EP3512791B1 - Method for detecting a passenger entering a lift car of a lift assembly - Google Patents
Method for detecting a passenger entering a lift car of a lift assembly Download PDFInfo
- Publication number
- EP3512791B1 EP3512791B1 EP17758571.8A EP17758571A EP3512791B1 EP 3512791 B1 EP3512791 B1 EP 3512791B1 EP 17758571 A EP17758571 A EP 17758571A EP 3512791 B1 EP3512791 B1 EP 3512791B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- elevator car
- measured values
- passenger
- pattern
- mobile terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
- 238000000034 method Methods 0.000 title claims description 34
- 230000001133 acceleration Effects 0.000 claims description 42
- 230000005291 magnetic effect Effects 0.000 claims description 30
- 230000000694 effects Effects 0.000 claims description 22
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 20
- 238000011156 evaluation Methods 0.000 description 15
- 238000001514 detection method Methods 0.000 description 13
- 229910002092 carbon dioxide Inorganic materials 0.000 description 10
- 230000008859 change Effects 0.000 description 10
- 238000009434 installation Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 9
- 238000004422 calculation algorithm Methods 0.000 description 8
- 238000010801 machine learning Methods 0.000 description 6
- 239000013598 vector Substances 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 5
- 238000012549 training Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 4
- 239000003302 ferromagnetic material Substances 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000007637 random forest analysis Methods 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B1/00—Control systems of elevators in general
- B66B1/34—Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
- B66B1/3476—Load weighing or car passenger counting devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B1/00—Control systems of elevators in general
- B66B1/34—Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
- B66B1/3492—Position or motion detectors or driving means for the detector
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B5/00—Applications of checking, fault-correcting, or safety devices in elevators
- B66B5/0006—Monitoring devices or performance analysers
- B66B5/0012—Devices monitoring the users of the elevator system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B5/00—Applications of checking, fault-correcting, or safety devices in elevators
- B66B5/0006—Monitoring devices or performance analysers
- B66B5/0037—Performance analysers
Definitions
- the invention relates to a method for recognizing that a passenger has entered an elevator car of an elevator installation according to the preamble of claim 1.
- the WO 2013/130040 A1 describes a method for monitoring the use of an elevator system.
- the passengers in the elevator system are equipped with marking devices, so-called tags.
- Readers are attached to shaft doors or in the elevator cabins of the elevator system, which can recognize whether and, if so, which tag is in their vicinity. It can thus also be recognized when a passenger enters an elevator car.
- the reading devices forward the information to a traffic evaluation unit which, on the basis of this information, can monitor the use of the elevator system or record it for later analysis.
- the procedure according to the WO 2013/130040 A1 requires one day per passenger and at least one reader per landing door or per elevator car.
- the US 2014/330535 A1 describes a method for detecting a movement of a passenger in an elevator car.
- a series of acceleration measurements is evaluated in order to identify the start and end of a journey in the elevator car.
- the method is not suitable for recognizing that a passenger has entered an elevator car of an elevator installation.
- the passenger is carrying a mobile terminal device.
- the terminal has at least one, in particular however, it has several sensors with which the mobile device records and evaluates measured values. The recognition of entering the elevator car is then based on the stated measured values.
- “Recognition of a passenger entering an elevator car of an elevator installation” is understood to mean that the point in time when the elevator car was entered is recognized. Entering the elevator car and thus the time of entering precedes a journey by the passenger in an elevator car or a movement and thus an acceleration of the passenger and the elevator car in the vertical direction. From the detection of a movement or acceleration of the passenger and the elevator car in the vertical direction, it is not possible to deduce the time of entering the elevator car. The period of time between entering the elevator car and the beginning of a journey by the passenger in the elevator car can be a few seconds or several minutes.
- the information that a passenger is entering an elevator car with a mobile terminal device can be evaluated in a wide variety of ways or used further, or can trigger a wide variety of actions.
- the terminal can for example pass on the information wirelessly to a traffic evaluation unit, which is then comparable with the traffic evaluation unit of the WO 2013/130040 A1 can analyze a traffic flow in the elevator system.
- the terminal can, for example, also be brought into a predetermined mode, that is to say, for example, a specific program, a so-called app, started or the app brought into a predetermined state.
- an app can be started that displays certain content or a game can be started, which enables interaction with other passengers in the elevator car.
- the terminal device can record measured variables with its sensors during the upcoming elevator journey, which are to be evaluated for monitoring the elevator system. As soon as entry into an elevator car is recognized, the terminal device can be put into a measuring mode and thus made ready for a measurement.
- An exit from an elevator car can also be recognized in an analogous manner. Exiting is basically the opposite of entering an elevator car.
- the evaluation of the recorded data and thus the recognition of entering the elevator car is carried out in particular by the mobile terminal. It is also possible, however, for the recorded data to be transmitted to an evaluation device and for the evaluation device to detect entry into the elevator car. In this case, the evaluation of the data by the terminal is limited to forwarding the data to the evaluation device. In addition, it is possible that at least part of the evaluation is carried out both by the mobile terminal and by the evaluation device. This enables mutual monitoring and / or supplementation, which enables a very high hit probability for the detection of entry into an elevator car.
- the mobile terminal can be designed, for example, as a mobile phone, a smartphone, a tablet computer, a smart watch, a so-called wearable, for example in the form of an electronic, smart textile, or as another portable terminal.
- the sensor of the mobile terminal can be designed, for example, as a microphone, an acceleration sensor, a rotation rate sensor, a magnetic field sensor, a camera, a barometer, a brightness sensor, a humidity sensor or a carbon dioxide sensor.
- the acceleration, yaw rate and magnetic field sensors are designed in particular as so-called three-dimensional or 3D sensors. Such sensors deliver three measured values in the x, y and z directions, the x, y and z directions being arranged perpendicular to one another.
- the terminal has in particular several and in particular different types of sensors, that is to say for example a microphone, a three-dimensional acceleration sensor, a three-dimensional rotation rate sensor and a three-dimensional magnetic field sensor.
- acceleration, yaw rate and magnetic field sensors are understood to mean three-dimensional acceleration, yaw rate and magnetic field sensors.
- the passenger can carry the terminal with him in completely different orientations, so that in the first approach it is not clear how the acceleration, yaw rate or magnetic field sensors are oriented in space.
- the vertical direction that is to say the absolute z-direction
- the measured values of the acceleration, yaw rate and magnetic field sensors can be converted into values that are aligned along the absolute z-direction and absolute x- and y-directions.
- the absolute x, y and z directions are each arranged perpendicular to one another.
- the mobile terminal with the sensor or sensors detects measured values that characterize movements of the passenger and evaluates them.
- the stated measured values are, in particular, accelerations, that is to say transverse accelerations and / or rotation rates, three accelerations and / or rotation rates being measured in the x, y and z directions in particular. From the measured values characterizing the movements of the passenger, conclusions can be drawn about the movements of the passenger, and it can be recognized from the movements of the passenger that the passenger is entering an elevator car. It is generally assumed that the passenger carries the terminal with him in such a way that the measured values measured by the terminal characterize not only the movements of the terminal but also of the passenger.
- a movement pattern of the passenger is derived from the measured values and compared with at least one stored signal pattern.
- the recognition of entering the elevator car then takes place on the basis of the comparison mentioned. Entering an elevator car can thus be recognized particularly reliably.
- the mentioned stored signal patterns are movement patterns.
- a movement pattern should be understood to mean, for example, a time sequence in particular of accelerations or rotation rates.
- a movement pattern can also be described with a so-called feature or, in particular, with a plurality of features.
- Such features can be, for example, statistical parameters such as mean values, standard deviations, minimum / maximum values or the results of a Fast Fourier analysis of the accelerations or rotation rates mentioned.
- a movement pattern can also be referred to as a so-called feature vector.
- the features mentioned can be determined in particular for individual time segments, with individual measured values being formed in particular based on values or progressions.
- such a time segment can be characterized in that the passenger is not moving, that is to say, for example, waiting in front of the shaft door.
- the passenger is not moving, that is to say, for example, waiting in front of the shaft door.
- not just a single acceleration or rate of rotation is considered, but the combination of several accelerations and / or rates of rotation, in particular of three accelerations and rates of rotation.
- a stored signal pattern can, for example, be characteristic of accelerations, rotation rates and / or magnetic fields or features when a person walks to a landing door, waiting in front of the landing door until the elevator car is available and access is possible, entering the elevator car and turning around in the direction of the car door contain.
- the signal patterns can be created by specialists on the basis of their experience or, in particular, can be determined by one or more experiments.
- methods of so-called machine learning are used to recognize or classify movement patterns. For example, a so-called support vector machine, a random forest algorithm or a deep learning algorithm can be used. These classification methods must first be trained. For this purpose, in experiments typical movement patterns for entering an elevator car, in particular based on the features mentioned, are generated and the algorithms mentioned are used for training Provided. After the algorithms have been trained with a sufficient number of training patterns, they can decide whether or not an unknown movement pattern indicates entering an elevator car. In this case the signal pattern is stored in the parameters of the algorithm.
- the generation of the typical movement patterns for the training can be carried out by a passenger who uses the mobile terminal in daily use. He only has to mark the beginning and the end of entering an elevator car. It is also possible that, after the actual training has been completed, the passenger provides feedback as to whether entering an elevator car was not recognized or whether entering an elevator car was incorrectly recognized. This feedback can be used for further training of the algorithm. Since not all people move in the same way, e.g. turn around at different speeds, and waiting times vary in length, the measured movement pattern is compared not just with one signal pattern, but with a whole series of slightly different signal patterns.
- the mobile terminal uses the sensor or sensors to record measured values that characterize activities of the elevator installation and to evaluate them.
- Activities of the elevator system are to be understood here, for example, as movements of individual components of the elevator system, such as movements of the elevator car, a shaft door, a car door or a control of a door drive.
- the terminal device detects in particular noises and / or magnetic fields, three magnetic fields in particular being measured in the x, y and z directions.
- the changes in the measured magnetic fields can be caused, for example, by the activity of the door drive, which has an electric motor, and / or by the car and / or shaft door, which has ferromagnetic material. From the stated measured values it can be concluded, for example, that the car door of an elevator car has opened in front of a passenger and closed behind him.
- an activity pattern of the elevator installation is derived from the measured values and compared with at least one stored signal pattern. The recognition of entering the elevator car is then based on the mentioned comparison. Entering an elevator car can thus be recognized particularly reliably.
- the mentioned stored signal patterns are activity patterns.
- an activity pattern should be understood to mean, for example, a time sequence in particular of measured noises and / or magnetic fields.
- An activity pattern can also be described with a feature described in connection with movement patterns or, in particular, with a plurality of features. In particular, not only a single measurement of a magnetic field in one direction is considered, but the combination of several measurements of magnetic fields in several, in particular three, directions.
- a signal pattern can describe, for example, a noise of a car door when opening or a noise when the elevator car drives into a floor or features derived therefrom.
- the signal patterns can be created by specialists on the basis of their experience or, in particular, can be determined by one or more experiments. In order to determine the signal patterns, in particular methods of so-called machine learning can be used analogously to the above description in connection with movement patterns.
- the signal patterns can also be divided into time segments and features can be determined individually for each segment.
- the measured activity pattern is compared in particular not only with one signal pattern, but with a whole series of slightly different signal patterns.
- the mobile terminal with the sensor detects measured values characteristic of the surroundings of the mobile terminal and evaluates them. For example, magnetic fields, air pressure, brightness, humidity or the carbon dioxide content of the air can be measured.
- a property pattern of the elevator installation is derived from the measured values and compared with at least one stored signal pattern. The recognition of entering the elevator car is then based on the mentioned comparison. Entering an elevator car can thus be recognized particularly reliably.
- the mentioned stored signal patterns are property patterns.
- a property pattern should be understood to mean, for example, a chronological sequence of measured values which describe the surroundings of the terminal, that is to say in this case properties of the elevator system.
