EP3504352B1 - Method and apparatus for coating a metal sheet - Google Patents

Method and apparatus for coating a metal sheet Download PDF

Info

Publication number
EP3504352B1
EP3504352B1 EP17754711.4A EP17754711A EP3504352B1 EP 3504352 B1 EP3504352 B1 EP 3504352B1 EP 17754711 A EP17754711 A EP 17754711A EP 3504352 B1 EP3504352 B1 EP 3504352B1
Authority
EP
European Patent Office
Prior art keywords
strip
magnets
shape
magnet
actual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17754711.4A
Other languages
German (de)
French (fr)
Other versions
EP3504352A1 (en
Inventor
Holger Behrens
Lutz Kümmel
Thomas Daube
Gernot Richter
Babak TALEB-ARAGHI
Pascal Fontaine
Michael Zielenbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fontaine Engineering und Maschinen GmbH
Original Assignee
Fontaine Engineering und Maschinen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fontaine Engineering und Maschinen GmbH filed Critical Fontaine Engineering und Maschinen GmbH
Priority to PL17754711T priority Critical patent/PL3504352T3/en
Publication of EP3504352A1 publication Critical patent/EP3504352A1/en
Application granted granted Critical
Publication of EP3504352B1 publication Critical patent/EP3504352B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0034Details related to elements immersed in bath
    • C23C2/00342Moving elements, e.g. pumps or mixers
    • C23C2/00344Means for moving substrates, e.g. immersed rollers or immersed bearings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/51Computer-controlled implementation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/52Controlling or regulating the coating processes with means for measuring or sensing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/52Controlling or regulating the coating processes with means for measuring or sensing
    • C23C2/524Position of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/52Controlling or regulating the coating processes with means for measuring or sensing
    • C23C2/524Position of the substrate
    • C23C2/5245Position of the substrate for reducing vibrations of the substrate

