EP3512791B1 - Verfahren zur erkennung eines betretens einer aufzugkabine einer aufzuganlage durch einen passagier - Google Patents

Verfahren zur erkennung eines betretens einer aufzugkabine einer aufzuganlage durch einen passagier Download PDF

Info

Publication number
EP3512791B1
EP3512791B1 EP17758571.8A EP17758571A EP3512791B1 EP 3512791 B1 EP3512791 B1 EP 3512791B1 EP 17758571 A EP17758571 A EP 17758571A EP 3512791 B1 EP3512791 B1 EP 3512791B1
Authority
EP
European Patent Office
Prior art keywords
elevator car
measured values
passenger
pattern
mobile terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP17758571.8A
Other languages
English (en)
French (fr)
Other versions
EP3512791A1 (de
Inventor
Christian Studer
Martin KUSSEROW
Reto Tschuppert
Zack ZHU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56920602&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3512791(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Inventio AG filed Critical Inventio AG
Priority to PL17758571T priority Critical patent/PL3512791T3/pl
Publication of EP3512791A1 publication Critical patent/EP3512791A1/de
Application granted granted Critical
Publication of EP3512791B1 publication Critical patent/EP3512791B1/de
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3476Load weighing or car passenger counting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3492Position or motion detectors or driving means for the detector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0012Devices monitoring the users of the elevator system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0037Performance analysers