- a property pattern can also be described with a feature described in connection with movement patterns or, in particular, with a plurality of features. In particular, not only the course of a single measurement of one of the properties mentioned is considered, but the combination of several measurements.
- a signal pattern can describe, for example, the change in the magnetic field from outside to inside the elevator car or features derived therefrom. Changes in the magnetic field can for example be caused by different uses of ferromagnetic materials or different electrical components, such as coils outside and inside the elevator car. The ferromagnetic materials can themselves generate a magnetic field and / or influence the earth's magnetic field.
- a signal pattern can, for example, describe the change in the CO2 content of the air from outside to inside the elevator car or features derived therefrom.
- the CO2 content of the air increases due to the air exhaled by the passengers in the locked elevator car. This means that the CO2 content of the air in the cabin is generally higher than outside.
- the CO2 content increases slowly during the journey, which means that a journey in an elevator car can be detected. This increase is a rather slow process, but it can be recognized during longer journeys.
- a signal pattern can, for example, describe the change in humidity from outside to inside the elevator car or features derived therefrom. This increases slowly, analogous to the CO2 content inside the cabin, due to the exhaled air, so that the evaluation can proceed analogously to the CO2 content.
- a signal pattern can, for example, describe the change in temperature from outside to inside the elevator car or features derived therefrom. Due to the heat given off by the passengers, the temperature rises slowly, so that the evaluation can run analogously to the CO2 content.
- a signal pattern can, for example, describe the change in brightness from outside to inside the elevator car or features derived therefrom. It is usually less bright inside an elevator car than outside.
- a signal pattern can describe, for example, the change in acoustics from outside to inside the elevator car or features derived therefrom. Since an elevator car is a comparatively narrow, closed space, the echo or the sound attenuation changes, for example. In particular, special test signals can be used to determine this change.
- the signal patterns can be created by specialists on the basis of their experience or, in particular, can be determined by one or more experiments. In order to determine the signal patterns, analogous to the above description in connection with movement patterns, in particular methods of so-called machine learning can be used.
- the signal patterns can also be divided into temporal segments and features can be determined individually for each section.
- the measured property pattern is compared in particular not only with one signal pattern but with a whole series of slightly different signal patterns.
- At least one of the mentioned stored signal patterns is changed, in particular all stored signal patterns are changed.
- a learning process takes place through which the stored signal patterns are better and better adapted to the actual circumstances. This enables particularly precise detection of a passenger entering an elevator car.
- a journey in an elevator car is recognized from the measured values measured by at least one of the sensors of the mobile terminal.
- the movement, activity and / or property patterns recorded prior to the journey are compared with stored signal patterns and the stored signal patterns are adapted on the basis of the comparison.
- the stored signal patterns are changed in the direction of the movement, activity and / or property patterns recorded before the journey.
- the so-called machine learning methods described above can be used. This enables particularly effective learning and thus also particularly precise detection of a passenger entering an elevator car.
- an exit from the elevator car can also be detected with a very high probability of being hit.
- This movement can be detected, for example, by means of the acceleration sensor.
- the resultant vector of the accelerations in the x, y and z directions described above can also be used.
- a journey in an elevator car has a characteristic course of the acceleration in the vertical direction.
- the elevator car is first accelerated up or down, then mostly travels for a while at a quasi constant speed and is then braked to a standstill.
- This acceleration profile can be recognized with high accuracy in the measured values of one or more acceleration sensors of the mobile terminal. In this way, reliable detection of a journey by the passenger and thus by the mobile terminal in an elevator car is possible. Based on this reliable detection, a reliable adaptation of the stored signal pattern is possible, which ultimately leads to a particularly reliable detection of the entry of a passenger into an elevator car.
- the air pressure measured by a barometer can also be evaluated to detect a journey in an elevator car. Driving in the vertical direction results in a change in the air pressure, the gradient of the change being significantly greater in terms of amount than when climbing stairs or with weather-related changes in air pressure.
- an elevator system 10 has an elevator car 11 which can be moved up and down in an elevator shaft 12 in the vertical direction 13.
- the elevator car 11 is connected to a counterweight 16 via a flexible suspension element 14 and a drive roller 15 of a drive (not shown).
- the drive can move the elevator car 11 and the counterweight 16 up and down in opposite directions via the drive roller 15 and the suspension element 14.
- the elevator shaft 12 has three shaft openings 17a, 17b, 17c and thus three floors, which are closed with shaft doors 18a, 18b, 18c.
- the elevator car 11 is located at the shaft opening 17a, that is to say on the lowest floor.
- the corresponding shaft door 18a, 18b, 18c can be opened together with a car door 19, thus making it possible to enter the elevator car 11.
- door segments (not shown) are pushed on laterally, so that the door segments are shifted to the side.
- the car door 19 and the corresponding shaft door 18a, 18b, 18c are operated by a door drive 20 which is controlled by a door control unit 21.
- the door control unit 21 is in signal connection with an elevator control unit 22, which controls the entire elevator installation 10.
- the elevator control unit 22 controls, for example, the drive and can thus move the elevator car 11 to a desired floor. It can also, for example, send the door control unit 21 a request to open the car door 19 and the corresponding shaft door 18a, 18b, 18c, which the door control unit 21 then executes by means of a corresponding activation of the door drive 20.
- the mobile phone 24 On the lowest floor, that is to say in front of the shaft door 18a, there is a passenger 23 who is carrying a mobile terminal in the form of a cell phone 24 with him.
- the mobile phone 24 has several sensors, of which only one microphone 25 is shown.
- the mobile phone 24 also has three-dimensional acceleration, yaw rate and magnetic field sensors, which can detect measured values in the x, y and z directions.
- the measured values recorded by the acceleration, yaw rate and magnetic field sensors can be converted in a simple manner into values relating to absolute x, y and z directions. All of the following statements about accelerations, rotation rates or magnetic field strengths thus relate to measured values converted in this way and statements about x, y and z directions on absolute x, y and z directions.
- the mobile phone 24 continuously records measured values and evaluates them.
- the mobile phone 24 detects, for example, the rotation rates about the x, y and z axes. These measured rates of rotation characterize not only movements of the mobile phone 24, but also movements of the passenger 23. Measured values are continuously recorded and, by combining the individual measured values of the various acceleration sensors, continuous ones Movement patterns of the passenger 23 generated. The measured values are filtered in particular by means of a low-pass filter. In this case, the named movement pattern thus contains the courses of the rotation rates around the x, y and z axes.
- the mobile phone 24 compares the continuous movement pattern thus generated with stored signal patterns which are typical of a movement pattern when entering an elevator car 11. In order to be able to carry out the comparison, features in the form of mean values, standard deviations and minimum / maximum values of the individual rotation rates or time segments of the rotation rates are determined and compared with stored values. If the differences between the features of the measured profiles and the stored features are smaller than definable threshold values, then sufficient correspondence between a movement pattern and a stored signal pattern is recognized. The mobile phone 24 concludes from this that the passenger 23 has entered the elevator car 11. The mobile phone 24 can use this information in very different ways. In this example, it is supposed to switch to a measurement mode in which it is ready for measurements during the upcoming journey in the elevator car 11 for monitoring the elevator installation 10. The measurements are only started at a later point in time.
- the comparison between a measured movement pattern and a stored signal pattern and thus the detection or classification of movement patterns can also be carried out using methods of so-called machine learning.
- machine learning For example, a so-called support vector machine, a random forest algorithm or a deep learning algorithm can be used.
- the transverse accelerations in the x, y and z directions can also be taken into account, so that the movement pattern also contains the progressions of the accelerations in the x, y and z directions.
- the mobile phone does not carry out the detection of entry into an elevator car completely on its own, but rather transmits the recorded data to an evaluation device.
- the detection of entry into the elevator car is then carried out by the evaluation device.
- the evaluation device sends a corresponding signal to the mobile phone.
- a measured movement pattern and a stored signal pattern are shown over time, with in Fig. 2a the rotation rates ⁇ about the x-axis, in Figure 2b around the y-axis and in Figure 2c is shown around the z-axis.
- the measured rate of rotation is shown with a solid line and the saved rate of rotation of the signal pattern is shown with a dashed line.
- the solid lines 26a, 26b, 26c therefore represent the measured rates of rotation and the dashed lines 27a, 27b, 27c the stored rates of rotation about the x, y and z axes.
- the measured values are shown smoothed.
- the stored signal pattern (dashed lines 27a, 27b, 27c) contains typical curves of rotation rates as they occur when entering an elevator car. From the point in time t0 to the point in time t1, the passenger runs towards the shaft door in order to stop at point in time t1 and wait until point in time t2 for the shaft and car door to be opened. There are virtually no rotation rates. From the point in time t2 the passenger enters the elevator car and then turns around in the direction of the car door. This reversal primarily leads to a clear deflection of the rotation rates around the z-axis (line 27c), with a brief undershoot occurring in the opposite direction at the beginning and at the end of the deflection.
- the measured movement pattern (solid lines 26a, 26b, 26c) follows the stored signal pattern very precisely.
- the comparison of the movement patterns with stored signal patterns proceeds as described above. On the basis of this correspondence, the mobile phone concludes that the passenger has entered the elevator car.
- the measured movement pattern is compared in particular not only with one signal pattern, but with a whole series of slightly different signal patterns.
- the accelerations in the x, y and z directions can also be taken into account in a comparable manner. This makes it easier to identify walking in the direction of the shaft door and into the elevator car, as well as waiting in front of and in the elevator car.
- the mobile phone 24 detects the magnetic field strength in the x, y and z directions, in particular with the three-dimensional magnetic field sensor.
- the measured values thus identify a property of the elevator system. It is very difficult to infer from measured values at a single point in time that the mobile phone and thus the passenger is in an elevator car. For this reason, a property pattern is created from the temporal progressions of the three field strengths, with the measured values being filtered in particular by means of a low-pass filter.
- the mobile phone 24 compares the continuous property pattern thus generated with stored signal patterns which are typical of a property pattern when entering an elevator car 11. If sufficient correspondence between a movement pattern and a stored signal pattern is detected, the mobile phone 24 concludes from this that the passenger 23 has entered the elevator car 11. The comparison of the movement patterns with stored signal patterns proceeds as described above.
- a measured property pattern and a stored signal pattern are shown over time, where in Fig. 3a the magnetic field strength H in the x-direction, in Figure 3b in y-direction and in Figure 3c are shown in the z-direction.
- the measured field strengths are each shown with a solid line and the stored field strengths of the signal pattern are each shown with a dashed line.
- the solid lines 28a, 28b, 28c thus represent the measured field strengths and the dashed lines 29a, 29b, 29c the stored field strengths in the x, y and z directions.
- the measured values are shown smoothed.
- the stored signal pattern (dashed lines 29a, 29b, 29c) contains typical curves of field strengths as they occur when entering an elevator car. Shortly before to shortly after time t2, at which the passenger enters the elevator car, a significant increase can be seen in the field strengths in the y and z directions, while the field strength in the x direction remains virtually unchanged for the entire time. The change in field strengths is due in particular to the use of ferromagnetic materials in the elevator car. As in the Figures 3a, 3b and 3c As can be seen, the measured property pattern (solid lines 28a, 28b, 28c) follows this very precisely stored signal pattern. This correspondence is a further indication for the mobile phone that the passenger has entered the elevator car.
- the comparison of the property pattern with stored signal patterns runs analogously to the comparison of the movement patterns with stored signal patterns described above.
- the measured property pattern is compared in particular not only with one signal pattern but with a whole series of slightly different signal patterns.
- a further increase in the reliability of the recognition of entry into an elevator car can be achieved by additionally taking into account measured values which characterize an activity of the elevator installation.
- an activity pattern can be derived from the magnetic field strengths described above, which is compared with a signal pattern that is typical for the opening of the car and shaft door.
- Another possibility is to derive an activity pattern from the noise measured with the microphone and to compare this with a signal pattern that is typical for opening the car and landing door.
- a sufficient correspondence between the measured activity patterns and a stored signal pattern can in turn be assessed as an indication that the passenger has entered an elevator car.
