EP3418236A1 - Bestimmung der bewegung eines fahrgastes über eine aufzugskabine - Google Patents
Bestimmung der bewegung eines fahrgastes über eine aufzugskabine Download PDFInfo
- Publication number
- EP3418236A1 EP3418236A1 EP18179330.8A EP18179330A EP3418236A1 EP 3418236 A1 EP3418236 A1 EP 3418236A1 EP 18179330 A EP18179330 A EP 18179330A EP 3418236 A1 EP3418236 A1 EP 3418236A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- wireless signal
- elevator
- information
- elevator car
- received
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000008859 change Effects 0.000 claims abstract description 81
- 238000000034 method Methods 0.000 claims description 56
- 238000004590 computer program Methods 0.000 claims description 10
- SAZUGELZHZOXHB-UHFFFAOYSA-N acecarbromal Chemical compound CCC(Br)(CC)C(=O)NC(=O)NC(C)=O SAZUGELZHZOXHB-UHFFFAOYSA-N 0.000 claims description 6
- 238000005516 engineering process Methods 0.000 abstract description 4
- 230000008569 process Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 9
- 238000004891 communication Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 7
- 238000012790 confirmation Methods 0.000 description 6
- 230000010354 integration Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 206010017577 Gait disturbance Diseases 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 230000002618 waking effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B1/00—Control systems of elevators in general
- B66B1/34—Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
- B66B1/3476—Load weighing or car passenger counting devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B1/00—Control systems of elevators in general
- B66B1/34—Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
- B66B1/3415—Control system configuration and the data transmission or communication within the control system
- B66B1/3446—Data transmission or communication within the control system
- B66B1/3461—Data transmission or communication within the control system between the elevator control system and remote or mobile stations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B1/00—Control systems of elevators in general
- B66B1/24—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
- B66B1/28—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B1/00—Control systems of elevators in general
- B66B1/34—Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
- B66B1/46—Adaptations of switches or switchgear
- B66B1/468—Call registering systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B2201/00—Aspects of control systems of elevators
- B66B2201/40—Details of the change of control mode
- B66B2201/46—Switches or switchgear
- B66B2201/4607—Call registering systems
- B66B2201/4638—Wherein the call is registered without making physical contact with the elevator system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B2201/00—Aspects of control systems of elevators
- B66B2201/40—Details of the change of control mode
- B66B2201/46—Switches or switchgear
- B66B2201/4607—Call registering systems
- B66B2201/4653—Call registering systems wherein the call is registered using portable devices
Definitions
- the present invention belongs to the field of elevator intelligent control technologies, and relates to the determination of the movement of a passenger relative to an elevator car by utilizing wireless interaction between a wireless signal module mounted in the elevator car and a personal mobile terminal.
- one of the common modes of elevator calling operation is as follows: a passenger manually presses a certain elevator calling button on an elevator calling control panel mounted in an elevator landing area to input an elevator calling request command for traveling upwards or downwards, and then, after entering a certain elevator car, the passenger manually presses a certain floor button on a target floor registration control panel mounted in each elevator car to input a target floor.
- Such an elevator calling operation mode needs to be completed manually; moreover, especially when the passenger's hands are incapable of performing the above-mentioned button pressing operation freely (for example, the passenger is carrying stuff with both hands, or the passenger has difficulty in walking and is sitting in a wheelchair), the elevator calling operation becomes difficult, affecting the passenger's experience.
- an automatic elevator calling system comprising: a first wireless signal module mounted in an elevator car and used for broadcasting a first wireless signal, the first wireless signal being a data signal comprising first floor information about where the elevator car is currently located and/or current traveling direction information about the elevator car, wherein the traveling direction information comprises: “traveling upwards", “traveling downwards” and “not traveled”, wherein the first wireless signal module is further used for receiving and determining information about the movement of a passenger relative to the elevator car, and the information about the movement is determined based on a change in the signal strength of the first wireless signal received by a personal mobile terminal carried by the passenger and a change in the first floor information and/or traveling direction information.
- the information about the movement comprises that the passenger has successfully moved into the elevator car and has successfully taken the elevator, which is determined in the following situation: the signal strength of the received first wireless signal changes from zero or relatively weak to equal to or greater than a relatively strong first pre-determined value, and the traveling direction information in the received first wireless signal changes from "not traveled” to "traveling upwards” or “traveling downwards”.
- the information about the movement comprises that the passenger has failed to move into the elevator car or has failed to take the elevator, which is determined in the following situation: the signal strength of the received first wireless signal changes from zero or relatively weak to equal to or greater than a relatively strong first pre-determined value, and the traveling direction information in the first wireless signal received after the change remains "not traveled" or disappears.
- the information about the movement comprises that the passenger has successfully moved into the elevator car and has successfully taken the elevator, which is determined in the following situation: the signal strength of the received first wireless signal changes from zero or relatively weak to equal to or greater than a relatively strong first pre-determined value, and the first floor information in the first wireless signal received after the change changes.
- the information about the movement comprises that the passenger has failed to move into the elevator car or has failed to take the elevator, which is determined in the following situation: the signal strength of the received first wireless signal changes from zero or relatively weak to equal to or greater than a relatively strong first pre-determined value, and the first floor information in the first wireless signal received after the change does not change or disappears.
- the first wireless signal module is used for automatically establishing a first wireless connection with the personal mobile terminal based on the first wireless signal, and receiving a target floor registration command sent over from the personal mobile terminal when establishing the first wireless connection.
- the first wireless signal further comprises connection status information about the first wireless connection, wherein when the signal strength of the first wireless signal received by the personal mobile terminal is equal to or greater than a first pre-determined value, it correspondingly indicates that a distance from the personal mobile terminal to the first wireless signal module is smaller than or equal to a first distance threshold, and the first wireless connection is automatically established and the connection status information changes from "Off" to "On".
- the information about the movement comprises that the passenger has successfully moved into the elevator car and has successfully taken the elevator, which is determined in the following situation: the received connection status information about the first wireless connection changes from “Off” to “On”, and the traveling direction information in the first wireless signal received after the change changes from “not traveled” to “traveling upwards” or “traveling downwards”.
- the information about the movement comprises that the passenger has failed to move into the elevator car or has failed to take the elevator, which is determined in the following situation: the received connection status information about the first wireless connection changes from “Off” to "On”, and the traveling direction information in the first wireless signal received after the change remains "not traveled” or disappears.
- the information about the movement comprises that the passenger has successfully moved into the elevator car and has successfully taken the elevator, which is determined in the following situation: the received connection status information about the first wireless connection changes from “Off” to "On”, and the first floor information in the first wireless signal received after the change changes.
- the information about the movement comprises that the passenger has failed to move into the elevator car or has failed to take the elevator, which is determined in the following situation: the received connection status information about the first wireless connection changes from “Off” to "On”, and the first floor information in the first wireless signal received after the change does not change or disappears.
- the apparatus further comprises: a second wireless signal module mounted in an elevator landing area, which is used for broadcasting a second wireless signal and automatically establishing a second wireless connection with the personal mobile terminal based on the second wireless signal, and receiving an elevator calling request command regarding an elevator calling direction sent over from the personal mobile terminal when establishing the second wireless connection.
- a second wireless signal module mounted in an elevator landing area, which is used for broadcasting a second wireless signal and automatically establishing a second wireless connection with the personal mobile terminal based on the second wireless signal, and receiving an elevator calling request command regarding an elevator calling direction sent over from the personal mobile terminal when establishing the second wireless connection.