Definitions

  • the invention relates to a method for recognizing that a passenger has entered an elevator car of an elevator installation according to the preamble of claim 1.
  • the WO 2013/130040 A1 describes a method for monitoring the use of an elevator system.
  • the passengers in the elevator system are equipped with marking devices, so-called tags.
  • Readers are attached to shaft doors or in the elevator cabins of the elevator system, which can recognize whether and, if so, which tag is in their vicinity. It can thus also be recognized when a passenger enters an elevator car.
  • the reading devices forward the information to a traffic evaluation unit which, on the basis of this information, can monitor the use of the elevator system or record it for later analysis.
  • the procedure according to the WO 2013/130040 A1 requires one day per passenger and at least one reader per landing door or per elevator car.
  • the US 2014/330535 A1 describes a method for detecting a movement of a passenger in an elevator car.
  • a series of acceleration measurements is evaluated in order to identify the start and end of a journey in the elevator car.
  • the method is not suitable for recognizing that a passenger has entered an elevator car of an elevator installation.
  • the passenger is carrying a mobile terminal device.
  • the terminal has at least one, in particular however, it has several sensors with which the mobile device records and evaluates measured values. The recognition of entering the elevator car is then based on the stated measured values.
  • “Recognition of a passenger entering an elevator car of an elevator installation” is understood to mean that the point in time when the elevator car was entered is recognized. Entering the elevator car and thus the time of entering precedes a journey by the passenger in an elevator car or a movement and thus an acceleration of the passenger and the elevator car in the vertical direction. From the detection of a movement or acceleration of the passenger and the elevator car in the vertical direction, it is not possible to deduce the time of entering the elevator car. The period of time between entering the elevator car and the beginning of a journey by the passenger in the elevator car can be a few seconds or several minutes.
  • the information that a passenger is entering an elevator car with a mobile terminal device can be evaluated in a wide variety of ways or used further, or can trigger a wide variety of actions.
  • the terminal can for example pass on the information wirelessly to a traffic evaluation unit, which is then comparable with the traffic evaluation unit of the WO 2013/130040 A1 can analyze a traffic flow in the elevator system.
  • the terminal can, for example, also be brought into a predetermined mode, that is to say, for example, a specific program, a so-called app, started or the app brought into a predetermined state.
  • an app can be started that displays certain content or a game can be started, which enables interaction with other passengers in the elevator car.
  • the terminal device can record measured variables with its sensors during the upcoming elevator journey, which are to be evaluated for monitoring the elevator system. As soon as entry into an elevator car is recognized, the terminal device can be put into a measuring mode and thus made ready for a measurement.
  • An exit from an elevator car can also be recognized in an analogous manner. Exiting is basically the opposite of entering an elevator car.
  • the evaluation of the recorded data and thus the recognition of entering the elevator car is carried out in particular by the mobile terminal. It is also possible, however, for the recorded data to be transmitted to an evaluation device and for the evaluation device to detect entry into the elevator car. In this case, the evaluation of the data by the terminal is limited to forwarding the data to the evaluation device. In addition, it is possible that at least part of the evaluation is carried out both by the mobile terminal and by the evaluation device. This enables mutual monitoring and / or supplementation, which enables a very high hit probability for the detection of entry into an elevator car.
  • the mobile terminal can be designed, for example, as a mobile phone, a smartphone, a tablet computer, a smart watch, a so-called wearable, for example in the form of an electronic, smart textile, or as another portable terminal.
  • the sensor of the mobile terminal can be designed, for example, as a microphone, an acceleration sensor, a rotation rate sensor, a magnetic field sensor, a camera, a barometer, a brightness sensor, a humidity sensor or a carbon dioxide sensor.
  • the acceleration, yaw rate and magnetic field sensors are designed in particular as so-called three-dimensional or 3D sensors. Such sensors deliver three measured values in the x, y and z directions, the x, y and z directions being arranged perpendicular to one another.
  • the terminal has in particular several and in particular different types of sensors, that is to say for example a microphone, a three-dimensional acceleration sensor, a three-dimensional rotation rate sensor and a three-dimensional magnetic field sensor.
  • acceleration, yaw rate and magnetic field sensors are understood to mean three-dimensional acceleration, yaw rate and magnetic field sensors.
  • the passenger can carry the terminal with him in completely different orientations, so that in the first approach it is not clear how the acceleration, yaw rate or magnetic field sensors are oriented in space.
  • the vertical direction that is to say the absolute z-direction
  • the measured values of the acceleration, yaw rate and magnetic field sensors can be converted into values that are aligned along the absolute z-direction and absolute x- and y-directions.
  • the absolute x, y and z directions are each arranged perpendicular to one another.
  • the mobile terminal with the sensor or sensors detects measured values that characterize movements of the passenger and evaluates them.
  • the stated measured values are, in particular, accelerations, that is to say transverse accelerations and / or rotation rates, three accelerations and / or rotation rates being measured in the x, y and z directions in particular. From the measured values characterizing the movements of the passenger, conclusions can be drawn about the movements of the passenger, and it can be recognized from the movements of the passenger that the passenger is entering an elevator car. It is generally assumed that the passenger carries the terminal with him in such a way that the measured values measured by the terminal characterize not only the movements of the terminal but also of the passenger.
  • a movement pattern of the passenger is derived from the measured values and compared with at least one stored signal pattern.
  • the recognition of entering the elevator car then takes place on the basis of the comparison mentioned. Entering an elevator car can thus be recognized particularly reliably.
  • the mentioned stored signal patterns are movement patterns.
  • a movement pattern should be understood to mean, for example, a time sequence in particular of accelerations or rotation rates.
  • a movement pattern can also be described with a so-called feature or, in particular, with a plurality of features.
  • Such features can be, for example, statistical parameters such as mean values, standard deviations, minimum / maximum values or the results of a Fast Fourier analysis of the accelerations or rotation rates mentioned.
  • a movement pattern can also be referred to as a so-called feature vector.
  • the features mentioned can be determined in particular for individual time segments, with individual measured values being formed in particular based on values or progressions.
  • such a time segment can be characterized in that the passenger is not moving, that is to say, for example, waiting in front of the shaft door.
  • the passenger is not moving, that is to say, for example, waiting in front of the shaft door.
  • not just a single acceleration or rate of rotation is considered, but the combination of several accelerations and / or rates of rotation, in particular of three accelerations and rates of rotation.
  • a stored signal pattern can, for example, be characteristic of accelerations, rotation rates and / or magnetic fields or features when a person walks to a landing door, waiting in front of the landing door until the elevator car is available and access is possible, entering the elevator car and turning around in the direction of the car door contain.
  • the signal patterns can be created by specialists on the basis of their experience or, in particular, can be determined by one or more experiments.
  • methods of so-called machine learning are used to recognize or classify movement patterns. For example, a so-called support vector machine, a random forest algorithm or a deep learning algorithm can be used. These classification methods must first be trained. For this purpose, in experiments typical movement patterns for entering an elevator car, in particular based on the features mentioned, are generated and the algorithms mentioned are used for training Provided. After the algorithms have been trained with a sufficient number of training patterns, they can decide whether or not an unknown movement pattern indicates entering an elevator car. In this case the signal pattern is stored in the parameters of the algorithm.
  • the generation of the typical movement patterns for the training can be carried out by a passenger who uses the mobile terminal in daily use. He only has to mark the beginning and the end of entering an elevator car. It is also possible that, after the actual training has been completed, the passenger provides feedback as to whether entering an elevator car was not recognized or whether entering an elevator car was incorrectly recognized. This feedback can be used for further training of the algorithm. Since not all people move in the same way, e.g. turn around at different speeds, and waiting times vary in length, the measured movement pattern is compared not just with one signal pattern, but with a whole series of slightly different signal patterns.
  • the mobile terminal uses the sensor or sensors to record measured values that characterize activities of the elevator installation and to evaluate them.
  • Activities of the elevator system are to be understood here, for example, as movements of individual components of the elevator system, such as movements of the elevator car, a shaft door, a car door or a control of a door drive.
  • the terminal device detects in particular noises and / or magnetic fields, three magnetic fields in particular being measured in the x, y and z directions.
  • the changes in the measured magnetic fields can be caused, for example, by the activity of the door drive, which has an electric motor, and / or by the car and / or shaft door, which has ferromagnetic material. From the stated measured values it can be concluded, for example, that the car door of an elevator car has opened in front of a passenger and closed behind him.
  • an activity pattern of the elevator installation is derived from the measured values and compared with at least one stored signal pattern. The recognition of entering the elevator car is then based on the mentioned comparison. Entering an elevator car can thus be recognized particularly reliably.
  • the mentioned stored signal patterns are activity patterns.
  • an activity pattern should be understood to mean, for example, a time sequence in particular of measured noises and / or magnetic fields.
  • An activity pattern can also be described with a feature described in connection with movement patterns or, in particular, with a plurality of features. In particular, not only a single measurement of a magnetic field in one direction is considered, but the combination of several measurements of magnetic fields in several, in particular three, directions.
  • a signal pattern can describe, for example, a noise of a car door when opening or a noise when the elevator car drives into a floor or features derived therefrom.
  • the signal patterns can be created by specialists on the basis of their experience or, in particular, can be determined by one or more experiments. In order to determine the signal patterns, in particular methods of so-called machine learning can be used analogously to the above description in connection with movement patterns.
  • the signal patterns can also be divided into time segments and features can be determined individually for each segment.
  • the measured activity pattern is compared in particular not only with one signal pattern, but with a whole series of slightly different signal patterns.
  • the mobile terminal with the sensor detects measured values characteristic of the surroundings of the mobile terminal and evaluates them. For example, magnetic fields, air pressure, brightness, humidity or the carbon dioxide content of the air can be measured.
  • a property pattern of the elevator installation is derived from the measured values and compared with at least one stored signal pattern. The recognition of entering the elevator car is then based on the mentioned comparison. Entering an elevator car can thus be recognized particularly reliably.
  • the mentioned stored signal patterns are property patterns.
  • a property pattern should be understood to mean, for example, a chronological sequence of measured values which describe the surroundings of the terminal, that is to say in this case properties of the elevator system.
  • a property pattern can also be described with a feature described in connection with movement patterns or, in particular, with a plurality of features. In particular, not only the course of a single measurement of one of the properties mentioned is considered, but the combination of several measurements.
  • a signal pattern can describe, for example, the change in the magnetic field from outside to inside the elevator car or features derived therefrom. Changes in the magnetic field can for example be caused by different uses of ferromagnetic materials or different electrical components, such as coils outside and inside the elevator car. The ferromagnetic materials can themselves generate a magnetic field and / or influence the earth's magnetic field.