- the mobile phone can be designed in such a way that it already recognizes entry into an elevator car if there is a single sufficient match of a movement pattern, a property pattern or an activity pattern with a stored signal pattern. But it is also possible that entry is only recognized when there are at least two, three or more matches.
- the stored signal patterns can be adapted.
- the method can be adapted in particular to the behavior of the owner of the cell phone.
- the mobile phone recognizes, in particular, a journey in an elevator car. This can be recognized very reliably by monitoring the acceleration in the z direction and thus in the vertical direction 13.
- a curve of the acceleration a in the z-direction upwards is shown by way of example with the line 30, the acceleration due to gravity not being taken into account.
- the elevator car 11 and thus also the passenger 23 with his mobile phone 24 are accelerated with an almost constant acceleration from time t4. Shortly before the desired speed of the elevator car 11 is reached, the acceleration drops in order to reach the zero line at time t5.
- the elevator car 11 then travels at a constant speed up to the point in time t6, in order then to be braked with a quasi constant negative acceleration up to the point in time t7.
- This typical course with acceleration in the vertical direction, constant travel and braking to a standstill can be seen very well in the measured values.
- the movement, activity and / or property patterns recorded prior to the journey are compared with stored signal patterns and, on the basis of the comparison, the stored signal patterns are adapted using machine learning methods.
- the stored signal patterns are changed in the direction of the movement, activity and / or property patterns recorded before the journey.
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mechanical Engineering (AREA)
- Indicating And Signalling Devices For Elevators (AREA)
- Maintenance And Inspection Apparatuses For Elevators (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Erkennung eines Betretens einer Aufzugkabine einer Aufzuganlage durch einen Passagier gemäss dem Oberbegriff des Anspruchs 1.The invention relates to a method for recognizing that a passenger has entered an elevator car of an elevator installation according to the preamble of claim 1.
Die
Die
Demgegenüber ist es insbesondere die Aufgabe der Erfindung, ein Verfahren vorzuschlagen, mittels welchem mit möglichst wenig zusätzlicher Hardware und damit möglichst kostengünstig ein Betreten einer Aufzugkabine durch einen Passagier erkannt werden kann. Erfindungsgemäss wird diese Aufgabe mit einem Verfahren mit den Merkmalen des Anspruchs 1 gelöst.In contrast, it is the object of the invention in particular to propose a method by means of which entry into an elevator car by a passenger can be detected with as little additional hardware as possible and thus as cost-effectively as possible. According to the invention, this object is achieved with a method having the features of claim 1.
Beim erfindungsgemässen Verfahren zur Erkennung eines Betretens einer Aufzugkabine einer Aufzuganlage durch einen Passagier wird davon ausgegangen, dass der Passagier ein mobiles Endgerät mit sich führt. Das Endgerät weist mindestens einen, insbesondere aber mehrere Sensoren auf, mit denen das mobile Endgerät Messwerte erfasst und auswertet. Die Erkennung des Betretens der Aufzugkabine erfolgt dann auf Basis der genannten Messwerte.In the method according to the invention for recognizing that a passenger has entered an elevator car of an elevator installation, it is assumed that the passenger is carrying a mobile terminal device. The terminal has at least one, in particular however, it has several sensors with which the mobile device records and evaluates measured values. The recognition of entering the elevator car is then based on the stated measured values.
Unter einer "Erkennung eines Betretens einer Aufzugkabine einer Aufzuganlage durch einen Passagier" wird verstanden, dass der Zeitpunkt des Betretens der Aufzugkabine erkannt wird. Das Betreten der Aufzugkabine und damit der Zeitpunkt des Betretens ist einer Fahrt des Passagiers in einer Aufzugkabine bzw. einer Bewegung und damit einer Beschleunigung des Passagiers und der Aufzugkabine in vertikaler Richtung zeitlich vorgelagert. Aus der Erkennung einer Bewegung oder Beschleunigung des Passagiers und der Aufzugkabine in vertikaler Richtung kann nicht auf den Zeitpunkt des Betretens der Aufzugkabine geschlossen werden. Der Zeitraum zwischen Betreten der Aufzugkabine und Beginn einer Fahrt des Passagiers in der Aufzugkabine kann einige Sekunden oder mehrere Minuten betragen.“Recognition of a passenger entering an elevator car of an elevator installation” is understood to mean that the point in time when the elevator car was entered is recognized. Entering the elevator car and thus the time of entering precedes a journey by the passenger in an elevator car or a movement and thus an acceleration of the passenger and the elevator car in the vertical direction. From the detection of a movement or acceleration of the passenger and the elevator car in the vertical direction, it is not possible to deduce the time of entering the elevator car. The period of time between entering the elevator car and the beginning of a journey by the passenger in the elevator car can be a few seconds or several minutes.
In der heutigen Zeit führen sehr viele Menschen und damit auch viele Passagiere einer Aufzuganlage ein mobiles Endgerät mit Sensoren, beispielsweise in Form eines Mobiltelefons oder Smartphones mit sich. Durch die Nutzung dieser sowieso mitgeführten Endgeräte ist für die Durchführung des Verfahrens keine zusätzliche Hardware notwendig, die nur für die Ausführung des Verfahrens notwendig wäre. Zusätzliche Hardware kann allenfalls notwendig sein, wenn die durch das erfindungsgemässe Verfahren generierte Information über das Betreten einer Aufzugkabine weitergehend ausgewertet werden soll. Das erfindungsgemässe Verfahren ist damit kostengünstig ausführbar.Nowadays, very many people and thus also many passengers in an elevator system carry a mobile device with sensors, for example in the form of a cell phone or smartphone. By using these terminals, which are carried along anyway, no additional hardware is necessary for carrying out the method, which would only be necessary for carrying out the method. Additional hardware may be necessary if the information generated by the method according to the invention about entering an elevator car is to be further evaluated. The method according to the invention can thus be carried out inexpensively.
Die Information, dass ein Passagier mit einem mobilen Endgerät eine Aufzugkabine betritt, kann auf unterschiedlichste Weise ausgewertet oder weitergehend verwendet werden, beziehungsweise unterschiedlichste Aktionen auslösen. Das Endgerät kann die Information beispielsweise insbesondere drahtlos an eine Verkehrs-Auswerteeinheit weitergeben, welche dann vergleichbar mit der Verkehrs-Auswerteeinheit der
Auf analoge Weise kann auch ein Verlassen einer Aufzugkabine erkannt werden. Das Verlassen läuft grundsätzlich umgekehrt ab wie das Betreten einer Aufzugkabine.An exit from an elevator car can also be recognized in an analogous manner. Exiting is basically the opposite of entering an elevator car.
Die Auswertung der erfassten Daten und damit die Erkennung eines Betretens der Aufzugkabine wird insbesondere vom mobilen Endgerät durchgeführt. Es ist aber auch möglich, dass die erfassten Daten an eine Auswerteeinrichtung übertragen werden und die Erkennung eines Betretens der Aufzugkabine von der Auswerteeinrichtung durchgeführt wird. In diesem Fall beschränkt sich die Auswertung der Daten durch das Endgerät auf die Weiterleitung der Daten an die Auswerteeinrichtung. Ausserdem ist es möglich, dass zumindest ein Teil der Auswertung sowohl vom mobilen Endgerät, als auch von der Auswerteeinrichtung ausgeführt wird. Damit ist eine gegenseitige Kontrolle und/oder Ergänzung möglich, was eine sehr hohe Trefferwahrscheinlichkeit für das Erkennen eines Betretens einer Aufzugkabine ermöglicht.The evaluation of the recorded data and thus the recognition of entering the elevator car is carried out in particular by the mobile terminal. It is also possible, however, for the recorded data to be transmitted to an evaluation device and for the evaluation device to detect entry into the elevator car. In this case, the evaluation of the data by the terminal is limited to forwarding the data to the evaluation device. In addition, it is possible that at least part of the evaluation is carried out both by the mobile terminal and by the evaluation device. This enables mutual monitoring and / or supplementation, which enables a very high hit probability for the detection of entry into an elevator car.
Das mobile Endgerät kann beispielsweise als ein Mobiltelefon, ein Smartphone, ein Tablet-Computer, eine Smartwatch, ein so genanntes Wearable beispielsweise in Form eines elektronischen, smarten Textils oder als ein sonstiges tragbares Endgerät ausgeführt sein. Der Sensor des mobilen Endgeräts kann beispielsweise als ein Mikrofon, ein Beschleunigungssensor, ein Drehratensensor, ein Magnetfeldsensor, eine Kamera, ein Barometer, ein Helligkeitssensor, ein Luftfeuchtigkeitssensor oder ein Kohlendioxid-Sensor ausgeführt sein. Die Beschleunigungs-, Drehraten- und Magnetfeldsensoren sind insbesondere als so genannte dreidimensionale oder 3D-Sensoren ausgeführt. Derartige Sensoren liefern drei Messwerte in x-, y- und z-Richtung, wobei die x-, y- und z-Richtungen senkrecht zueinander angeordnet sind. Das Endgerät verfügt insbesondere über mehrere und im speziellen über unterschiedliche Arten von Sensoren, also beispielsweise über ein Mikrofon, einen dreidimensionalen Beschleunigungssensor, einen dreidimensionalen Drehratensensor und einen dreidimensionalen Magnetfeldsensor. Im Folgenden werden unter Beschleunigungs-, Drehraten- und Magnetfeldsensoren dreidimensionale Beschleunigungs-, Drehraten- und Magnetfeldsensoren verstanden.The mobile terminal can be designed, for example, as a mobile phone, a smartphone, a tablet computer, a smart watch, a so-called wearable, for example in the form of an electronic, smart textile, or as another portable terminal. The sensor of the mobile terminal can be designed, for example, as a microphone, an acceleration sensor, a rotation rate sensor, a magnetic field sensor, a camera, a barometer, a brightness sensor, a humidity sensor or a carbon dioxide sensor. The acceleration, yaw rate and magnetic field sensors are designed in particular as so-called three-dimensional or 3D sensors. Such sensors deliver three measured values in the x, y and z directions, the x, y and z directions being arranged perpendicular to one another. The terminal has in particular several and in particular different types of sensors, that is to say for example a microphone, a three-dimensional acceleration sensor, a three-dimensional rotation rate sensor and a three-dimensional magnetic field sensor. In the following, acceleration, yaw rate and magnetic field sensors are understood to mean three-dimensional acceleration, yaw rate and magnetic field sensors.
Der Passagier kann das Endgerät in völlig unterschiedlichen Ausrichtungen mit sich führen, so dass im ersten Ansatz nicht klar ist, wie die Beschleunigungs-, Drehraten- oder Magnetfeldsensoren im Raum ausgerichtet sind. Da aber immer die Erdbeschleunigung gemessen wird, kann, zumindest wenn der Passagier sich nicht bewegt, aus dieser die Vertikalrichtung, also die absolute z-Richtung eindeutig bestimmt werden. Mit Kenntnis der absoluten z-Richtung lassen sich die Messwerte der Beschleunigungs- und Drehraten- und Magnetfeldsensoren in Werte umrechnen, die entlang der absoluten z-Richtung und absoluten x- und y-Richtungen ausgerichtet sind. Die absoluten x-, y- und z- Richtungen sind dabei jeweils senkrecht zueinander angeordnet. Alle folgenden Aussagen zu Beschleunigungen, Drehraten oder Magnetfeldstärken beziehen sich auf in dieser Weise umgerechnete Messwerte und Aussagen zu x-, y- und z-Richtungen auf absolute x-, y- und z-Richtungen. Statt der Bestimmung der Werte in absoluten x-, y- und z-Richtungen können die drei Messwerte als Vektoren betrachtet und aus den einzelnen Vektoren ein resultierender Vektor gebildet werden. Anstatt die drei einzelnen Messwerte zu verwenden, kann auch der resultierende Vektor verwendet werden.The passenger can carry the terminal with him in completely different orientations, so that in the first approach it is not clear how the acceleration, yaw rate or magnetic field sensors are oriented in space. However, since the acceleration due to gravity is always measured, the vertical direction, that is to say the absolute z-direction, can be clearly determined from this, at least when the passenger is not moving. With knowledge of the absolute z-direction, the measured values of the acceleration, yaw rate and magnetic field sensors can be converted into values that are aligned along the absolute z-direction and absolute x- and y-directions. The absolute x, y and z directions are each arranged perpendicular to one another. All of the following statements about accelerations, rotation rates or magnetic field strengths relate to measured values converted in this way and statements about x, y and z directions refer to absolute x, y and z directions. Instead of determining the values in the absolute x, y and z directions, the three measured values can be viewed as vectors and a resulting vector can be formed from the individual vectors. Instead of using the three individual measured values, the resulting vector can also be used.
