EP3510217B1 - Schutzsystem zum schutz von gebäuden vor flugzeugabstürzen - Google Patents

Schutzsystem zum schutz von gebäuden vor flugzeugabstürzen Download PDF

Info

Publication number
EP3510217B1
EP3510217B1 EP18709476.8A EP18709476A EP3510217B1 EP 3510217 B1 EP3510217 B1 EP 3510217B1 EP 18709476 A EP18709476 A EP 18709476A EP 3510217 B1 EP3510217 B1 EP 3510217B1
Authority
EP
European Patent Office
Prior art keywords
grid
protective
plane
protective system
building wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18709476.8A
Other languages
English (en)
French (fr)
Other versions
EP3510217A1 (de
Inventor
Adam Fila
Viktor Vlaski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Framatome GmbH
Original Assignee
Framatome GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Framatome GmbH filed Critical Framatome GmbH
Publication of EP3510217A1 publication Critical patent/EP3510217A1/de
Application granted granted Critical
Publication of EP3510217B1 publication Critical patent/EP3510217B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/24Armour; Armour plates for stationary use, e.g. fortifications ; Shelters; Guard Booths
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/04Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate against air-raid or other war-like actions
    • E04H9/06Structures arranged in or forming part of buildings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H11/00Defence installations; Defence devices
    • F41H11/02Anti-aircraft or anti-guided missile or anti-torpedo defence installations or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H11/00Defence installations; Defence devices
    • F41H11/08Barbed-wire obstacles; Barricades; Stanchions; Tank traps; Vehicle-impeding devices; Caltrops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D5/00Safety arrangements
    • F42D5/04Rendering explosive charges harmless, e.g. destroying ammunition; Rendering detonation of explosive charges harmless