  • a signal pattern can, for example, describe the change in the CO2 content of the air from outside to inside the elevator car or features derived therefrom.
  • the CO2 content of the air increases due to the air exhaled by the passengers in the locked elevator car. This means that the CO2 content of the air in the cabin is generally higher than outside.
  • the CO2 content increases slowly during the journey, which means that a journey in an elevator car can be detected. This increase is a rather slow process, but it can be recognized during longer journeys.
  • a signal pattern can, for example, describe the change in humidity from outside to inside the elevator car or features derived therefrom. This increases slowly, analogous to the CO2 content inside the cabin, due to the exhaled air, so that the evaluation can proceed analogously to the CO2 content.
  • a signal pattern can, for example, describe the change in temperature from outside to inside the elevator car or features derived therefrom. Due to the heat given off by the passengers, the temperature rises slowly, so that the evaluation can run analogously to the CO2 content.
  • a signal pattern can, for example, describe the change in brightness from outside to inside the elevator car or features derived therefrom. It is usually less bright inside an elevator car than outside.
  • a signal pattern can describe, for example, the change in acoustics from outside to inside the elevator car or features derived therefrom. Since an elevator car is a comparatively narrow, closed space, the echo or the sound attenuation changes, for example. In particular, special test signals can be used to determine this change.
  • the signal patterns can be created by specialists on the basis of their experience or, in particular, can be determined by one or more experiments. In order to determine the signal patterns, analogous to the above description in connection with movement patterns, in particular methods of so-called machine learning can be used.
  • the signal patterns can also be divided into temporal segments and features can be determined individually for each section.
  • the measured property pattern is compared in particular not only with one signal pattern but with a whole series of slightly different signal patterns.
  • At least one of the mentioned stored signal patterns is changed, in particular all stored signal patterns are changed.
  • a learning process takes place through which the stored signal patterns are better and better adapted to the actual circumstances. This enables particularly precise detection of a passenger entering an elevator car.
  • a journey in an elevator car is recognized from the measured values measured by at least one of the sensors of the mobile terminal.
  • the movement, activity and / or property patterns recorded prior to the journey are compared with stored signal patterns and the stored signal patterns are adapted on the basis of the comparison.
  • the stored signal patterns are changed in the direction of the movement, activity and / or property patterns recorded before the journey.
  • the so-called machine learning methods described above can be used. This enables particularly effective learning and thus also particularly precise detection of a passenger entering an elevator car.
  • an exit from the elevator car can also be detected with a very high probability of being hit.
  • This movement can be detected, for example, by means of the acceleration sensor.
  • the resultant vector of the accelerations in the x, y and z directions described above can also be used.
  • a journey in an elevator car has a characteristic course of the acceleration in the vertical direction.
  • the elevator car is first accelerated up or down, then mostly travels for a while at a quasi constant speed and is then braked to a standstill.
  • This acceleration profile can be recognized with high accuracy in the measured values of one or more acceleration sensors of the mobile terminal. In this way, reliable detection of a journey by the passenger and thus by the mobile terminal in an elevator car is possible. Based on this reliable detection, a reliable adaptation of the stored signal pattern is possible, which ultimately leads to a particularly reliable detection of the entry of a passenger into an elevator car.
  • the air pressure measured by a barometer can also be evaluated to detect a journey in an elevator car. Driving in the vertical direction results in a change in the air pressure, the gradient of the change being significantly greater in terms of amount than when climbing stairs or with weather-related changes in air pressure.
  • an elevator system 10 has an elevator car 11 which can be moved up and down in an elevator shaft 12 in the vertical direction 13.
  • the elevator car 11 is connected to a counterweight 16 via a flexible suspension element 14 and a drive roller 15 of a drive (not shown).
  • the drive can move the elevator car 11 and the counterweight 16 up and down in opposite directions via the drive roller 15 and the suspension element 14.
  • the elevator shaft 12 has three shaft openings 17a, 17b, 17c and thus three floors, which are closed with shaft doors 18a, 18b, 18c.
  • the elevator car 11 is located at the shaft opening 17a, that is to say on the lowest floor.
  • the corresponding shaft door 18a, 18b, 18c can be opened together with a car door 19, thus making it possible to enter the elevator car 11.
  • door segments (not shown) are pushed on laterally, so that the door segments are shifted to the side.
  • the car door 19 and the corresponding shaft door 18a, 18b, 18c are operated by a door drive 20 which is controlled by a door control unit 21.
  • the door control unit 21 is in signal connection with an elevator control unit 22, which controls the entire elevator installation 10.
  • the elevator control unit 22 controls, for example, the drive and can thus move the elevator car 11 to a desired floor. It can also, for example, send the door control unit 21 a request to open the car door 19 and the corresponding shaft door 18a, 18b, 18c, which the door control unit 21 then executes by means of a corresponding activation of the door drive 20.
  • the mobile phone 24 On the lowest floor, that is to say in front of the shaft door 18a, there is a passenger 23 who is carrying a mobile terminal in the form of a cell phone 24 with him.
  • the mobile phone 24 has several sensors, of which only one microphone 25 is shown.
  • the mobile phone 24 also has three-dimensional acceleration, yaw rate and magnetic field sensors, which can detect measured values in the x, y and z directions.
  • the measured values recorded by the acceleration, yaw rate and magnetic field sensors can be converted in a simple manner into values relating to absolute x, y and z directions. All of the following statements about accelerations, rotation rates or magnetic field strengths thus relate to measured values converted in this way and statements about x, y and z directions on absolute x, y and z directions.
  • the mobile phone 24 continuously records measured values and evaluates them.
  • the mobile phone 24 detects, for example, the rotation rates about the x, y and z axes. These measured rates of rotation characterize not only movements of the mobile phone 24, but also movements of the passenger 23. Measured values are continuously recorded and, by combining the individual measured values of the various acceleration sensors, continuous ones Movement patterns of the passenger 23 generated. The measured values are filtered in particular by means of a low-pass filter. In this case, the named movement pattern thus contains the courses of the rotation rates around the x, y and z axes.
  • the mobile phone 24 compares the continuous movement pattern thus generated with stored signal patterns which are typical of a movement pattern when entering an elevator car 11. In order to be able to carry out the comparison, features in the form of mean values, standard deviations and minimum / maximum values of the individual rotation rates or time segments of the rotation rates are determined and compared with stored values. If the differences between the features of the measured profiles and the stored features are smaller than definable threshold values, then sufficient correspondence between a movement pattern and a stored signal pattern is recognized. The mobile phone 24 concludes from this that the passenger 23 has entered the elevator car 11. The mobile phone 24 can use this information in very different ways. In this example, it is supposed to switch to a measurement mode in which it is ready for measurements during the upcoming journey in the elevator car 11 for monitoring the elevator installation 10. The measurements are only started at a later point in time.
  • the comparison between a measured movement pattern and a stored signal pattern and thus the detection or classification of movement patterns can also be carried out using methods of so-called machine learning.
  • machine learning For example, a so-called support vector machine, a random forest algorithm or a deep learning algorithm can be used.
  • the transverse accelerations in the x, y and z directions can also be taken into account, so that the movement pattern also contains the progressions of the accelerations in the x, y and z directions.
  • the mobile phone does not carry out the detection of entry into an elevator car completely on its own, but rather transmits the recorded data to an evaluation device.
  • the detection of entry into the elevator car is then carried out by the evaluation device.
  • the evaluation device sends a corresponding signal to the mobile phone.
  • a measured movement pattern and a stored signal pattern are shown over time, with in Fig. 2a the rotation rates ⁇ about the x-axis, in Figure 2b around the y-axis and in Figure 2c is shown around the z-axis.
  • the measured rate of rotation is shown with a solid line and the saved rate of rotation of the signal pattern is shown with a dashed line.
  • the solid lines 26a, 26b, 26c therefore represent the measured rates of rotation and the dashed lines 27a, 27b, 27c the stored rates of rotation about the x, y and z axes.
  • the measured values are shown smoothed.
  • the stored signal pattern (dashed lines 27a, 27b, 27c) contains typical curves of rotation rates as they occur when entering an elevator car. From the point in time t0 to the point in time t1, the passenger runs towards the shaft door in order to stop at point in time t1 and wait until point in time t2 for the shaft and car door to be opened. There are virtually no rotation rates. From the point in time t2 the passenger enters the elevator car and then turns around in the direction of the car door. This reversal primarily leads to a clear deflection of the rotation rates around the z-axis (line 27c), with a brief undershoot occurring in the opposite direction at the beginning and at the end of the deflection.
  • the measured movement pattern (solid lines 26a, 26b, 26c) follows the stored signal pattern very precisely.
  • the comparison of the movement patterns with stored signal patterns proceeds as described above. On the basis of this correspondence, the mobile phone concludes that the passenger has entered the elevator car.
  • the measured movement pattern is compared in particular not only with one signal pattern, but with a whole series of slightly different signal patterns.
  • the accelerations in the x, y and z directions can also be taken into account in a comparable manner. This makes it easier to identify walking in the direction of the shaft door and into the elevator car, as well as waiting in front of and in the elevator car.
  • the mobile phone 24 detects the magnetic field strength in the x, y and z directions, in particular with the three-dimensional magnetic field sensor.
  • the measured values thus identify a property of the elevator system. It is very difficult to infer from measured values at a single point in time that the mobile phone and thus the passenger is in an elevator car. For this reason, a property pattern is created from the temporal progressions of the three field strengths, with the measured values being filtered in particular by means of a low-pass filter.
  • the mobile phone 24 compares the continuous property pattern thus generated with stored signal patterns which are typical of a property pattern when entering an elevator car 11. If sufficient correspondence between a movement pattern and a stored signal pattern is detected, the mobile phone 24 concludes from this that the passenger 23 has entered the elevator car 11. The comparison of the movement patterns with stored signal patterns proceeds as described above.
  • a measured property pattern and a stored signal pattern are shown over time, where in Fig. 3a the magnetic field strength H in the x-direction, in Figure 3b in y-direction and in Figure 3c are shown in the z-direction.
  • the measured field strengths are each shown with a solid line and the stored field strengths of the signal pattern are each shown with a dashed line.
  • the solid lines 28a, 28b, 28c thus represent the measured field strengths and the dashed lines 29a, 29b, 29c the stored field strengths in the x, y and z directions.
  • the measured values are shown smoothed.
  • the stored signal pattern (dashed lines 29a, 29b, 29c) contains typical curves of field strengths as they occur when entering an elevator car. Shortly before to shortly after time t2, at which the passenger enters the elevator car, a significant increase can be seen in the field strengths in the y and z directions, while the field strength in the x direction remains virtually unchanged for the entire time. The change in field strengths is due in particular to the use of ferromagnetic materials in the elevator car. As in the Figures 3a, 3b and 3c As can be seen, the measured property pattern (solid lines 28a, 28b, 28c) follows this very precisely stored signal pattern. This correspondence is a further indication for the mobile phone that the passenger has entered the elevator car.