- the first wireless signal module is further used for receiving movement result information about whether the passenger has correspondingly moved into a designated elevator car, and the movement result information is determined based on comparison of the traveling direction information in the first wireless signal received by the personal mobile terminal with the elevator calling direction in the elevator calling request command sent out by the personal mobile terminal.
- the movement result information is that the passenger has failed to move into the designated elevator car, which is determined in the following situation: the traveling direction information in the received first wireless signal is inconsistent with the elevator calling direction in the elevator calling request command sent out by the personal mobile terminal.
- the first wireless signal further comprises identity information corresponding to the first wireless signal module or the elevator car on which it is mounted; and the first wireless signal module is further used for receiving movement result information about whether the passenger has correspondingly moved into a designated elevator car, and the movement result information is determined based on comparison of the identity information in the first wireless signal received by the personal mobile terminal with the identity information about the elevator car designated for the personal mobile terminal.
- the movement result information is that the passenger has failed to move into the designated elevator car, which is acquired in the following situation: the identity information in the received first wireless signal is inconsistent with the identity information about the elevator car designated for the personal mobile terminal.
- the second wireless signal module and/or the first wireless signal module are/is bluetooth low energy modules/a bluetooth low energy module.
- an elevator system comprising: the automatic elevator calling system according to any one of the above paragraphs; and an elevator controller for controlling running of one or more elevator cars in the elevator system.
- the elevator controller is configured to judge, based on the information about the movement, whether to cancel a target floor registration command registered in the elevator car and corresponding to the personal mobile terminal of the passenger.
- a method for determining the movement of a passenger relative to an elevator car comprising: receiving a first wireless signal, wherein the first wireless signal is broadcast from the elevator car and is a data signal comprising first floor information about where the elevator car is currently located and/or current traveling direction information about the elevator car, wherein the traveling direction information comprises: “traveling upwards", “traveling downwards” and “not traveled”; determining the signal strength of the received first wireless signal; and determining the movement of the passenger relative to the elevator car based on a change in the signal strength of the received first wireless signal and the first floor information and a change in the first floor information and/or traveling direction information.
- the step of determining the movement it is determined that the passenger has successfully moved into the elevator car and has successfully taken the elevator when the signal strength of the received first wireless signal changes from zero or relatively weak to equal to or greater than a relatively strong first pre-determined value and the traveling direction information in the received first wireless signal changes from "not traveled” to "traveling upwards” or “traveling downwards”.
- the step of determining the movement it is determined that the passenger has failed to move into the elevator car or has failed to take the elevator when the signal strength of the received first wireless signal changes from zero or relatively weak to equal to or greater than a relatively strong first pre-determined value and the traveling direction information in the first wireless signal received after the change remains "not traveled" or disappears.
- the step of determining the movement it is determined that the passenger has successfully moved into the elevator car and has successfully taken the elevator when the signal strength of the received first wireless signal changes from zero or relatively weak to equal to or greater than a relatively strong first pre-determined value and the first floor information in the first wireless signal received after the change changes.
- the step of determining the movement it is determined that the passenger has failed to move into the elevator car or has failed to take the elevator when the signal strength of the received first wireless signal changes from zero or relatively weak to equal to or greater than a relatively strong first pre-determined value and the first floor information in the first wireless signal received after the change does not change or disappears.
- the signal strength of the first wireless signal changing from zero or relatively weak to equal to or greater than a relatively strong first pre-determined value refers to approximately gradually changing from zero or relatively weak to equal to or greater than the relatively strong pre-determined value.
- the first wireless signal further comprises connection status information about a first wireless connection used for sending a target floor registration command, wherein the first wireless connection is automatically established and the connection status information changes from "Off” to "On” when the signal strength of the received first wireless signal is equal to or greater than a first pre-determined value.
- the step of determining the movement it is determined that the passenger has successfully moved into the elevator car and has successfully taken the elevator when the received connection status information about the first wireless connection changes from “Off” to “On” and the traveling direction information in the first wireless signal received after the change changes from "not traveled” to "traveling upwards” or “traveling downwards”.
- the step of determining the movement it is determined that the passenger has failed to move into the elevator car or has failed to take the elevator when the received connection status information about the first wireless connection changes from "Off" to "On” and the traveling direction information in the first wireless signal received after the change remains "not traveled” or disappears.
- the step of determining the movement it is determined that the passenger has successfully moved into the elevator car and has successfully taken the elevator when the received connection status information about the first wireless connection changes from "Off" to "On” and the first floor information in the first wireless signal received after the change changes.
- the step of determining the movement it is determined that the passenger has failed to move into the elevator car or has failed to take the elevator when the received connection status information about the first wireless connection changes from "Off" to "On” and the first floor information in the first wireless signal received after the change does not change or disappears.
- the method further comprises a step of: when it is determined that the passenger has failed to move into the elevator car or has failed to take the elevator, actively establishing a fourth wireless connection with a corresponding second wireless signal module mounted in an elevator landing area so as to send a determination result that the passenger has failed to move into the elevator car or has failed to take the elevator.
- the traveling direction information in the received first wireless signal is compared with the elevator calling direction in an elevator calling request command sent out by the passenger, and if the traveling direction information in the received first wireless signal is inconsistent with the elevator calling direction in the elevator calling request command sent out by the passenger, it is determined that the passenger has failed to move into a designated elevator car.
- the first wireless signal further comprises identity information corresponding to the elevator car; and in the step of determining the movement, the received identity information is compared with identity information about a designated elevator car, and if the received identity information in the first wireless signal is inconsistent with the identity information about the designated elevator car, it is determined that the passenger has failed to move into the designated elevator car.
- the method further comprises: when it is determined that the passenger has failed to move into the elevator car or has failed to take the elevator, actively establishing a third wireless connection with a corresponding first wireless signal module so as to send a determination result that the passenger has failed to move into the designated elevator car.
- a computer device comprising: a memory, a processor and a computer program that is stored in the memory and can run on the processor, wherein the processor realizes steps of the method according to any of the above paragraphs when executing the program.
- a computer readable storage medium is provided, with a computer program stored thereon, wherein the program can be executed by a processor to realize steps of the method according to any of the above paragraphs.
- a method for determining the movement of a passenger relative to an elevator car comprising: a first wireless signal module mounted in the elevator car broadcasting a first wireless signal, the first wireless signal being a data signal comprising first floor information about where the elevator car is currently located and/or current traveling direction information about the elevator car, wherein the traveling direction information comprises: "traveling upwards", “traveling downwards” and “not traveled”; and receiving information about the movement of the passenger relative to an elevator landing area, wherein the information about the movement is determined based on a change in the signal strength of the first wireless signal received by a personal mobile terminal carried by the passenger and a change in the first floor information and/or traveling direction information.
- an apparatus for determining the movement of a passenger relative to an elevator car determines, through a personal mobile terminal carried by the passenger, the signal strength of a first wireless signal received by the personal mobile terminal and broadcast by a first wireless signal module mounted in the elevator car; and the apparatus comprises: a movement determination module for determining information about the movement of the passenger relative to the elevator car based on a change in the signal strength of the received first wireless signal and the first floor information and a change in first floor information and/or traveling direction information, wherein the first wireless signal is a data signal comprising the first floor information about where the elevator car is currently located and/or the current traveling direction information about the elevator car, wherein the traveling direction information comprises: "traveling upwards", "traveling downwards" and "not traveled”.