Definitions

  • the invention relates to a method for coating a metal strip with the aid of a coating device.
  • the belt first passes through a coating container with a liquid coating agent, e.g. B. zinc, and subsequently a stripping nozzle device for stripping excess zinc from the surface of the metal strip.
  • a coating container with a liquid coating agent, e.g. B. zinc
  • a stripping nozzle device for stripping excess zinc from the surface of the metal strip.
  • the belt typically passes through a belt stabilization device with a plurality of magnets on both broad sides of the belt.
  • the zinc layer thicknesses vary both over the length and over the width of the strip.
  • the layer thickness can change by up to 10 g per m 2 . Since minimum layer thicknesses must be guaranteed, the average layer thickness must be adjustable so that all areas of the strip are above the limit. In order to reduce zinc consumption, there is a desire to keep the fluctuation range as small as possible.
  • the European patent specification also pursues this goal EP 1 794 339 B1 .
  • the European patent specification preferably uses a coordinated layer thickness-strip vibration, strip shape and strip positioning control.
  • the vibration control also called the belt stabilization device, dampens the vibrations of the belt. It comprises magnet pairs, which are preferably arranged in pairs over the bandwidth and are used as actuators for positioning the band. Each pair of magnets is preferably with a sensor for distance measurement and a controller equipped so that a force that varies across the bandwidth is exerted on the belt as a function of the forms of vibration that occur.
  • the belt shape and belt position controller dampens the slow movements of the belt by changing the average force that acts on the belt across the belt.
  • Each pair of magnets is controlled individually, in particular electrically, with the aid of the controller.
  • the individual controllers are coordinated with the help of a higher-level controller, which takes into account the interactions between the controllers.
  • the position of at least one magnet can be changed such that its distance from the band can be changed. The closer the magnet is to the tape, the less current or electrical energy is required to exert a desired force on the tape.
  • document WO2016 / 078803 A discloses a method and an apparatus for coating a metal strip, the metal strip continuing after the wiping nozzle device through an electromagnetic stabilization device in order to keep the fluctuation range of the strip small.
  • the same subject is in the documents JPH 1029827 A and WO2009 / 039949 A disclosed.
  • the object of the invention is to provide an alternative possibility for generating a moment in the strip in a known method and a coating device for coating a strip.
  • This object is achieved by the method claimed in claim 1.
  • This method is characterized in that the control of the magnets of the belt stabilization device takes place in that at least one of the magnets, depending on the shape-control difference in the width direction of the belt, is displaced relative to at least one of the magnets on the opposite broad side of the belt and shifted into a travel position , where it faces at least approximately a trough in the actual shape of the tape.
  • the paired arrangement of the individual magnets known from the prior art in opposition to each other on both broad sides of the band is dissolved and the individual magnets of a (former) pair of magnets are arranged offset to one another in the width direction of the band. While the opposing forces of the two magnets act in a line and therefore do not generate any torque when the magnets are compared in pairs, the inventive offset of the individual coils of the (former) magnet pair in the width direction causes a distance between the forces acting in opposite directions, as a result of which a desired Moment in or on the tape is generated. In this way the counter-bending results and therefore wavy bands can be smoothed and converted into a flat band.
  • band and “metal band” are used interchangeably.
  • shift in the width direction includes any movement of the magnet in space as long as the movement has a component in the width direction of the metal strip.
  • downstream means: in the direction of transport of the metal strip.
  • upstream means against the direction of transport of the metal strip.
  • the actual position of the strip in addition to the actual shape, can also be determined within the scraper nozzle device.
  • a position / control difference can also be determined as the difference between the actual position of the strip and a predetermined target The position of the strip in the area of the stripping nozzle device can be determined, and the displacement of the at least one magnet in the width direction of the strip relative to the magnets on the opposite broad side of the strip can also take place as a function of the positional control difference so that the strip is in its actual position is transferred to the specified target position.
  • a magnet pair or a plurality of magnet pairs are arranged in a stationary manner symmetrically with respect to the center of the slot of the band stabilization device or the band - viewed in the width direction, the two magnets each facing one another on both broad sides of the band.
  • the term symmetrical means that the pair of magnets is arranged in the middle.
  • the stationary magnet pair or the stationary magnet pairs form a reference position. Relative to the at least one stationary pair of magnets, according to the invention at least some of the magnets adjacent to the stationary pair of magnets can be displaced or moved in the width direction of the band.