  • the comparison of the property pattern with stored signal patterns runs analogously to the comparison of the movement patterns with stored signal patterns described above.
  • the measured property pattern is compared in particular not only with one signal pattern but with a whole series of slightly different signal patterns.
  • a further increase in the reliability of the recognition of entry into an elevator car can be achieved by additionally taking into account measured values which characterize an activity of the elevator installation.
  • an activity pattern can be derived from the magnetic field strengths described above, which is compared with a signal pattern that is typical for the opening of the car and shaft door.
  • Another possibility is to derive an activity pattern from the noise measured with the microphone and to compare this with a signal pattern that is typical for opening the car and landing door.
  • a sufficient correspondence between the measured activity patterns and a stored signal pattern can in turn be assessed as an indication that the passenger has entered an elevator car.
  • the mobile phone can be designed in such a way that it already recognizes entry into an elevator car if there is a single sufficient match of a movement pattern, a property pattern or an activity pattern with a stored signal pattern. But it is also possible that entry is only recognized when there are at least two, three or more matches.
  • the stored signal patterns can be adapted.
  • the method can be adapted in particular to the behavior of the owner of the cell phone.
  • the mobile phone recognizes, in particular, a journey in an elevator car. This can be recognized very reliably by monitoring the acceleration in the z direction and thus in the vertical direction 13.
  • a curve of the acceleration a in the z-direction upwards is shown by way of example with the line 30, the acceleration due to gravity not being taken into account.
  • the elevator car 11 and thus also the passenger 23 with his mobile phone 24 are accelerated with an almost constant acceleration from time t4. Shortly before the desired speed of the elevator car 11 is reached, the acceleration drops in order to reach the zero line at time t5.
  • the elevator car 11 then travels at a constant speed up to the point in time t6, in order then to be braked with a quasi constant negative acceleration up to the point in time t7.
  • This typical course with acceleration in the vertical direction, constant travel and braking to a standstill can be seen very well in the measured values.
  • the movement, activity and / or property patterns recorded prior to the journey are compared with stored signal patterns and, on the basis of the comparison, the stored signal patterns are adapted using machine learning methods.
  • the stored signal patterns are changed in the direction of the movement, activity and / or property patterns recorded before the journey.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Engineering (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Erkennung eines Betretens einer Aufzugkabine einer Aufzuganlage durch einen Passagier gemäss dem Oberbegriff des Anspruchs 1.
  • Die WO 2013/130040 A1 beschreibt ein Verfahren zur Überwachung einer Benutzung einer Aufzuganlage. Bei diesem Verfahren sind die Passagiere der Aufzuganlage mit Markierungsgeräten, so genannten Tags ausgerüstet. An Schachttüren oder in Aufzugkabinen der Aufzuganlage sind Lesegeräte angebracht, welche erkennen können, ob und wenn ja, welcher Tag sich in ihrer Nähe befindet. Damit kann auch erkannt werden, wenn ein Passagier eine Aufzugskabine betritt. Die Lesegeräte leiten die Information an eine Verkehrs-Auswerteeinheit weiter, welche auf Basis dieser Informationen die Benutzung der Aufzuganlage überwachen oder für eine spätere Analyse aufzeichnen kann. Das Verfahren gemäss der WO 2013/130040 A1 benötigt also pro Passagier einen Tag und pro Schachttür oder pro Aufzugkabine wenigstens ein Lesegerät.
  • Die US 2014/330535 A1 beschreibt ein Verfahren zur Erkennung einer Bewegung eines Passagiers in einer Aufzugkabine. Bei dem Verfahren wird eine Reihe von Beschleunigungsmessungen ausgewertet, um einen Start und ein Ende einer Fahrt der Aufzugkabine zu erkennen. Das Verfahren ist aber nicht geeignet, um ein Betreten einer Aufzugkabine einer Aufzuganlage durch einen Passagier zu erkennen.
  • Demgegenüber ist es insbesondere die Aufgabe der Erfindung, ein Verfahren vorzuschlagen, mittels welchem mit möglichst wenig zusätzlicher Hardware und damit möglichst kostengünstig ein Betreten einer Aufzugkabine durch einen Passagier erkannt werden kann. Erfindungsgemäss wird diese Aufgabe mit einem Verfahren mit den Merkmalen des Anspruchs 1 gelöst.
  • Beim erfindungsgemässen Verfahren zur Erkennung eines Betretens einer Aufzugkabine einer Aufzuganlage durch einen Passagier wird davon ausgegangen, dass der Passagier ein mobiles Endgerät mit sich führt. Das Endgerät weist mindestens einen, insbesondere aber mehrere Sensoren auf, mit denen das mobile Endgerät Messwerte erfasst und auswertet. Die Erkennung des Betretens der Aufzugkabine erfolgt dann auf Basis der genannten Messwerte.
  • Unter einer "Erkennung eines Betretens einer Aufzugkabine einer Aufzuganlage durch einen Passagier" wird verstanden, dass der Zeitpunkt des Betretens der Aufzugkabine erkannt wird. Das Betreten der Aufzugkabine und damit der Zeitpunkt des Betretens ist einer Fahrt des Passagiers in einer Aufzugkabine bzw. einer Bewegung und damit einer Beschleunigung des Passagiers und der Aufzugkabine in vertikaler Richtung zeitlich vorgelagert. Aus der Erkennung einer Bewegung oder Beschleunigung des Passagiers und der Aufzugkabine in vertikaler Richtung kann nicht auf den Zeitpunkt des Betretens der Aufzugkabine geschlossen werden. Der Zeitraum zwischen Betreten der Aufzugkabine und Beginn einer Fahrt des Passagiers in der Aufzugkabine kann einige Sekunden oder mehrere Minuten betragen.
  • In der heutigen Zeit führen sehr viele Menschen und damit auch viele Passagiere einer Aufzuganlage ein mobiles Endgerät mit Sensoren, beispielsweise in Form eines Mobiltelefons oder Smartphones mit sich. Durch die Nutzung dieser sowieso mitgeführten Endgeräte ist für die Durchführung des Verfahrens keine zusätzliche Hardware notwendig, die nur für die Ausführung des Verfahrens notwendig wäre. Zusätzliche Hardware kann allenfalls notwendig sein, wenn die durch das erfindungsgemässe Verfahren generierte Information über das Betreten einer Aufzugkabine weitergehend ausgewertet werden soll. Das erfindungsgemässe Verfahren ist damit kostengünstig ausführbar.
  • Die Information, dass ein Passagier mit einem mobilen Endgerät eine Aufzugkabine betritt, kann auf unterschiedlichste Weise ausgewertet oder weitergehend verwendet werden, beziehungsweise unterschiedlichste Aktionen auslösen. Das Endgerät kann die Information beispielsweise insbesondere drahtlos an eine Verkehrs-Auswerteeinheit weitergeben, welche dann vergleichbar mit der Verkehrs-Auswerteeinheit der WO 2013/130040 A1 einen Verkehrsfluss in der Aufzuganlage analysieren kann. Das Endgerät kann beispielsweise auch in einen vorbestimmten Modus gebracht werden, also beispielsweise ein bestimmtes Programm, eine so genannte App gestartet oder die App in einen vorbestimmten Zustand gebracht werden. Beispielsweise kann eine App gestartet werden, die bestimmte Inhalte anzeigt oder ein Spiel kann gestartet werden, welches ein Zusammenspielen mit anderen Passagieren in der Aufzugkabine ermöglicht. Ausserdem ist es möglich, dass das Endgerät während der bevorstehenden Aufzugfahrt mit seinen Sensoren Messgrössen aufzeichnen soll, die zur Überwachung der Aufzuganlage ausgewertet werden sollen. Sobald ein Betreten einer Aufzugkabine erkannt wird, kann das Endgerät in einen Messmodus gebracht und so für eine Messung bereitgemacht werden.
  • Auf analoge Weise kann auch ein Verlassen einer Aufzugkabine erkannt werden. Das Verlassen läuft grundsätzlich umgekehrt ab wie das Betreten einer Aufzugkabine.
  • Die Auswertung der erfassten Daten und damit die Erkennung eines Betretens der Aufzugkabine wird insbesondere vom mobilen Endgerät durchgeführt. Es ist aber auch möglich, dass die erfassten Daten an eine Auswerteeinrichtung übertragen werden und die Erkennung eines Betretens der Aufzugkabine von der Auswerteeinrichtung durchgeführt wird. In diesem Fall beschränkt sich die Auswertung der Daten durch das Endgerät auf die Weiterleitung der Daten an die Auswerteeinrichtung. Ausserdem ist es möglich, dass zumindest ein Teil der Auswertung sowohl vom mobilen Endgerät, als auch von der Auswerteeinrichtung ausgeführt wird. Damit ist eine gegenseitige Kontrolle und/oder Ergänzung möglich, was eine sehr hohe Trefferwahrscheinlichkeit für das Erkennen eines Betretens einer Aufzugkabine ermöglicht.
  • Das mobile Endgerät kann beispielsweise als ein Mobiltelefon, ein Smartphone, ein Tablet-Computer, eine Smartwatch, ein so genanntes Wearable beispielsweise in Form eines elektronischen, smarten Textils oder als ein sonstiges tragbares Endgerät ausgeführt sein. Der Sensor des mobilen Endgeräts kann beispielsweise als ein Mikrofon, ein Beschleunigungssensor, ein Drehratensensor, ein Magnetfeldsensor, eine Kamera, ein Barometer, ein Helligkeitssensor, ein Luftfeuchtigkeitssensor oder ein Kohlendioxid-Sensor ausgeführt sein. Die Beschleunigungs-, Drehraten- und Magnetfeldsensoren sind insbesondere als so genannte dreidimensionale oder 3D-Sensoren ausgeführt. Derartige Sensoren liefern drei Messwerte in x-, y- und z-Richtung, wobei die x-, y- und z-Richtungen senkrecht zueinander angeordnet sind. Das Endgerät verfügt insbesondere über mehrere und im speziellen über unterschiedliche Arten von Sensoren, also beispielsweise über ein Mikrofon, einen dreidimensionalen Beschleunigungssensor, einen dreidimensionalen Drehratensensor und einen dreidimensionalen Magnetfeldsensor. Im Folgenden werden unter Beschleunigungs-, Drehraten- und Magnetfeldsensoren dreidimensionale Beschleunigungs-, Drehraten- und Magnetfeldsensoren verstanden.
  • Der Passagier kann das Endgerät in völlig unterschiedlichen Ausrichtungen mit sich führen, so dass im ersten Ansatz nicht klar ist, wie die Beschleunigungs-, Drehraten- oder Magnetfeldsensoren im Raum ausgerichtet sind. Da aber immer die Erdbeschleunigung gemessen wird, kann, zumindest wenn der Passagier sich nicht bewegt, aus dieser die Vertikalrichtung, also die absolute z-Richtung eindeutig bestimmt werden. Mit Kenntnis der absoluten z-Richtung lassen sich die Messwerte der Beschleunigungs- und Drehraten- und Magnetfeldsensoren in Werte umrechnen, die entlang der absoluten z-Richtung und absoluten x- und y-Richtungen ausgerichtet sind. Die absoluten x-, y- und z- Richtungen sind dabei jeweils senkrecht zueinander angeordnet. Alle folgenden Aussagen zu Beschleunigungen, Drehraten oder Magnetfeldstärken beziehen sich auf in dieser Weise umgerechnete Messwerte und Aussagen zu x-, y- und z-Richtungen auf absolute x-, y- und z-Richtungen. Statt der Bestimmung der Werte in absoluten x-, y- und z-Richtungen können die drei Messwerte als Vektoren betrachtet und aus den einzelnen Vektoren ein resultierender Vektor gebildet werden. Anstatt die drei einzelnen Messwerte zu verwenden, kann auch der resultierende Vektor verwendet werden.
  • In Ausgestaltung der Erfindung erfasst das mobile Endgerät mit dem oder den Sensoren Bewegungen des Passagiers kennzeichnende Messwerte und wertet diese aus. Bei den genannten Messwerten handelt es sich insbesondere um Beschleunigungen, also transversale Beschleunigungen und/oder Drehraten, wobei im speziellen jeweils drei Beschleunigungen und/oder Drehraten in x-, y- und z-Richtung gemessen werden. Aus den Bewegungen des Passagiers kennzeichnenden Messwerten kann auf die Bewegungen des Passagiers geschlossen werden und aus den Bewegungen des Passagiers kann erkannt werden, dass der Passagier eine Aufzugkabine betritt. Dabei wird grundsätzlich davon ausgegangen, dass der Passagier das Endgerät so mit sich führt, dass die vom Endgerät gemessenen Messwerte nicht nur die Bewegungen des Endgeräts, sondern auch des Passagiers kennzeichnen.
  • In Ausgestaltung der Erfindung wird aus den Messwerten ein Bewegungsmuster des Passagiers abgeleitet und mit wenigstens einem gespeicherten Signalmuster verglichen.
  • Die Erkennung des Betretens der Aufzugkabine erfolgt dann auf Basis des genannten Vergleichs. Damit kann besonders zuverlässig ein Betreten einer Aufzugkabine erkannt werden.
  • Bei den genannten gespeicherten Signalmustern handelt es sich in diesem Fall um Bewegungsmuster. In diesem Zusammenhang soll unter einem Bewegungsmuster beispielsweise eine zeitliche Abfolge insbesondere von Beschleunigungen oder Drehratenverstanden werden. Ein Bewegungsmuster kann auch mit einem so genannten Merkmal oder insbesondere mehreren Merkmalen beschrieben werden. Derartige Merkmale können beispielsweise statistische Kenngrössen wie Mittelwerte, Standardabweichungen, Minimal- / Maximalwerte oder Ergebnisse einer Fast Fourier Analyse der genannten Beschleunigungen oder Drehraten sein. Ein Bewegungsmuster kann in diesem Fall auch als ein so genannter Merkmalsvektor bezeichnet werden. Die genannten Merkmale können insbesondere für einzelne zeitliche Abschnitte bestimmt werden, wobei insbesondere basierend auf Werten oder Verläufen einzelner Messwerte gebildet werden. Beispielsweise kann ein derartiger zeitlicher Abschnitt dadurch gekennzeichnet sein, dass sich der Passagier nicht bewegt, er also beispielsweise vor der Schachttür wartet. Insbesondere wird nicht nur eine einzige Beschleunigung oder Drehrate betrachtet, sondern die Kombination von mehreren Beschleunigungen und/oder Drehraten, im speziellen von jeweils drei Beschleunigungen und Drehraten.