- an elevator system comprising: a first wireless signal module mounted in an elevator car and used for broadcasting a first wireless signal, the first wireless signal being a data signal comprising first floor information about where the elevator car is currently located and/or current traveling direction information about the elevator car, wherein the traveling direction information comprises: “traveling upwards", “traveling downwards” and “not traveled”; and the apparatus for determining the movement of a passenger relative to an elevator car according to any one of the above paragraphs.
- the "apparatus for determining the movement of a passenger relative to an elevator car” is abbreviated as the “movement determination device” herein, and the “method for determining the movement of a passenger relative to an elevator car” is abbreviated as the “movement determination method”.
- Fig. 1 shows a schematic diagram of an automatic elevator calling system according to one embodiment of the present invention
- Fig. 2 shows a schematic diagram of an application scenario of a movement determination apparatus according to one embodiment of the present invention
- Fig. 3 shows a schematic structural diagram of modules of a personal mobile terminal of one embodiment of the present invention.
- Exemplary explanation is made to the movement determination apparatus, the automatic elevator calling system and the elevator system of the embodiments of the present invention below in conjunction with Fig. 1 and Fig. 3 , and at the same time exemplary explanation is made to the method for determining the movement of a passenger relative to an elevator car.
- the movement determination apparatus 10 of the embodiment of the present invention is implemented in an automatic elevator calling system of an embodiment shown in Fig. 1 , so as to constitute the automatic elevator calling system of one embodiment of the present invention.
- the automatic elevator calling system is further applied in an elevator system 100 mounted in a building, and the elevator system 100 includes one or more elevator cars 110 traveling upwards and downwards in hoistways of the building.
- Fig. 1 shows two of the elevator cars of the elevator system 100, i.e., 110-1 and 110-2.
- the traveling or stopping of each elevator car 110 in the hoistways, namely each elevator car 110, is controlled by an elevator controller 140 in the elevator system 100, the particular control mode or control principle of the elevator controller 140 over one or more elevator cars 110 is not restrictive, and the particular structure or arrangement manner, etc. of the elevator controller 140 is not restrictive either.
- the automatic elevator calling system includes a first wireless signal module 130 and/or a second wireless signal module 120.
- the movement determination apparatus 10 includes one or more first wireless signal modules 130, and each first wireless signal module 130 is mounted in each elevator car 110.
- one first wireless signal module 130-1 is arranged in the elevator car 110-1
- one first wireless signal module 130-2 is arranged in the elevator car 110-2.
- the first wireless signal module is mounted on a target floor registration control panel in the elevator car 110 and is arranged on the target floor registration control panel by way of integration. The particular integration and arrangement manner of the first wireless signal module 130 with regard to the target floor registration control panel is not restrictive.
- the first wireless signal module 130 in particular, can be a Bluetooth Low Energy (BLE) module, and correspondingly, the first wireless signal module 130 transmits or broadcasts a first wireless signal, e.g., a Bluetooth low energy signal, and the signal strength of the broadcast first wireless signal attenuates with the broadcasting distance thereof, and the particular way of attenuation thereof is not restrictive.
- the first wireless signal broadcast by the first wireless signal module 130 can roughly effectively cover the area in the elevator car 110 where it is mounted, and the first wireless signal can, for example, correspondingly be a bluetooth low energy signal, which can include a data signal of the first floor information about where the elevator car 110 is currently located.
- the first wireless signal module 130 is coupled to the elevator controller 140; therefore, during the running of each elevator car 110, the first wireless signal module 130 is able to acquire desired information from the elevator controller 140 in real time, e.g., current first floor information, traveling direction information, etc. of the elevator car 110, and the first floor information and/or traveling direction information (the traveling direction information includes, for example, "traveling upwards", “traveling downwards” and “not traveled") is, for example, packaged into a bluetooth data signal and is broadcast in the form of a first bluetooth signal.
- the movement determination apparatus 10 can further be at least partially implemented through a personal mobile terminal 200 carried by a passenger 90, and the personal mobile terminals 200-1 and 200-2 respectively carried by two passengers can both respectively implement at least some functions of the movement determination apparatus 10.
- Each personal mobile terminal 200 is configured to be able to receive a first wireless signal broadcast by the first wireless signal module 130 when the distance condition is satisfied.
- a wireless communication module 210 in the personal mobile terminal 200 is used to receive a first wireless signal or other wireless signals, and the wireless communication module 210 can particularly be a Bluetooth low energy module.
- the first wireless signal can be a data signal including first floor information about where the elevator car 110 is currently located and/or current traveling direction information about the elevator car 110.
- Each personal mobile terminal 200 can determine the signal strength of the first wireless signal received thereby, and in one embodiment, the signal strength determination module 230 in the personal mobile terminal 200 determines the signal strength of the received first wireless signal based on the first wireless signal.
- the personal mobile terminal 200 is configured with a received signal strength indicator (RSSI) for determining the signal strength of the first wireless signal or any other wireless signals received thereby, that is to say, the signal strength determination module 230 is realized through the RSSI.
- RSSI received signal strength indicator
- the signal strength of the first wireless signal received by the personal mobile terminal 200 is relevant to a pre-set effective broadcast distance of the first wireless signal or the strength of the broadcast signal.
- the effective broadcast distance of a first wireless signal is pre-set. For example, when the distance from the personal mobile terminal 200 to the first wireless signal module 130 is smaller than or equal to 0.7 to 1 meter, the signal strength of the first wireless signal received by the personal mobile terminal 200 will be equal to or greater than a first pre-determined value, and the RSSI can indicate the signal strength of the first wireless signal as "strong", with an effective broadcast distance correspondingly being 0.7 to 1 meter.
- the personal mobile terminal 200 carried thereby can receive a relatively "strong" first wireless signal and can also obtain first floor information broadcast in the first wireless signal at the same time; that is to say, the personal mobile terminal 200 of the passenger 90 can acquire the first floor information about the current elevator car in real time.
- a movement determination module 250 of the personal mobile terminal 200 is used for determining the movement of the passenger 90 relative to the elevator car 110 based on a change in the signal strength of the received first wireless signal and the first floor information, and a change in the first floor information and/or traveling direction information.
- the personal mobile terminal 200 carried by the passenger 90 is a smart terminal that can realize an automatic elevator calling operation, which can automatically send out various types of elevator calling operation commands, enabling the elevator controller to perform scheduling and control over the elevator car; for example, the automatic registration of a target floor in an elevator car is automatically realized, and the elevator controller will control the running of the elevator car based on the automatically registered target floor.
- the elevator controller does not know whether the passenger 90 has indeed entered the elevator car, or whether the passenger has entered a designated elevator car correctly. If the target floor corresponding to the passenger 90 is automatically registered, but the passenger 90 has not successfully entered the elevator car or has not successfully taken the elevator, then the elevator car 110 is likely to be in ineffective operation, seriously affecting the operation efficiency of the elevator system.
- the elevator car 110 travels upwards or downwards to a floor N and stops at the floor N, with the floor N for example corresponding to an elevator landing area 410, and the passenger 90 carrying the personal mobile terminal 200 is waiting for the elevator in the elevator landing area 410 or is moving in the elevator landing area 410; if the elevator car 110-1 is the elevator car that he/she wants to enter or is notified to be the elevator car designated by the elevator system 100, when the landing door of the elevator car 110-1 is open, a first wireless signal broadcast by a first wireless signal module 130-1 in the elevator car 110-1 will be able to be received by the personal mobile terminal 200 (if the passenger is close enough to the landing door of the elevator car 110-1); moreover, as the passenger 90 moves towards the inside of the elevator car 110-1, the signal strength of the first wireless signal (broadcast by the first wireless signal module 130-1) received by the personal mobile terminal 200 will gradually become stronger, for example, changing from zero or relatively weak to equal to or greater than a relatively strong first pre-
- the first wireless signal module 130-1 keeps broadcasting the first floor information through the first wireless signal, e.g., a floor N (if the elevator stops at the Nth floor); and the personal mobile terminal 200 will be able to receive the first floor information (for example, the floor N), and at the same time the personal mobile terminal 200 determines the signal strength of the received first wireless signal through the RSSI, etc.