  • two further magnets which form a pair of magnets, can be shifted into the area of the left or right edge of the band in such a way that the magnet of this pair of magnets which is at a greater distance from the edge of the band is centered on the height of the edge and that the magnet of the magnet pair that the has a smaller distance to the edge of the band, - compared to the magnet with the greater distance to the edge of the band - a bit to the center of the metal band - seen in the width direction - is arranged offset.
  • This procedure is recommended for both the left and the right edge of the metal band. In this described procedure, too, the juxtaposition of the two individual magnets of the magnet pair is resolved by displacing them relative to one another in the width direction.
  • the magnets are moved in the width direction of the belt so that they are at least approximately opposite a trough of the actual shape of the belt.
  • oppositely directed tensile forces act on the metal strip at a distance from one another and thus generate a desired bending moment for reducing the curvatures or waveform in the strip.
  • wave trough describes the situation that the difference between the distance of a magnet to the metal strip in its actual shape and the distance of the magnet to the metal strip in its target shape - assuming the same position of the metal strip in each case - is greater than zero, in particular is maximum. This means that the distance between the magnet and the metal strip is larger in the case of a wave trough than if the metal strip were to have its desired shape.
  • the trough can then be applied by a tensile force exerted by the magnet or "bulged" onto the metal strip by a bending moment applied by at least two magnets.
  • the magnets can only exert tensile forces, no compressive forces on the metal strip.
  • the magnets can be moved in the width direction depending on the number of magnets available. With a larger number of magnets available, a finer resolution of the force acting on the tape is possible, whereby the waveform can be even more precisely balanced.
  • the magnets can also be shifted in the width direction depending on the force that can be generated by the individual magnets on the belt. This lends itself to the background that the moment generated in the tape is the product of strength and distance. Against this background, a certain desired magnitude of the moment can be generated by an optionally suitable setting of either the generated force or the distance of the magnets from one another or from both.
  • the magnets are advantageously designed in the form of electromagnetic coils because the coils allow the force on the metal strip to be set in a variable manner as a function of the current fed in.
  • the position and shape of the magnets can also be carried out by suitably applying or supplying the coils with suitable currents.
  • at least one of the coils is fed with such a current that the tape is due to the current-carrying coil acting on the band force is transferred to its target position in the middle of the stripping nozzle device and is stabilized there and / or that the actual shape of the band is adapted as well as possible to the target shape.
  • the positioning and adjustment of the correction roller also offer a further possibility of influencing the shape and the position of the metal strip in the stripping nozzle device.
  • the correction roller is positioned and adjusted upstream of the scraper nozzle device in such a way that it is ensured that the belt stabilization device is only operated within its operating limits.
  • the correction roller can be moved appropriately not only before moving the magnets, but also during an ongoing coating process - as described in the previous paragraph.
  • the correction roller can not only be positioned and adjusted to preset the position and shape of the belt. Rather, the correction roller can also be automatically positioned and adjusted so that when the predetermined force limits are exceeded the band in the band stabilization device the forces are again in a target area. This is particularly necessary when changing products, ie when changing to strips with different thicknesses or different materials with different yield strengths.
  • the correction roller can also be automatically moved so that there are defined directions of action of the forces on the magnets to ensure unilateral or monotonous force application.
  • Figure 1 shows a coating device 100 for coating a metal strip 200.
  • the coating device 100 consists of a coating container 110 which is coated with liquid coating agent 112, e.g. B. zinc is filled.
  • the metal strip 200 dips into the coating container and is deflected there in the liquid coating agent with the aid of a pot roller 150.
  • the metal strip 200 is then guided past a correction roller 140 and subsequently through the slot of a wiping nozzle device 120 and further subsequently through the slot of a belt stabilization device 130.
  • An air stream is preferably applied to the strip on both sides within the stripping nozzle device 120 in order to scrape off excess liquid coating agent.
  • the band stabilization device 130 consists of a plurality of magnets 132 which are arranged on both broad sides of the band or the band stabilization device. These magnets are 132 typically in the form of electromagnetic coils.
  • the coating device 100 further comprises a control device 160 for actuating an actuator 136 for displacing or moving the magnets 132 according to the invention in the width direction R of the strip and for setting the current I which is fed into the individual magnets.
  • the control device can have an output for actuating an actuator 146 for positioning and adjusting the correction roller 140.
  • the actuators 136, 146 are actuated and the current for the magnets is adjusted as a function of measurement signals from a distance sensor which traverses preferably in the width direction of the strip.
  • the distance sensor detects the distribution of the distance of the metal strip in the width direction with respect to a reference position, e.g. B. the gap or slit of the band stabilization device. In this way, both the actual shape and / or the actual position of the metal strip is recorded.
