - 6000 min, bevorzugt 60 bis 240 min, weiter bevorzugt 90 bis 150 min, z.B. 120 min, gehärtet.
  • Aus den verbleibenden Partikeln können gemäß bestimmten Ausführungsformen die Partikel zur Herstellung des Bauteils, beispielsweise wie oben angegeben, ausgesiebt werden.
  • Ein Vorteil dieses erfindungsgemäßen Verfahrens ist hierbei, dass das Strahlmittel nach dem Strahlen des Bauteils wiederum durch Sieben abgetrennt werden kann und somit wiederverwendet werden kann, beispielsweise bei einem erneuten Strahlprozess bzw. Strahlverfahren.
  • In einem noch weiteren Aspekt betrifft die vorliegende Erfindung ein Verfahren zur Herstellung eines gestrahlten Bauteils, wobei das Bauteil Al und/oder Mg, insbesondere eine Al- und/oder Mg-Legierung, umfasst, wobei das Bauteil durch ein Pulver-Schmelzverfahren oder ein Pulver-Sinterverfahren hergestellt wird und mit dem erfindungsgemäßen Strahlmittel gestrahlt wird.
  • Das Bauteil ist hierbei nicht besonders beschränkt, sofern es Al und/oder Mg, insbesondere Al, umfasst, und kann jegliche Form und Ausgestaltung haben. Gemäß bestimmten Ausführungsformen umfasst zumindest eine zu strahlende Oberfläche des Bauteils Al und/oder Mg, insbesondere eine Al- und/oder Mg-Legierung, beispielsweise eine Legierung umfassend Al und Mg. Gemäß bestimmten Ausführungsformen besteht das Bauteil im Wesentlichen aus einer Al- und/oder Mg-Legierung oder besteht aus der Al- und/oder Mg-Legierung. Die Al- und/oder Mg-Legierung ist hierbei nicht besonders beschränkt und kann beispielsweise eine Legierung von Al mit einem geeigneten Material sein, also beispielsweise eine 1xxx, 2xxx, 3xxx, 4xxx, 5xxx, 6xxx, 7xxx oder 8xxx-Legierung.
  • Gemäß bestimmten Ausführungsformen umfasst das Bauteil Sc, insbesondere in einer Menge von 0,3 Gew.% oder mehr, bevorzugt 0,5 Gew.% oder mehr, beispielsweise 0,5 - 3 Gew.% Sc, beispielsweise 0,7 - 0,8 Gew.% Sc. Gemäß bestimmten Ausführungsformen umfasst das Bauteil eine AlSc-Legierung, insbesondere eine AlMgSc-Legierung, und bevorzugt besteht das Bauteil aus einer AISc-Legierung, insbesondere einer AlMgSc-Legierung, insbesondere mit einem Sc-Anteil von 0,3 Gew.% oder mehr, bevorzugt 0,5 Gew.% oder mehr, beispielsweise 0,5 - 3 Gew.%, beispielsweise 0,7 - 0,8 Gew.%.
  • Neben Al und/oder Mg kann das Bauteil, insbesondere neben Sc, noch weitere Legierungsbestandteile umfassen, welche nicht besonders beschränkt sind. Gemäß bestimmten Ausführungsformen umfasst das Bauteil Zr und/oder Mn. Gemäß bestimmten Ausführungsformen umfasst das Bauteil eine AlSc-Legierung, insbesondere eine AlMgSc-Legierung, welche Zr und/oder Mn, insbesondere Zr, umfasst, und besteht insbesondere aus einer solchen Legierung. Das Verhältnis von Zr zu Sc ist hierbei insbesondere in einem Bereich von 1: 10 bis 2:1, bevorzugt 1:7 bis 1: 1, weiter bevorzugt 1:5 bis 1:2.