In Ausgestaltung der Erfindung erfasst das mobile Endgerät mit dem oder den Sensoren Bewegungen des Passagiers kennzeichnende Messwerte und wertet diese aus. Bei den genannten Messwerten handelt es sich insbesondere um Beschleunigungen, also transversale Beschleunigungen und/oder Drehraten, wobei im speziellen jeweils drei Beschleunigungen und/oder Drehraten in x-, y- und z-Richtung gemessen werden. Aus den Bewegungen des Passagiers kennzeichnenden Messwerten kann auf die Bewegungen des Passagiers geschlossen werden und aus den Bewegungen des Passagiers kann erkannt werden, dass der Passagier eine Aufzugkabine betritt. Dabei wird grundsätzlich davon ausgegangen, dass der Passagier das Endgerät so mit sich führt, dass die vom Endgerät gemessenen Messwerte nicht nur die Bewegungen des Endgeräts, sondern auch des Passagiers kennzeichnen.In an embodiment of the invention, the mobile terminal with the sensor or sensors detects measured values that characterize movements of the passenger and evaluates them. The stated measured values are, in particular, accelerations, that is to say transverse accelerations and / or rotation rates, three accelerations and / or rotation rates being measured in the x, y and z directions in particular. From the measured values characterizing the movements of the passenger, conclusions can be drawn about the movements of the passenger, and it can be recognized from the movements of the passenger that the passenger is entering an elevator car. It is generally assumed that the passenger carries the terminal with him in such a way that the measured values measured by the terminal characterize not only the movements of the terminal but also of the passenger.
In Ausgestaltung der Erfindung wird aus den Messwerten ein Bewegungsmuster des Passagiers abgeleitet und mit wenigstens einem gespeicherten Signalmuster verglichen.In an embodiment of the invention, a movement pattern of the passenger is derived from the measured values and compared with at least one stored signal pattern.
Die Erkennung des Betretens der Aufzugkabine erfolgt dann auf Basis des genannten Vergleichs. Damit kann besonders zuverlässig ein Betreten einer Aufzugkabine erkannt werden.The recognition of entering the elevator car then takes place on the basis of the comparison mentioned. Entering an elevator car can thus be recognized particularly reliably.
Bei den genannten gespeicherten Signalmustern handelt es sich in diesem Fall um Bewegungsmuster. In diesem Zusammenhang soll unter einem Bewegungsmuster beispielsweise eine zeitliche Abfolge insbesondere von Beschleunigungen oder Drehratenverstanden werden. Ein Bewegungsmuster kann auch mit einem so genannten Merkmal oder insbesondere mehreren Merkmalen beschrieben werden. Derartige Merkmale können beispielsweise statistische Kenngrössen wie Mittelwerte, Standardabweichungen, Minimal- / Maximalwerte oder Ergebnisse einer Fast Fourier Analyse der genannten Beschleunigungen oder Drehraten sein. Ein Bewegungsmuster kann in diesem Fall auch als ein so genannter Merkmalsvektor bezeichnet werden. Die genannten Merkmale können insbesondere für einzelne zeitliche Abschnitte bestimmt werden, wobei insbesondere basierend auf Werten oder Verläufen einzelner Messwerte gebildet werden. Beispielsweise kann ein derartiger zeitlicher Abschnitt dadurch gekennzeichnet sein, dass sich der Passagier nicht bewegt, er also beispielsweise vor der Schachttür wartet. Insbesondere wird nicht nur eine einzige Beschleunigung oder Drehrate betrachtet, sondern die Kombination von mehreren Beschleunigungen und/oder Drehraten, im speziellen von jeweils drei Beschleunigungen und Drehraten.In this case, the mentioned stored signal patterns are movement patterns. In this context, a movement pattern should be understood to mean, for example, a time sequence in particular of accelerations or rotation rates. A movement pattern can also be described with a so-called feature or, in particular, with a plurality of features. Such features can be, for example, statistical parameters such as mean values, standard deviations, minimum / maximum values or the results of a Fast Fourier analysis of the accelerations or rotation rates mentioned. In this case, a movement pattern can also be referred to as a so-called feature vector. The features mentioned can be determined in particular for individual time segments, with individual measured values being formed in particular based on values or progressions. For example, such a time segment can be characterized in that the passenger is not moving, that is to say, for example, waiting in front of the shaft door. In particular, not just a single acceleration or rate of rotation is considered, but the combination of several accelerations and / or rates of rotation, in particular of three accelerations and rates of rotation.
Ein gespeichertes Signalmuster kann beispielsweise charakteristische Verläufe von Beschleunigungen, Drehraten und/oder Magnetfelder oder Merkmale beim Gehen einer Person zu einer Schachttür, Warten vor der Schachttür bis die Aufzugkabine zur Verfügung steht und der Zutritt möglich ist, Eintreten in die Aufzugkabine und Umdrehen in Richtung Kabinentür enthalten. Die Signalmuster können von Spezialisten auf Grund ihrer Erfahrung erstellt oder insbesondere durch einen oder mehrere Versuche bestimmt werden. Zur Erkennung oder Klassifizierung von Bewegungsmustern werden insbesondere Methoden des so genannten maschinellen Lernens eingesetzt. Beispielsweise kann eine so genannte Support Vector Machine, ein Random Forest Algorithmus oder ein Deep Learning Algorithmus verwendet werden. Diese Klassifikationsverfahren müssen zunächst trainiert werden. Dazu werden in Versuchen für das Betreten einer Aufzugkabine typische Bewegungsmuster, insbesondere basierend auf den genannten Merkmalen, erzeugt und den genannten Algorithmen zum Training zur Verfügung gestellt. Nachdem die Algorithmen mit einer ausreichenden Anzahl von Trainingsmustern trainiert worden sind, können sie entscheiden, ob ein unbekanntes Bewegungsmuster ein Betreten einer Aufzugkabine kennzeichnet oder nicht. In diesem Fall ist das Signalmuster in den Parametern des Algorithmus gespeichert.A stored signal pattern can, for example, be characteristic of accelerations, rotation rates and / or magnetic fields or features when a person walks to a landing door, waiting in front of the landing door until the elevator car is available and access is possible, entering the elevator car and turning around in the direction of the car door contain. The signal patterns can be created by specialists on the basis of their experience or, in particular, can be determined by one or more experiments. In particular, methods of so-called machine learning are used to recognize or classify movement patterns. For example, a so-called support vector machine, a random forest algorithm or a deep learning algorithm can be used. These classification methods must first be trained. For this purpose, in experiments typical movement patterns for entering an elevator car, in particular based on the features mentioned, are generated and the algorithms mentioned are used for training Provided. After the algorithms have been trained with a sufficient number of training patterns, they can decide whether or not an unknown movement pattern indicates entering an elevator car. In this case the signal pattern is stored in the parameters of the algorithm.
Die Erzeugung der typischen Bewegungsmuster für das Training kann von einem Passagier durchgeführt werden, der das mobile Endgerät im täglichen Gebrauch benutzt. Er muss dazu lediglich den Beginn und das Ende des Betretens einer Aufzugkabine kennzeichnen. Es ist auch möglich, dass nach Abschluss des eigentlichen Trainings der Passagier eine Rückmeldung gibt, ob ein Betreten einer Aufzugkabine nicht erkannt oder fälschlicherweise ein Betreten einer Aufzugkabine erkannt wurde. Diese Rückmeldungen können zum weiteren Training des Algorithmus genutzt werden.
Da sich nicht alle Personen auf die gleiche Weise bewegen, also sich beispielsweise unterschiedlich schnell umdrehen, und beispielsweise Wartezeiten unterschiedlich lange sind, wird das gemessene Bewegungsmuster insbesondere nicht nur mit einem Signalmuster, sondern mit einer ganzen Reihe, leicht unterschiedlicher Signalmuster verglichen.The generation of the typical movement patterns for the training can be carried out by a passenger who uses the mobile terminal in daily use. He only has to mark the beginning and the end of entering an elevator car. It is also possible that, after the actual training has been completed, the passenger provides feedback as to whether entering an elevator car was not recognized or whether entering an elevator car was incorrectly recognized. This feedback can be used for further training of the algorithm.
Since not all people move in the same way, e.g. turn around at different speeds, and waiting times vary in length, the measured movement pattern is compared not just with one signal pattern, but with a whole series of slightly different signal patterns.
In Ausgestaltung der Erfindung erfasst das mobile Endgerät mit dem oder den Sensoren Aktivitäten der Aufzuganlage kennzeichnende Messwerte und wertet diese aus. Unter Aktivitäten der Aufzuganlage sollen hier beispielsweise Bewegungen einzelner Komponenten der Aufzuganlage, wie beispielsweise Bewegungen der Aufzugkabine, einer Schachttür, einer Kabinentür oder eine Ansteuerung eines Türantriebs verstanden werden. Das Endgerät erfasst insbesondere Geräusche und/oder Magnetfelder, wobei im speziellen drei Magnetfelder in x-, y- und z-Richtung gemessen werden. Die Änderungen der gemessenen Magnetfelder können beispielsweise durch die Aktivität des einen Elektromotor aufweisenden Türantriebs und/oder durch die ferromagnetisches Material aufweisende Kabinen- und/oder Schachttür hervorgerufen werden. Aus den genannten Messwerten kann beispielsweise geschlossen werden, dass sich die Kabinentür einer Aufzugkabine vor einem Passagier geöffnet und hinter ihm geschlossen hat.In an embodiment of the invention, the mobile terminal uses the sensor or sensors to record measured values that characterize activities of the elevator installation and to evaluate them. Activities of the elevator system are to be understood here, for example, as movements of individual components of the elevator system, such as movements of the elevator car, a shaft door, a car door or a control of a door drive. The terminal device detects in particular noises and / or magnetic fields, three magnetic fields in particular being measured in the x, y and z directions. The changes in the measured magnetic fields can be caused, for example, by the activity of the door drive, which has an electric motor, and / or by the car and / or shaft door, which has ferromagnetic material. From the stated measured values it can be concluded, for example, that the car door of an elevator car has opened in front of a passenger and closed behind him.
In Ausgestaltung der Erfindung wird aus den Messwerten ein Aktivitätsmuster der Aufzuganlage abgeleitet und mit wenigstens einem gespeicherten Signalmuster verglichen. Die Erkennung des Betretens der Aufzugkabine erfolgt dann auf Basis des genannten Vergleichs. Damit kann besonders zuverlässig ein Betreten einer Aufzugkabine erkannt werden.In an embodiment of the invention, an activity pattern of the elevator installation is derived from the measured values and compared with at least one stored signal pattern. The recognition of entering the elevator car is then based on the mentioned comparison. Entering an elevator car can thus be recognized particularly reliably.
Bei den genannten gespeicherten Signalmustern handelt es sich in diesem Fall um Aktivitätsmuster. In diesem Zusammenhang soll unter einem Aktivitätsmuster beispielsweise eine zeitliche Abfolge insbesondere von gemessenen Geräuschen und/oder Magnetfeldern verstanden werden. Ein Aktivitätsmuster kann auch mit einem im Zusammenhang mit Bewegungsmustern beschriebenen Merkmal oder insbesondere mehreren Merkmalen beschrieben werden. Insbesondere wird nicht nur eine einzige Messung eines Magnetfelds in einer Richtung betrachtet, sondern die Kombination von mehreren Messungen von Magnetfeldern in mehreren, insbesondere drei Richtungen.In this case, the mentioned stored signal patterns are activity patterns. In this context, an activity pattern should be understood to mean, for example, a time sequence in particular of measured noises and / or magnetic fields. An activity pattern can also be described with a feature described in connection with movement patterns or, in particular, with a plurality of features. In particular, not only a single measurement of a magnetic field in one direction is considered, but the combination of several measurements of magnetic fields in several, in particular three, directions.