- the first wireless signal module 130-1 keeps broadcasting the first floor information through the first wireless signal, e.g., a floor N (if the elevator stops at the Nth floor); and the personal mobile terminal 200 will be able to receive the first floor information (for example, the floor N), and at the same time the personal mobile terminal 200 determines the signal strength of the received first wireless signal through the RSSI, etc.
- the signal strength of the first wireless signal received by the personal mobile terminal 200 changes from zero or relatively weak to equal to or greater than a relatively strong first pre-determined value, and the first floor information in the first wireless signal received by the personal mobile terminal 200 after the change changes, for example changing to a floor (N-1) or floor (N+1), it is determined that the passenger 90 has successfully moved into the elevator car 110-1 and has successfully taken the elevator.
- the signal strength of the first wireless signal received by the personal mobile terminal 200 changes from zero or relatively weak to equal to or greater than a relatively strong first pre-determined value, and the first floor information in the first wireless signal received by the personal mobile terminal 200 after the change remains unchanged or disappears, for example, remaining at the floor N for at least 3 to 10 seconds, which is likely to be the case where the passenger 90 is near the landing door of the elevator car 110-1 but has not entered the elevator car (for example, when too many passengers are in the elevator car 110-1 and it is difficult to enter the elevator car), or for example the first floor information having disappeared, which is likely to be the case where the elevator car 110-1 travels and leaves the floor N but the passenger is still in the elevator landing area 410, it is determined that the passenger 90 has failed to move into the elevator car 110-1 or has failed to take the elevator.
- the passenger 90 fails to move into the elevator car 110-1 or fails to take the elevator in the practical process of taking an elevator: first, the passenger 90 intentionally or unintentionally moves to the vicinity of the landing door but has not successfully moved into the elevator car 110; and second, the passenger 90 steps into the elevator car 110 but temporarily changes his/her mind and returns back to the elevator landing area 410 for the reason such as the crowdedness in the elevator car 100.
- the personal mobile terminal 200 or the movement determination module 250 thereof is further configured to: determine that the passenger 90 has successfully moved into the elevator car 110 and has successfully taken the elevator when the signal strength of the first wireless signal received thereby changes from zero or relatively weak to equal to or greater than a relatively strong first pre-determined value and the first floor information in the first wireless signal received thereby after the change changes; and the personal mobile terminal 200 or the movement determination module 250 thereof is further configured to: determine that the passenger 90 has failed to move into the elevator car 110 and has failed to take the elevator when the signal strength of the first wireless signal received thereby changes from zero or relatively weak to equal to or greater than a relatively strong first pre-determined value and the first floor information in the first wireless signal received thereby after the change does not change or disappears.
- whether the passenger has moved towards the elevator car 110 can be determined through the change in the signal strength of the received first wireless signal, and whether the passenger is traveling together with the first elevator car 110 can be determined through the change in the first floor information in the first wireless signal received subsequently; thus, it can be determined that the passenger has successfully moved into the elevator car 110 or whether the passenger has successfully taken the elevator.
- the above first floor information in the first wireless signal received after the change is received when the RRSI indicates "strong", i.e., when the signal strength remains equal to or greater than the first pre-determined value, which further indicates that the passenger 90 is receiving the changed first floor information inside the elevator car 110.
- the first wireless signal module 130 is coupled to the elevator controller 140; and during the running of each elevator car 110, the first wireless signal module 130 can acquire traveling direction information about the elevator car 110 from the elevator controller 140 in real time. For example, when the elevator is traveling upwards, the traveling direction information is "traveling upwards", when the elevator is traveling downwards, the traveling direction information is "traveling downwards", and when the elevator stops at a certain floor, the traveling direction information is "not traveled”; moreover, the traveling direction information is packaged into a wireless data signal and is broadcast in the form of a first wireless signal.
- the personal mobile terminal 200 or the movement determination module 250 thereof is configured to: determine the movement of the passenger 90 relative to the elevator car 110 based on the change in the signal strength of the received first wireless signal, and also determine whether the passenger has successfully moved into the elevator car and has successfully taken the elevator based on the change in the traveling direction information in the received first wireless signal.
- the personal mobile terminal 100 or the movement determination module 250 thereof is further configured to: determine that the passenger 900 has successfully moved into the elevator car 110 and has successfully taken the elevator when the signal strength of the first wireless signal received thereby changes from zero or relatively weak to equal to or greater than a relatively strong first pre-determined value and the traveling direction information in the first wireless signal received thereby changes from "not traveled" to "traveling upwards" or "traveling downwards".
- the personal mobile terminal 100 or the movement determination module 250 thereof is further configured to: determine that the passenger 90 has failed to move into the elevator car 110 and has failed to take the elevator when the signal strength of the first wireless signal received thereby changes from zero or relatively weak to equal to or greater than a relatively strong first pre-determined value and the traveling direction information in the first wireless signal received thereby after the change remains "not traveled" or disappears.
- whether the passenger has moved towards the elevator car 110 can be determined through the change in the signal strength of the received first wireless signal, and whether the passenger is traveling together with the first elevator car 110 can be determined through the change in the first floor information in the first wireless signal received subsequently; thus, it can be determined that the passenger has successfully moved into the elevator car 110 or whether the passenger has successfully taken the elevator.
- the above first floor information in the first wireless signal received after the change is received when the RRSI indicates "strong", i.e., when the signal strength remains equal to or greater than the first pre-determined value, which further indicates that the passenger 90 is receiving the changed traveling direction information inside the elevator car 110.
- the change in the traveling direction information is earlier than the change in the first floor information and is easy to be recognized earlier by the personal mobile terminal 100 in the process from stopping of the elevator car 110 to starting to travel, it is more timely or more effective to determine the movement of the passenger relative to the elevator car based on the change in the signal strength of the received first wireless signal and the change in the traveling direction information compared with determining the movement of the passenger relative to the elevator car based on the change in the signal strength of the received first wireless signal and the change in the first floor information.
- the signal strength of the above-mentioned first wireless signal when the passenger 90 walks to approach the first wireless signal module 130, the change in the signal strength of the first wireless signal received by the personal mobile terminal 200 increases approximately progressively; therefore, in the process where the signal strength of the above-mentioned first wireless signal changes from zero or relatively weak to equal to or greater than a relatively strong first pre-determined value, the signal strength can be chosen to change approximately progressively, for example, changing approximately linearly or changing in an approximately curved manner. As such, the situations that do not indicate the passenger 90 moving towards the elevator car 110, such as the signal strength "suddenly changing", can be excluded, increasing the accuracy of judgement.
- the first pre-determined value is chosen to represent a signal strength value of a first wireless signal received by a personal mobile terminal 200 when a passenger is or is likely to be in the elevator car, for example the signal strength value of the first wireless signal received by the personal mobile terminal 200 when a distance from the corresponding passenger 90 to the first wireless signal module 130 is at a certain value within the range of 0.7 to 1 meter, or the signal strength value of the first wireless signal received by the personal mobile terminal 200 when the corresponding passenger 90 is in the elevator car 110.
- the signal strength of the first wireless signal received thereby is likely to be equal to or greater than the first pre-determined value.