  • Das Bauteil ist durch ein Pulver-Schmelzverfahren oder ein Pulver-Sinterverfahren, bevorzugt durch ein Laser-Pulverbett-Schmelzverfahren, hergestellt. Das Pulver-Schmelzverfahren und das Pulver-Sinterverfahren sind dabei nicht besonders beschränkt, und als Beispiele für solche Verfahren sind das selektive Lasersintern, das Elektronenstrahlschmelzen oder das selektive Laserschmelzen zu nennen, wobei die Verfahren nicht besonders beschränkt sind. Insbesondere wird das Bauteil durch ein Laser-Pulverbett-Schmelzen (LBP-S) hergestellt, wie es beispielsweise zum 3D-Drucken verwendet wird. Das Verfahren selbst ist hierbei wiederum nicht besonders beschränkt. Insbesondere erfolgt die Herstellung mit Pulvern mit einer Partikelgröße von 20 bis 75 µm, bevorzugt 20 bis 65 µm, weiter bevorzugt 20 bis 45 µm. Entsprechende Pulverfraktionen können entsprechend mit einer Siebanalyse erhalten werden mit entsprechenden Sieben mit Maschenweiten von 20 µm, 45 µm, 65 µm, und 75 µm, entsprechend der gewünschten Fraktion.
  • Gemäß bestimmten Ausführungsformen wird das Pulver für das Strahlmittel durch dasselbe Verfahren hergestellt wie das Material für die Herstellung des Bauteils. Gemäß bestimmten Ausführungsformen werden das Pulver für das Strahlmittel und das Pulver zur Herstellung des Bauteils im selben Verfahren, insbesondere im selben Verfahrensschritt, z.B. einer Pulverherstellungskampagne, hergestellt, sodass beispielsweise beide Pulver aus der Herstellungskampagne voneinander getrennt werden können, beispielsweise durch Aussieben. Insbesondere werden für die Herstellung des Strahlmittels dabei Partikel des erzeugten Pulvers verwendet, welche nicht für die Herstellung des Bauteils verwendet werden, beispielsweise aufgrund der Partikelgröße. Insbesondere sind die Partikel zur Herstellung des Strahlmittels größer als die Partikel zur Herstellung des Bauteils.
  • Beschrieben und nicht erfindungsgemäß ist ein Bauteil, wobei das Bauteil Al und/oder Mg, insbesondere eine Al- und/oder Mg-Legierung, umfasst, wobei das Bauteil durch ein Pulver-Schmelzverfahren oder ein Pulver-Sinterverfahren hergestellt wird und mit dem erfindungsgemäßen Strahlmittel gestrahlt wird.
  • Das Bauteil ist hierbei wiederum nicht besonders beschränkt, sofern es Al und/oder Mg, insbesondere Al, umfasst, und kann jegliche Form und Ausgestaltung haben. Gemäß bestimmten Ausführungsformen umfasst zumindest eine zu strahlende Oberfläche des Bauteils Al und/oder Mg, insbesondere eine Al- und/oder Mg-Legierung, beispielsweise eine Legierung umfassend Al und Mg. Gemäß bestimmten Ausführungsformen besteht das Bauteil im Wesentlichen aus einer Alund/oder Mg-Legierung oder besteht aus der Al- und/oder Mg-Legierung. Die Alund/oder Mg-Legierung ist hierbei nicht besonders beschränkt und kann beispielsweise eine Legierung von Al mit einem geeigneten Material sein, also beispielsweise eine 1xxx, 2xxx, 3xxx, 4xxx, 5xxx, 6xxx, 7xxx oder 8xxx-Legierung.
  • Gemäß bestimmten Ausführungsformen umfasst das Bauteil Sc, insbesondere in einer Menge von 0,3 Gew.% oder mehr, bevorzugt 0,5 Gew.% oder mehr, beispielsweise 0,5 - 3 Gew.% Sc, beispielsweise 0,7 - 0,8 Gew.% Sc. Gemäß bestimmten Ausführungsformen umfasst das Bauteil eine AlSc-Legierung, insbesondere eine AlMgSc-Legierung, und bevorzugt besteht das Bauteil aus einer AISc-Legierung, insbesondere einer AlMgSc-Legierung, insbesondere mit einem Sc-Anteil von 0,3 Gew.% oder mehr, bevorzugt 0,5 Gew.% oder mehr, beispielsweise 0,5 - 3 Gew.%, beispielsweise 0,7 - 0,8 Gew.%.