Definitions

  • the invention relates to a protection system for protecting a building from aircraft crashes and similar high-energy impacts of large-volume objects according to the preamble of claim 1.
  • Such a protection system is from the patent DE 10 2010 037 202 B4 of HOCHTIEF Construction AG.
  • a protective jacket is provided at a distance from the outer shell of the structure, the protective jacket being designed as a lattice jacket, the bars of the lattice jacket being at least partially made of steel, the protective jacket being designed as a self-supporting structure, and wherein the protective jacket is not connected to the outer shell of the building or is not connected via supporting elements.
  • Another protection system for protecting a building from aircraft impact is in the document DE202005015904U described.
  • the object of the invention is to further develop a protection system of the type mentioned at the beginning in such a way that even an impact of heavy four-engine aircraft, for example of the Boeing 747 or Airbus A380 type, does not destroy the integrity of the building it is protecting.
  • the protective grille is supported on the building wall via a plurality of plastically deformable, energy-absorbing elements - and preferably exclusively via such elements.
  • a support on the floor is advantageously provided.
  • the invention is based on the consideration that in departure from the in DE 10 2010 037 202 B4 disclosed technical teaching a support of the protective grille the building wall is quite desirable in order to better distribute the impact loads.
  • a part of these loads can and should, as recognized in the context of the present invention, be absorbed by the building to be protected itself, to the extent that its structure can withstand or tolerate it without being catastrophically damaged.
  • the transfer of force, pressure and deformation energy into the building wall takes place in a damped manner with the help of energy and vibration absorbing (damping) elements.
  • the respective energy-absorbing element advantageously comprises a tube made of steel, which is arranged between the protective grille and the building wall in such a way that the force transmitted to the protective grille when an aircraft crashes acts on the tube at least predominantly in the radial direction and, viewed in cross section, squeezes it.
  • a predominantly plastic, non-linear deformation takes place here due to a force acting in the radial direction on the circumference of the tube.
  • the tube can have a core or an installation made of crossed steel plates inside the tube.
  • the protective grille comprises an inner lattice level formed from steel girders and arranged parallel to the building wall and an outer lattice level arranged parallel to it and formed from steel girders, the inner lattice level and the outer lattice level being connected to one another by steel girders.
  • both the inner lattice plane and the outer lattice plane comprise a regular rectangular lattice whose unit cells have the same dimensions and which are shifted from one another by half a lattice constant in at least one main direction of the lattice. It is preferred here that the inner lattice plane and the outer lattice plane are connected to one another by diagonal supports which each extend from a node point of one lattice plane to a node point of the other lattice plane.
  • the protective system 20 shown in the figures with a protective grille 22 is set up in the manner of a protective cover in front of a building wall 24 or another section of a building envelope and protects it from aircraft crashes or similar high-energy and large-area impacts from rockets, components or debris as a result of attacks, explosions, Cyclones and the like.
  • the protective grille 22 is formed from interconnected, in particular welded, (steel) girders or struts or lattice bars and comprises a first lattice level facing the building wall, also referred to as the inner lattice level E1, and a second lattice level facing away from the building wall, also as the outer one Lattice plane E2.
  • Each of the two lattice levels E1, E2 is formed by longitudinal members and cross members connected to one another, which span a preferably regular surface lattice.
  • the two lattice planes E1, E2 are connected to one another by supports, in particular diagonal supports, arranged between them, so that a three-dimensional space lattice is implemented overall.
  • the outer grid level E2 is also arranged parallel to the building wall 24 and thus also parallel to the inner grid level E1.
  • the two grid planes E1, E2 thus form spaced apart vertical planes with a distance b.
  • the outer lattice plane E2 is realized by a plurality of longitudinal and transverse girders which are connected to one another at the intersection or node points 30.
  • it concerns vertical girders 1 and horizontal girders 3.
  • the vertical girders 1 are arranged in a columnar manner at regular intervals d from one another and aligned vertically according to their designation.
  • the horizontal girders 3, which run perpendicular to the vertical girders 1, are aligned horizontally according to their designation and at regular intervals Distances h to one another, that is to say arranged one above the other at different heights.
  • the horizontal girders 3 and the vertical girders 1 are preferably firmly connected to one another, in particular welded, at each of the intersection or node points 30. Overall, a regular rectangular grid is thus realized, the unit cell of which has a width d and a height h.
  • the inner grid level E1 is structured analogously to the outer grid level E2. It thus also forms a regular rectangular grid made of vertical beams 2 and horizontal beams 3 ', the unit cell of which preferably has the same width d and the same height h as the unit cell of the outer lattice plane E2.
  • the distance between the two grid levels, that is to say the width or depth of the protective grid 22 is denoted by b.
  • the two grid levels E1, E2 are advantageously not arranged congruently one behind the other in the top view from the front, but they are shifted or offset in the horizontal direction, i.e. in the longitudinal direction of the horizontal beams 3, 3 ', preferably by half a grid width d / 2.
  • the nodes of the outer grid plane E2 lie in the middle between two nodes of the inner grid plane E1.
  • the two grid levels E1, E2 are preferably not shifted relative to one another, so that a horizontal beam 3 'of the inner grid level E1 at the same level is assigned to each horizontal beam 3 of the outer grid level E2.
  • This variant creates horizontal levels between the vertical grid levels E1 and E2, which can be used as floor areas.
  • the grid levels E1, E2 are offset from one another by half a storey height h / 2 and the vertical grid area is thereby additionally compressed.
  • the two grid levels E1, E2 are connected to one another by additional supports, which are preferably implemented as diagonal supports 4, 5 and which are preferably connected to the nodes of the grid levels E1, E2, in particular by welding.
  • four diagonal girders 4, 5 extend from each node of the outer grid plane E2 - with the exception of a few located at the edge of the grid area - to respectively assigned nodes of the inner grid plane E1.
  • Two of the four diagonal supports, namely those with reference numeral 4, lie in a horizontal plane and extend to the two closest nodal points at the same height as the inner lattice plane E1.
  • the other two of the four diagonal supports extend spatially diagonally, namely obliquely downwards to the nodes of the inner lattice level E1 arranged directly below the aforementioned nodes (alternatively, they can also extend obliquely upwards, or in addition to the four diagonal girders mentioned, there should be two diagonal girders running upwards).
  • the result Viewed from the nodes of the inner lattice level, the result is a mirror-image arrangement. Viewed from above ( FIG. 3 ) you can see a triangular partitioning. Under certain circumstances, fewer than four diagonal girders extend from the peripheral nodes due to their peripheral location.
  • the vertical girders 1 of the outer lattice plane E2 are preferably all arranged on the same side of the horizontal girders 3, namely preferably on the inside, that is to say directed towards the building wall 24.
  • the vertical supports 1, 2 are preferably integral, that is to say made from one piece, and preferably have a double-T-shaped cross section, alternatively a rectangular cross section. The same applies to the horizontal beams 3, 3 'and the diagonal beams 4, 5.
  • Preferred materials for the beams are types of steel with great ductility and plastic deformation capacity.
  • the total height and total width of the protective grille 22 is adapted to the dimensions of the building or building section to be protected.
  • the protective grille 22 is preferably designed to be self-supporting and is advantageously supported by at least some, preferably all of the vertical supports 1, 2 on the floor 26.
  • the vertical supports 1, 2 are anchored to the ground 26 in a suitable manner and are based on a foundation.
  • the vertical supports 1, 2 can therefore also be referred to as columns or supports.
  • the protective grille 22 is connected to the building wall 24 via a plurality of shock- or energy-absorbing elements 32 or dampers.
  • These energy-absorbing elements 24 are preferably tubes 6 or hollow cylinders made of steel, which are arranged between the protective grille 22 and the building wall 24 in such a way that, when an object hits the protective grille 22 from the front (direction of impact essentially in Direction of arrow II in FIG. 1 ) perpendicular to their longitudinal axis, that is, viewed in cross section in radial direction 34, compressed or squeezed and thereby plastically deformed.
  • the respective pipe 6 is arranged between the vertical supports 2 of the inner lattice level E1, which are directed towards the building wall 24, and the building wall 24, that is to say in the gap 28 between them.
  • the pipe diameter D is accordingly at most as large as the gap width a.
  • the longitudinal axis of the tube 6 is preferably arranged vertically, that is to say parallel to the vertical support 2.
  • the pipe 6 is preferably firmly connected to the associated vertical support 2, in particular welded, on the one hand on the outer circumference, and on the other hand leaning against the building wall 24.
  • the tube 6 then represents an energy-absorbing (connecting) element or a bracket / fastening / suspension / support or a support between the protective grille 22 and the building wall 24.
  • the energy-absorbing tube 6 is fastened, for example, to a horizontal support 3 'of the inner lattice plane E1.
  • a type of series or row arrangement with several parallel aligned, abutting pipes, which are arranged within the gap 28 between the inner lattice plane E1 and the building wall 24, can be realized.
  • the required pipe length and its arrangement depends on the energy absorption requirement and depends on the (expected) impact impulse.
  • a plastically deformable core 36 which preferably consists of steel plates welded together in a cross shape, is advantageously arranged in the respective tube 6.
  • the core 36 forms a cross within the pipe circumference, the center of the cross coinciding with the longitudinal axis of the pipe 6.
  • the core 36 is preferably only clamped into the tube 6 and not attached to the inner wall of the tube in any other way.
  • the dimensions given here and further above are tailored to the requirements for protecting a nuclear power plant building from aircraft crashes, in particular four-jet passenger planes, and have been verified in numerical simulations.
  • the dimensioning varies in individual cases with the requirements.
  • Preferred materials for the tubes 6 and cores 36 are types of steel with great ductility and plastic deformation capacity
  • a particular advantage of the construction is that the entire building does not have to be surrounded, but the protective cover can be limited spatially to the particularly sensitive or sensitive sections of the building wall 24 or building envelope.
  • the protective grille 22 can be held on the building wall 24 exclusively via the energy-absorbing elements 32, without any support on the floor, which is useful, for example, when protecting ceiling sections.
  • the position and orientation of the protective grille 22 in the room must then of course be adapted to the installation situation. This means that the "vertical girders" and “horizontal girders” are then oriented differently in space than has been described so far and as suggested by the designation used here.
  • the shape of the protective grille 22 corresponds to the outer contour of a building, such as a circular or otherwise curved outer circumference of a z.
  • B. domed power station building follows. This is expediently implemented by means of straight sections, as described above, with kinks in between.
  • the component in question consists at least partially of steel.
  • Composite materials made of steel and other materials are expressly included.
  • a particularly important area of application is the protection of power plant buildings or building shells of nuclear power plants or other nuclear facilities.
  • many other applications for protection against industrial plants or military objects from aircraft crashes and the like are also possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Structural Engineering (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Vibration Dampers (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