  • Ein gespeichertes Signalmuster kann beispielsweise charakteristische Verläufe von Beschleunigungen, Drehraten und/oder Magnetfelder oder Merkmale beim Gehen einer Person zu einer Schachttür, Warten vor der Schachttür bis die Aufzugkabine zur Verfügung steht und der Zutritt möglich ist, Eintreten in die Aufzugkabine und Umdrehen in Richtung Kabinentür enthalten. Die Signalmuster können von Spezialisten auf Grund ihrer Erfahrung erstellt oder insbesondere durch einen oder mehrere Versuche bestimmt werden. Zur Erkennung oder Klassifizierung von Bewegungsmustern werden insbesondere Methoden des so genannten maschinellen Lernens eingesetzt. Beispielsweise kann eine so genannte Support Vector Machine, ein Random Forest Algorithmus oder ein Deep Learning Algorithmus verwendet werden. Diese Klassifikationsverfahren müssen zunächst trainiert werden. Dazu werden in Versuchen für das Betreten einer Aufzugkabine typische Bewegungsmuster, insbesondere basierend auf den genannten Merkmalen, erzeugt und den genannten Algorithmen zum Training zur Verfügung gestellt. Nachdem die Algorithmen mit einer ausreichenden Anzahl von Trainingsmustern trainiert worden sind, können sie entscheiden, ob ein unbekanntes Bewegungsmuster ein Betreten einer Aufzugkabine kennzeichnet oder nicht. In diesem Fall ist das Signalmuster in den Parametern des Algorithmus gespeichert.
  • Die Erzeugung der typischen Bewegungsmuster für das Training kann von einem Passagier durchgeführt werden, der das mobile Endgerät im täglichen Gebrauch benutzt. Er muss dazu lediglich den Beginn und das Ende des Betretens einer Aufzugkabine kennzeichnen. Es ist auch möglich, dass nach Abschluss des eigentlichen Trainings der Passagier eine Rückmeldung gibt, ob ein Betreten einer Aufzugkabine nicht erkannt oder fälschlicherweise ein Betreten einer Aufzugkabine erkannt wurde. Diese Rückmeldungen können zum weiteren Training des Algorithmus genutzt werden.
    Da sich nicht alle Personen auf die gleiche Weise bewegen, also sich beispielsweise unterschiedlich schnell umdrehen, und beispielsweise Wartezeiten unterschiedlich lange sind, wird das gemessene Bewegungsmuster insbesondere nicht nur mit einem Signalmuster, sondern mit einer ganzen Reihe, leicht unterschiedlicher Signalmuster verglichen.
  • In Ausgestaltung der Erfindung erfasst das mobile Endgerät mit dem oder den Sensoren Aktivitäten der Aufzuganlage kennzeichnende Messwerte und wertet diese aus. Unter Aktivitäten der Aufzuganlage sollen hier beispielsweise Bewegungen einzelner Komponenten der Aufzuganlage, wie beispielsweise Bewegungen der Aufzugkabine, einer Schachttür, einer Kabinentür oder eine Ansteuerung eines Türantriebs verstanden werden. Das Endgerät erfasst insbesondere Geräusche und/oder Magnetfelder, wobei im speziellen drei Magnetfelder in x-, y- und z-Richtung gemessen werden. Die Änderungen der gemessenen Magnetfelder können beispielsweise durch die Aktivität des einen Elektromotor aufweisenden Türantriebs und/oder durch die ferromagnetisches Material aufweisende Kabinen- und/oder Schachttür hervorgerufen werden. Aus den genannten Messwerten kann beispielsweise geschlossen werden, dass sich die Kabinentür einer Aufzugkabine vor einem Passagier geöffnet und hinter ihm geschlossen hat.
  • In Ausgestaltung der Erfindung wird aus den Messwerten ein Aktivitätsmuster der Aufzuganlage abgeleitet und mit wenigstens einem gespeicherten Signalmuster verglichen. Die Erkennung des Betretens der Aufzugkabine erfolgt dann auf Basis des genannten Vergleichs. Damit kann besonders zuverlässig ein Betreten einer Aufzugkabine erkannt werden.
  • Bei den genannten gespeicherten Signalmustern handelt es sich in diesem Fall um Aktivitätsmuster. In diesem Zusammenhang soll unter einem Aktivitätsmuster beispielsweise eine zeitliche Abfolge insbesondere von gemessenen Geräuschen und/oder Magnetfeldern verstanden werden. Ein Aktivitätsmuster kann auch mit einem im Zusammenhang mit Bewegungsmustern beschriebenen Merkmal oder insbesondere mehreren Merkmalen beschrieben werden. Insbesondere wird nicht nur eine einzige Messung eines Magnetfelds in einer Richtung betrachtet, sondern die Kombination von mehreren Messungen von Magnetfeldern in mehreren, insbesondere drei Richtungen.
  • Ein Signalmuster kann beispielsweise ein Geräusch einer Kabinentür beim Öffnen oder ein Geräusch beim Einfahren der Aufzugkabine auf ein Stockwerk oder daraus abgeleitete Merkmale beschreiben. Die Signalmuster können von Spezialisten auf Grund ihrer Erfahrung erstellt oder insbesondere durch einen oder mehrere Versuche bestimmt werden. Zur Bestimmung der Signalmuster können analog zur obigen Beschreibung im Zusammenhang mit Bewegungsmustern insbesondere Verfahren des so genannten maschinellen Lernens angewandt werden. Die Signalmuster können ebenfalls in zeitliche Abschnitte aufgeteilt und für jeden Abschnitt einzeln Merkmale bestimmt werden.
  • Da gleichartige Aktivitäten von Aufzügen, wie beispielsweise das Öffnen der Kabinentür, variieren können, also beispielsweise unterschiedlich lange dauern, wird das gemessene Aktivitätsmuster insbesondere nicht nur mit einem Signalmuster, sondern mit einer ganzen Reihe, leicht unterschiedlicher Signalmuster verglichen.
  • In Ausgestaltung der Erfindung erfasst das mobile Endgerät mit dem Sensor Eigenschaften der Umgebung des mobilen Endgeräts kennzeichnende Messwerte und auswertet diese aus. Es können beispielsweise Magnetfelder, der Luftdruck, die Helligkeit, die Luftfeuchtigkeit oder ein Kohlendioxidgehalt der Luft gemessen werden.
  • In Ausgestaltung der Erfindung wird aus den Messwerten ein Eigenschaftsmuster der Aufzuganlage abgeleitet und mit wenigstens einem gespeicherten Signalmuster verglichen. Die Erkennung des Betretens der Aufzugkabine erfolgt dann auf Basis des genannten Vergleichs. Damit kann besonders zuverlässig ein Betreten einer Aufzugkabine erkannt werden.
  • Bei den genannten gespeicherten Signalmustern handelt es sich in diesem Fall um Eigenschaftsmuster. In diesem Zusammenhang soll unter einem Eigenschaftsmuster beispielsweise eine zeitliche Abfolge von Messwerten verstanden werden, die die Umgebung des Endgeräts, also in diesem Fall Eigenschaften der Aufzuganlage beschreiben. Ein Eigenschaftsmuster kann auch mit einem im Zusammenhang mit Bewegungsmustern beschriebenen Merkmal oder insbesondere mehreren Merkmalen beschrieben werden. Insbesondere wird nicht nur der Verlauf einer einzigen Messung einer der genannten Eigenschaften betrachtet, sondern die Kombination von mehreren Messungen.
  • Ein Signalmuster kann beispielsweise die Änderung des Magnetfelds von ausserhalb nach innerhalb der Aufzugkabine oder daraus abgeleitete Merkmale beschreiben. Änderungen des Magnetfelds können beispielsweise durch unterschiedliche Verwendung ferromagnetischer Materialien oder unterschiedlicher elektrischer Bauteile, wie beispielsweise Spulen ausserhalb und innerhalb der Aufzugkabine hervorgerufen werden. Die ferromagnetischen Materialien können selbst ein Magnetfeld erzeugen und/oder das Erdmagnetfeld beeinflussen.
  • Ein Signalmuster kann beispielsweise die Änderung des CO2-Gehalts der Luft von ausserhalb nach innerhalb der Aufzugkabine oder daraus abgeleitete Merkmale beschreiben. Der CO2-Gehalt der Luft steigt durch die von den Passagieren in der abgeschlossenen Aufzugkabine ausgeatmete Luft an. Damit ist im allgemeinen der CO2-Gehalt der Luft in der Kabine höher als ausserhalb. Zusätzlich steigt der CO2-Gehalt während der Fahrt langsam an, womit eine Fahrt in einer Aufzugkabine erkannt werden kann. Dieser Anstieg ist zwar ein eher langsamer Prozess, der aber bei längeren Fahrten erkannt werden kann.
  • Ein Signalmuster kann beispielsweise die Änderung der Luftfeuchtigkeit von ausserhalb nach innerhalb der Aufzugkabine oder daraus abgeleitete Merkmale beschreiben. Diese steigt analog zum CO2-Gehalt innerhalb der Kabine durch die ausgeatmete Luft langsam an, so dass die Auswertung analog zum CO2-Gehalt ablaufen kann.
  • Ein Signalmuster kann beispielsweise die Änderung der Temperatur von ausserhalb nach innerhalb der Aufzugkabine oder daraus abgeleitete Merkmale beschreiben. Durch die von den Passagieren abgegebene Wärme steigt die Temperatur langsam an, so dass die Auswertung analog zum CO2-Gehalt ablaufen kann.
  • Ein Signalmuster kann beispielsweise die Änderung der Helligkeit von ausserhalb nach innerhalb der Aufzugkabine oder daraus abgeleitete Merkmale beschreiben. Innerhalb einer Aufzugkabine ist es in der Regel weniger hell als ausserhalb.
  • Ein Signalmuster kann beispielsweise die Änderung der Akustik von ausserhalb nach innerhalb der Aufzugkabine oder daraus abgeleitete Merkmale beschreiben. Da es sich bei einer Aufzugkabine um einen vergleichsweise engen, abgeschlossenen Raum handelt, ändert sich beispielsweise das Echo oder die Schalldämpfung. Zur Ermittlung dieser Änderung können insbesondere spezielle Testsignale verwendet werden.
  • Die Signalmuster können von Spezialisten auf Grund ihrer Erfahrung erstellt oder insbesondere durch einen oder mehrere Versuche bestimmt werden. Zur Bestimmung der Signalmuster können analog zur obigen Beschreibung im Zusammenhang mit Bewegungsmustern insbesondere Verfahren des so genannten maschinellen Lernens angewandt werden Die Signalmuster können ebenfalls in zeitliche Anschnitte aufgeteilt und für jeden Abschnitt einzeln Merkmale bestimmt werden.
  • Da nicht alle Aufzuganlagen identische Eigenschaftsmuster aufweisen, sondern diese variieren können, wird das gemessene Eigenschaftsmuster insbesondere nicht nur mit einem Signalmuster, sondern mit einer ganzen Reihe, leicht unterschiedlicher Signalmuster verglichen.
  • Für die Erkennung eines Betretens einer Aufzugkabine werden insbesondere nicht nur jeweils einzeln Bewegungen des Passagiers kennzeichnende Messwerte, Aktivitäten der Aufzuganlage kennzeichnende Messwerte oder Eigenschaften der Aufzuganlage kennzeichnende Messwerte erfasst und ausgewertet, sondern eine Kombination dieser verschiedenen Arten von Messwerten. Damit kann besonders zuverlässig ein Betreten einer Aufzugkabine erkannt werden.
  • In Ausgestaltung der Erfindung wird wenigstens eines der genannten gespeicherten Signalmuster verändert, insbesondere werden alle gespeicherten Signalmuster verändert. Es findet also ein Lernvorgang statt, durch den die gespeicherten Signalmuster immer besser an die tatsächlichen Begebenheiten angepasst werden. Damit ist eine besonders genaue Erkennung eines Betretens einer Aufzugkabine durch einen Passagier möglich.
  • Insbesondere wird aus den von wenigstens einem der Sensoren des mobilen Endgeräts gemessenen Messwerten eine Fahrt in einer Aufzugkabine erkannt. Sobald eine Fahrt in einer Aufzugkabine erkannt wurde, werden vor der Fahrt erfasste Bewegungs-, Aktivitäts- und/oder Eigenschaftsmuster mit gespeicherten Signalmustern verglichen und auf Basis des Vergleichs die gespeicherten Signalmuster angepasst. Insbesondere werden die gespeicherten Signalmuster in Richtung der vor der Fahrt erfassten Bewegungs-, Aktivitäts- und/oder Eigenschaftsmuster verändert. Dabei können insbesondere die oben beschriebenen Verfahren des so genannten maschinellen Lernens angewandt werden. Damit ist ein besonders effektives Lernen und somit auch eine besonders genaue Erkennung eines Betretens einer Aufzugkabine durch einen Passagier möglich.
  • Wenn eine Fahrt in einer Aufzugkabine erkannt wurde, kann auch mit einer sehr hohen Trefferwahrscheinlichkeit ein Verlassen der Aufzugkabine erkannt werden. Sobald sich der Passagier quer zur vertikalen Richtung, also entweder in x- und/oder y- Richtung signifikant fortbewegt, kann von einem Verlassen der Aufzugkabine ausgegangen werden. Diese Bewegung kann beispielsweise mittels des Beschleunigungssensors erkannt werden. Alternativ zur Erkennung einer Bewegung in x-/y-Richtung kann auch der oben beschriebene resultierende Vektor der Beschleunigungen in x-, y- und z-Richtung verwendet werden.
  • Eine Fahrt einer Aufzugskabine weist einen charakteristischen Verlauf der Beschleunigung in vertikaler Richtung auf. Die Aufzugskabine wird zunächst nach oben oder unten beschleunigt, fährt dann meist eine Weile mit quasi konstanter Geschwindigkeit und wird dann bis zum Stillstand abgebremst. Dieser Beschleunigungsverlauf kann mit hoher Treffsicherheit in den Messwerten eines oder mehrerer Beschleunigungssensoren des mobilen Endgeräts erkannt werden. Auf diese Weise ist eine sichere Erkennung einer Fahrt des Passagiers und damit des mobilen Endgeräts in einer Aufzugkabine möglich. Auf Basis dieser sicheren Erkennung ist eine zuverlässige Anpassung der gespeicherten Signalmuster möglich, was schliesslich zu einer besonders sicheren Erkennung des Einsteigens eines Passagiers in eine Aufzugkabine führt.
  • Alternativ oder ergänzend kann auch der von einem Barometer gemessene Luftdruck zur Erkennung einer Fahrt in einer Aufzugkabine ausgewertet werden. Durch die Fahrt in vertikaler Richtung ergibt sich eine Änderung des Luftdrucks, wobei der Gradient der Änderung betragsmässig deutlich grösser ist als beim Treppensteigen oder bei wetterbedingten Änderungen des Luftdrucks.
  • Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich anhand der nachfolgenden Beschreibung von Ausführungsbeispielen sowie anhand der Zeichnungen, in welchen gleiche oder funktionsgleiche Elemente mit identischen Bezugszeichen versehen sind.
  • Dabei zeigen:
  • Fig. 1
    eine sehr schematische Darstellung einer Aufzuganlage mit einem Passagier,
    Fig. 2a, b, c
    zeitliche Verläufe von Drehraten beim Einsteigen eines Passagiers in eine Aufzugkabine,
    Fig. 3a, b, c
    zeitliche Verläufe von magnetischen Feldstärken beim Einsteigen eines Passagiers in eine Aufzugkabine, und
    Fig. 4
    einen zeitlichen Verlauf einer Beschleunigung in vertikaler Richtung bei einer Fahrt einer Aufzugkabine.