  • Neben Al und/oder Mg kann das Bauteil, insbesondere neben Sc, noch weitere Legierungsbestandteile umfassen, welche nicht besonders beschränkt sind. Gemäß bestimmten Ausführungsformen umfasst das Bauteil Zr und/oder Mn. Gemäß bestimmten Ausführungsformen umfasst das Bauteil eine AlSc-Legierung, insbesondere eine AlMgSc-Legierung, welche Zr und/oder Mn, insbesondere Zr, umfasst, und besteht insbesondere aus einer solchen Legierung. Das Verhältnis von Zr zu Sc ist hierbei insbesondere in einem Bereich von 1: 10 bis 2:1, bevorzugt 1:7 bis 1: 1, weiter bevorzugt 1:5 bis 1:2.
  • Das Bauteil ist durch ein Pulver-Schmelzverfahren oder ein Pulver-Sinterverfahren, bevorzugt durch ein Laser-Pulverbett-Schmelzverfahren, hergestellt. Das Pulver-Schmelzverfahren und das Pulver-Sinterverfahren sind dabei nicht besonders beschränkt, und als Beispiele für solche Verfahren sind das selektive Lasersintern, das Elektronenstrahlschmelzen oder das selektive Laserschmelzen zu nennen, wobei die Verfahren nicht besonders beschränkt sind. Insbesondere wird das Bauteil durch ein Laser-Pulverbett-Schmelzen (LBP-S) hergestellt, wie es beispielsweise zum 3D-Drucken verwendet wird. Das Verfahren selbst ist hierbei wiederum nicht besonders beschränkt. Insbesondere erfolgt die Herstellung mit Pulvern mit einer Partikelgröße von 20 bis 75 µm, bevorzugt 20 bis 65 µm, weiter bevorzugt 20 bis 45 µm. Entsprechende Pulverfraktionen können entsprechend mit einer Siebanalyse erhalten werden mit entsprechenden Sieben mit Maschenweiten von 20 µm, 45 µm, 65 µm, und 75 µm, entsprechend der gewünschten Fraktion.
  • Gemäß bestimmten Ausführungsformen wird das Pulver für das Strahlmittel durch dasselbe Verfahren hergestellt wie das Material für die Herstellung des Bauteils. Gemäß bestimmten Ausführungsformen werden das Pulver für das Strahlmittel und das Pulver zur Herstellung des Bauteils im selben Verfahren, insbesondere im selben Verfahrensschritt, z.B. einer Pulverherstellungskampagne, hergestellt, sodass beispielsweise beide Pulver aus der Herstellungskampagne voneinander getrennt werden können, beispielsweise durch Aussieben. Insbesondere werden für die Herstellung des Strahlmittels dabei Partikel des erzeugten Pulvers verwendet, welche nicht für die Herstellung des Bauteils verwendet werden, beispielsweise aufgrund der Partikelgröße. Insbesondere sind die Partikel zur Herstellung des Strahlmittels größer als die Partikel zur Herstellung des Bauteils.
  • Die vorliegende Erfindung wird nachfolgend anhand der in den schematischen Figuren angegebenen Ausführungsbeispiele näher erläutert. Es zeigt dabei:
  • Fig. 1
    schematisch ein Verfahren zur Herstellung eines Bauteils, wobei das Bauteil mit dem erfindungsgemäßen Strahlmittel gestrahlt wird.
  • Fig. 1 zeigt schematisch einen Ablauf, wie in einem Verfahren ein beispielhaftes Bauteil sowie ein beispielhaftes Strahlmittel hergestellt werden kann und das Bauteil mit dem Strahlmittel gestrahlt werden kann.