  • Die Erfindung betrifft ein Schutzsystem zum Schutz eines Gebäudes vor Flugzeugabstürzen und ähnlichen hochenergetischen Einschlägen großvolumiger Objekte gemäß dem Oberbegriff des Anspruchs 1.
  • Ein derartiges Schutzsystem ist aus der Patentschrift DE 10 2010 037 202 B4 der HOCHTIEF Construction AG bekannt. Dort ist zum Schutz eines Bauwerks vor aufprallenden Flugobjekten ein Schutzmantel mit einem Abstand vor der äußeren Hülle des Bauwerks vorgesehen, wobei der Schutzmantel als Gittermantel ausgebildet ist, wobei die Gitterstäbe des Gittermantels zumindest teilweise aus Stahl bestehen, wobei der Schutzmantel als selbsttragendes Tragwerk ausgebildet ist, und wobei der Schutzmantel nicht bzw. nicht über abstützende Elemente mit der äußeren Hülle des Bauwerks verbunden ist. Ein anderes Schutzsystem zum Schutz eines Gebäudes vor einem Flugzeuganprall ist im Dokument DE202005015904U beschrieben.
  • Aufgabe der Erfindung ist es, ein Schutzsystem der eingangs genannten Art derart weiterzuentwickeln, dass auch ein Aufprall schwerer vierstrahliger Flugzeuge, etwa vom Typ Boeing 747 oder Airbus A380, die Integrität des von ihm geschützten Gebäudes nicht zerstört.
  • Diese Aufgabe wird erfindungsgemäß gelöst durch ein Schutzsystem mit den Merkmalen des Anspruchs 1.
  • Erfindungswesentlich ist demnach, dass das Schutzgitter sich über eine Mehrzahl von plastisch deformierbaren, energieabsorbierenden Elementen - und bevorzugt ausschließlich über derartige Elemente - an der Gebäudewand abstützt. Zusätzlich ist vorteilhafterweise eine Abstützung am Boden vorgesehen.
  • Die Erfindung geht von der Überlegung aus, dass in Abkehr der in DE 10 2010 037 202 B4 offenbarten technischen Lehre eine Abstützung des Schutzgitters an der Gebäudewand durchaus wünschenswert ist, um die Aufpralllasten besser zu verteilen. Ein Teil dieser Lasten kann und sollte nämlich, wie im Rahmen der vorliegenden Erfindung erkannt wurde, durchaus durch das zu schützende Gebäude selber aufgenommen werden, und zwar in dem Maß, wie seine Struktur es aushält oder toleriert, ohne katastrophal beschädigt zu werden. Zu diesem Zweck erfolgt der Übertrag von Kraft, Druck und Verformungsenergie in die Gebäudewand in gedämpfter Weise mit Hilfe von energie- und schwingungsabsorbierenden (Dämpfungs-) Elementen.
  • Vorteilhafterweise umfasst das jeweilige energieabsorbierende Element ein Rohr aus Stahl, welches derart zwischen dem Schutzgitter und der Gebäudewand angeordnet ist, dass die beim Aufprall eines Flugzeuges auf das Schutzgitter übertragene Kraft zumindest überwiegend in Radialrichtung auf das Rohr einwirkt und es im Querschnitt betrachtet zusammenquetscht. Im Gegensatz zu gewöhnlichen Stoßdämpfern von zylindrischer Gestalt, die so eingebaut sind, dass sie im Belastungsfall in Längsrichtung federnd zusammengestaucht werden, erfolgt hier also eine überwiegend plastische, nichtlineare Deformation durch eine in Radialrichtung auf den Umfang des Rohrs wirkende Kraft. Zur Erhöhung der Energiedissipation kann das Rohr im Rohrinneren einen Kern oder Einbau aus gekreuzten Stahlplatten aufweisen.
  • Es konnte durch numerische Simulationen nachgewiesen werden, dass die genannten energieabsorbierenden Elemente einen entscheidenden Beitrag von bis zu 60% der Gesamt-Energiedissipation durch das erfindungsgemäße Schutzsystem erbringen und die aufprallbedingten Vibrationen im Gebäude erheblich minimieren.
  • Vorteilhafterweise umfasst das Schutzgitter eine parallel zur Gebäudewand angeordnete, aus Stahlträgern gebildete innere Gitterebene und eine parallel dazu angeordnete, aus Stahlträgern gebildete äußere Gitterebene, wobei die innere Gitterebene und die äußere Gitterebene durch Stahlträger miteinander verbunden sind.
  • In bevorzugter Ausgestaltung umfassen sowohl die innere Gitterebene als auch die äußere Gitterebene ein regelmäßiges Rechteckgitter, deren Elementarzellen dieselben Abmessungen aufweisen, und die zumindest in einer Hauptrichtung des Gitters um eine halbe Gitterkonstante gegeneinander verschoben sind. Dabei ist es bevorzugt, dass die innere Gitterebene und die äußere Gitterebene durch Diagonalträger miteinander verbunden sind, die sich jeweils von einem Knotenpunkt einer Gitterebene zu einem Knotenpunkt der anderen Gitterebene erstrecken.
  • Weitere vorteilhafte Ausgestaltungen gehen hervor aus den abhängigen Ansprüchen sowie aus der nachfolgenden detaillierten Beschreibung.
  • Ein Ausführungsbeispiel der Erfindung wird nachfolgend unter Bezugnahme auf die beigefügten Zeichnungen erläutert. Es zeigen in schematischer, vereinfachter Darstellung:
  • FIG. 1
    eine perspektivische Ansicht eines vor einer Gebäudewand installierten Schutzsystems zum Schutz des Gebäudes vor Flugzeugabstürzen,
    FIG. 2
    eine Draufsicht auf das Schutzsystem von oben gemäß Pfeil I in FIG. 1, darunter eine Draufsicht von vorne gemäß Pfeil II in FIG. 1, und darunter einen Querschnitt (Seitenansicht) gemäß Linie A-A,
    FIG. 3
    eine vergrößerte Draufsicht auf das Schutzsystem von oben, und