Ein Signalmuster kann beispielsweise ein Geräusch einer Kabinentür beim Öffnen oder ein Geräusch beim Einfahren der Aufzugkabine auf ein Stockwerk oder daraus abgeleitete Merkmale beschreiben. Die Signalmuster können von Spezialisten auf Grund ihrer Erfahrung erstellt oder insbesondere durch einen oder mehrere Versuche bestimmt werden. Zur Bestimmung der Signalmuster können analog zur obigen Beschreibung im Zusammenhang mit Bewegungsmustern insbesondere Verfahren des so genannten maschinellen Lernens angewandt werden. Die Signalmuster können ebenfalls in zeitliche Abschnitte aufgeteilt und für jeden Abschnitt einzeln Merkmale bestimmt werden.A signal pattern can describe, for example, a noise of a car door when opening or a noise when the elevator car drives into a floor or features derived therefrom. The signal patterns can be created by specialists on the basis of their experience or, in particular, can be determined by one or more experiments. In order to determine the signal patterns, in particular methods of so-called machine learning can be used analogously to the above description in connection with movement patterns. The signal patterns can also be divided into time segments and features can be determined individually for each segment.
Da gleichartige Aktivitäten von Aufzügen, wie beispielsweise das Öffnen der Kabinentür, variieren können, also beispielsweise unterschiedlich lange dauern, wird das gemessene Aktivitätsmuster insbesondere nicht nur mit einem Signalmuster, sondern mit einer ganzen Reihe, leicht unterschiedlicher Signalmuster verglichen.Since similar activities of elevators, such as opening the car door, can vary, for example take different lengths of time, the measured activity pattern is compared in particular not only with one signal pattern, but with a whole series of slightly different signal patterns.
In Ausgestaltung der Erfindung erfasst das mobile Endgerät mit dem Sensor Eigenschaften der Umgebung des mobilen Endgeräts kennzeichnende Messwerte und auswertet diese aus. Es können beispielsweise Magnetfelder, der Luftdruck, die Helligkeit, die Luftfeuchtigkeit oder ein Kohlendioxidgehalt der Luft gemessen werden.In an embodiment of the invention, the mobile terminal with the sensor detects measured values characteristic of the surroundings of the mobile terminal and evaluates them. For example, magnetic fields, air pressure, brightness, humidity or the carbon dioxide content of the air can be measured.
In Ausgestaltung der Erfindung wird aus den Messwerten ein Eigenschaftsmuster der Aufzuganlage abgeleitet und mit wenigstens einem gespeicherten Signalmuster verglichen. Die Erkennung des Betretens der Aufzugkabine erfolgt dann auf Basis des genannten Vergleichs. Damit kann besonders zuverlässig ein Betreten einer Aufzugkabine erkannt werden.In an embodiment of the invention, a property pattern of the elevator installation is derived from the measured values and compared with at least one stored signal pattern. The recognition of entering the elevator car is then based on the mentioned comparison. Entering an elevator car can thus be recognized particularly reliably.
Bei den genannten gespeicherten Signalmustern handelt es sich in diesem Fall um Eigenschaftsmuster. In diesem Zusammenhang soll unter einem Eigenschaftsmuster beispielsweise eine zeitliche Abfolge von Messwerten verstanden werden, die die Umgebung des Endgeräts, also in diesem Fall Eigenschaften der Aufzuganlage beschreiben. Ein Eigenschaftsmuster kann auch mit einem im Zusammenhang mit Bewegungsmustern beschriebenen Merkmal oder insbesondere mehreren Merkmalen beschrieben werden. Insbesondere wird nicht nur der Verlauf einer einzigen Messung einer der genannten Eigenschaften betrachtet, sondern die Kombination von mehreren Messungen.In this case, the mentioned stored signal patterns are property patterns. In this context, a property pattern should be understood to mean, for example, a chronological sequence of measured values which describe the surroundings of the terminal, that is to say in this case properties of the elevator system. A property pattern can also be described with a feature described in connection with movement patterns or, in particular, with a plurality of features. In particular, not only the course of a single measurement of one of the properties mentioned is considered, but the combination of several measurements.
Ein Signalmuster kann beispielsweise die Änderung des Magnetfelds von ausserhalb nach innerhalb der Aufzugkabine oder daraus abgeleitete Merkmale beschreiben. Änderungen des Magnetfelds können beispielsweise durch unterschiedliche Verwendung ferromagnetischer Materialien oder unterschiedlicher elektrischer Bauteile, wie beispielsweise Spulen ausserhalb und innerhalb der Aufzugkabine hervorgerufen werden. Die ferromagnetischen Materialien können selbst ein Magnetfeld erzeugen und/oder das Erdmagnetfeld beeinflussen.A signal pattern can describe, for example, the change in the magnetic field from outside to inside the elevator car or features derived therefrom. Changes in the magnetic field can for example be caused by different uses of ferromagnetic materials or different electrical components, such as coils outside and inside the elevator car. The ferromagnetic materials can themselves generate a magnetic field and / or influence the earth's magnetic field.
Ein Signalmuster kann beispielsweise die Änderung des CO2-Gehalts der Luft von ausserhalb nach innerhalb der Aufzugkabine oder daraus abgeleitete Merkmale beschreiben. Der CO2-Gehalt der Luft steigt durch die von den Passagieren in der abgeschlossenen Aufzugkabine ausgeatmete Luft an. Damit ist im allgemeinen der CO2-Gehalt der Luft in der Kabine höher als ausserhalb. Zusätzlich steigt der CO2-Gehalt während der Fahrt langsam an, womit eine Fahrt in einer Aufzugkabine erkannt werden kann. Dieser Anstieg ist zwar ein eher langsamer Prozess, der aber bei längeren Fahrten erkannt werden kann.A signal pattern can, for example, describe the change in the CO2 content of the air from outside to inside the elevator car or features derived therefrom. The CO2 content of the air increases due to the air exhaled by the passengers in the locked elevator car. This means that the CO2 content of the air in the cabin is generally higher than outside. In addition, the CO2 content increases slowly during the journey, which means that a journey in an elevator car can be detected. This increase is a rather slow process, but it can be recognized during longer journeys.
Ein Signalmuster kann beispielsweise die Änderung der Luftfeuchtigkeit von ausserhalb nach innerhalb der Aufzugkabine oder daraus abgeleitete Merkmale beschreiben. Diese steigt analog zum CO2-Gehalt innerhalb der Kabine durch die ausgeatmete Luft langsam an, so dass die Auswertung analog zum CO2-Gehalt ablaufen kann.A signal pattern can, for example, describe the change in humidity from outside to inside the elevator car or features derived therefrom. This increases slowly, analogous to the CO2 content inside the cabin, due to the exhaled air, so that the evaluation can proceed analogously to the CO2 content.
Ein Signalmuster kann beispielsweise die Änderung der Temperatur von ausserhalb nach innerhalb der Aufzugkabine oder daraus abgeleitete Merkmale beschreiben. Durch die von den Passagieren abgegebene Wärme steigt die Temperatur langsam an, so dass die Auswertung analog zum CO2-Gehalt ablaufen kann.A signal pattern can, for example, describe the change in temperature from outside to inside the elevator car or features derived therefrom. Due to the heat given off by the passengers, the temperature rises slowly, so that the evaluation can run analogously to the CO2 content.
Ein Signalmuster kann beispielsweise die Änderung der Helligkeit von ausserhalb nach innerhalb der Aufzugkabine oder daraus abgeleitete Merkmale beschreiben. Innerhalb einer Aufzugkabine ist es in der Regel weniger hell als ausserhalb.A signal pattern can, for example, describe the change in brightness from outside to inside the elevator car or features derived therefrom. It is usually less bright inside an elevator car than outside.
Ein Signalmuster kann beispielsweise die Änderung der Akustik von ausserhalb nach innerhalb der Aufzugkabine oder daraus abgeleitete Merkmale beschreiben. Da es sich bei einer Aufzugkabine um einen vergleichsweise engen, abgeschlossenen Raum handelt, ändert sich beispielsweise das Echo oder die Schalldämpfung. Zur Ermittlung dieser Änderung können insbesondere spezielle Testsignale verwendet werden.A signal pattern can describe, for example, the change in acoustics from outside to inside the elevator car or features derived therefrom. Since an elevator car is a comparatively narrow, closed space, the echo or the sound attenuation changes, for example. In particular, special test signals can be used to determine this change.
Die Signalmuster können von Spezialisten auf Grund ihrer Erfahrung erstellt oder insbesondere durch einen oder mehrere Versuche bestimmt werden. Zur Bestimmung der Signalmuster können analog zur obigen Beschreibung im Zusammenhang mit Bewegungsmustern insbesondere Verfahren des so genannten maschinellen Lernens angewandt werden Die Signalmuster können ebenfalls in zeitliche Anschnitte aufgeteilt und für jeden Abschnitt einzeln Merkmale bestimmt werden.The signal patterns can be created by specialists on the basis of their experience or, in particular, can be determined by one or more experiments. In order to determine the signal patterns, analogous to the above description in connection with movement patterns, in particular methods of so-called machine learning can be used. The signal patterns can also be divided into temporal segments and features can be determined individually for each section.
Da nicht alle Aufzuganlagen identische Eigenschaftsmuster aufweisen, sondern diese variieren können, wird das gemessene Eigenschaftsmuster insbesondere nicht nur mit einem Signalmuster, sondern mit einer ganzen Reihe, leicht unterschiedlicher Signalmuster verglichen.Since not all elevator systems have identical property patterns, but can vary these, the measured property pattern is compared in particular not only with one signal pattern but with a whole series of slightly different signal patterns.
Für die Erkennung eines Betretens einer Aufzugkabine werden insbesondere nicht nur jeweils einzeln Bewegungen des Passagiers kennzeichnende Messwerte, Aktivitäten der Aufzuganlage kennzeichnende Messwerte oder Eigenschaften der Aufzuganlage kennzeichnende Messwerte erfasst und ausgewertet, sondern eine Kombination dieser verschiedenen Arten von Messwerten. Damit kann besonders zuverlässig ein Betreten einer Aufzugkabine erkannt werden.For the detection of entering an elevator car, not only measured values characterizing individual movements of the passenger, measured values characterizing activities of the elevator system or measured values characterizing properties of the elevator system are recorded and evaluated, but a combination of these different types of measured values. Entering an elevator car can thus be recognized particularly reliably.
In Ausgestaltung der Erfindung wird wenigstens eines der genannten gespeicherten Signalmuster verändert, insbesondere werden alle gespeicherten Signalmuster verändert. Es findet also ein Lernvorgang statt, durch den die gespeicherten Signalmuster immer besser an die tatsächlichen Begebenheiten angepasst werden. Damit ist eine besonders genaue Erkennung eines Betretens einer Aufzugkabine durch einen Passagier möglich.In an embodiment of the invention, at least one of the mentioned stored signal patterns is changed, in particular all stored signal patterns are changed. A learning process takes place through which the stored signal patterns are better and better adapted to the actual circumstances. This enables particularly precise detection of a passenger entering an elevator car.