  • In einem beispielhaften Herstellungsverfahren eines erfindungsgemäßen gestrahlten Bauteils wie auch der Herstellung eines erfindungsgemäßen Strahlguts wird in einem ersten Schritt 1 eine Schmelze umfassend Al, Mg und Sc hergestellt. Ein Beispiel für eine solche Schmelze ist eine Schmelze von AlMg4,5SC0,75Zr0,3, welche beispielsweise bei einer Temperatur von ca. 800°C hergestellt werden kann. In einem Schritt findet dann ein Zerstäuben der Schmelze umfassend Al, Mg und Sc, also beispielsweise der AlMg4,5Sc0,75Zr0,3-Schmelze, statt, welches nicht besonders beschränkt ist. Es entsteht hierbei ein Pulver der Legierung, welches nachfolgend als AlMgSc-Pulver bezeichnet wird. In einem anschließenden Schritt 3 erfolgt ein Separieren und Aussieben des erzeugten AlMgSc-Pulvers. Aus den separierten Pulverfraktionen kann dann in Schritt 4 eine Herstellung eines Bauteils unter Verwendung einer ersten Pulverfraktion und eine Bereitstellung einer weiteren Pulverfraktion zur Herstellung eines Strahlmittels erfolgen. Beispielsweise kann aus dem AlMgSc-Pulver eine Fraktion mit einer Partikelgröße von weniger als 20 µm abgetrennt werden, welche beispielsweise wiederum dem Schritt 1 zugeführt werden kann, da die Partikel der Fraktion zu klein für die Herstellung eines Bauteils sein können. Eine weitere Fraktion kann beispielsweise eine Partikelgröße in einem Bereich von 20 bis <65 µm aufweisen, welche zur Herstellung eines Bauteils mittels eines Laser-Pulverbett-Schmelzverfahrens (welches nicht besonders beschränkt ist) verwendet wird. Eine weitere, dritte Fraktion des Pulvers mit einer Partikelgröße von beispielsweise 65 µm und mehr, z.B. 75 µm - 200 µm, kann dann zur Herstellung eines Strahlmittels verwendet werden. In Schritt 5 wird dann diese weitere, dritte Pulverfraktion zur Herstellung des Strahlmittels gehärtet, beispielsweise bei einer Temperatur von 325°C für eine Zeitdauer von 120 min. Hierdurch wird das Strahlmittel härter als das Bauteil, sodass es für das abrasive Reinigungsstrahlen gut geeignet ist. Im Schritt 6 erfolgt ein Strahlen des in Schritt 4 hergestellten Bauteils mit dem in Schritt 5 hergestellten Strahlmittel, beispielsweise für ein Reinigungs- und/oder Glättungsstrahlen und/oder ein Verfestigungsstrahlen des mittels des Laser-Pulverbett-Schmelzverfahrens hergestellten Bauteils. An diesen Herstellungsschritt 6 kann sich ein optionaler Schritt 7 anschließen, in dem das Strahlmittel wiederverwendet wird bzw. erneut genutzt wird, beispielsweise indem es nach dem Strahlen wiederum durch Sieben abgetrennt wird.
  • Bezugszeichenliste
  • 1
    Herstellung einer Schmelze umfassend Al, Mg und Sc
    2
    Zerstäuben der Schmelze umfassend Al, Mg und Sc
    3
    Separieren und Aussieben des erzeugten AlMgSc-Pulvers
    4
    Herstellung eines Bauteils unter Verwendung einer Pulverfraktion und Bereitstellung einer weiteren Pulverfraktion zur Herstellung eines Strahlmittels
    5
    Härten der weiteren Pulverfraktion zur Herstellung des Strahlmittels
    6
    Strahlen des Bauteils mit dem Strahlmittel
    7
    Gegebenenfalls Wiederverwendung des Strahlmittels