    FIG. 4
    einen Querschnitt durch ein Rohr, welches als energieabsorbierende Befestigung für das Schutzsystem an einer Gebäudewand dient, oben für sich genommen, darunter in Einbaulage des Rohrs im Schutzsystem.
  • Gleiche oder gleichwirkende Teile sind in allen Figuren mit denselben Bezugseichen versehen.
  • Das in den Figuren dargestellte Schutzsystem 20 mit einem Schutzgitter 22 ist nach Art einer Schutzabdeckung vor einer Gebäudewand 24 oder einem sonstigen Abschnitt einer Gebäudehülle aufgestellt und schützt diese vor Flugzeugabstürzen oder ähnlich hochenergetischen und großflächigen Einschlägen von Raketen, Bauteilen oder Trümmern infolge von Anschlägen, Explosionen, Wirbelstürmen und dergleichen.
  • Das Schutzgitter 22 ist aus miteinander verbundenen, insbesondere verschweißten (Stahl-) Trägern oder Streben oder Gitterstäben gebildet und umfasst eine erste, der Gebäudewand zugewandte Gitterebene, auch als innere Gitterebene E1 bezeichnet, und eine zweite, von der Gebäudewand abgewandte Gitterebene, auch als äußere Gitterebene E2 bezeichnet. Jede der beiden Gitterebenen E1, E2 ist durch miteinander verbundene Längsträger und Querträger gebildet, die ein vorzugsweise regelmäßiges Flächengitter aufspannen. Die beiden Gitterebenen E1, E2 sind miteinander durch zwischen ihnen angeordnete Träger, insbesondere Diagonalträger verbunden, so dass insgesamt ein dreidimensionales Raumgitter verwirklicht ist.
  • Im hier gezeigten Beispiel wird davon ausgegangen, dass der zu schützende Abschnitt der Gebäudewand 24 eine vertikale Ebene über dem Boden 26 aufspannt. Die innere Gitterebene E1 ist unter Ausbildung eines Zwischenraumes oder Spaltes 28 mit Spaltbreite (= Abstand) a parallel zur Gebäudewand 24 angeordnet. Die äußere Gitterebene E2 ist ebenfalls parallel zur Gebäudewand 24 und somit auch parallel zur inneren Gitterebene E1 angeordnet. Die beiden Gitterebenen E1, E2 bilden damit voneinander beabstandete vertikale Ebenen mit dem Abstand b.
  • Die äußere Gitterebene E2 ist wie bereits erwähnt durch eine Mehrzahl von Längs- und Querträgern verwirklicht, die an den Kreuzungs- oder Knotenpunkten 30 miteinander verbunden sind. Hier im Beispiel handelt es sich um Vertikalträger 1 und Horizontalträger 3. Die Vertikalträger 1 sind in regelmäßigen Abständen d zueinander säulenartig angeordnet und entsprechend ihrer Bezeichnung vertikal ausgerichtet. Die senkrecht zu den Vertikalträgern 1 verlaufenden Horizontalträger 3 sind entsprechend ihrer Bezeichnung horizontal ausgerichtet und in regelmäßigen Abständen h zueinander, also in verschiedenen Höhen übereinander angeordnet. Bevorzugt sind die Horizontalträger 3 und die Vertikalträger 1 an jedem der Kreuzungs- oder Knotenpunkte 30 fest miteinander verbunden, insbesondere verschweißt. Insgesamt ist damit ein regelmäßiges Rechteckgitter verwirklicht, dessen Elementarzelle eine Breite d und eine Höhe h aufweist.
  • Die innere Gitterebene E1 ist analog zur äußeren Gitterebene E2 aufgebaut. Sie bildet also ebenfalls ein regelmäßiges Rechteckgitter aus Vertikalträgern 2 und Horizontalträgern 3', dessen Elementarzelle vorzugsweise dieselbe Breite d und dieselbe Höhe h wie die Elementarzelle der äußeren Gitterebene E2 besitzt. Der Abstand zwischen den beiden Gitterebenen, also die Breite oder Tiefe des Schutzgitters 22 ist mit b bezeichnet.
  • Die beiden Gitterebenen E1, E2 sind vorteilhafterweise in der Draufsicht von vorne nicht deckungsgleich hintereinander liegend angeordnet, sondern sie sind in horizontaler Richtung, also in Längsrichtung der Horizontalträger 3, 3' bevorzugt um eine halbe Gitterbreite d/2 gegeneinander verschoben oder versetzt. Damit liegen in der Projektion die Knotenpunkte der äußeren Gitterebene E2 in der Mitte zwischen zwei Knotenpunkten der inneren Gitterebene E1. In vertikaler Richtung hingegen sind die beiden Gitterebenen E1, E2 vorzugsweise nicht gegeneinander verschoben, so dass je einem Horizontalträger 3 der äußeren Gitterebene E2 ein auf derselben Höhe liegender Horizontalträger 3' der inneren Gitterebene E1 zugeordnet ist. Diese Ausführungsvariante erschafft horizontale Ebenen zwischen den vertikalen Gitterebenen E1 und E2, die als Etagenflächen nutzbar sind. In einer alternativen Ausführung, wie in FIG. 1 dargestellt, werden die Gitterebenen E1, E2 um eine halbe Geschoßhöhe h/2 gegeneinander versetzt und dadurch die vertikale Gitterfläche zusätzlich verdichtet.
  • Die beiden Gitterebenen E1, E2 sind wie bereits erwähnt durch zusätzliche Träger miteinander verbunden, die bevorzugt als Diagonalträger 4, 5 verwirklicht sind, und die bevorzugt an den Knotenpunkten der Gitterebenen E1, E2 angeschlossen sind, insbesondere durch Verschweißung.