- the personal mobile terminal 200 outside the elevator car 110 cannot receive the corresponding first wireless signal or receives a weak first wireless signal.
- the signal strength of the first wireless signal being weak refers to that the signal strength of the first wireless signal is at least smaller than the first pre-determined value.
- the movement determination apparatus 10 further includes a second wireless signal module 120 mounted in each elevator landing area 410, for broadcasting a second wireless signal, for example, keeping broadcasting a data signal including second floor information about the elevator landing area 410 where the second wireless signal module 120 is located; as such, the personal mobile terminal 200 can keep receiving the second floor information once entering the elevator landing area 410.
- a second wireless signal module 120 mounted in each elevator landing area 410, for broadcasting a second wireless signal, for example, keeping broadcasting a data signal including second floor information about the elevator landing area 410 where the second wireless signal module 120 is located; as such, the personal mobile terminal 200 can keep receiving the second floor information once entering the elevator landing area 410.
- the movement determination apparatus 10 of the embodiments of the present invention can be applied to an elevator system 100 described below that can automatically complete an elevator calling operation in a completely hand free mode according to the embodiments of the present invention and can effectively avoid ineffective elevator calling operations.
- a second wireless signal module 120 is arranged in the elevator system 100, and the second wireless signal module 120 can be mounted in each elevator landing area 410 of the elevator system 100 (as shown in Fig. 2 ). It should be understood that each elevator landing area 410 can be mounted with one or more second wireless signal modules 120, so that the second wireless signal sent out by the second wireless signal module 120 can approximately effectively cover each elevator landing area 410.
- the second wireless signal module 120 can particularly be arranged in an elevator calling control panel of the elevator system 100 by way of integration, wherein the elevator calling control panel 12 is generally mounted at two sides of the landing door of the elevator landing area 410, and the elevator calling control panel 12 can be arranged with for example an "upward” or “downward” elevator calling button, so as to be also able to realize the manual input of an elevator calling request command based on the elevator calling control panel 12.
- the second wireless signal module 120 can particularly be a bluetooth low energy (BLE) module; and the second wireless signal can for example correspondingly be a BLE signal, which can include a wake-up signal for waking up the personal mobile terminal 200, and can also include identity (for example, a universally unique identifier (UUID)) of the second wireless signal module 120.
- BLE bluetooth low energy
- UUID universally unique identifier
- the particular signal form of the second wireless signal is not restrictive.
- the signal strength of the second wireless signal attenuates with the broadcast distance thereof, and therefore, the personal mobile terminal 200 that receives the second wireless signal can approximately determine the distance from the personal mobile terminal 200 to the second wireless signal module 120 according to the signal strength of the second wireless signal. It will be understood that, with the passenger walking in the elevator landing area 410, the distance dynamically changes.
- the elevator system 100 further includes multiple first wireless signal modules 130, and each first wireless signal module 130 is mounted in each elevator car 110.
- each first wireless signal module 130 is mounted in each elevator car 110.
- one first wireless signal module 130-1 is arranged in the elevator car 110-1
- one first wireless signal module 130-2 is arranged in the elevator car 110-2.
- the first wireless signal module is mounted on a target floor registration control panel in the elevator car 110 and is arranged on the target floor registration control panel by way of integration.
- each second wireless signal module 120 and first wireless signal module 130 in the movement determination apparatus 10 or the elevator system 100 are coupled to an elevator controller 140.
- they are indirectly coupled (for example, through an RSL bus connection) to the elevator controller 140 respectively through the elevator calling control panel and the target floor registration control panel; therefore, the elevator calling request command and the target floor registration command respectively received by the second wireless signal module 120 and the first wireless signal module 130 can be transmitted to the elevator controller 140.
- each personal mobile terminal 200 can establish a second wireless connection 320 with the second wireless signal module 120, and each personal mobile terminal 200 can establish a first wireless connection 330 with the first wireless signal module 130.
- the personal mobile terminal 200 can be various smart terminals with a wireless connection function that are convenient for passengers to carry; the personal mobile terminal 200 can be provided with a memory, a processor with computing function, etc., and in particular, the personal mobile terminal 200 can be a smart phone, a wearable smart device (e.g., a smart wristband), a personal digital assistant (PDA), etc., on which a corresponding application program (e.g., an APP) can be mounted to realize its function.
- a corresponding application program e.g., an APP
- a personal mobile terminal 200 carried by a passenger near the second wireless signal module 120 will be able to automatically receive the second wireless signal, and based on the second wireless signal, the personal mobile terminal 200 automatically establishes a second wireless connection 320 with the corresponding second wireless signal module 120; moreover, when establishing the second wireless connection 320, the personal mobile terminal 200 sends an elevator calling request command regarding an elevator calling direction (e.g., an "upward” or "downward” elevator calling request command), the second wireless signal module 120 receives the elevator calling request command regarding the elevator calling direction sent over from the personal mobile terminal 200, and the second wireless signal module 120 can further send the elevator calling request command to the elevator controller 140, so that the elevator controller 140 controls the running of one or more elevator cars 110 in the elevator system 100 based on the elevator calling request command.
- an elevator calling direction e.g., an "upward" or "downward” elevator calling request command
- the elevator calling request command automatically sent by the personal mobile terminal 200 can replace the elevator calling request command input by manually pressing an elevator calling button; moreover, the above process can be automatically realized without the need for the passenger to operate the personal mobile terminal 200, completely realizing the automatic input of an elevator calling request command into the elevator system 100 by the passenger in a hand free mode.
- the implementation process is simple and convenient, greatly improving the passenger's experience.
- each second wireless signal module 120 establishes a second wireless connection 320 with only one personal mobile terminal 200 at a certain moment, and each second wireless signal module 120 can successively establish a second wireless connection 320 with personal mobile terminals 200 carried by a plurality of passengers near the second wireless signal module 120. After establishing a second wireless connection 320 with the second wireless signal module 120 and sending a corresponding elevator calling request command, each personal mobile terminal 200 will actively disconnect the second wireless connection 320 so as to make preparation for the automatic establishment of a second wireless connection 320 between the second wireless signal module 120 and the personal mobile terminal 200 of the next passenger.
- the second wireless signal module 120 is configured to return a second confirmation message to a corresponding personal mobile terminal 200 after receiving an elevator calling request command, and the second confirmation message indicates that the elevator calling request command is successfully accepted by the elevator system 100; and the personal mobile terminal 200 is configured to actively disconnect the second wireless connection 320 based on the received second confirmation message.
- the "elevator calling request command regarding an elevator calling direction" in the present invention does not contain the target floor information about the passenger, or the target floor information is not recognized or used by the elevator controller 140 even if it is contained. Therefore, in the embodiments of the present invention, a first wireless connection 330 with the personal mobile terminal 200 is also established in dependence on the first wireless signal module 130.
- a personal mobile terminal 200 carried by a passenger 90 near the first wireless signal module 130 will continue to be able to automatically receive the first wireless signal (at this moment, the second wireless connection 320 previously established between the personal mobile terminal 200 and the second wireless signal module 120 has already been disconnected), and based on the first wireless signal, the personal mobile terminal 200 automatically establishes a first wireless connection 330 with the corresponding first wireless signal module 130; moreover, when establishing the first wireless connection 330, the personal mobile terminal 200 sends a target floor registration command about target floor information, the first wireless signal module 130 receives an elevator calling request command regarding an elevator calling direction sent over from the personal mobile terminal 200, and the first wireless signal module 130 can further send the target floor registration command to the elevator controller 140, so that the elevator controller 140 controls the running of one or more elevator cars 110 in the elevator system 100 based on the
- the target floor registration command automatically sent by the personal mobile terminal 200 can replace the target floor registration command input by manually pressing a floor button; moreover, the above process can be automatically realized without the need for the passenger to operate the personal mobile terminal 200, completely realizing the automatic input of a target floor registration command into the elevator system 100 by the passenger in a hand free mode.