  • a separate shape sensor 170 for detecting the actual shape of the strip and a separate position sensor 180 for detecting the actual position of the metal strip can also be provided.
  • the actual position and / or the actual shape of the metal strip within the stripping nozzle device 120 is determined by measuring the position and / or the shape of the strip either between the stripping nozzle device 120 and the strip stabilizing device 130 or within the strip stabilizing device 130 or upstream of the strip stabilizing device 130 and by subsequently concluding from the actual position and / or the actual shape of the band within the stripping nozzle device from the respectively measured position and / or form of the band.
  • the actual position and / or the actual shape of the band within the band stabilization device 130 is determined by measuring the distance of the band from the magnets of the band stabilization device across the width of the band.
  • Figure 2 shows various examples of possible undesirable actual shapes of the metal strip 200, specifically a U, an S and a W-shaped metal strip.
  • the desired target shape of the metal strip 200 In the lower area shows Figure 2 on the other hand, the desired target shape of the metal strip 200. Accordingly, the metal strip is straight or flat in its target state.
  • Figure 3 shows various undesired actual positions of the metal strip 200 in the slot 122 of the scraper nozzle device 120.
  • the various actual positions are shown in broken lines, while the desired position SL is shown with a solid line.
  • the target position is characterized in that the metal strip 200 is evenly spaced from the sides of the slot 122.
  • the metal strip can be rotated or pivoted by an angle ⁇ in a first undesired actual position I1 relative to the target position SL.
  • a second undesired actual position of the metal strip I2 of the metal strip is that the metal strip is displaced in parallel with respect to the desired position SL, so that the metal strip no longer has the same distances from the broad sides of the slot.
  • a third typical undesirable actual position for the metal strip is that the metal strip is shifted in the longitudinal direction according to position I3 with respect to the desired position SL, so that its distances from the narrow sides of the slot 122 of the stripping device are no longer the same.
  • Figure 4 illustrates the method according to the invention.
  • the actual shape with a predetermined target shape of the tape, typically as in Figure 2 shown below.
  • the deviations in the shape form a shape-control difference and the magnets 132 of the strap stabilization device 130 are controlled depending on the shape-control difference in such a way that the actual shape of the strap is converted into the desired shape of the strap.
  • at least some of the magnets 132 in the width direction R of the Band 200 shifted relative to the magnets on the opposite broad side of the band in a travel position. These travel positions are in Figure 4 shown as an example.
  • a position-control difference can also be determined analogously as the difference between the actual position of the belt and a predetermined target position SL in the area of the wiper nozzle device 120.
  • the displacement of the at least one magnet 132-A in the width direction R of the band 200 relative to the magnets 132-B on the opposite broad side of the band 200 can accordingly also take place as a function of the positional control difference so that the band is in its actual position in the specified target position SL is transferred.
  • Figure 4 shows a special embodiment for possible travel positions. Specifically, in this embodiment - seen in the width direction R - in the middle of the band 200 a pair of magnets 132-3-A; 132-3-B stationary arranged. The two magnets of this pair of magnets face each other on both broad sides A, B of the band 200. In contrast, the other coils or magnets are not arranged in the form of magnet pairs, the individual magnets 132-1, -2, -4, -5 are directly opposite one another. These remaining magnets are displaced or offset in the width direction R of the band relative to magnets on the other side of the band.
  • two further magnets 132-1-A and 132-1-B form a left magnet pair, which is displaced into the area of the left edge of the band 200 in such a way that the magnet 132-1-B of the left magnet pair, which has the greater distance d I1 to the edge of the band has its center displaced at the level of the left edge and that that magnet 132-1-A of the left pair of magnets which has the smaller distance d I2 to the left edge of the band is opposite the magnet 132 -1-B with the greater distance d I1 to the edge of the band - a piece to the fixed magnet pair 132-3-A, 132-3-B, ie is offset to the middle of the band.
  • a right pair of magnets 132-5-A, 132-5-B can be provided, which is displaced into the area of the right edge of the band 200 in such a way that its partial magnet 132-5-B, which has the greater distance d r1 has shifted to the right edge of the band 200 with its center at the level of the right edge. Furthermore, the partial magnet 132-5-A of the right pair of magnets, which has the smaller distance d r2 from the right edge of the band, becomes a bit towards the center of the band 200 compared to the magnet with the greater distance from the edge of the band transferred.
  • the remaining magnets 132-2-A, 132-2-B, 132-4-A and 132-4-B which do not belong to either the right, left or middle pair of magnets, are preferably so in the width direction R of band 200 procedure that they are each at least approximately opposite a trough in the actual shape of the tape, as shown in Figure 4 is shown and by which the advantageous effect described above is achieved by generating the bending moments.