  • Konkret erstecken sich hier im Ausführungsbeispiel von jedem - mit Ausnahme von einigen am Rand der Gitterfläche angeordneten - Knotenpunkt der äußeren Gitterebene E2 vier Diagonalträger 4, 5 zu jeweils zugeordneten Knotenpunkten der inneren Gitterebene E1. Zwei der vier Diagonalträger, nämlich diejenigen mit Bezugszeichen 4, liegen in einer horizontalen Ebene und erstrecken sich zu den beiden nächst gelegenen Knotenpunkten auf gleicher Höhe der inneren Gitterebene E1. Die anderen zwei der vier Diagonalträger, nämlich diejenigen mit Bezugszeichen 5, erstrecken sich räumlich diagonal, nämlich schräg nach unten zu den direkt unterhalb der vorgenannten Knotenpunkte angeordneten Knotenpunkten der inneren Gitterebene E1 (alternativ können sie auch schräg nach oben verlaufen, oder es können zusätzlich zu den vier genannten Diagonalträgern zwei schräg nach oben verlaufende Diagonalträger vorhanden sein). Dadurch fächern sich die vier Diagonalträger 4, 5, entsprechend dem Versatz der beiden Gitterebenen E1, E2 zueinander, vom jeweiligen Knotenpunkt der äußeren Gitterebene E2 ausgehend quasi sternförmig oder pyramidenförmig auf und stellen die Verbindung zur inneren Gitterebene E1 her. Von den Knotenpunkten der inneren Gitterebene aus betrachtet ergibt sich eine spiegelbildliche Anordnung. Von oben betrachtet (FIG. 3) sieht man eine Dreiecks-Partitionierung. Von den randseitigen Knotenpunkten gehen aufgrund der Randlage unter Umständen weniger als vier Diagonalträger aus.
  • Wie aus der Draufsicht auf das Schutzgitter 22 von oben gemäß FIG. 3 hervorgeht, sind die Vertikalträger 1 der äußeren Gitterebene E2 vorzugsweise alle auf der derselben Seite der Horizontalträger 3 angeordnet, nämlich vorzugsweise innenliegend, das heißt zur Gebäudewand 24 hin gerichtet. Entsprechendes gilt für die innere Gitterebene E1, bei der die Vertikalträger 2 innenliegend zu den Horizontalträgern 3' angeordnet sind.
  • Die Vertikalträger 1, 2 sind bevorzugt integral, also aus einem Stück hergestellt und weisen vorzugsweise einen doppel-T-förmigen Querschnitt, alternativ einen rechteckigen Querschnitt auf. Entsprechendes gilt für die Horizontalträger 3, 3' und die Diagonalträger 4, 5.
  • Die Träger sind bezüglich ihrer Querschnittsbreite B und Ihrer Querschnittshöhe H bevorzugt wie folgt dimensioniert:
    1,2 Vertikalträger B/H= 500 - 1000 / 500 - 1000 mm
    3, 3' Horizontalträger B/H= 500 - 1000 / 500 - 1000 mm
    4 Diagonalträger (horizontal) B/H= 400 - 800 / 400 - 800 mm
    5 Diagonalträger (diagonal) B/H= 400 - 800 / 400 - 800+ mm
  • Bevorzugte Materialien für die Träger sind Stahlsorten mit großer Duktilität und plastischem Verformungsvermögen.
  • Die strukturelle Dimensionierung des Schutzgitters 22 ist bevorzugt wie folgt:
    Abstand zwischen den Vertikalträgern d = 10 - 15 m
    Abstand zwischen den Horizontalträgern h = 5 - 10 m
    Breite des Schutzgitters b = 10 - 15 m
    Abstand des Schutzgitters von der Gebäudewand a = 0,3 - 2,0 m
  • Die Gesamthöhe und Gesamtbreite des Schutzgitters 22 ist an die Dimensionen des zu schützenden Gebäudes oder Gebäudeabschnitts angepasst.
  • Das Schutzgitter 22 ist bevorzugt selbstragend ausgeführt und stützt sich vorteilhafterweise zumindest mit einigen, bevorzugt mit allen Vertikalträgern 1, 2 am Boden 26 ab. Die Vertikalträger 1, 2 sind dazu in geeigneter Weise am Boden 26 verankert und auf einem Fundament gegründet. Die Vertikalträger 1, 2 können daher auch als Säulen oder Stützen bezeichnet werden.
  • Des Weiteren ist das Schutzgitter 22 über eine Mehrzahl von schock- oder energieabsorbierenden Elementen 32 oder Dämpfern mit der Gebäudewand 24 verbunden. Bei diesen energieabsorbierenden Elementen 24 handelt es sich bevorzugt um Rohre 6 oder Hohlzylinder aus Stahl, die derart zwischen dem Schutzgitter 22 und der Gebäudewand 24 angeordnet sind, dass sie beim Aufprall eines Objektes auf das Schutzgitter 22 von vorne (Aufprallrichtung im Wesentlichen in Richtung des Pfeils II in FIG. 1) senkrecht zur ihrer Längsachse, also im Querschnitt betrachtet in Radialrichtung 34, zusammengestaucht oder gequetscht und dabei plastisch deformiert werden.
  • In einer bevorzugten Einbauvariante ist das jeweilige Rohr 6 zwischen den zur Gebäudewand 24 hin gerichteten Vertikalträgern 2 der inneren Gitterebene E1 und der Gebäudewand 24, also in dem dazwischen liegenden Spalt 28 angeordnet. Der Rohrdurchmesser D ist demgemäß maximal so groß wie die Spaltbreite a. Die Längsachse des Rohres 6 ist bevorzugt vertikal, also parallel zum Vertikalträger 2 angeordnet. Bevorzugt ist das Rohr 6 einerseits am Außenumfang fest mit dem zugehörigen Vertikalträger 2 verbunden, insbesondere verschweißt, und andererseits an der Gebäudewand 24 angelehnt. Das Rohr 6 stellt dann ein energieabsorbierendes (Verbindungs-) Element oder eine Halterung / Befestigung / Aufhängung / Abstützung oder ein Auflager zwischen Schutzgitter 22 und Gebäudewand 24 dar.
  • Alternativ kann sich sogar ein Spalt zwischen der Gebäudewand 24 und dem Rohr 6 befinden. Im zuletzt genannt Fall ist es zweckmäßiger, einfach von einem energieabsorbierenden Element anstelle eines energieabsorbierenden Auflagers zu sprechen.