- the implementation process is simple and convenient, greatly improving the passenger's experience.
- each first wireless signal module 130 establishes a first wireless connection 330 with only one personal mobile terminal 200 at a certain moment, and each first wireless signal module 130 can successively establish a first wireless connection 330 with personal mobile terminals 200 carried by a plurality of passengers 90 near the first wireless signal module 130. After establishing a first wireless connection 330 with the first wireless signal module 130 and sending a corresponding target floor registration command, each personal mobile terminal 200 will actively disconnect the first wireless connection 330 so as to make preparation for the establishment of a first wireless connection 330 between the first wireless signal module 130 and the personal mobile terminal 200 of the next passenger 90.
- the first wireless signal module 130 is configured to return a first confirmation message to a corresponding personal mobile terminal 200 after receiving the target floor registration command, and the first confirmation message indicates that the target floor registration command is successfully accepted by the elevator system 100; and the personal mobile terminal 200 is configured to actively disconnect the first wireless connection 330 based on the received first confirmation message.
- the above-mentioned process from establishing a second wireless connection 320 to disconnecting the second wireless connection 320 can be completed in a short time
- the above-mentioned process from establishing a first wireless connection 330 to disconnecting the first wireless connection 330 can also be completed in a short time, for example in a time range on the order of magnitude of milliseconds, so that one second wireless signal module 120 or first wireless signal module 130 can successively achieve a second wireless connection 320 or a first wireless connection 330 with many personal mobile terminals 200 in a short time, and many personal mobile terminals 200 can complete an elevator calling operation approximately simultaneously in a short time period.
- the elevator system 100 or the movement determination apparatus 10 of the above embodiments can realize the completion of an automatic elevator calling operation in a completely hand free mode; for example, in the process from some passenger 90 entering the lobby of a building to reaching a target floor, he/she can take an elevator to the target floor without any operation as long as a personal mobile terminal 200 is carried thereby. As shown in Fig.
- a first wireless connection 330 will be established and a target floor registration command will be automatically sent, the connection status information changes from "Off" to "On", and the elevator controller 140 will control the traveling of the elevator car 110-1 based on the target floor registration command, for example stopping at a floor corresponding to the target floor registration command.
- the personal mobile terminal 200 carried by the passenger 90 is likely to send a target floor registration command to the first wireless signal module 130 and automatically register a target floor for the passenger through the first wireless signal module 130; apparently, the target floor registration command may easily cause ineffective running of the elevator car 110-1, affecting the operation efficiency of the elevator system 100.
- a determination result of the movement of the passenger relative to the elevator car 110 can be sent to the elevator system 100 at the same time.
- the above-mentioned determination result can be sent to the elevator controller 140.
- the personal mobile terminal 200 is generally still located in the elevator landing area 410; therefore, by means of a wireless communication module 210 of the personal mobile terminal 200, a wireless connection can be actively established with the second wireless signal module 120, and the determination result can be sent to the elevator controller 140.
- the personal mobile terminal 200 when it is determined that the passenger 90 has successfully moved into the elevator car 110 and has successfully taken the elevator, the personal mobile terminal 200 must be located in the elevator car 110; therefore, by means of the wireless communication module 210 of the personal mobile terminal 200, a first wireless connection can be actively established with the first wireless signal module 130, and the determination result can be sent to the first wireless signal module 130 and then transferred to the elevator controller 140.
- the elevator controller 140 is further configured to select a determination result sent from the movement determination apparatus 10 about the movement of the passenger 90 relative to the elevator car 110 as a judgement condition, to judge whether to cancel a target floor registration command which is registered in the elevator car 110 and corresponds to the personal mobile terminal 200 of the passenger 90.
- the personal mobile terminal 200 of the passenger 90 automatically sends a target floor registration command corresponding to floor M to a first wireless signal module 130-1 of the elevator car 110-1, and when the elevator controller 140 acknowledges that the passenger 90 has successfully moved into the elevator car 110-1 and has successfully taken the elevator, the elevator controller 140 will not cancel the target floor registration command for the floor M, and the elevator car 110-1 will stop at the Mth floor; when the elevator controller 140 acknowledges that the passenger 90 has failed to move into the elevator car 110-1 or has failed to take the elevator, the elevator controller 140 will judge, by taking the determination result into consideration, whether to cancel the target floor registration command for the floor M.
- the stop of the elevator car 110-1 at the Mth floor will be canceled.
- the traveling of the elevator car 110-1 from the current floor to the Mth floor will be canceled.
- condition for the elevator controller 140 to judge whether to cancel the target floor registration command corresponding to the passenger 90 is not limited to the condition of the determination result sent over from the personal mobile terminal 200, but can also include many other conditions as judgement factors, for example, the target floor registration command corresponding to other passengers, the current operation situation of the elevator car, etc.
- the first wireless signal module 130 also broadcasts connection status information about a first wireless connection 330 between same and the personal mobile terminal 200, and if the above-mentioned first wireless connection 330 is automatically established, then the connection status information corresponds to "On", otherwise the connection status information corresponds to "Off”; the wireless communication module 210 of the personal mobile terminal 200 will receive the connection status information; for example, when the personal mobile terminal 200 is located in the elevator landing area 410, the connection status information received thereby corresponds to "Off"; and in the process of the personal mobile terminal moving to the elevator car 110-1, there is a certain moment or time period where the connection status information received thereby corresponds to "On" (which is used for sending a target floor registration command at this time); and in the process of the elevator car 110-1 closing the landing door and operating, the connection status information received by the personal mobile terminal 200 of the passenger 90 therein corresponds to "Off". Therefore, the process of the passenger 90 walking into the elevator car 110-1 from the elevator landing area 410 generally corresponds to the process of the connection
- the personal mobile terminal 200 or the movement determination module 250 thereof is configured to: determine that the passenger 90 has successfully moved into the elevator car 110 and has successfully taken the elevator when the connection status information about the first wireless connection 330 received thereby changes from “Off” to "On” and the traveling direction information in the first wireless signal received thereby after the change changes from "not traveled” to "traveling upwards” or “traveling downwards”.
- the personal mobile terminal 200 or the movement determination module 250 thereof is further configured to: determine that the passenger 90 has failed to move into the elevator car 110 or has failed to take the elevator when the connection status information about the first wireless connection 330 received thereby changes from "Off” to "On” and the traveling direction information in the first wireless signal received thereby after the change remains "not traveled” or disappears.
- the personal mobile terminal 200 or the movement determination module 250 thereof is configured to: determine that the passenger 90 has successfully moved into the elevator car 110 and has successfully taken the elevator when the connection status information about the first wireless connection 330 received thereby changes from "Off" to "On” and the first floor information in the first wireless signal received thereby after the change changes.
- the personal mobile terminal 200 or the movement determination module 250 thereof is further configured to: determine that the passenger 90 has failed to move into the elevator car 110 or has failed to take the elevator when the connection status information about the first wireless connection 330 received thereby changes from "Off" to "On” and the first floor information in the first wireless signal received thereby after the change does not change or disappears.