Claims (14)

  1. Strahlmittel zum Strahlen eines Bauteils, wobei das Bauteil Al und/oder Mg, insbesondere eine Al- und/oder Mg-Legierung, umfasst, wobei das Strahlmittel eine AlSc-Legierung umfasst, dadurch gekennzeichnet, dass das Strahlmittel Partikel der AlSc-Legierung mit einer Größe von 45 µm oder mehr umfasst.
  2. Strahlmittel nach Anspruch 1, wobei das Strahlmittel eine AlMgSc-Legierung umfasst.
  3. Strahlmittel nach Anspruch 1 oder 2, wobei das Strahlmittel Partikel der AlSc-Legierung mit einer Größe von 65 µm oder mehr, bevorzugt mindestens 80 µm, umfasst, und insbesondere bevorzugt aus diesen besteht.
  4. Strahlmittel nach einem der Ansprüche 1 bis 3, wobei ein Gehalt an Sc in dem Stahlmittel mindestens 0,5 Gew.% beträgt, bezogen auf das Strahlmittel.
  5. Strahlmittel nach einem der vorigen Ansprüche, wobei das Strahlmittel durch eine Wärmebehandlung bei einer Temperatur von 250°C -400°C und/oder in einer Zeitdauer von 15 - 6000 min gehärtet wurde und/oder eine Härte von > 150 HB aufweist.
  6. Verfahren zum Strahlen eines Bauteils, dadurch gekennzeichnet, dass das Bauteil Al und/oder Mg, insbesondere eine Al- und/oder Mg-Legierung, umfasst, wobei das Strahlmittel eine AlSc-Legierung umfasst, wobei das Strahlmittel Partikel der AlSc-Legierung mit einer Größe von 45 µm oder mehr umfasst, wobei das Bauteil mit dem Strahlmittel gestrahlt wird.
  7. Verfahren nach Anspruch 6, wobei das Strahlmittel eine AlMgSc-Legierung umfasst.
  8. Verfahren nach Anspruch 6 oder 7 ,wobei das Strahlmittel Partikel der AISc-Legierung mit einer Größe von 65 µm oder mehr, bevorzugt mindestens 80 µm, umfasst, und insbesondere bevorzugt aus diesen besteht.
  9. Verfahren nach einem der Ansprüche 6 bis 8, wobei ein Gehalt an Sc in dem Stahlmittel mindestens 0,5 Gew.% beträgt, bezogen auf das Strahlmittel.
  10. Verfahren nach einem der Ansprüche 6 bis 9, wobei das Strahlmittel durch eine Wärmebehandlung bei einer Temperatur von 250°C -400°C und/oder in einer Zeitdauer von 15 - 6000 min gehärtet wurde und/oder eine Härte von > 150 HB aufweist.
  11. Verfahren nach einem der Ansprüche 6 bis 10, wobei das Bauteil durch ein Pulver-Schmelzverfahren oder ein Pulver-Sinterverfahren, bevorzugt durch ein Laser-Pulverbett-Schmelzverfahren, hergestellt wurde, weiter bevorzugt wobei das Bauteil aus einem artgleichen Material wie das Strahlmittel besteht, insbesondere bevorzugt wobei das Bauteil aus demselben Material wie das Strahlmittel besteht.
  12. Verfahren zur Herstellung eines Strahlmittels, dadurch gekennzeichnet, dass eine AlSc-Legierung aus einer Schmelze zerstäubt wird, und aus den so hergestellten Partikeln eine Partikelfraktion ausgesiebt wird, wobei Partikel mit einer Größe von 45 µm oder mehr aus den hergestellten Partikeln als Strahlmittel ausgesiebt werden.
  13. Verfahren nach Anspruch 12, wobei Partikel mit einer Größe von 65 µm oder mehr, bevorzugt mindestens 80 µm aus den hergestellten Partikeln als Strahlmittel ausgesiebt werden, bevorzugt wobei die ausgesiebten Partikel bei einer Temperatur von 250°C - 400°C und/oder in einer Zeitdauer von 15 - 6000 min gehärtet werden.
  14. Verfahren zur Herstellung eines gestrahlten Bauteils, dadurch gekennzeichnet, dass das Bauteil Al und/oder Mg, insbesondere eine Al- und/oder Mg-Legierung, umfasst, wobei das Bauteil durch ein Pulver-Schmelzverfahren oder ein Pulver-Sinterverfahren hergestellt wird und mit einem Strahlmittel nach einem der Ansprüche 1 bis 5 gestrahlt wird.
EP19165209.8A 2018-03-27 2019-03-26 Alsc-legierung zum reinigungsstrahlen eines bauteils aus al und/oder mg Active EP3546125B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018204593.3A DE102018204593A1 (de) 2018-03-27 2018-03-27 Al-& Mg- verträgliches Strahlgut zum Reinigungsstrahlen derselben auf Basis von AlSc-Pulver