  • Es sind aber auch andere Einbauvarianten möglich, bei denen das energieabsorbierende Rohr 6 beispielsweise an einem Horizontalträger 3' der inneren Gitterebene E1 befestigt ist. Weiterhin kann eine Art von Serien- oder Reihenanordnung mit mehreren parallel ausgerichteten, aneinander anliegenden Rohren, die innerhalb des Spaltes 28 zwischen innerer Gitterebene E1 und Gebäudewand 24 angeordnet sind, verwirklicht sein. Die erforderliche Rohrlänge und ihre Anordnung richtet sich nach dem Energieabsorptionsbedarf und ist vom (erwarteten) Aufprallimpuls abhängig.
  • Zur Erhöhung der Energieabsorptionskapazität ist in dem jeweiligen Rohr 6 vorteilhafterweise ein plastisch deformierbarer Kern 36 angeordnet, der bevorzugt aus kreuzförmig zusammengeschweißten Stahlplatten besteht. In der Querschnittsdarstellung gemäß FIG. 4 bildet der Kern 36 ein Kreuz innerhalb des Rohrumfangs, wobei das Zentrum des Kreuzes mit der Längsachse des Rohres 6 zusammenfällt. Der Kern 36 ist bevorzugt nur in das Rohr 6 eingeklemmt und nicht auf andere Weise an der Rohrinnenwand befestigt.
  • Bevorzugte Dimensionen der als energieabsorbierende Elemente eingesetzten Rohre 6 sind wie folgt:
    Rohrdurchmesser D = 300 - 1000 mm
    Wanddicke t = 10 - 25+ mm
    Dicke der Platten im Kern T = 10 - 50 mm
  • Die hier und weiter oben genannten Dimensionsangaben sind auf die Anforderungen beim Schutz eines Kernkraftwerksgebäudes vor Flugzeugabstürzen, insbesondere von vierstrahligen Passagiermaschinen, abgestimmt und wurden im Rahmen numerischer Simulationen verifiziert. Die Dimensionierung variiert im Einzelfall mit den Anforderungen.
  • Bevorzugte Materialien für die Rohre 6 und Kerne 36 sind Stahlsorten mit großer Duktilität und plastischem Verformungsvermögen
  • Durch die Verankerung am Fundament wird ein Teil der bei einem Aufprall oder Einschlag eines Objektes auf/in das Schutzgitter 22 aufgenommenen Energie über das Fußauflager abgeleitet. Ein weiterer Teil der Energie wird durch die plastische Deformation des Schutzgitters 22 selber aufgenommen und auf eine größere Aufprallfläche verteilt. Weiterhin wird ein beträchtlicher Teil der Energie von den beim Aufprall nichtlinear deformierten energieabsorbierenden Elementen 32 aufgenommen und nur zu einem kleinen Teil, in stark reduzierter Form auf das Gebäude übertragen. Dadurch wird die Energieweiterleitung auf das zu schützende Gebäude auf ein akzeptables Niveau verringert. Dadurch wird sichergestellt, dass das Gebäude strukturell nicht überlastet wird und aufprallbedingte Schwingungen und Vibrationen auf ein akzeptables Maß begrenzt bleiben. Schließlich wird ein aufprallendes Objekt durch das Schutzgitter 22 in mehrere kleine Trümmerteile zerlegt, die in verschiedene Richtungen abgelenkt werden und mit abgebremster Geschwindigkeit auf verschiedene Stellen der Gebäudewand 24 treffen.
  • Ein besonderer Vorteil der Konstruktion ist schließlich, dass nicht das gesamte Gebäude umbaut werden muss, sondern die Schutzabdeckung sich räumlich auf die besonders schutzbedürftigen oder sensitiven Abschnitte der Gebäudewand 24 oder Gebäudehülle beschränken kann.
  • In einer zweckmäßigen Abwandlung der bislang beschriebenen Konstruktion kann die Halterung des Schutzgitters 22 an der Gebäudewand 24 ausschließlich über die energieabsorbierenden Elemente 32 erfolgen, ohne Abstützung am Boden, was beispielsweise beim Schutz von Deckenabschnitten sinnvoll ist. Die Lage und Ausrichtung des Schutzgitters 22 im Raum ist dann natürlich an die Einbausituation anzupassen. Das heißt, die "Vertikalträger" und "Horizontalträger" sind dann anders im Raum ausgerichtet, als es bislang beschrieben ist und als es die hier verwendete Bezeichnung suggeriert.
  • Schließlich ist es denkbar, dass das Schutzgitter 22 in seiner Formgebung der Außenkontur eines Gebäudes, etwa einem kreisförmigen oder anderweitig gebogenen Außenumfang eines z. B. kuppelförmigen Kraftwerksgebäudes, folgt. Dies wird zweckmäßigerweise durch abschnittsweise geradlinige Abschnitte wie oben beschrieben mit dazwischen liegenden Knickstellen verwirklicht.
  • Soweit in der vorstehenden Beschreibung von Stahl die Rede ist, ist damit gemeint, dass die betreffende Komponente zumindest teilweise aus Stahl besteht. Verbundwerkstoffe aus Stahl und anderen Werkstoffen sind damit ausdrücklich eingeschlossen.
  • Ein besonders wichtiger Anwendungsbereich liegt im Schutz von Kraftwerksgebäuden oder Gebäudehüllen von Kernkraftwerken oder anderen kerntechnischen Anlagen. Selbstverständlich sind auch viele andere Anwendungen zum Schutz vor Industrieanlagen oder militärischen Objekten von Flugzeugabstürzen und dergleichen möglich.
  • Bezugszeichenliste
  • 1
    Vertikalträger
    2
    Vertikalträger
    3
    Horizontalträger
    3'
    Horizontalträger
    4
    Diagonalträger
    5
    Diagonalträger
    6
    Rohr
    20
    Schutzsystem
    22
    Schutzgitter
    24
    Gebäudewand
    26
    Boden
    28
    Spalt
    30
    Knotenpunkt
    32
    energieabsorbierendes Element
    34
    Radialrichtung
    36
    Kern
    E1
    innere Gitterebene
    E2
    äußere Gitterebene