Description

Die Erfindung betrifft ein Verfahren zum Beschichten eines Metallbandes mit Hilfe einer Beschichtungseinrichtung. Innerhalb der Beschichtungseinrichtung durchläuft das Band zunächst einen Beschichtungsbehälter mit einem flüssigen Beschichtungsmittel, z. B. Zink, und nachfolgend eine Abstreifdüseneinrichtung zum Abstreifen von überflüssigem Zink von der Oberfläche des Metallbandes. Nach der Abstreifdüseneinrichtung durchläuft das Band typischerweise eine Bandstabilisierungseinrichtung mit einer Mehrzahl von Magneten auf beiden Breitseiten des Bandes.The invention relates to a method for coating a metal strip with the aid of a coating device. Inside the coating device, the belt first passes through a coating container with a liquid coating agent, e.g. B. zinc, and subsequently a stripping nozzle device for stripping excess zinc from the surface of the metal strip. After the stripping nozzle device, the belt typically passes through a belt stabilization device with a plurality of magnets on both broad sides of the belt.

In Feuerverzinkungslinien aus dem Stand der Technik variieren heute die Zinkschichtdicken sowohl über die Länge als auch über die Breite des Bandes. Die Schichtdicke kann sich dabei um bis zu 10 g pro m2 ändern. Da minimale Schichtdicken garantiert werden müssen, muss die mittlere Schichtdicke so einstellbar sein, dass alle Bereiche des Bandes über dem Grenzwert liegen. Um den Zinkverbrauch zu reduzieren, besteht der Wünsch, die Schwankungsbreite möglichst gering zu halten.In hot-dip galvanizing lines from the prior art, the zinc layer thicknesses vary both over the length and over the width of the strip. The layer thickness can change by up to 10 g per m 2 . Since minimum layer thicknesses must be guaranteed, the average layer thickness must be adjustable so that all areas of the strip are above the limit. In order to reduce zinc consumption, there is a desire to keep the fluctuation range as small as possible.

Dieses Ziel verfolgt auch die europäische Patentschrift EP 1 794 339 B1 . Um eine gleichmäßige Zinkauflage über der Bandbreite und Länge zu erzielen, sieht die europäische Patentschrift vor, vorzugsweise eine koordinierte Schichtdicken-Bandschwingungs-, Bandform- und Bandpositionierungs-Regelung einzusetzen. Die Schwingungsregelung, auch Bandstabilisierungseinrichtung genannt, dämpft die Schwingungen des Bandes. Sie umfasst Magnetpaare, die über der Bandbreite vorzugsweise paarweise angeordnet sind und als Stellglieder zur Positionierung des Bandes eingesetzt werden. Jedes Magnetpaar ist vorzugsweise mit einem Sensor zur Abstandsmessung und einem Regler ausgestattet, so dass in Abhängigkeit von auftretenden Schwingungsformen eine über der Bandbreite variierende Kraft auf das Band ausgeübt wird. Darüber hinaus dämpft der Bandform- und Bandpositionsregler die langsamen Bewegungen des Bandes, indem die mittlere Kraft, die über die Bandbreite auf das Band einwirkt, verändert wird. Dabei wird jedes Magnetpaar einzeln mit Hilfe des Reglers insbesondere elektrisch angesteuert. Die einzelnen Regler werden mit Hilfe eines überlagerten Reglers koordiniert, der die Wechselwirkungen der Regler untereinander berücksichtigt. In einer bevorzugten Ausführungsform ist die Lage mindestens eines Magneten derart veränderbar, dass sein Abstand zu dem Band veränderbar ist. Je geringer die Distanz des Magneten zu dem Band ist, desto weniger Strom bzw. elektrische Energie ist erforderlich, um eine gewünschte Kraftwirkung auf das Band auszuüben. Am Anfang eines Beschichtungsprozesses, wenn die Schwingungsamplitude des Bandes noch relativ groß ist, ist ein größerer Abstand der Magnete zu dem Band erforderlich, als in einem eingeschwungenen Zustand des Beschichtungsverfahrens, in dem die Amplitude der Schwingungen des Bandes geringer ist.The European patent specification also pursues this goal EP 1 794 339 B1 . In order to achieve a uniform zinc coating over the strip width and length, the European patent specification preferably uses a coordinated layer thickness-strip vibration, strip shape and strip positioning control. The vibration control, also called the belt stabilization device, dampens the vibrations of the belt. It comprises magnet pairs, which are preferably arranged in pairs over the bandwidth and are used as actuators for positioning the band. Each pair of magnets is preferably with a sensor for distance measurement and a controller equipped so that a force that varies across the bandwidth is exerted on the belt as a function of the forms of vibration that occur. In addition, the belt shape and belt position controller dampens the slow movements of the belt by changing the average force that acts on the belt across the belt. Each pair of magnets is controlled individually, in particular electrically, with the aid of the controller. The individual controllers are coordinated with the help of a higher-level controller, which takes into account the interactions between the controllers. In a preferred embodiment, the position of at least one magnet can be changed such that its distance from the band can be changed. The closer the magnet is to the tape, the less current or electrical energy is required to exert a desired force on the tape. At the beginning of a coating process, when the vibration amplitude of the strip is still relatively large, a greater distance between the magnets and the strip is required than in a steady state of the coating process, in which the amplitude of the vibrations of the strip is lower.