Insbesondere wird aus den von wenigstens einem der Sensoren des mobilen Endgeräts gemessenen Messwerten eine Fahrt in einer Aufzugkabine erkannt. Sobald eine Fahrt in einer Aufzugkabine erkannt wurde, werden vor der Fahrt erfasste Bewegungs-, Aktivitäts- und/oder Eigenschaftsmuster mit gespeicherten Signalmustern verglichen und auf Basis des Vergleichs die gespeicherten Signalmuster angepasst. Insbesondere werden die gespeicherten Signalmuster in Richtung der vor der Fahrt erfassten Bewegungs-, Aktivitäts- und/oder Eigenschaftsmuster verändert. Dabei können insbesondere die oben beschriebenen Verfahren des so genannten maschinellen Lernens angewandt werden. Damit ist ein besonders effektives Lernen und somit auch eine besonders genaue Erkennung eines Betretens einer Aufzugkabine durch einen Passagier möglich.In particular, a journey in an elevator car is recognized from the measured values measured by at least one of the sensors of the mobile terminal. As soon as a journey in an elevator car has been recognized, the movement, activity and / or property patterns recorded prior to the journey are compared with stored signal patterns and the stored signal patterns are adapted on the basis of the comparison. In particular, the stored signal patterns are changed in the direction of the movement, activity and / or property patterns recorded before the journey. In particular, the so-called machine learning methods described above can be used. This enables particularly effective learning and thus also particularly precise detection of a passenger entering an elevator car.
Wenn eine Fahrt in einer Aufzugkabine erkannt wurde, kann auch mit einer sehr hohen Trefferwahrscheinlichkeit ein Verlassen der Aufzugkabine erkannt werden. Sobald sich der Passagier quer zur vertikalen Richtung, also entweder in x- und/oder y- Richtung signifikant fortbewegt, kann von einem Verlassen der Aufzugkabine ausgegangen werden. Diese Bewegung kann beispielsweise mittels des Beschleunigungssensors erkannt werden. Alternativ zur Erkennung einer Bewegung in x-/y-Richtung kann auch der oben beschriebene resultierende Vektor der Beschleunigungen in x-, y- und z-Richtung verwendet werden.If a journey in an elevator car has been detected, an exit from the elevator car can also be detected with a very high probability of being hit. As soon as the passenger is moving significantly transversely to the vertical direction, that is to say either in the x and / or y direction, it can be assumed that he is leaving the elevator car. This movement can be detected, for example, by means of the acceleration sensor. As an alternative to detecting a movement in the x / y direction, the resultant vector of the accelerations in the x, y and z directions described above can also be used.
Eine Fahrt einer Aufzugskabine weist einen charakteristischen Verlauf der Beschleunigung in vertikaler Richtung auf. Die Aufzugskabine wird zunächst nach oben oder unten beschleunigt, fährt dann meist eine Weile mit quasi konstanter Geschwindigkeit und wird dann bis zum Stillstand abgebremst. Dieser Beschleunigungsverlauf kann mit hoher Treffsicherheit in den Messwerten eines oder mehrerer Beschleunigungssensoren des mobilen Endgeräts erkannt werden. Auf diese Weise ist eine sichere Erkennung einer Fahrt des Passagiers und damit des mobilen Endgeräts in einer Aufzugkabine möglich. Auf Basis dieser sicheren Erkennung ist eine zuverlässige Anpassung der gespeicherten Signalmuster möglich, was schliesslich zu einer besonders sicheren Erkennung des Einsteigens eines Passagiers in eine Aufzugkabine führt.A journey in an elevator car has a characteristic course of the acceleration in the vertical direction. The elevator car is first accelerated up or down, then mostly travels for a while at a quasi constant speed and is then braked to a standstill. This acceleration profile can be recognized with high accuracy in the measured values of one or more acceleration sensors of the mobile terminal. In this way, reliable detection of a journey by the passenger and thus by the mobile terminal in an elevator car is possible. Based on this reliable detection, a reliable adaptation of the stored signal pattern is possible, which ultimately leads to a particularly reliable detection of the entry of a passenger into an elevator car.
Alternativ oder ergänzend kann auch der von einem Barometer gemessene Luftdruck zur Erkennung einer Fahrt in einer Aufzugkabine ausgewertet werden. Durch die Fahrt in vertikaler Richtung ergibt sich eine Änderung des Luftdrucks, wobei der Gradient der Änderung betragsmässig deutlich grösser ist als beim Treppensteigen oder bei wetterbedingten Änderungen des Luftdrucks.As an alternative or in addition, the air pressure measured by a barometer can also be evaluated to detect a journey in an elevator car. Driving in the vertical direction results in a change in the air pressure, the gradient of the change being significantly greater in terms of amount than when climbing stairs or with weather-related changes in air pressure.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich anhand der nachfolgenden Beschreibung von Ausführungsbeispielen sowie anhand der Zeichnungen, in welchen gleiche oder funktionsgleiche Elemente mit identischen Bezugszeichen versehen sind.Further advantages, features and details of the invention emerge from the following description of exemplary embodiments and from the drawings, in which identical or functionally identical elements are provided with identical reference symbols.
Dabei zeigen:
- Fig. 1
- eine sehr schematische Darstellung einer Aufzuganlage mit einem Passagier,
- Fig. 2a, b, c
- zeitliche Verläufe von Drehraten beim Einsteigen eines Passagiers in eine Aufzugkabine,
- Fig. 3a, b, c
- zeitliche Verläufe von magnetischen Feldstärken beim Einsteigen eines Passagiers in eine Aufzugkabine, und
- Fig. 4
- einen zeitlichen Verlauf einer Beschleunigung in vertikaler Richtung bei einer Fahrt einer Aufzugkabine.
- Fig. 1
- a very schematic representation of an elevator system with a passenger,
- Figures 2a, b, c
- Temporal progressions of rotation rates when a passenger boarding an elevator car,
- Figures 3a, b, c
- Time curves of magnetic field strengths when a passenger boarding an elevator car, and
- Fig. 4
- a time profile of an acceleration in the vertical direction when an elevator car is traveling.
Gemäss
Auf dem untersten Stockwerk, also vor der Schachttür 18a steht ein Passagier 23, der ein mobiles Endgerät in Form eines Mobiltelefons 24 mit sich führt. Das Mobiltelefon 24 verfügt über mehrere Sensoren, von denen nur ein Mikrofon 25 dargestellt ist. Das Mobiltelefon 24 weist ausserdem jeweils dreidimensionale Beschleunigungs-, Drehraten- und Magnetfeldsensoren auf, welche Messwerte in x-, y- und z- Richtung erfassen können. Wie oben ausgeführt, können die von den Beschleunigungs-, Drehraten- und Magnetfeldsensoren erfassten Messwerte auf einfache Weise in Werte bezüglich absoluter x-, y- und z-Richtungen umgerechnet werden. Alle folgenden Aussagen zu Beschleunigungen, Drehraten oder Magnetfeldstärken beziehen sich damit auf in dieser Weise umgerechnete Messwerte und Aussagen zu x-, y- und z-Richtungen auf absolute x-, y- und z-Richtungen.On the lowest floor, that is to say in front of the
Es soll auf Basis der von den Sensoren des Mobiltelefons 24 erfassten Messwerte erkannt werden, wenn der Passagier 23 die Aufzugkabine 11 betritt. Das Mobiltelefon 24 erfasst dazu laufend Messwerte und wertet diese aus. Das Mobiltelefon 24 erfasst beispielsweise die Drehraten um die x-, y- und z-Achse. Diese gemessenen Drehraten kennzeichnen nicht nur Bewegungen des Mobiltelefons 24, sondern auch Bewegungen des Passagiers 23. Es werden laufend Messwerte erfasst und durch Kombination der einzelnen Messwerte der verschiedenen Beschleunigungssensoren ein fortlaufendes Bewegungsmuster des Passagiers 23 erzeugt. Die Messwerte werden dabei insbesondere mittels eines Tiefpassfilters gefiltert. Das genannte Bewegungsmuster enthält damit in diesem Fall die Verläufe der Drehraten um die x-, y- und z-Achse. Das Mobiltelefon 24 vergleicht das so erzeugte fortlaufende Bewegungsmuster mit gespeicherten Signalmustern, welche für ein Bewegungsmuster beim Betreten einer Aufzugkabine 11 typisch sind. Um den Vergleich durchführen zu können, werden beispielsweise Merkmale in Form von Mittelwerten, Standardabweichungen und Minimal-/Maximalwerten der einzelnen Drehraten oder zeitlicher Abschnitte der Drehraten bestimmt und mit gespeicherten Werten verglichen. Sind die Unterschiede zwischen den Merkmalen der gemessenen Verläufe und den gespeicherten Merkmalen kleiner als festlegbare Schwellwerte, so wird eine ausreichende Übereinstimmung eines Bewegungsmusters mit einem gespeicherten Signalmuster erkannt. Daraus schliesst das Mobiltelefon 24, dass der Passagier 23 die Aufzugkabine 11 betreten hat. Das Mobiltelefon 24 kann diese Information ganz unterschiedlich verwerten. In diesem Beispiel soll es sich in einen Messmodus versetzen, in dem es für Messungen während der bevorstehenden Fahrt in der Aufzugkabine 11 zur Überwachung der Aufzuganlage 10 bereit ist. Die Messungen werden dabei erst zu einem späteren Zeitpunkt gestartet.It should be recognized on the basis of the measured values recorded by the sensors of the
Der Vergleich zwischen einem gemessenen Bewegungsmuster und einem gespeicherten Signalmuster und damit die Erkennung oder Klassifizierung von Bewegungsmustern kann auch mit Methoden des so genannten maschinellen Lernens durchgeführt werden. Beispielsweise kann eine so genannte Support Vector Machine, ein Random Forest Algorithmus oder ein Deep Learning Algorithmus verwendet werden.The comparison between a measured movement pattern and a stored signal pattern and thus the detection or classification of movement patterns can also be carried out using methods of so-called machine learning. For example, a so-called support vector machine, a random forest algorithm or a deep learning algorithm can be used.
Es können zusätzlich auch die transversalen Beschleunigungen in x-, y- und z-Richtung berücksichtigt werden, so dass das Bewegungsmuster zusätzlich die Verläufe der Beschleunigungen in x-, y- und z-Richtung enthält.The transverse accelerations in the x, y and z directions can also be taken into account, so that the movement pattern also contains the progressions of the accelerations in the x, y and z directions.
Es ist auch möglich, dass das Mobiltelefon die Erkennung eines Betretens einer Aufzugkabine nicht vollständig alleine ausführt, sondern die erfassten Daten an eine Auswerteeinrichtung überträgt. Die Erkennung eines Betretens der Aufzugkabine wird dann von der Auswerteeinrichtung durchgeführt. Sobald ein Betreten erkannt wird, sendet die Auswerteeinrichtung ein entsprechendes Signal an das Mobiltelefon.It is also possible that the mobile phone does not carry out the detection of entry into an elevator car completely on its own, but rather transmits the recorded data to an evaluation device. The detection of entry into the elevator car is then carried out by the evaluation device. As soon as entry is detected, the evaluation device sends a corresponding signal to the mobile phone.
In den
Das gespeicherte Signalmuster (gestrichelten Linien 27a, 27b, 27c) enthält typische Verläufe von Drehraten, wie sie beim Betreten einer Aufzugkabine auftreten. Vom Zeitpunkt t0 bis zum Zeitpunkt t1 läuft der Passagier auf die Schachttür zu, um zum Zeitpunkt t1 anzuhalten und bis zum Zeitpunkt t2 auf das Öffnen der Schacht- und Kabinentür zu warten. Dabei treten quasi keine Drehraten auf. Ab dem Zeitpunkt t2 betritt der Passagier die Aufzugkabine und dreht sich anschliessend in Richtung Kabinentür um. Dieses Umdrehen führt in erster Linie zu einem deutlichen Ausschlag der Drehraten um die z-Achse (Linie 27c), wobei zu Beginn und am Ende des Ausschlags ein kurzes Unterschwingen in die entgegengesetzte Richtung auftritt. Wie in den
Da sich nicht alle Personen auf die gleiche Weise bewegen, also sich beispielsweise unterschiedlich schnell umdrehen, und beispielsweise Wartezeiten unterschiedlich lange sind, wird das gemessene Bewegungsmuster insbesondere nicht nur mit einem Signalmuster, sondern mit einer ganzen Reihe, leicht unterschiedlicher Signalmuster verglichen.Since not all people move in the same way, e.g. turn around at different speeds, and waiting times vary in length, the measured movement pattern is compared in particular not only with one signal pattern, but with a whole series of slightly different signal patterns.