- the connection status information about the first wireless connection 330 received by the personal mobile terminal 200 changing from “Off” to “On” is also caused by the change in the signal strength of the first wireless signal received by the personal mobile terminal 200; that is to say, it is a way of representing the signal strength changing from weak to strong.
- the movement determination apparatus 10 and the movement determination method thereof are not limited to be the elevator system 100 capable of realizing elevator calling operations in a completely hand free mode in the above embodiments.
- the movement determination apparatus 10 and the movement determination method thereof can also be applied in an elevator system which is based on another automatic elevator calling operation mode.
- the personal mobile terminal can, once at the same time, automatically send or automatically input an elevator calling request command including an elevator calling direction and target floor information to the elevator system, and the elevator system will designate a corresponding elevator car (there are a plurality of elevator cars in the elevator system) for the passenger based on the command, and automatically register the target floor of the passenger in the elevator car.
- the elevator controller 140 of such an elevator system can similarly be configured to: select a determination result sent over from the movement determination apparatus 10 about the movement of the passenger 90 relative to the elevator car 110 as a judgement condition, to judge whether to cancel a target floor registration command which is registered in the designated elevator car 110 and corresponds to the personal mobile terminal 200 of the passenger 90, thus avoiding the ineffective running of the designated elevator car 110.
- the personal mobile terminal 200 or the movement determination module 250 thereof is further configured to: compare the traveling direction information in the first wireless signal received thereby with an elevator calling direction in an elevator calling request command sent by the personal mobile terminal 200, so as to determine whether the passenger has correspondingly moved into the designated elevator car. If the elevator calling direction in the elevator calling request command sent by the personal mobile terminal 200 does not correspond to the currently received traveling direction information, then it can be determined that the passenger 90 has failed to move into the designated elevator car.
- a corresponding elevator calling direction is "upwards"; normally, the elevator car 110-2 will stop at the current floor of the passenger 90, and after the passenger 90 enters the elevator car 110-2, the elevator car 110-2 will automatically travel upwards to the Yth floor.
- the personal mobile terminal 200 will be able to receive traveling direction information, for example "traveling downwards", sent by the first wireless signal module 130-1 in the elevator car 110-1, and compare the traveling direction information with for example an "upward" elevator calling direction previously sent by the personal mobile terminal 200, so as to be able to determine that the passenger 90 has failed to move into the designated elevator car 110-2.
- traveling direction information for example "traveling downwards”
- the personal mobile terminal 200 will be able to receive traveling direction information, for example "traveling downwards" sent by the first wireless signal module 130-1 in the elevator car 110-1, and compare the traveling direction information with for example an "upward" elevator calling direction previously sent by the personal mobile terminal 200, so as to be able to determine that the passenger 90 has failed to move into the designated elevator car 110-2.
- the wireless communication module 210 of the personal mobile terminal 200 is triggered to establish a wireless connection with the first wireless signal module 130-1 in the elevator car 110-1 and send the determination result of failure to the elevator controller 140; and based on the determination result of failure, the elevator controller 140 can automatically cancel the target floor registration command registered at the Yth floor in the designated elevator car 110-2. As such, the elevator car 110-2 will stop operating based on the above-mentioned normal way, avoiding ineffective operation.
- the first wireless signal module 130 mounted in each elevator car also broadcasts identity information, e.g., a UUID, about the first wireless signal module 130 or the elevator car 110 on which it is mounted.
- the personal mobile terminal 200 or the movement determination module 250 thereof is further configured to: compare the identity information in the first wireless signal received thereby with identity information about the elevator car 110 which is designated for the personal mobile terminal 200, so as to determine whether the passenger 90 has correspondingly moved into the designated elevator car.
- the personal mobile terminal 200 or the movement determination module 250 thereof is further configured to: determine that the passenger 90 has failed to move into the designated elevator car 110 when the identity information in the first wireless signal received thereby is inconsistent with the identity information about the elevator car which is designated for the personal mobile terminal 200.
- the first wireless signal module 130 in each elevator car 110 can keep broadcasting a first wireless signal, and the first wireless signal comprises one or more of: first floor information, connection status information about the first wireless connection 330, traveling direction information, etc. It will be understood that these pieces of information are changing in real time.
- the personal mobile terminal 200 or the movement determination module 250 thereof can comprehensively determine the movement of the passenger 90 relative to the elevator car 110 based on the change in a plurality of: the first floor information, the connection status information about the first wireless connection 330 and the traveling direction information, and the determination result of the movement may be more accurate.
- wireless connection herein includes “wireless communication”, for example, bluetooth communication based on a certain bluetooth protocol.
- each block or combination of blocks in the block diagram of Fig. 3 can be implemented by computer program instructions, for example, by a dedicated APP.
- These computer program instructions can be provided to a processor of a general-purpose computer, of a special-purpose computer or of other programmable data processing devices to construct a machine, so that the processor of the computer or other programmable data processing devices executes these instructions to create a component for implementing a function/operation specified in the one or more block diagrams.
- aspects of the present invention can be embodied as a system, a method or a computer program product. Therefore, the aspects of the present invention can be in the following forms: a full-hardware implementation, a full-software implementation (including firmware, resident software, microcodes, etc.), or an implementation combining a software and hardware aspect which generally can all be called “services”, “circuits”, “circuitry”, “modules” and/or “processing systems” herein.
- the aspects of the present invention can be in the form of a computer program product, in one or more computer readable mediums, on which computer readable program codes are implemented.
- the computer readable mediums can be computer readable signal mediums or computer readable storage mediums.
- the computer readable storage mediums can be, for example but not limited to, electronic, magnetic, optical, electromagnetic, infrared or semi-conductor systems, devices or apparatuses, or any suitable combination of the above.
- the computer readable storage mediums include the following: an electric connection with one or more electric wires, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage apparatus, a magnetic storage apparatus, or any suitable combination of the above.
- the computer readable storage medium can be any tangible medium that can contain or store instructions to be used by the instruction execution system, device or apparatus or combined therewith.
- the program codes and/or executable instructions embodied on the computer readable medium can be transmitted with any appropriate medium, which includes but not limited to wireless, wired, fiber-optic cables, RF, etc., or any suitable combination of the above.
- the computer program codes for implementing the operations of the aspects of the present invention can be written with any combination of one or more programming languages, including object-oriented programming languages such as Java, Smalltalk and C++, and traditional programming languages such as "C" programming language or similar programming languages.
- the program codes can be completely executed on a user's computer (apparatus), partially executed on a user's computer, executed as an independent software package, partially executed on a user's computer and partially executed on a remote computer, or completely executed on a remote computer or a server.
- the remote computer can be connected to the user's computer through any type of network including a local area network (LAN) or a wide area network (WAN) or can be connected to an external computer (for example, connecting through the Internet using an Internet service provider).
- LAN local area network
- WAN wide area network
- Internet service provider for example, connecting through the Internet using an Internet service provider.
- the computer program instructions can be provided to a processor of a general-purpose computer, a processor of a special-purpose computer such as an image processor or other programmable data processing devices to produce a machine, so that an approach for implementing a function/action specified in one or more blocks of the flowchart and/or block diagram is created via the instructions executed by the processor of the computer or other programmable data processing devices.
- the computer program instructions can also be loaded onto a computer, other programmable data processing devices or other apparatuses, so as to execute a series of operation steps on the computer, other programmable data processing devices or other apparatuses, to generate a computer-implemented process, so that the instructions executed on the computer or other programmable devices provide a process for implementing the functions and actions specified herein.