Claims (12)

  1. Schutzsystem (20) zum Schutz eines Gebäudes vor Flugzeugabstürzen und ähnlichen hochenergetischen Einschlägen mit einem vor einer Gebäudewand (24) mit Abstand zu ihr errichteten dreidimensionalen Schutzgitter (22) aus miteinander verbundenen Trägern (1 bis 5),
    wobei das Schutzgitter (22) sich über eine Mehrzahl von plastisch deformierbaren, energieabsorbierenden Elementen (32) an der Gebäudewand (24) abstützt, dadurch gekennzeichnet, dass das jeweilige energieabsorbierende Element (32) ein Rohr aus Stahl (6) umfasst, welches derart zwischen dem Schutzgitter (22) und der Gebäudewand (24) angeordnet ist, dass die beim Aufprall eines Flugzeuges auf das Schutzgitter (22) übertragene Kraft zumindest überwiegend in Radialrichtung (34) auf das Rohr (6) einwirkt und es im Querschnitt betrachtet zusammenquetscht.
  2. Schutzsystem (20) nach Anspruch 1, wobei sich das Schutzgitter (22) ausschließlich über die energieabsorbierenden Elemente (32) an der Gebäudewand (24) abstützt.
  3. Schutzsystem (20) nach Anspruch 1 oder 2, wobei der Durchmesser (D) des Rohrs (6) im Bereich zwischen 0,3 und 1,0 m liegt und die Dicke (t) der Rohrwand im Bereich zwischen 10 und 50 mm liegt.
  4. Schutzsystem (20) nach Anspruch 3, wobei das Rohr (6) im Rohrinneren einen Kern (36) aus gekreuzten Stahlplatten aufweist.
  5. Schutzsystem (20) nach einem der vorherigen Ansprüche, wobei das Schutzgitter (22) eine parallel zur Gebäudewand (24) angeordnete, aus Stahlträgern (2, 3') gebildete innere Gitterebene (E1) und eine parallel dazu angeordnete, aus Stahlträgern (1, 3) gebildete äußere Gitterebene (E2) umfasst, wobei die innere Gitterebene (E1) und die äußere Gitterebene (E2) durch Stahlträger (4, 5) miteinander verbunden sind.
  6. Schutzsystem (20) nach Anspruch 5, wobei der Abstand (b) der beiden Gitterebenen (E1, E2) voneinander im Bereich zwischen 10 und 15 m liegt.
  7. Schutzsystem (20) nach Anspruch 5 oder 6, wobei sowohl die innere Gitterebene (E1) als auch die äußere Gitterebene (E2) ein regelmäßiges Rechteckgitter umfassen, deren Elementarzellen dieselben Abmessungen (d, h) aufweisen, und die zumindest in einer Richtung um eine halbe Gitterkonstante (d/2) gegeneinander verschoben sind.
  8. Schutzsystem (20) nach Anspruch 7, wobei die Breite (d) der Elementarzelle im Bereich zwischen 10 und 15 m liegt, und die Höhe (h) der Elementarzelle im Bereich zwischen 5 und 10 m liegt.
  9. Schutzsystem (20) nach Anspruch 7 oder 8, wobei die innere Gitterebene (E1) und die äußere Gitterebene (E2) durch Diagonalträger (4, 5) miteinander verbunden sind, die sich jeweils von einem Knotenpunkt (30) einer Gitterebene (E1) zu einem Knotenpunkt (30) der anderen Gitterebene (E2) erstrecken.
  10. Schutzsystem (20) nach einem der vorherigen Ansprüche, wobei sich das Schutzgitter (22) über eine Mehrzahl von Trägern (1, 2) am Boden (26) abstützt.
  11. Schutzsystem (20) nach einem der vorherigen Ansprüche, wobei die Träger (1 bis 5) des Schutzgitters (22) einen doppel-T- oder rechteckförmigen Querschnitt aufweisen, dessen Abmessungen im Bereich zwischen 400 und 1000 mm liegen.
  12. Schutzsystem (20) nach einem der vorherigen Ansprüche, wobei der Abstand (a) des Schutzgitters (22) von der Gebäudewand (24) im Bereich zwischen 0,3 bis 2,0 m liegt.
EP18709476.8A 2017-02-07 2018-02-06 Schutzsystem zum schutz von gebäuden vor flugzeugabstürzen Active EP3510217B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017201915.8A DE102017201915A1 (de) 2017-02-07 2017-02-07 Schutzsystem zum Schutz von Gebäuden vor Flugzeugabstürzen
PCT/EP2018/052974 WO2018146104A1 (de) 2017-02-07 2018-02-06 Schutzsystem zum schutz von gebäuden vor flugzeugabstürzen