Ergänzend zu den Drehraten können auch zusätzlich die Beschleunigungen in x-, y- und z-Richtung auf vergleichbare Weise berücksichtigt werden. Damit kann insbesondere das Laufen in Richtung Schachttür und in die Aufzugkabine hinein, sowie das Warten vor und in der Aufzugkabine einfacher identifiziert werden.In addition to the rotation rates, the accelerations in the x, y and z directions can also be taken into account in a comparable manner. This makes it easier to identify walking in the direction of the shaft door and into the elevator car, as well as waiting in front of and in the elevator car.
Um die Erkennung des Betretens einer Aufzugkabine zuverlässiger zu machen, werden insbesondere weitere von Sensoren des Mobiltelefons erfasste Messwerte ausgewertet. Das Mobiltelefon 24 erfasst insbesondere mit dem dreidimensionalen Magnetfeldsensor die magnetische Feldstärke in x-, y- und z-Richtung. Die gemessenen Werte kennzeichnen damit eine Eigenschaft der Aufzuganlage. Es ist nur sehr schwer möglich, aus Messwerten zu einem einzigen Zeitpunkt zu schliessen, dass sich das Mobiltelefon und damit der Passagier in einer Aufzugkabine befindet. Aus diesem Grund wird aus den zeitlichen Verläufen der drei Feldstärken ein Eigenschaftsmuster erstellt, wobei die gemessenen Werte insbesondere mittels eines Tiefpassfilters gefiltert werden. Das Mobiltelefon 24 vergleicht das so erzeugte fortlaufende Eigenschaftsmuster mit gespeicherten Signalmustern, welche für ein Eigenschaftsmuster beim Betreten einer Aufzugkabine 11 typisch sind. Wird eine ausreichende Übereinstimmung eines Bewegungsmusters mit einem gespeicherten Signalmuster erkannt, so schliesst das Mobiltelefon 24 daraus, dass der Passagier 23 die Aufzugkabine 11 betreten hat. Der Vergleich der Bewegungsmuster mit gespeicherten Signalmustern läuft wie oben beschrieben ab.In order to make the detection of entry into an elevator car more reliable, further measured values recorded by sensors of the cell phone are evaluated in particular. The
In den
Das gespeicherte Signalmuster (gestrichelten Linien 29a, 29b, 29c) enthält typische Verläufe von Feldstärken, wie sie beim Betreten einer Aufzugkabine auftreten. Kurz vor bis kurz nach dem Zeitpunkt t2, bei dem der Passagier die Aufzugkabine betritt, ist bei den Feldstärken in y- und z-Richtung ein signifikanter Anstieg zu sehen, wohin gehend die Feldstärke in x-Richtung die gesamte Zeit quasi unverändert bleibt. Die Änderung der Feldstärken ist insbesondere auf die Verwendung ferromagnetischer Materialien in der Aufzugkabine zurück zu führen. Wie in den
Da nicht alle Aufzuganlagen identische Eigenschaftsmuster aufweisen, sondern diese variieren können, wird das gemessene Eigenschaftsmuster insbesondere nicht nur mit einem Signalmuster, sondern mit einer ganzen Reihe, leicht unterschiedlicher Signalmuster verglichen.Since not all elevator systems have identical property patterns, but can vary these, the measured property pattern is compared in particular not only with one signal pattern but with a whole series of slightly different signal patterns.
Ausserdem können zusätzliche weitere Messwerte, wie beispielsweise der Luftdruck, die Helligkeit, die Luftfeuchtigkeit oder ein Kohlendioxidgehalt der Luft, berücksichtigt werden.In addition, additional measured values such as the air pressure, the brightness, the humidity or the carbon dioxide content of the air can be taken into account.
Eine weitere Steigerung der Zuverlässigkeit des Erkennens eines Betretens einer Aufzugkabine kann dadurch erreicht werden, dass zusätzlich noch Messwerte berücksichtigt werden, welche eine Aktivität der Aufzuganlage kennzeichnen. Beispielsweise kann aus den oben beschriebenen magnetischen Feldstärken ein Aktivitätsmuster abgeleitet werden, das mit einem Signalmuster verglichen wird, das für das Öffnen der Kabinen- und Schachttür typisch ist. Eine andere Möglichkeit besteht darin, aus mit dem Mikrofon gemessenen Geräuschen ein Aktivitätsmuster abzuleiten und dieses mit einem Signalmuster zu vergleichen, das für das Öffnen der Kabinen- und Schachttür typisch ist. Es kann wie bei den Bewegungs- und Eigenschaftsmustern sinnvoll sein, die Aktivitätsmuster mit mehreren, leicht unterschiedlichen Signalmustern zu vergleichen. Eine hinreichende Übereinstimmung zwischen den gemessenen Aktivitätsmustern und einem gespeicherten Signalmuster kann wiederum als Indiz gewertet werden, dass der Passagier eine Aufzugkabine betreten hat.A further increase in the reliability of the recognition of entry into an elevator car can be achieved by additionally taking into account measured values which characterize an activity of the elevator installation. For example, an activity pattern can be derived from the magnetic field strengths described above, which is compared with a signal pattern that is typical for the opening of the car and shaft door. Another possibility is to derive an activity pattern from the noise measured with the microphone and to compare this with a signal pattern that is typical for opening the car and landing door. As with the movement and property patterns, it can be useful to compare the activity patterns with several, slightly different signal patterns. A sufficient correspondence between the measured activity patterns and a stored signal pattern can in turn be assessed as an indication that the passenger has entered an elevator car.
Das Mobiltelefon kann so ausgeführt sein, dass es bereits ein Betreten einer Aufzugkabine erkennt, wenn es eine einzige hinreichende Übereinstimmung eines Bewegungsmusters, eines Eigenschaftsmusters oder eines Aktivitätsmusters mit einem gespeicherten Signalmuster gibt. Es ist aber auch möglich, dass ein Betreten erst dann erkannt wird, wenn es wenigstens zwei, drei oder mehr Übereinstimmungen gibt.The mobile phone can be designed in such a way that it already recognizes entry into an elevator car if there is a single sufficient match of a movement pattern, a property pattern or an activity pattern with a stored signal pattern. But it is also possible that entry is only recognized when there are at least two, three or more matches.
Um die Erkennung eines Betretens einer Aufzugkabine zuverlässiger zu machen, können die gespeicherten Signalmuster angepasst werden. Mit einer Anpassung kann das Verfahren insbesondere an das Verhalten des Besitzers des Mobiltelefons angepasst werden. Dazu erkennt das Mobiltelefon insbesondere eine Fahrt in einer Aufzugkabine. Das kann sehr zuverlässig durch die Überwachung der Beschleunigung in z-Richtung und damit in vertikaler Richtung 13 erkannt werden. In
Sobald eine Fahrt in einer Aufzugkabine erkannt wurde, werden vor der Fahrt erfasste Bewegungs-, Aktivitäts- und/oder Eigenschaftsmuster mit gespeicherten Signalmustern verglichen und auf Basis des Vergleichs die gespeicherten Signalmuster mit Methoden des maschinellen Lernens angepasst. Dabei werden die gespeicherten Signalmuster in Richtung der vor der Fahrt erfassten Bewegungs-, Aktivitäts- und/oder Eigenschaftsmuster verändert.As soon as a journey in an elevator car has been detected, the movement, activity and / or property patterns recorded prior to the journey are compared with stored signal patterns and, on the basis of the comparison, the stored signal patterns are adapted using machine learning methods. The stored signal patterns are changed in the direction of the movement, activity and / or property patterns recorded before the journey.
Abschließend ist darauf hinzuweisen, dass Begriffe wie "aufweisend", "umfassend", etc. keine anderen Elemente oder Schritte ausschließen und Begriffe wie "eine" oder "ein" keine Vielzahl ausschließen. Ferner sei daraufhingewiesen, dass Merkmale oder Schritte, die mit Verweis auf eines der obigen Ausführungsbeispiele beschrieben worden sind, auch in Kombination mit anderen Merkmalen oder Schritten anderer oben beschriebener Ausführungsbeispiele verwendet werden können. Bezugszeichen in den Ansprüchen sind nicht als Einschränkung anzusehen.Finally, it should be pointed out that terms such as “having”, “comprising”, etc. do not exclude other elements or steps and that terms such as “a” or “an” do not exclude a plurality. Furthermore, it should be pointed out that features or steps that have been described with reference to one of the above exemplary embodiments can also be used in combination with other features or steps of other exemplary embodiments described above. Reference signs in the claims are not to be viewed as a restriction.
Claims (11)
- Method for detecting a passenger (23) entering an elevator car (11) of an elevator system (10), in which- the passenger (23) carries a mobile terminal (24) having at least one sensor (25),- the mobile terminal (24) records and evaluates measured values by means of the sensor (25), and- a point in time at which the elevator car (11) is entered is detected on the basis of the mentioned measured values
- Method according to claim 1, characterized in that the mobile terminal (24) records and evaluates measured values which indicate movements of the passenger (23) by means of the sensor (25).
- Method according to claim 2, characterized in that the mobile terminal (24) records and evaluates accelerations, rotation rates and/or magnetic fields.
- Method according to either claim 2 or claim 3, characterized in that a movement pattern (26a, 26b, 26c) of the passenger (23) is derived from the measured values and is compared with at least one stored signal pattern (27a, 27b, 27c), and the entry into the elevator car (11) is detected on the basis of said comparison.
- Method according to any of claims 1 to 4, characterized in that the mobile terminal (24) records and evaluates measured values which indicate activities of the elevator system (10) by means of the sensor (25).
- Method according to claim 5, characterized in that an activity pattern is derived from the measured values and is compared with at least one stored signal pattern, and the entry into the elevator car (11) is detected on the basis of said comparison.
- Method according to any of claims 1 to 6, characterized in that the mobile terminal (24) records and evaluates measured values which indicate properties of the surroundings of the mobile terminal (24) by means of the sensor (25).
- Method according to claim 7, characterized in that a property pattern (28a, 28b, 28c) is derived from the measured values and is compared with at least one stored signal pattern (29a, 29b, 29c), and the entry into the elevator car (11) is detected on the basis of said comparison.
- Method according to any of claims 5 to 8, characterized in that the mobile terminal (24) records and evaluates noises, magnetic fields, CO2 content of the air, air humidity, temperature, air pressure, brightness and/or noises.
- Method according to any of claims 4 to 9, characterized in that at least one of said stored signal patterns (27a, 27b, 27c; 29a, 29b, 29c) is changed.