Publications (2)

Publication Number Publication Date
EP3546125A1 EP3546125A1 (de) 2019-10-02
EP3546125B1 true EP3546125B1 (de) 2022-06-22

Family

ID=65991620

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19165209.8A Active EP3546125B1 (de) 2018-03-27 2019-03-26 Alsc-legierung zum reinigungsstrahlen eines bauteils aus al und/oder mg

Country Status (4)

Country Link
US (1) US20190299362A1 (de)
EP (1) EP3546125B1 (de)
CN (1) CN110306081A (de)
DE (1) DE102018204593A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11273607B2 (en) 2019-11-15 2022-03-15 Arcam Ab Depowdering apparatuses for additive manufacturing and methods for using the same
US20220134666A1 (en) * 2020-11-05 2022-05-05 Arcam Ab Blast nozzles for additive manufacturing and methods for using the same

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2773339A (en) * 1951-07-24 1956-12-11 Fischer Ag Georg Process for the surface treatment of light alloy components, more particularly for the abrasive blast treatment of light alloy castings
DE1033081B (de) * 1955-04-27 1958-06-26 Eisenwerk Wuerth G M B H Vorma Strahlmittel zur Oberflaechenbehandlung von Leichtmetallteilen durch Abstrahlen
DE1219238B (de) * 1963-09-06 1966-06-16 Schmidt Karl Verwendung einer Aluminiumgusslegierung zur Herstellung gegossener Strahlmittel
JPS5621773A (en) * 1979-07-27 1981-02-28 Dowa Teppun Kogyo Kk Blast processing method
GB2153055B (en) * 1984-01-24 1987-04-23 Strahlverfahrenstechnik Bernd Process and installation for the thermal treatment of granular materials
DE69311302T2 (de) * 1993-03-26 1998-01-08 Fuji Valve Verfahren zur Oberflächenbehandlung eines Ventilatorstössels
JP3379824B2 (ja) * 1994-06-14 2003-02-24 株式会社不二機販 表面硬化金属ショットの製造方法
DE102004023246B3 (de) * 2004-05-07 2005-10-27 Jens-Werner Kipp Strahlverfahren
US20060134320A1 (en) * 2004-12-21 2006-06-22 United Technologies Corporation Structural repair using cold sprayed aluminum materials
CN101003897A (zh) * 2006-01-20 2007-07-25 佛山市顺德区汉达精密电子科技有限公司 化学镀Ni-Cu-P合金在镁合金表面的处理方法
CN1943992B (zh) * 2006-09-29 2010-05-12 连云港倍特金属磨料有限公司 一种锌合金喷丸
DE102007028321A1 (de) * 2007-06-15 2008-12-18 Alstom Technology Ltd. Verfahren zur Oberflächenbehandlung von Cr-Stählen
CN102574274B (zh) * 2009-10-30 2015-06-17 新东工业株式会社 锌基合金丸
FR2956597B1 (fr) * 2010-02-23 2012-03-16 Airbus Operations Sas Procede de realisation d'une structure metallique courbe renforcee et structure correspondante
KR20140001860A (ko) * 2010-10-08 2014-01-07 알코아 인코포레이티드 개선된 2xxx 알루미늄 합금 및 이의 제조 방법
JP2012200838A (ja) * 2011-03-28 2012-10-22 Toyota Industries Corp マグネシウム合金およびその製造方法