Publications (2)

Publication Number Publication Date
EP3510217A1 EP3510217A1 (de) 2019-07-17
EP3510217B1 true EP3510217B1 (de) 2020-09-09

Family

ID=61599092

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18709476.8A Active EP3510217B1 (de) 2017-02-07 2018-02-06 Schutzsystem zum schutz von gebäuden vor flugzeugabstürzen

Country Status (7)

Country Link
US (1) US20190271170A1 (de)
EP (1) EP3510217B1 (de)
JP (1) JP2020506312A (de)
CA (1) CA3048763A1 (de)
DE (1) DE102017201915A1 (de)
RU (1) RU2019115830A (de)
WO (1) WO2018146104A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL271158B2 (en) * 2019-12-03 2024-04-01 Cohen Michael Composite shutter/mesh armor
CN113503774A (zh) * 2021-08-12 2021-10-15 姜立平 一种新型防弹装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2803317A (en) * 1954-05-31 1957-08-20 Res Interests Ltd Structural space frames
DE2721870C2 (de) 1977-05-14 1983-03-24 Eberhard 7129 Güglingen Layher Vorrichtung zum Befestigen eines Metallrohrgerüstes mit vertikalen Rahmen an einem in einer Gebäudewand festgelegten Anker
US4211044A (en) * 1978-07-28 1980-07-08 Gugliotta Paul F Tube space frame system
DE3117417C2 (de) 1981-05-02 1986-04-24 T.O.R. Ingenieurgesellschaft Holthausen-Schimpff, 5000 Köln Vorrichtung zum Befestigen eines Bauteiles
US7530201B2 (en) * 2004-08-31 2009-05-12 Gossamer Space Frames Connection node for a universal truss joint and double layer grid
DE202005015904U1 (de) * 2005-10-07 2006-01-19 Hochtief Construction Ag Hochhaus mit einem Tragwerk
US8863448B2 (en) * 2008-08-29 2014-10-21 Werner Extrusion Solutions LLC Node, support frame, system and method
JP2011058257A (ja) * 2009-09-10 2011-03-24 Shimizu Corp 建造物の防護装置
DE102009044966A1 (de) 2009-09-24 2011-03-31 Robert Bosch Gmbh Vorrichtung und Verfahren zum adaptiven Abbau von Crashenergie
DE102010037202B4 (de) 2010-08-27 2016-02-25 Hochtief Construction Ag Bauwerk, insbesondere Bauwerk eines Kernkraftwerkes
US8555557B2 (en) * 2010-11-29 2013-10-15 Qatar Football Association Indoor/outdoor stadium system for energy use reduction
DE102011008067A1 (de) * 2011-01-07 2012-07-12 Areva Np Gmbh Schutzsystem für Gebäude- oder Behälterwände
CN105971361A (zh) * 2016-05-06 2016-09-28 上海核工程研究设计院 一种波纹钢板-钢管防护装甲

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3510217A1 (de) 2019-07-17
CA3048763A1 (en) 2018-08-16
JP2020506312A (ja) 2020-02-27
US20190271170A1 (en) 2019-09-05
WO2018146104A1 (de) 2018-08-16
DE102017201915A1 (de) 2018-08-09
RU2019115830A (ru) 2021-03-09

Similar Documents

Publication Publication Date Title
EP3237707B1 (de) Modulare anlage und montageset für den aufbau einer modularen anlage
DE3106694A1 (de) "stossdaempfende vorrichtung und verwendung derselben in einem schutzplankensystem"
EP3510217B1 (de) Schutzsystem zum schutz von gebäuden vor flugzeugabstürzen
EP2661527B1 (de) Schutzsystem für gebäude- oder behälterwände
WO2020161298A1 (de) Bauwerksdämpfer mit wenigstens einem zumindest bereichsweise leiterartig ausgebildeten schubdämpfungsteil
WO2008055452A1 (de) Schutzvorrichtung für ein bestehendes, ortsfestes objekt oder bauwerk sowie verwendung einer derartigen schutzvorrichtung
DE102010037202B4 (de) Bauwerk, insbesondere Bauwerk eines Kernkraftwerkes
DE3025150C2 (de) Bis zur Grenztragfähigkeit beanspruchbares mehrschichtiges Tragwerk
DE2020046A1 (de) Halterung fuer eine bestimmte Menge schmelzbaren,in festem Zustand befindlichen Materials in einer Kondensatorkammer
DE202005015904U1 (de) Hochhaus mit einem Tragwerk
DE20118797U1 (de) Vorrichtung zum Schutz von Objekten gegen terroristische Anschläge mittels Flugzeugen, Raketen und sonstigen Flugkörpern
EP3564441A1 (de) Stützwerk zum schutz vor lawinen, steinschlägen und erdrutschen
DE102021117387B4 (de) Crashelementeboxen bestehend aus mehreren Crashelementen
EP3894717B1 (de) Bauwerksdämpfer mit wenigstens einem zumindest bereichsweise leiterartig ausgebildeten schubdämpfungsteil
DE102009037781B4 (de) Kernkraftanlage
EP2700749B1 (de) Tragstruktur eines Offshore-Bauwerks, insbesondere einer Windenergieanlage
EP3001136B1 (de) Blaststrahl-ablenkungseinrichtung sowie militärisches radfahrzeug
EP2378049B1 (de) Objektschutzgitter
DE2650728C2 (de) Einrichtung zur Aufhängung eines Behälters
EP4043660A1 (de) Systembaustein zum aufbau einer splitterschutzwand und flexibel einsetzbarer splitterschutzkäfig
DE102011111666A1 (de) Schutzabdeckung für eine Lüftungsöffnung
EP4293161A1 (de) Fahrzeugsicherheitsbarriere
DE2414412C3 (de) Einrichtung zur Explosivbearbeitung von Metallen
DE102009030538A1 (de) Bauwerk oder Bauwerkteil mit Schwingungsdämpfung
DE19633319A1 (de) Selbsttragende Wandkonstruktion, insbesondere für große Turmbauten

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190410

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: E04H 9/04 20060101AFI20200213BHEP

Ipc: F41H 11/02 20060101ALI20200213BHEP

Ipc: F42D 5/04 20060101ALI20200213BHEP

Ipc: F41H 5/24 20060101ALI20200213BHEP

Ipc: F41H 11/08 20060101ALI20200213BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20200403

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1311764

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018002414

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI AND CIE SA, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201210

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210111

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018002414

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502018002414

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210206

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210206

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200923

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180206

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1311764

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240301

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909