  • Gemäss Fig. 1 verfügt eine Aufzuganlage 10 über eine Aufzugkabine 11, die in einem Aufzugschacht 12 in vertikaler Richtung 13 auf und ab bewegt werden kann. Dazu ist die Aufzugkabine 11 über ein flexibles Tragmittel 14 und eine Antriebsrolle 15 eines nicht weiter dargestellten Antriebs mit einem Gegengewicht 16 verbunden. Der Antrieb kann über die Antriebsrolle 15 und das Tragmittel 14 die Aufzugkabine 11 und das Gegengewicht 16 gegenläufig auf und ab bewegen. Der Aufzugschacht 12 weist drei Schachtöffnungen 17a, 17b, 17c und damit drei Stockwerke auf, die mit Schachttüren 18a, 18b, 18c verschlossen sind. In der Fig. 1 befindet sich die Aufzugkabine 11 an der Schachtöffnung 17a, also im untersten Stockwerk. Wenn sich die Aufzugkabine 11 auf einem Stockwerk, also an einer der Schachtöffnungen 17a, 17b, 17c befindet, so kann die entsprechende Schachttür 18a, 18b, 18c zusammen mit einer Kabinentür 19 geöffnet und so das Betreten der Aufzugkabine 11 ermöglicht werden. Zum Öffnen der Kabinentür 19 und der entsprechenden Schachtür 18a, 18b, 18c werden nicht weiter dargestellte Türsegmente seitlich aufgeschoben, so dass eine Verlagerung der Türsegmente zur Seite erfolgt. Die Kabinentür 19 und die entsprechende Schachttür 18a, 18b, 18c werden von einem Türantrieb 20 betätigt, der von einer Türsteuereinheit 21 angesteuert wird. Die Türsteuereinheit 21 steht in Signalverbindung mit einer Aufzugsteuereinheit 22, welche die gesamte Aufzuganlage 10 steuert. Die Aufzugsteuereinheit 22 steuert beispielsweise den Antrieb an und kann so die Aufzugkabine 11 auf ein gewünschtes Stockwerk verfahren. Sie kann auch beispielsweise der Türsteuereinheit 21 eine Aufforderung zum Öffnen der Kabinentür 19 und der entsprechenden Schachttür 18a, 18b, 18c senden, welche die Türsteuereinheit 21 dann mittels einer entsprechenden Ansteuerung des Türantriebs 20 ausführt.
  • Auf dem untersten Stockwerk, also vor der Schachttür 18a steht ein Passagier 23, der ein mobiles Endgerät in Form eines Mobiltelefons 24 mit sich führt. Das Mobiltelefon 24 verfügt über mehrere Sensoren, von denen nur ein Mikrofon 25 dargestellt ist. Das Mobiltelefon 24 weist ausserdem jeweils dreidimensionale Beschleunigungs-, Drehraten- und Magnetfeldsensoren auf, welche Messwerte in x-, y- und z- Richtung erfassen können. Wie oben ausgeführt, können die von den Beschleunigungs-, Drehraten- und Magnetfeldsensoren erfassten Messwerte auf einfache Weise in Werte bezüglich absoluter x-, y- und z-Richtungen umgerechnet werden. Alle folgenden Aussagen zu Beschleunigungen, Drehraten oder Magnetfeldstärken beziehen sich damit auf in dieser Weise umgerechnete Messwerte und Aussagen zu x-, y- und z-Richtungen auf absolute x-, y- und z-Richtungen.
  • Es soll auf Basis der von den Sensoren des Mobiltelefons 24 erfassten Messwerte erkannt werden, wenn der Passagier 23 die Aufzugkabine 11 betritt. Das Mobiltelefon 24 erfasst dazu laufend Messwerte und wertet diese aus. Das Mobiltelefon 24 erfasst beispielsweise die Drehraten um die x-, y- und z-Achse. Diese gemessenen Drehraten kennzeichnen nicht nur Bewegungen des Mobiltelefons 24, sondern auch Bewegungen des Passagiers 23. Es werden laufend Messwerte erfasst und durch Kombination der einzelnen Messwerte der verschiedenen Beschleunigungssensoren ein fortlaufendes Bewegungsmuster des Passagiers 23 erzeugt. Die Messwerte werden dabei insbesondere mittels eines Tiefpassfilters gefiltert. Das genannte Bewegungsmuster enthält damit in diesem Fall die Verläufe der Drehraten um die x-, y- und z-Achse. Das Mobiltelefon 24 vergleicht das so erzeugte fortlaufende Bewegungsmuster mit gespeicherten Signalmustern, welche für ein Bewegungsmuster beim Betreten einer Aufzugkabine 11 typisch sind. Um den Vergleich durchführen zu können, werden beispielsweise Merkmale in Form von Mittelwerten, Standardabweichungen und Minimal-/Maximalwerten der einzelnen Drehraten oder zeitlicher Abschnitte der Drehraten bestimmt und mit gespeicherten Werten verglichen. Sind die Unterschiede zwischen den Merkmalen der gemessenen Verläufe und den gespeicherten Merkmalen kleiner als festlegbare Schwellwerte, so wird eine ausreichende Übereinstimmung eines Bewegungsmusters mit einem gespeicherten Signalmuster erkannt. Daraus schliesst das Mobiltelefon 24, dass der Passagier 23 die Aufzugkabine 11 betreten hat. Das Mobiltelefon 24 kann diese Information ganz unterschiedlich verwerten. In diesem Beispiel soll es sich in einen Messmodus versetzen, in dem es für Messungen während der bevorstehenden Fahrt in der Aufzugkabine 11 zur Überwachung der Aufzuganlage 10 bereit ist. Die Messungen werden dabei erst zu einem späteren Zeitpunkt gestartet.
  • Der Vergleich zwischen einem gemessenen Bewegungsmuster und einem gespeicherten Signalmuster und damit die Erkennung oder Klassifizierung von Bewegungsmustern kann auch mit Methoden des so genannten maschinellen Lernens durchgeführt werden. Beispielsweise kann eine so genannte Support Vector Machine, ein Random Forest Algorithmus oder ein Deep Learning Algorithmus verwendet werden.
  • Es können zusätzlich auch die transversalen Beschleunigungen in x-, y- und z-Richtung berücksichtigt werden, so dass das Bewegungsmuster zusätzlich die Verläufe der Beschleunigungen in x-, y- und z-Richtung enthält.
  • Es ist auch möglich, dass das Mobiltelefon die Erkennung eines Betretens einer Aufzugkabine nicht vollständig alleine ausführt, sondern die erfassten Daten an eine Auswerteeinrichtung überträgt. Die Erkennung eines Betretens der Aufzugkabine wird dann von der Auswerteeinrichtung durchgeführt. Sobald ein Betreten erkannt wird, sendet die Auswerteeinrichtung ein entsprechendes Signal an das Mobiltelefon.
  • In den Fig. 2a, 2b und 2c ist ein gemessenes Bewegungsmuster und ein gespeichertes Signalmuster über der Zeit dargestellt, wobei in Fig. 2a die Drehraten α um die x-Achse, in Fig. 2b um die y-Achse und in Fig. 2c um die z-Achse dargestellt ist. Die gemessene Drehrate ist jeweils mit einer durchgezogenen Linie und die gespeicherte Drehraten des Signalmusters jeweils mit einer gestrichelten Linie dargestellt. Die durchgezogenen Linien 26a, 26b, 26c stellen also die gemessenen Drehraten und die gestrichelten Linien 27a, 27b, 27c die gespeicherten Drehraten um die x-, y- und z-Achse dar. Die gemessenen Werte sind geglättet dargestellt.
  • Das gespeicherte Signalmuster (gestrichelten Linien 27a, 27b, 27c) enthält typische Verläufe von Drehraten, wie sie beim Betreten einer Aufzugkabine auftreten. Vom Zeitpunkt t0 bis zum Zeitpunkt t1 läuft der Passagier auf die Schachttür zu, um zum Zeitpunkt t1 anzuhalten und bis zum Zeitpunkt t2 auf das Öffnen der Schacht- und Kabinentür zu warten. Dabei treten quasi keine Drehraten auf. Ab dem Zeitpunkt t2 betritt der Passagier die Aufzugkabine und dreht sich anschliessend in Richtung Kabinentür um. Dieses Umdrehen führt in erster Linie zu einem deutlichen Ausschlag der Drehraten um die z-Achse (Linie 27c), wobei zu Beginn und am Ende des Ausschlags ein kurzes Unterschwingen in die entgegengesetzte Richtung auftritt. Wie in den Fig. 2a, 2b und 2c ersichtlich ist, folgt das gemessene Bewegungsmuster (durchgezogene Linien 26a, 26b, 26c) recht genau dem gespeicherten Signalmuster. Der Vergleich der Bewegungsmuster mit gespeicherten Signalmustern läuft wie oben beschrieben ab. Auf Grund dieser Übereinstimmung schliesst das Mobiltelefon, dass der Passagier die Aufzugkabine betreten hat.
  • Da sich nicht alle Personen auf die gleiche Weise bewegen, also sich beispielsweise unterschiedlich schnell umdrehen, und beispielsweise Wartezeiten unterschiedlich lange sind, wird das gemessene Bewegungsmuster insbesondere nicht nur mit einem Signalmuster, sondern mit einer ganzen Reihe, leicht unterschiedlicher Signalmuster verglichen.
  • Ergänzend zu den Drehraten können auch zusätzlich die Beschleunigungen in x-, y- und z-Richtung auf vergleichbare Weise berücksichtigt werden. Damit kann insbesondere das Laufen in Richtung Schachttür und in die Aufzugkabine hinein, sowie das Warten vor und in der Aufzugkabine einfacher identifiziert werden.
  • Um die Erkennung des Betretens einer Aufzugkabine zuverlässiger zu machen, werden insbesondere weitere von Sensoren des Mobiltelefons erfasste Messwerte ausgewertet. Das Mobiltelefon 24 erfasst insbesondere mit dem dreidimensionalen Magnetfeldsensor die magnetische Feldstärke in x-, y- und z-Richtung. Die gemessenen Werte kennzeichnen damit eine Eigenschaft der Aufzuganlage. Es ist nur sehr schwer möglich, aus Messwerten zu einem einzigen Zeitpunkt zu schliessen, dass sich das Mobiltelefon und damit der Passagier in einer Aufzugkabine befindet. Aus diesem Grund wird aus den zeitlichen Verläufen der drei Feldstärken ein Eigenschaftsmuster erstellt, wobei die gemessenen Werte insbesondere mittels eines Tiefpassfilters gefiltert werden. Das Mobiltelefon 24 vergleicht das so erzeugte fortlaufende Eigenschaftsmuster mit gespeicherten Signalmustern, welche für ein Eigenschaftsmuster beim Betreten einer Aufzugkabine 11 typisch sind. Wird eine ausreichende Übereinstimmung eines Bewegungsmusters mit einem gespeicherten Signalmuster erkannt, so schliesst das Mobiltelefon 24 daraus, dass der Passagier 23 die Aufzugkabine 11 betreten hat. Der Vergleich der Bewegungsmuster mit gespeicherten Signalmustern läuft wie oben beschrieben ab.
  • In den Fig. 3a, 3b und 3c ist ein gemessenes Eigenschaftsmuster und ein gespeichertes Signalmuster über der Zeit dargestellt, wobei in Fig. 3a die magnetische Feldstärke H in x-Richtung, in Fig. 3b in y-Richtung und in Fig. 3c in z-Richtung dargestellt sind. Die gemessenen Feldstärken sind jeweils mit einer durchgezogenen Linie und die gespeicherten Feldstärken des Signalmusters jeweils mit einer gestrichelten Linie dargestellt. Die durchgezogenen Linien 28a, 28b, 28c stellen also die gemessenen Feldstärken und die gestrichelten Linien 29a, 29b, 29c die gespeicherten Feldstärken in x-, y- und z-Richtung dar. Die gemessenen Werte sind geglättet dargestellt.
  • Das gespeicherte Signalmuster (gestrichelten Linien 29a, 29b, 29c) enthält typische Verläufe von Feldstärken, wie sie beim Betreten einer Aufzugkabine auftreten. Kurz vor bis kurz nach dem Zeitpunkt t2, bei dem der Passagier die Aufzugkabine betritt, ist bei den Feldstärken in y- und z-Richtung ein signifikanter Anstieg zu sehen, wohin gehend die Feldstärke in x-Richtung die gesamte Zeit quasi unverändert bleibt. Die Änderung der Feldstärken ist insbesondere auf die Verwendung ferromagnetischer Materialien in der Aufzugkabine zurück zu führen. Wie in den Fig. 3a, 3b und 3c ersichtlich ist, folgt das gemessene Eigenschaftsmuster (durchgezogene Linien 28a, 28b, 28c) recht genau dem gespeicherten Signalmuster. Diese Übereinstimmung ist für das Mobiltelefon ein weiteres Indiz, dass der Passagier die Aufzugkabine betreten hat. Der Vergleich des Eigenschaftsmusters mit gespeicherten Signalmustern läuft analog zum oben beschriebenen Vergleich der Bewegungsmuster mit gespeicherten Signalmustern ab.
  • Da nicht alle Aufzuganlagen identische Eigenschaftsmuster aufweisen, sondern diese variieren können, wird das gemessene Eigenschaftsmuster insbesondere nicht nur mit einem Signalmuster, sondern mit einer ganzen Reihe, leicht unterschiedlicher Signalmuster verglichen.
  • Ausserdem können zusätzliche weitere Messwerte, wie beispielsweise der Luftdruck, die Helligkeit, die Luftfeuchtigkeit oder ein Kohlendioxidgehalt der Luft, berücksichtigt werden.
  • Eine weitere Steigerung der Zuverlässigkeit des Erkennens eines Betretens einer Aufzugkabine kann dadurch erreicht werden, dass zusätzlich noch Messwerte berücksichtigt werden, welche eine Aktivität der Aufzuganlage kennzeichnen. Beispielsweise kann aus den oben beschriebenen magnetischen Feldstärken ein Aktivitätsmuster abgeleitet werden, das mit einem Signalmuster verglichen wird, das für das Öffnen der Kabinen- und Schachttür typisch ist. Eine andere Möglichkeit besteht darin, aus mit dem Mikrofon gemessenen Geräuschen ein Aktivitätsmuster abzuleiten und dieses mit einem Signalmuster zu vergleichen, das für das Öffnen der Kabinen- und Schachttür typisch ist. Es kann wie bei den Bewegungs- und Eigenschaftsmustern sinnvoll sein, die Aktivitätsmuster mit mehreren, leicht unterschiedlichen Signalmustern zu vergleichen. Eine hinreichende Übereinstimmung zwischen den gemessenen Aktivitätsmustern und einem gespeicherten Signalmuster kann wiederum als Indiz gewertet werden, dass der Passagier eine Aufzugkabine betreten hat.
  • Das Mobiltelefon kann so ausgeführt sein, dass es bereits ein Betreten einer Aufzugkabine erkennt, wenn es eine einzige hinreichende Übereinstimmung eines Bewegungsmusters, eines Eigenschaftsmusters oder eines Aktivitätsmusters mit einem gespeicherten Signalmuster gibt. Es ist aber auch möglich, dass ein Betreten erst dann erkannt wird, wenn es wenigstens zwei, drei oder mehr Übereinstimmungen gibt.
  • Um die Erkennung eines Betretens einer Aufzugkabine zuverlässiger zu machen, können die gespeicherten Signalmuster angepasst werden. Mit einer Anpassung kann das Verfahren insbesondere an das Verhalten des Besitzers des Mobiltelefons angepasst werden. Dazu erkennt das Mobiltelefon insbesondere eine Fahrt in einer Aufzugkabine. Das kann sehr zuverlässig durch die Überwachung der Beschleunigung in z-Richtung und damit in vertikaler Richtung 13 erkannt werden. In Fig. 4 ist exemplarisch mit der Linie 30 ein Verlauf der Beschleunigung a in z-Richtung nach oben dargestellt, wobei die Erdbeschleunigung unberücksichtigt ist. Die Aufzugkabine 11 und damit auch der Passagier 23 mit seinem Mobiltelefon 24 werden ab dem Zeitpunkt t4 mit einer nahezu konstanten Beschleunigung beschleunigt. Kurz bevor die gewünschte Geschwindigkeit der Aufzugkabine 11 erreicht ist, sinkt die Beschleunigung ab, um zum Zeitpunkt t5 die Nulllinie zu erreichen. Die Aufzugkabine 11 fährt dann bis zum Zeitpunkt t6 mit konstanter Geschwindigkeit, um dann mit einer quasi konstanten negativen Beschleunigung bis zum Zeitpunkt t7 abgebremst zu werden. Dieser typische Verlauf mit Beschleunigung in vertikaler Richtung, Konstantfahrt und Abbremsen bis zum Stillstand lässt sich sehr gut in den Messwerten erkennen.
  • Sobald eine Fahrt in einer Aufzugkabine erkannt wurde, werden vor der Fahrt erfasste Bewegungs-, Aktivitäts- und/oder Eigenschaftsmuster mit gespeicherten Signalmustern verglichen und auf Basis des Vergleichs die gespeicherten Signalmuster mit Methoden des maschinellen Lernens angepasst. Dabei werden die gespeicherten Signalmuster in Richtung der vor der Fahrt erfassten Bewegungs-, Aktivitäts- und/oder Eigenschaftsmuster verändert.
  • Abschließend ist darauf hinzuweisen, dass Begriffe wie "aufweisend", "umfassend", etc. keine anderen Elemente oder Schritte ausschließen und Begriffe wie "eine" oder "ein" keine Vielzahl ausschließen. Ferner sei daraufhingewiesen, dass Merkmale oder Schritte, die mit Verweis auf eines der obigen Ausführungsbeispiele beschrieben worden sind, auch in Kombination mit anderen Merkmalen oder Schritten anderer oben beschriebener Ausführungsbeispiele verwendet werden können. Bezugszeichen in den Ansprüchen sind nicht als Einschränkung anzusehen.