DE102011111365A1 (de) * 2011-08-29 2013-02-28 Eads Deutschland Gmbh Oberflächenpassivierung von aluminiumhaltigem Pulver
ES2613715T3 (es) 2012-09-10 2017-05-25 Vulkan Inox Gmbh Procedimiento y granalla para la fabricación de una superficie satinada sobre un sustrato de aluminio
DE102013012259B3 (de) * 2013-07-24 2014-10-09 Airbus Defence and Space GmbH Aluminium-Werkstoff mit verbesserter Ausscheidungshärtung, Verfahren zu dessen Herstellung und Verwendung des Aluminium-Werkstoffes
EP2873620B1 (de) * 2013-11-14 2018-05-16 Airbus Operations GmbH Reparaturverfahren für Rumpfkomponenten von Luft- oder Raumfahrzeug
US20160236422A1 (en) * 2015-02-13 2016-08-18 Ricoh Company, Ltd. Device and method for removing powder and apparatus for fabricating three-dimensional object
JP6605207B2 (ja) * 2015-02-26 2019-11-13 神町電子株式会社 不活性ガス循環式ブラスト装置
CN104846239A (zh) * 2015-04-08 2015-08-19 盐城赛普金属制品有限公司 一种铝合金磨料及其加工工艺
CN104894554B (zh) * 2015-04-10 2018-10-30 西安交通大学 一种高致密度冷喷涂金属/金属基沉积体的制备方法和应用
US10941473B2 (en) * 2015-09-03 2021-03-09 Questek Innovations Llc Aluminum alloys
US20170157857A1 (en) * 2015-12-07 2017-06-08 United Technologies Corporation Adjusting process parameters to reduce conglomerated powder
EP3181711B1 (de) * 2015-12-14 2020-02-26 Apworks GmbH Scandiumhaltige aluminiumlegierung für pulvermetallurgische technologien
SG11201806759SA (en) * 2016-02-09 2018-09-27 Hitachi Metals Ltd Alloy article, method for manufacturing same, and product using same
FR3047914B1 (fr) * 2016-02-19 2021-05-21 Safran Procede et dispositif de fabrication d'une piece par depots successifs de couches
CN106086567B (zh) * 2016-08-16 2018-05-01 北京有色金属与稀土应用研究所 一种高钪含量铝钪合金及其制备方法
BE1025262B1 (fr) * 2017-05-31 2019-01-07 Safran Aero Boosters S.A. Procede de grenaillage pour piece de turbomachine
US11097350B2 (en) * 2017-07-24 2021-08-24 Raytheon Technologies Corporation Pre-fusion laser sintering for metal powder stabilization during additive manufacturing
CN115449689B (zh) * 2017-10-31 2023-11-14 株式会社博迈立铖 合金粉末
CN107671289B (zh) * 2017-11-01 2019-09-10 南京航空航天大学 一种低元素烧损稀土改性增强铝合金激光3d打印的工艺调控方法
DE102018200361A1 (de) * 2018-01-11 2019-07-11 Robert Bosch Gmbh Verfahren und Vorrichtung zum Auflösen und/oder Entfernen einer Pulveragglomeration
GB2580149A (en) * 2018-12-21 2020-07-15 Gkn Aerospace Services Ltd Powder recovery system

Also Published As

Publication number Publication date
US20190299362A1 (en) 2019-10-03
DE102018204593A1 (de) 2019-10-02
CN110306081A (zh) 2019-10-08
EP3546125A1 (de) 2019-10-02