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mechanical Engineering (AREA)
- Indicating And Signalling Devices For Elevators (AREA)
- Elevator Control (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710484948 | 2017-06-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3418236A1 true EP3418236A1 (de) | 2018-12-26 |
EP3418236B1 EP3418236B1 (de) | 2024-03-13 |
Family
ID=62750859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18179330.8A Active EP3418236B1 (de) | 2017-06-23 | 2018-06-22 | Bestimmung der bewegung eines fahrgastes relativ zu einer aufzugskabine |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3418236B1 (de) |
CN (1) | CN109110601B (de) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3533742A1 (de) * | 2018-02-28 | 2019-09-04 | Otis Elevator Company | Persönliches mobiles endgerät und verfahren zur anforderung eines aufzugsdienstes |
CN110482348A (zh) * | 2019-08-15 | 2019-11-22 | 广东嘉腾机器人自动化有限公司 | 一种电梯自动控制agv物流系统及方法 |
US20200122958A1 (en) * | 2018-10-22 | 2020-04-23 | Otis Elevator Company | System and method for prioritizing service to remote elevator calls based on proximity to elevator lobby |
EP3512791B1 (de) | 2016-09-13 | 2020-08-12 | Inventio AG | Verfahren zur erkennung eines betretens einer aufzugkabine einer aufzuganlage durch einen passagier |
CN111747246A (zh) * | 2019-03-27 | 2020-10-09 | 奥的斯电梯公司 | 为电梯系统的电梯轿厢配置可停楼层信息集 |
CN113213281A (zh) * | 2020-01-21 | 2021-08-06 | 东芝电梯株式会社 | 电梯系统 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210276826A1 (en) * | 2020-03-05 | 2021-09-09 | Otis Elevator Company | Receiver-less device positioning |
CN112623892B (zh) * | 2020-11-30 | 2022-06-21 | 展讯半导体(成都)有限公司 | 电梯及其控制方法、移动终端及其与电梯的通信方法 |
CN114326721B (zh) * | 2021-12-20 | 2024-06-07 | 达闼机器人股份有限公司 | 建图方法、装置、云端服务器以及机器人 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012062190A (ja) * | 2010-09-17 | 2012-03-29 | Fujitsu Ltd | 乗降検出プログラム、乗降検出方法及び乗降検出システム |
CN204980676U (zh) * | 2015-06-12 | 2016-01-20 | 上海秉上智能科技有限公司 | 一种电梯乘客无线定位识别系统 |
EP3116200A2 (de) * | 2015-07-10 | 2017-01-11 | Otis Elevator Company | Bakensystem und -verfahren zur wegfindung bei personenförderung |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01203183A (ja) * | 1988-02-09 | 1989-08-15 | Hitachi Elevator Eng & Service Co Ltd | ホテル用エレベータの運転装置 |
JP6181446B2 (ja) * | 2013-07-08 | 2017-08-16 | 株式会社日立製作所 | エレベータシステム |
CN203865757U (zh) * | 2014-06-16 | 2014-10-08 | 宁波奥力迅电梯部件有限公司 | 电梯轿厢安全运行系统 |
CN105035891B (zh) * | 2015-06-16 | 2017-03-29 | 福建省科正智能科技有限公司 | 电梯智能呼叫系统及其控制方法 |
CN106167205B (zh) * | 2016-04-05 | 2019-02-12 | 北京小米移动软件有限公司 | 智能电梯的控制方法、控制装置、运行方法及智能电梯 |
CN106276533B (zh) * | 2016-10-11 | 2018-06-08 | 日立楼宇技术(广州)有限公司 | 控制光幕的方法和装置 |
-
2018
- 2018-05-10 CN CN201810442855.8A patent/CN109110601B/zh active Active
- 2018-06-22 EP EP18179330.8A patent/EP3418236B1/de active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012062190A (ja) * | 2010-09-17 | 2012-03-29 | Fujitsu Ltd | 乗降検出プログラム、乗降検出方法及び乗降検出システム |
CN204980676U (zh) * | 2015-06-12 | 2016-01-20 | 上海秉上智能科技有限公司 | 一种电梯乘客无线定位识别系统 |
EP3116200A2 (de) * | 2015-07-10 | 2017-01-11 | Otis Elevator Company | Bakensystem und -verfahren zur wegfindung bei personenförderung |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3512791B1 (de) | 2016-09-13 | 2020-08-12 | Inventio AG | Verfahren zur erkennung eines betretens einer aufzugkabine einer aufzuganlage durch einen passagier |
EP3533742A1 (de) * | 2018-02-28 | 2019-09-04 | Otis Elevator Company | Persönliches mobiles endgerät und verfahren zur anforderung eines aufzugsdienstes |
US11332341B2 (en) | 2018-02-28 | 2022-05-17 | Otis Elevator Company | Personal mobile terminal and a method of requesting elevator service |
US20200122958A1 (en) * | 2018-10-22 | 2020-04-23 | Otis Elevator Company | System and method for prioritizing service to remote elevator calls based on proximity to elevator lobby |
CN111747246A (zh) * | 2019-03-27 | 2020-10-09 | 奥的斯电梯公司 | 为电梯系统的电梯轿厢配置可停楼层信息集 |
CN110482348A (zh) * | 2019-08-15 | 2019-11-22 | 广东嘉腾机器人自动化有限公司 | 一种电梯自动控制agv物流系统及方法 |
CN113213281A (zh) * | 2020-01-21 | 2021-08-06 | 东芝电梯株式会社 | 电梯系统 |
CN113213281B (zh) * | 2020-01-21 | 2023-05-02 | 东芝电梯株式会社 | 电梯系统 |
Also Published As
Publication number | Publication date |
---|---|
CN109110601B (zh) | 2021-12-24 |
EP3418236B1 (de) | 2024-03-13 |
CN109110601A (zh) | 2019-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3418236A1 (de) | Bestimmung der bewegung eines fahrgastes über eine aufzugskabine | |
US11447366B2 (en) | Determination for motion of passenger over elevator car | |
EP3418235B1 (de) | Bestimmung der bewegung eines fahrgastes über dem aufzugsschachttürbereich | |
US11643299B2 (en) | Communication system and method for elevator system | |
US11584613B2 (en) | Determination for motion of passenger over elevator landing area | |
US11661309B2 (en) | Smart guidance for controlling passenger to enter correct elevator car | |
EP3434635B1 (de) | Nahtlose verfolgung des passagierflusses in einer aufzugskabine | |
EP3533742B1 (de) | Persönliches mobiles endgerät und verfahren zur anforderung eines aufzugsdienstes | |
US11577930B2 (en) | Automatic elevator calling system and a method for controlling automatic calling elevator | |
EP3505477B1 (de) | Bestimmung von nichtnormaler aufzugsanforderungsaufforderung in einem automatischen aufzugsanforderungsaufforderungssystem | |
EP3566991B1 (de) | Aufzugdienstanforderung basierend auf einem anwendungsmodul für soziale medien | |
EP3331795B1 (de) | System und verfahren zum einleiten eines zielrufs und kabinenrufs für eine aufzugsanlage | |
EP3546409B1 (de) | System zur automatischen aufzugsanforderung und steuerungsverfahren für automatische aufzugsanforderung | |
CN105129547A (zh) | 电梯控制方法和系统 | |
US20210221643A1 (en) | Guidance on safety inspection operations of functional component of elevator system | |
CN111824873A (zh) | 一种非接触式自主乘梯系统及控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190621 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200512 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20231010 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018066489 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240521 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240614 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20240313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240613 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240613 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240613 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240614 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240521 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1665604 Country of ref document: AT Kind code of ref document: T Effective date: 20240313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240713 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240715 |