Bei der aus der europäischen Patentschrift bekannten gegenüberliegenden Anordnung der Magnete werden grundsätzlich nur reine Zugkräfte auf das Band ausgeübt. Durch diese reinen Zugkräfte können Variationen der Bandposition, d. h. Veränderungen der Ist-Lage des Bandes in beide Richtungen quer zu dem Band vorgenommen werden. Wie bereits gesagt, lassen sich auf diese Weise Bandbewegungen und die Ist-Lage des Bandes gut beeinflussen.In the opposite arrangement of the magnets known from the European patent specification, basically only pure tensile forces are exerted on the tape. Due to these pure tensile forces, variations in the belt position, i. H. Changes in the actual position of the tape in both directions across the tape can be made. As already mentioned, belt movements and the actual position of the belt can be influenced well in this way.

Um jedoch Bandkrümmungen, wie z. B. eine U-, S- oder W-Form auszugleichen, muss ein Moment auf das Band ausgeübt werden. Dies geschieht gemäß der EP 1 794 339 B1 dadurch, dass der übergeordnete koordinierte Regler auch die Kopplungen zwischen den einzelnen untergeordneten Regelkreisen, die den einzelnen Magneten zugeordnet sind, berücksichtigt. Anders ausgedrückt können auf diese Weise die Kraftwirkungen zwischen benachbarten Spulen bzw. Spulenpaaren berücksichtigt werden. Kraft und Abstand bewirken ein Moment und damit lässt sich eine Gegenbiegung in dem wellenförmigen Band erzeugen, die der vorhandenen Krümmung des Bandes vorzugsweise entgegenwirkt. Dokument WO2016/078803 A offenbart ein Verfahren und eine Vorrichtung zum Beschichten eines Metallbandes, wobei das Metallband nach der Abstreifdüseneinrichtung durch eine elektromagnetische Stabilisierungseinrichtung weitergeht, um die Schwankungsbreite des Bandes gering zu halten. Derselben Gegenstand wird im Dokumente JPH 1029827 A und WO2009/039949 A offenbart.However, around band curvatures such. B. to compensate for a U, S or W shape, a moment must be exerted on the tape. This is done according to the EP 1 794 339 B1 in that the higher-level coordinated controller also takes into account the couplings between the individual lower-level control loops that are assigned to the individual magnets. In other words, the force effects between adjacent coils or pairs of coils can be taken into account in this way. Force and distance create a moment and a counterbend can thus be produced in the undulating band, which preferably counteracts the existing curvature of the band. document WO2016 / 078803 A discloses a method and an apparatus for coating a metal strip, the metal strip continuing after the wiping nozzle device through an electromagnetic stabilization device in order to keep the fluctuation range of the strip small. The same subject is in the documents JPH 1029827 A and WO2009 / 039949 A disclosed.

Der Erfindung liegt die Aufgabe zugrunde, bei einem bekannten Verfahren und einer Beschichtungseinrichtung zum Beschichten eines Bandes eine alternative Möglichkeit zum Erzeugen eines Momentes in dem Band aufzuzeigen.The object of the invention is to provide an alternative possibility for generating a moment in the strip in a known method and a coating device for coating a strip.

Diese Aufgabe wird durch das in Patentanspruch 1 beanspruchte Verfahren gelöst. Dieses Verfahren ist dadurch gekennzeichnet, dass das Ansteuern der Magnete der Bandstabilisierungseinrichtung erfolgt, indem zumindest einer der Magnete in Abhängigkeit von der Form-Regeldifferenz in Breitenrichtung des Bandes relativ zu zumindest einem der Magnete auf der gegenüberliegenden Breitseite des Bandes versetzt und in eine Verfahrposition verlagert wird, wo er zumindest näherungsweise einem Wellental in der Ist-Form des Bandes gegenübersteht.This object is achieved by the method claimed in claim 1. This method is characterized in that the control of the magnets of the belt stabilization device takes place in that at least one of the magnets, depending on the shape-control difference in the width direction of the belt, is displaced relative to at least one of the magnets on the opposite broad side of the belt and shifted into a travel position , where it faces at least approximately a trough in the actual shape of the tape.