Similar Documents

Publication Publication Date Title
DE112018001690B4 (de) WÄRMEBEHANDLUNGSVERFAHREN FÜR ADDITIV GEFERTIGTES Ni-BASIERTES LEGIERUNGSOBJEKT, VERFAHREN ZUR HERSTELLUNG VON ADDITIV GEFERTIGTEM Ni-BASIERTEM LEGIERUNGSOBJEKT, Ni-BASIERTES LEGIERUNGSPULVER FÜR ADDITIV GEFERTIGTES OBJEKT, UND ADDITIV GEFERTIGTES Ni-BASIERTES LEGIERUNGSOBJEKT
DE3135943C2 (de) Aluminium-Silicium-Legierungen und Verfahren zu deren Herstellung
EP3370900B1 (de) Verfahren zum herstellen eines leichtmetallgussbauteils und leichtmetallgussbauteil
DE69933297T2 (de) Bearbeitung und alterung flüssigphasengesinterter wolframschwermetalllegierung
EP3665312A1 (de) Kupferlegierung, verwendung einer kupferlegierung, sanitärarmatur und verfahren zur herstellung einer sanitärarmatur
EP3546125B1 (de) Alsc-legierung zum reinigungsstrahlen eines bauteils aus al und/oder mg
DE102010017859B4 (de) Verfahren zum Bearbeiten einer Oberfläche eines Bauteils
DE2542094A1 (de) Metallpulver, verfahren zur behandlung losen metallpulvers und verfahren zur herstellung eines verdichteten presslings
EP2185738B1 (de) Herstellung von legierungen auf basis von titanuluminiden
DE102019130108B4 (de) Verfahren zur Herstellung eines Aluminiumgussteils und hierdurch hergestelltes Aluminiumgussteil
DE102018133579A1 (de) Aluminiumlegierungspulver für additive Herstellung und Verfahren zur Herstellung eines Teils durch Herstellung aus diesem Pulver
EP3643429B1 (de) Herstellungsverfahren und verwendung für ein wolframlegierungsprodukt
DE102013214464A1 (de) Verfahren zum Herstellen einer chromhaltigen Legierung und chromhaltige Legierung
DE102011120988A1 (de) Flächiges Halbzeug aus einer Aluminiummatrixverbundlegierung mit Borcarbid-Partikeln zur Herstellung einer mit Borcarbid-Partikeln angereicherten Platte und Herstellungsverfahren
EP3638820A1 (de) Monotektische aluminium-gleitlagerlegierung und verfahren zu seiner herstellung und damit hergestelltes gleitlager
DE3411762A1 (de) Verfahren zur superplastischen verformung eines rohlings aus einer metallegierung
EP2952276B1 (de) Verfahren zur wärmebehandlung eines werkstücks aus einer nickelbasislegierung
WO1995005490A1 (de) Schmelzebehandlungsmittel, seine herstellung und verwendung
DE2500083C3 (de) Halbzeug aus Aluminium-Knetlegierungen und Verfahren zu dessen Herstellung
DE102014222526A1 (de) Verfahren und Vorrichtung zum generativen Herstellen zumindest eines Bauteilbereichs eines Bauteils
DE112022001181T5 (de) Verfahren zur herstellung eines stranggepressten aluminiumlegierungsmaterials mit hoher festigkeit und ausgezeichneter scc-beständigkeit und härtbarkeit
EP0947605B1 (de) Verfahren zum Erhöhen der Korrisionsbeständigkeit eines metallischen Werkstücks sowie Werkstück
DE112022001208T5 (de) Verfahren zur Herstellung eines stranggepressten Aluminiumlegierungsmaterials
DE102019214740B3 (de) Verfahren zur Herstellung eines Bauteils aus einer Aluminiumlegierung
DE19843683B4 (de) Abrasivmittel, Verfahren zu seiner Herstellung und seine Verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200330

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211029

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20220309

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019004694

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1499465

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220922

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220923

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221024

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221022

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019004694

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230327

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230326

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230326

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 6

Ref country code: GB

Payment date: 20240320

Year of fee payment: 6