Claims (11)

  1. Verfahren zur Erkennung eines Betretens einer Aufzugkabine (11) einer Aufzuganlage (10) durch einen Passagier (23), bei welchem
    - der Passagier (23) ein mindestens einen Sensor (25) aufweisendes mobiles Endgerät (24) mit sich führt,
    - das mobile Endgerät (24) mit dem Sensor (25) Messwerte erfasst und auswertet und
    - die Erkennung eines Zeitpunkts des Betretens der Aufzugkabine (11) auf Basis der genannten Messwerte erfolgt.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    das mobile Endgerät (24) mit dem Sensor (25) Bewegungen des Passagiers (23) kennzeichnende Messwerte erfasst und auswertet.
  3. Verfahren nach Anspruch 2,
    dadurch gekennzeichnet, dass
    das mobile Endgerät (24) Beschleunigungen, Drehraten und/oder Magnetfelder erfasst und auswertet.
  4. Verfahren nach Anspruch 2 oder 3,
    dadurch gekennzeichnet, dass
    aus den Messwerten ein Bewegungsmuster (26a, 26b, 26c) des Passagiers (23) abgeleitet, mit wenigstens einem gespeicherten Signalmuster (27a, 27b, 27c) verglichen wird und die Erkennung des Betretens der Aufzugkabine (11) auf Basis des genannten Vergleichs erfolgt.
  5. Verfahren nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass
    das mobile Endgerät (24) mit dem Sensor (25) Aktivitäten der Aufzuganlage (10) kennzeichnende Messwerte erfasst und auswertet.
  6. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet, dass
    aus den Messwerten ein Aktivitätsmuster abgeleitet, mit wenigstens einem gespeicherten Signalmuster verglichen wird und die Erkennung des Betretens der Aufzugkabine (11) auf Basis des genannten Vergleichs erfolgt.
  7. Verfahren nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, dass
    das mobile Endgerät (24) mit dem Sensor (25) Eigenschaften der Umgebung des mobilen Endgeräts (24) kennzeichnende Messwerte erfasst und auswertet.
  8. Verfahren nach Anspruch 7,
    dadurch gekennzeichnet, dass
    aus den Messwerten ein Eigenschaftsmuster (28a, 28b, 28c) abgeleitet, mit wenigstens einem gespeicherten Signalmuster (29a, 29b, 29c) verglichen wird und die Erkennung des Betretens der Aufzugkabine (11) auf Basis des genannten Vergleichs erfolgt.
  9. Verfahren nach einem der Ansprüche 5 bis 8,
    dadurch gekennzeichnet, dass
    das mobile Endgerät (24) Geräusche, Magnetfelder, CO2-Gehalt der Luft, Luftfeuchtigkeit, Temperatur, Luftdruck, Helligkeit und/oder Geräusche erfasst und auswertet.
  10. Verfahren nach einem der Ansprüche 4 bis 9,
    dadurch gekennzeichnet, dass
    wenigstens eines der genannten gespeicherten Signalmuster (27a, 27b, 27c; 29a, 29b, 29c) verändert wird.
  11. Verfahren nach Anspruch 10,
    dadurch gekennzeichnet, dass
    aus den Messwerten eine Fahrt in einer Aufzugkabine (11) erkannt und vor der Fahrt erfasste Messwerte mit gespeicherten Signalmustern (27a, 27b, 27c; 29a, 29b, 29c) verglichen und auf Basis des Vergleichs die gespeicherten Signalmuster (27a, 27b, 27c; 29a, 29b, 29c) angepasst werden.
EP17758571.8A 2016-09-13 2017-09-04 Verfahren zur erkennung eines betretens einer aufzugkabine einer aufzuganlage durch einen passagier Revoked EP3512791B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL17758571T PL3512791T3 (pl) 2016-09-13 2017-09-04 Sposób wykrywania wchodzenia pasażera do kabiny dźwigowej instalacji dźwigowej