- Method according to claim 10, characterized in that a journey in an elevator car (11) is detected from the measured values, and measured values recorded before the journey are compared with stored signal patterns (27a, 27b, 27c; 29a, 29b, 29c), and the stored signal patterns (27a, 27b, 27c; 29a, 29b, 29c) can be adjusted on the basis of the comparison.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL17758571T PL3512791T3 (en) | 2016-09-13 | 2017-09-04 | Method for detecting a passenger entering a lift car of a lift assembly |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16188443 | 2016-09-13 | ||
PCT/EP2017/072106 WO2018050471A1 (en) | 2016-09-13 | 2017-09-04 | Method for detecting a passenger entering a lift car of a lift system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3512791A1 EP3512791A1 (en) | 2019-07-24 |
EP3512791B1 true EP3512791B1 (en) | 2020-08-12 |
Family
ID=56920602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17758571.8A Revoked EP3512791B1 (en) | 2016-09-13 | 2017-09-04 | Method for detecting a passenger entering a lift car of a lift assembly |
Country Status (11)
Country | Link |
---|---|
US (1) | US11634300B2 (en) |
EP (1) | EP3512791B1 (en) |
KR (1) | KR20190044635A (en) |
CN (1) | CN109689551B (en) |
AU (1) | AU2017327418B2 (en) |
BR (1) | BR112019003450A2 (en) |
CA (1) | CA3035433A1 (en) |
MX (1) | MX2019002883A (en) |
PL (1) | PL3512791T3 (en) |
SG (1) | SG11201901485SA (en) |
WO (1) | WO2018050471A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2017327417B2 (en) * | 2016-09-13 | 2020-07-09 | Inventio Ag | Method for monitoring an elevator system |
KR20190044635A (en) * | 2016-09-13 | 2019-04-30 | 인벤티오 아게 | A method for detecting a passenger entering a lift car of a lift system |
EP3299325B1 (en) * | 2016-09-26 | 2020-12-09 | KONE Corporation | Impact detection in an elevator door |
WO2019206624A1 (en) * | 2018-04-26 | 2019-10-31 | Inventio Ag | Method for monitoring characteristics of a door motion procedure of an elevator door using a smart mobile device |
US12043515B2 (en) | 2018-08-16 | 2024-07-23 | Otis Elevator Company | Elevator system management utilizing machine learning |
US12049383B2 (en) * | 2019-04-29 | 2024-07-30 | Otis Elevator Company | Elevator shaft distributed health level |
CN112019679B (en) | 2019-05-31 | 2022-02-18 | 苹果公司 | Elevator scene detection and operation of wireless devices |
DE112020007008T5 (en) * | 2020-03-30 | 2023-01-19 | Mitsubishi Electric Corporation | Elevator Door Control System |
CN113003339B (en) * | 2021-02-22 | 2022-12-20 | 上海三菱电梯有限公司 | Elevator identification method, identification system and elevator |
CN113086794B (en) * | 2021-03-31 | 2022-10-28 | 广东卓梅尼技术股份有限公司 | Method and system for detecting personnel in elevator car |
US11845447B2 (en) | 2021-12-27 | 2023-12-19 | Here Global B.V. | Method, apparatus, and system for detecting an on-boarding or off-boarding event based on mobile device sensor data |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140365119A1 (en) | 2013-06-11 | 2014-12-11 | Indooratlas Oy | Detecting information about motion of mobile device |
US20150070131A1 (en) | 2013-09-11 | 2015-03-12 | Here Global B.V. | Method and apparatus for detecting boarding of a means of transport |
EP3418236A1 (en) | 2017-06-23 | 2018-12-26 | Otis Elevator Company | Determination for motion of passenger over elevator car |
EP3439998A1 (en) | 2016-04-06 | 2019-02-13 | Otis Elevator Company | Mobile device state management and location determination |
EP3512793A1 (en) | 2016-09-13 | 2019-07-24 | Inventio AG | Method for monitoring an elevator system |
EP3645441A1 (en) | 2017-06-27 | 2020-05-06 | Inventio AG | Elevator being monitored with passenger's smart mobile device |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8751151B2 (en) * | 2012-06-12 | 2014-06-10 | Trx Systems, Inc. | System and method for localizing a trackee at a location and mapping the location using inertial sensor information |
JP2009096612A (en) | 2007-10-18 | 2009-05-07 | Hitachi Ltd | Human flow arithmetic unit |
JP5713595B2 (en) | 2010-07-16 | 2015-05-07 | オムロンヘルスケア株式会社 | Motion detection device and control method of motion detection device |
CN102009883B (en) | 2010-12-22 | 2012-12-26 | 日立电梯(中国)有限公司 | Position detector for elevator cage |
RU2625370C2 (en) | 2011-12-07 | 2017-07-13 | Конинклейке Филипс Н.В. | Method and device for detecting lift movement |
FI20116342A (en) * | 2011-12-30 | 2013-07-01 | Rdnet Oy | Method and arrangement for determining the position and / or velocity of a movable object and using the arrangement |
WO2013130040A1 (en) | 2012-02-28 | 2013-09-06 | Otis Elevator Company | Elevator traffic monitoring system and method |
CN103193118B (en) | 2013-03-28 | 2015-06-10 | 日立电梯(上海)有限公司 | System and method for reminding passengers entering elevator cars of calling |
FI124267B (en) | 2013-05-20 | 2014-05-30 | Kone Corp | Lift system |
CN105247320B (en) | 2013-05-31 | 2018-04-06 | 旭化成株式会社 | Use the device of the change of air pressure measured value identification vertical direction |
US9556002B2 (en) | 2013-06-10 | 2017-01-31 | Otis Elevator Company | Elevator noise monitoring |
CN103787159A (en) * | 2014-02-03 | 2014-05-14 | 王浩 | Intelligent elevator scheduling system based on big data and cloud computing |
US20150284214A1 (en) | 2014-04-07 | 2015-10-08 | Thyssenkrupp Elevator Ag | Elevator health check |
JP2015224931A (en) | 2014-05-27 | 2015-12-14 | ソニー株式会社 | Information processing device, information processing method, and computer program |
CN104071664A (en) | 2014-07-03 | 2014-10-01 | 南京喜高电子科技有限公司 | Monitoring system and monitoring method for elevator running state |
CN104444658B (en) * | 2014-12-02 | 2016-07-20 | 上海斐讯数据通信技术有限公司 | A kind of method controlling elevator operation and system thereof |
CN104864873B (en) | 2015-06-09 | 2017-09-01 | 中国科学院上海高等研究院 | A kind of method that utilization human body motion feature aids in Orientation on map |
JP6425630B2 (en) * | 2015-07-22 | 2018-11-21 | 株式会社日立ビルシステム | Elevator car call system and portable information terminal |
CN105967025B (en) | 2016-06-15 | 2018-06-12 | 上海新时达电气股份有限公司 | Lift car |
KR20190044635A (en) * | 2016-09-13 | 2019-04-30 | 인벤티오 아게 | A method for detecting a passenger entering a lift car of a lift system |
AT520567B1 (en) * | 2017-10-17 | 2021-10-15 | View Promotion Gmbh | Method for monitoring an elevator car |
US20200002124A1 (en) * | 2018-06-29 | 2020-01-02 | Here Global B.V. | Elevator usage in venues |
US20210395038A1 (en) * | 2020-06-23 | 2021-12-23 | Otis Elevator Company | Travel-speed based predictive dispatching |
-
2017
- 2017-09-04 KR KR1020197007276A patent/KR20190044635A/en active IP Right Grant
- 2017-09-04 MX MX2019002883A patent/MX2019002883A/en unknown
- 2017-09-04 EP EP17758571.8A patent/EP3512791B1/en not_active Revoked
- 2017-09-04 PL PL17758571T patent/PL3512791T3/en unknown
- 2017-09-04 SG SG11201901485SA patent/SG11201901485SA/en unknown
- 2017-09-04 CA CA3035433A patent/CA3035433A1/en active Pending
- 2017-09-04 AU AU2017327418A patent/AU2017327418B2/en not_active Ceased
- 2017-09-04 BR BR112019003450A patent/BR112019003450A2/en not_active Application Discontinuation
- 2017-09-04 CN CN201780055660.1A patent/CN109689551B/en active Active
- 2017-09-04 US US16/330,498 patent/US11634300B2/en active Active
- 2017-09-04 WO PCT/EP2017/072106 patent/WO2018050471A1/en active Search and Examination
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140365119A1 (en) | 2013-06-11 | 2014-12-11 | Indooratlas Oy | Detecting information about motion of mobile device |
US20150070131A1 (en) | 2013-09-11 | 2015-03-12 | Here Global B.V. | Method and apparatus for detecting boarding of a means of transport |
EP3439998A1 (en) | 2016-04-06 | 2019-02-13 | Otis Elevator Company | Mobile device state management and location determination |
EP3512793A1 (en) | 2016-09-13 | 2019-07-24 | Inventio AG | Method for monitoring an elevator system |
EP3418236A1 (en) | 2017-06-23 | 2018-12-26 | Otis Elevator Company | Determination for motion of passenger over elevator car |
EP3645441A1 (en) | 2017-06-27 | 2020-05-06 | Inventio AG | Elevator being monitored with passenger's smart mobile device |
Also Published As
Publication number | Publication date |
---|---|
CN109689551A (en) | 2019-04-26 |
KR20190044635A (en) | 2019-04-30 |
AU2017327418A1 (en) | 2019-04-04 |
MX2019002883A (en) | 2019-07-04 |
SG11201901485SA (en) | 2019-03-28 |
CN109689551B (en) | 2021-10-22 |
EP3512791A1 (en) | 2019-07-24 |
WO2018050471A1 (en) | 2018-03-22 |
BR112019003450A2 (en) | 2019-05-21 |
AU2017327418B2 (en) | 2020-07-09 |
US11634300B2 (en) | 2023-04-25 |
US20190193986A1 (en) | 2019-06-27 |
PL3512791T3 (en) | 2021-02-08 |
CA3035433A1 (en) | 2018-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3512791B1 (en) | Method for detecting a passenger entering a lift car of a lift assembly | |
EP3512793B1 (en) | Method for monitoring an elevator | |
DE69304258T2 (en) | Method and device for controlling elevator doors | |
DE102011107934B4 (en) | assistance system | |
DE102014207828A1 (en) | Method for providing a diagnostic message in a rail vehicle | |
EP3261060A1 (en) | Method for controlling access in an access control system for persons or vehicles comprising at least one access control device | |
DE102016100065B4 (en) | System, vehicle and method for detecting carried objects for a vehicle | |
EP2784016A1 (en) | Child safety device of a lift assembly | |
DE102015202467B4 (en) | Apparatus and method for controlling access to a vehicle | |
EP4266270A1 (en) | Method for controlling a door system | |
WO2022122196A1 (en) | Optical railway detection | |
EP3335199A1 (en) | Method and device for carrying out a screening of persons | |
DE102019121625A1 (en) | Method for unlocking a door of a vehicle, computer readable medium, system and vehicle | |
DE102018205717A1 (en) | Method for detecting occupied seats in a rail vehicle | |
EP3990322B1 (en) | Method for calibrating the orientation of an acceleration sensor provided in a vehicle | |
DE19949637A1 (en) | Noise detection and separation arrangement, having neural network which forms classification signal giving indication of type of acoustic signal | |
DE3904840C1 (en) | Device for checking the isolation of persons at a gated passage | |
DE102019204849A1 (en) | Detection of a potential danger posed by people | |
DE102023109690A1 (en) | Inspection of elevator systems based on acoustic measurements | |
DE102017212755A1 (en) | Method and device for checking a parking status of a parking space | |
DE102023109691A1 (en) | Inspection of elevator systems based on several measured variables | |
WO2021213796A1 (en) | Device and method for ascertaining a usage behavior of a passenger when using a public means of transportation | |
DE102020128501A1 (en) | Method and device for contactless monitoring of a space to be monitored | |
DE102023104927A1 (en) | Method and device for detecting an anomaly in the behavior of a dynamic system | |
DE102019000404A1 (en) | Method for checking entry of an authorized passenger into a vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190219 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200423 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017006736 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1301377 Country of ref document: AT Kind code of ref document: T Effective date: 20200915 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201113 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201112 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201112 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200812 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200812 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200812 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200812 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200812 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200812 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200812 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200812 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200812 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200812 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502017006736 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200812 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200812 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200812 |
|
26 | Opposition filed |
Opponent name: OTIS ELEVATOR COMPANY Effective date: 20210511 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200904 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200904 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200812 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200930 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20210927 Year of fee payment: 5 Ref country code: NL Payment date: 20210927 Year of fee payment: 5 Ref country code: CH Payment date: 20210923 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210929 Year of fee payment: 5 Ref country code: TR Payment date: 20210823 Year of fee payment: 5 Ref country code: PL Payment date: 20210824 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200812 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200812 |
|
RAP4 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: INVENTIO AG |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R103 Ref document number: 502017006736 Country of ref document: DE Ref country code: DE Ref legal event code: R064 Ref document number: 502017006736 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20220920 Year of fee payment: 6 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
27W | Patent revoked |
Effective date: 20220922 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Effective date: 20220922 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MA03 Ref document number: 1301377 Country of ref document: AT Kind code of ref document: T Effective date: 20220922 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220904 |