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16188443 2016-09-13
PCT/EP2017/072106 WO2018050471A1 (de) 2016-09-13 2017-09-04 Verfahren zur erkennung eines betretens einer aufzugkabine einer aufzuganlage durch einen passagier

Publications (2)

Publication Number Publication Date
EP3512791A1 EP3512791A1 (de) 2019-07-24
EP3512791B1 true EP3512791B1 (de) 2020-08-12

Family

ID=56920602

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17758571.8A Revoked EP3512791B1 (de) 2016-09-13 2017-09-04 Verfahren zur erkennung eines betretens einer aufzugkabine einer aufzuganlage durch einen passagier

Country Status (11)

Country Link
US (1) US11634300B2 (de)
EP (1) EP3512791B1 (de)
KR (1) KR20190044635A (de)
CN (1) CN109689551B (de)
AU (1) AU2017327418B2 (de)
BR (1) BR112019003450A2 (de)
CA (1) CA3035433A1 (de)
MX (1) MX2019002883A (de)
PL (1) PL3512791T3 (de)
SG (1) SG11201901485SA (de)
WO (1) WO2018050471A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3512793B1 (de) * 2016-09-13 2020-06-24 Inventio AG Verfahren zur überwachung einer aufzuganlage
WO2018050471A1 (de) * 2016-09-13 2018-03-22 Inventio Ag Verfahren zur erkennung eines betretens einer aufzugkabine einer aufzuganlage durch einen passagier
EP3299325B1 (de) * 2016-09-26 2020-12-09 KONE Corporation Stossdetektion in einer aufzugstür
CN111954635B (zh) * 2018-04-26 2022-03-15 因温特奥股份公司 使用智能移动设备监控电梯门的门运动过程的特征的方法
US12043515B2 (en) 2018-08-16 2024-07-23 Otis Elevator Company Elevator system management utilizing machine learning
US12049383B2 (en) * 2019-04-29 2024-07-30 Otis Elevator Company Elevator shaft distributed health level
CN112019679B (zh) 2019-05-31 2022-02-18 苹果公司 无线设备的电梯场景检测和操作
US11873192B2 (en) * 2020-03-30 2024-01-16 Mitsubishi Electric Corporation Elevator door control system
CN113003339B (zh) * 2021-02-22 2022-12-20 上海三菱电梯有限公司 电梯识别方法、识别系统与电梯
CN113086794B (zh) * 2021-03-31 2022-10-28 广东卓梅尼技术股份有限公司 一种电梯轿厢内人员检测方法及系统
US11845447B2 (en) 2021-12-27 2023-12-19 Here Global B.V. Method, apparatus, and system for detecting an on-boarding or off-boarding event based on mobile device sensor data

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140365119A1 (en) 2013-06-11 2014-12-11 Indooratlas Oy Detecting information about motion of mobile device
US20150070131A1 (en) 2013-09-11 2015-03-12 Here Global B.V. Method and apparatus for detecting boarding of a means of transport
EP3418236A1 (de) 2017-06-23 2018-12-26 Otis Elevator Company Bestimmung der bewegung eines fahrgastes über eine aufzugskabine
EP3439998A1 (de) 2016-04-06 2019-02-13 Otis Elevator Company Zustandsverwaltung einer mobilen vorrichtung und lagebestimmung
EP3512793A1 (de) 2016-09-13 2019-07-24 Inventio AG Verfahren zur überwachung einer aufzuganlage
EP3645441A1 (de) 2017-06-27 2020-05-06 Inventio AG Mit einer intelligenten mobilen vorrichtung eines fahrgasts überwachter aufzug

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8751151B2 (en) * 2012-06-12 2014-06-10 Trx Systems, Inc. System and method for localizing a trackee at a location and mapping the location using inertial sensor information
JP2009096612A (ja) * 2007-10-18 2009-05-07 Hitachi Ltd 人流演算装置
JP5713595B2 (ja) * 2010-07-16 2015-05-07 オムロンヘルスケア株式会社 運動検出装置、および、運動検出装置の制御方法
CN102009883B (zh) 2010-12-22 2012-12-26 日立电梯(中国)有限公司 一种电梯轿厢位置检测装置
WO2013084154A2 (en) * 2011-12-07 2013-06-13 Koninklijke Philips Electronics N.V. Method and apparatus for elevator motion detection
FI20116342A (fi) * 2011-12-30 2013-07-01 Rdnet Oy Menetelmä ja järjestely liikkuvaksi sovitetun kohteen paikan ja/tai nopeuden määrittämiseksi ja järjestelyn käyttö
CN104136353A (zh) 2012-02-28 2014-11-05 奥的斯电梯公司 电梯交通监视系统和方法
CN103193118B (zh) * 2013-03-28 2015-06-10 日立电梯(上海)有限公司 提示乘客登入电梯轿内召唤的系统及方法
FI124267B (fi) 2013-05-20 2014-05-30 Kone Corp Hissijärjestelmä
CN105247320B (zh) * 2013-05-31 2018-04-06 旭化成株式会社 使用气压测定值识别铅直方向的变化的装置
EP3008006A4 (de) 2013-06-10 2017-03-15 Otis Elevator Company Überwachung von aufzuggeräuschen
CN103787159A (zh) * 2014-02-03 2014-05-14 王浩 基于大数据与云计算的电梯智能调度系统
US20150284214A1 (en) 2014-04-07 2015-10-08 Thyssenkrupp Elevator Ag Elevator health check
JP2015224931A (ja) 2014-05-27 2015-12-14 ソニー株式会社 情報処理装置、情報処理方法及びコンピュータプログラム
CN104071664A (zh) * 2014-07-03 2014-10-01 南京喜高电子科技有限公司 一种电梯运行状态监控系统及监控方法
CN104444658B (zh) * 2014-12-02 2016-07-20 上海斐讯数据通信技术有限公司 一种控制电梯运行的方法及其系统
CN104864873B (zh) * 2015-06-09 2017-09-01 中国科学院上海高等研究院 一种利用人体运动特征辅助地图定位的方法
JP6425630B2 (ja) * 2015-07-22 2018-11-21 株式会社日立ビルシステム 昇降機のかご呼びシステム及び携帯情報端末
CN105967025B (zh) * 2016-06-15 2018-06-12 上海新时达电气股份有限公司 电梯轿厢
WO2018050471A1 (de) * 2016-09-13 2018-03-22 Inventio Ag Verfahren zur erkennung eines betretens einer aufzugkabine einer aufzuganlage durch einen passagier
AT520567B1 (de) * 2017-10-17 2021-10-15 View Promotion Gmbh Verfahren zur Überwachung einer Aufzugskabine
US20200002124A1 (en) * 2018-06-29 2020-01-02 Here Global B.V. Elevator usage in venues
US20210395038A1 (en) * 2020-06-23 2021-12-23 Otis Elevator Company Travel-speed based predictive dispatching

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140365119A1 (en) 2013-06-11 2014-12-11 Indooratlas Oy Detecting information about motion of mobile device
US20150070131A1 (en) 2013-09-11 2015-03-12 Here Global B.V. Method and apparatus for detecting boarding of a means of transport
EP3439998A1 (de) 2016-04-06 2019-02-13 Otis Elevator Company Zustandsverwaltung einer mobilen vorrichtung und lagebestimmung
EP3512793A1 (de) 2016-09-13 2019-07-24 Inventio AG Verfahren zur überwachung einer aufzuganlage
EP3418236A1 (de) 2017-06-23 2018-12-26 Otis Elevator Company Bestimmung der bewegung eines fahrgastes über eine aufzugskabine
EP3645441A1 (de) 2017-06-27 2020-05-06 Inventio AG Mit einer intelligenten mobilen vorrichtung eines fahrgasts überwachter aufzug

Also Published As

Publication number Publication date
BR112019003450A2 (pt) 2019-05-21
US11634300B2 (en) 2023-04-25
PL3512791T3 (pl) 2021-02-08
AU2017327418B2 (en) 2020-07-09
CN109689551A (zh) 2019-04-26
WO2018050471A1 (de) 2018-03-22
EP3512791A1 (de) 2019-07-24
KR20190044635A (ko) 2019-04-30
AU2017327418A1 (en) 2019-04-04
MX2019002883A (es) 2019-07-04
US20190193986A1 (en) 2019-06-27
CA3035433A1 (en) 2018-03-22
CN109689551B (zh) 2021-10-22
SG11201901485SA (en) 2019-03-28

Similar Documents

Publication Publication Date Title
EP3512791B1 (de) Verfahren zur erkennung eines betretens einer aufzugkabine einer aufzuganlage durch einen passagier
EP3512793B1 (de) Verfahren zur überwachung einer aufzuganlage
DE69304258T2 (de) Verfahren und Einrichtung zur Steuerung von Aufzugstüren
DE102011107934B4 (de) Assistenzsystem
DE102014207828A1 (de) Verfahren zur Bereitstellung einer Diagnosenachricht bei einem Schienenfahrzeug
EP3261060A1 (de) Verfahren zur zugangskontrolle bei einem zugangskontrollsystem für personen oder fahrzeuge umfassend zumindest eine zugangskontrollvorrichtung
DE102016100065B4 (de) System, Fahrzeug und Verfahren zum Erfassen von mitgeführten Gegenständen für ein Fahrzeug
EP2784016A1 (de) Kindersicherung einer Aufzugsanlage
DE102015202467B4 (de) Vorrichtung und Verfahren zum Kontrollieren eines Zugriffs auf ein Fahrzeug
EP4266270A1 (de) Verfahren zur steuerung einer türanlage
EP4222039A1 (de) Optische schienenwegerkennung
DE102019203029A1 (de) Verfahren zum Betreiben eines Schließsystems eines Fahrzeugs mit separater Innenraumerfassung und Außenraumerfassung einer Schlüsseleinrichtung sowie Schließsystem
EP3335199A1 (de) Verfahren und vorrichtung zur durchführung einer personenkontrolle
DE102018205717A1 (de) Verfahren zur Erkennung von belegten Sitzplätzen in einem Schienenfahrzeug
EP3990322B1 (de) Verfahren zur kalibrierung der orientierung eines in einem fahrzeug vorgesehenen beschleunigungssensors
DE102022203238A1 (de) Verfahren zur Betriebspunktklassifizierung durch Schallsignale
DE19949637A1 (de) Verfahren und Vorrichtungen zur Geräuscherkennung und -trennung sowie Lärmüberwachung und -prognose
DE3904840C1 (en) Device for checking the isolation of persons at a gated passage
DE102023109690A1 (de) Überprüfung von Aufzugsanlagen auf der Grundlage akustischer Messungen
EP1369351A2 (de) Verfahren zur Überwachung in einem Personenbeförderungsmittel
DE102017212755A1 (de) Verfahren und Vorrichtung zum Überprüfen eines Belegungsstatus eines Parkplatzes
EP4124539B1 (de) Verfahren zum zählen von achsen mit rechnergestützter auswertung
DE102023109691A1 (de) Überprüfung von Aufzugsanlagen auf der Grundlage von mehreren Messgrößen
WO2021213796A1 (de) Vorrichtung und verfahren zum ermitteln eines nutzungsverhaltens von einem fahrgast bei der nutzung eines öffentlichen verkehrsmittels
DE102020128501A1 (de) Verfahren und Vorrichtung zum kontaktlosen Überwachen eines zu überwachenden Raums

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200423

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017006736

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1301377

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201113

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201112

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201112

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502017006736

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

26 Opposition filed

Opponent name: OTIS ELEVATOR COMPANY

Effective date: 20210511

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200904

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200904

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210927

Year of fee payment: 5

Ref country code: NL

Payment date: 20210927

Year of fee payment: 5

Ref country code: CH

Payment date: 20210923

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210929

Year of fee payment: 5

Ref country code: TR

Payment date: 20210823

Year of fee payment: 5

Ref country code: PL

Payment date: 20210824

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: INVENTIO AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 502017006736

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 502017006736

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220920

Year of fee payment: 6

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 20220922

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20220922

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 1301377

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220904