Somit wird erfindungsgemäß die aus dem Stand der Technik bekannte paarweise Anordnung der einzelnen Magnete in Gegenüberstellung auf beiden Breitseiten des Bandes aufgelöst und die einzelnen Magnete eines (ehemaligen) Magnetpaares werden in Breitenrichtung des Bandes versetzt zueinander angeordnet. Während bei einer paarweisen Gegenüberstellung der Magnete die entgegengesetzten Kräfte der beiden Magnete in einer Linie wirken und deshalb kein Drehmoment erzeugen, bewirkt der erfindungsgemäße Versatz der einzelnen Spulen des (ehemaligen) Magnetpaares in Breitenrichtung einen Abstand zwischen den in entgegengesetzte Richtungen wirkenden Kräfte, wodurch ein gewünschtes Moment in dem bzw. auf das Band generiert wird. Auf diese Weise ergibt sich die besagte Gegenbiegung und deshalb können auf diese Weise wellenförmige Bänder geglättet und in ein ebenes Band überführt werden.Thus, according to the invention, the paired arrangement of the individual magnets known from the prior art in opposition to each other on both broad sides of the band is dissolved and the individual magnets of a (former) pair of magnets are arranged offset to one another in the width direction of the band. While the opposing forces of the two magnets act in a line and therefore do not generate any torque when the magnets are compared in pairs, the inventive offset of the individual coils of the (former) magnet pair in the width direction causes a distance between the forces acting in opposite directions, as a result of which a desired Moment in or on the tape is generated. In this way the counter-bending results and therefore wavy bands can be smoothed and converted into a flat band.

Die Begriffe "Band" und "Metallband" werden gleichbedeutend verwendet.
Der Begriff "verlagern in Breitenrichtung" schließt eine beliebige Bewegung des Magneten im Raum ein, solange die Bewegung eine Komponente in Breitenrichtung des Metallbandes aufweist.
The terms "band" and "metal band" are used interchangeably.
The term "shift in the width direction" includes any movement of the magnet in space as long as the movement has a component in the width direction of the metal strip.

Der Begriff "stromabwärts" bedeutet: In Transportrichtung des Metallbandes. Umgekehrt bedeutet "stromaufwärts" entgegen der Transportrichtung des Metallbandes.The term "downstream" means: in the direction of transport of the metal strip. Conversely, "upstream" means against the direction of transport of the metal strip.

Gemäß einem ersten Ausführungsbeispiel kann zusätzlich zu der Ist-Form auch die Ist-Lage des Bandes innerhalb der Abstreifdüseneinrichtung ermittelt werden, kann zusätzlich zu der Form-Regeldifferenz auch eine Lage-Regeldifferenz als Unterschied zwischen der Ist-Lage des Bandes und einer vorgegebenen Soll-Lage des Bandes im Bereich der Abstreifdüseneinrichtung ermittelt werden, und kann die Verlagerung des mindestens einen Magneten in Breitenrichtung des Bandes relativ zu den Magneten auf der gegenüberliegenden Breitseite des Bandes auch in Abhängigkeit der Lage-Regeldifferenz so erfolgen, dass das Band von seiner Ist-Lage in die vorgegebene Soll-Lage überführt wird.According to a first exemplary embodiment, in addition to the actual shape, the actual position of the strip can also be determined within the scraper nozzle device. In addition to the shape / control difference, a position / control difference can also be determined as the difference between the actual position of the strip and a predetermined target The position of the strip in the area of the stripping nozzle device can be determined, and the displacement of the at least one magnet in the width direction of the strip relative to the magnets on the opposite broad side of the strip can also take place as a function of the positional control difference so that the strip is in its actual position is transferred to the specified target position.

Gemäß einem weiteren Ausführungsbeispiel sind symmetrisch zu der Mitte des Schlitzes der Bandstabilisierungseinrichtung oder des Bandes - in Breitenrichtung gesehen - ein Magnetpaar oder mehrere Magnetpaare ortsfest angeordnet, wobei sich die beiden Magnete jeweils eines Magnetpaares auf beiden Breitseiten des Bandes gegenüberstehen. In dem Falle, dass nur ein ortsfestes Magnetpaar vorgesehen ist, bedeutet der Begriff symmetrisch, dass das Magnetpaar in der Mitte angeordnet ist. Das ortsfeste Magnetpaar oder die ortsfesten Magnetpaare bilden eine Referenzposition. Relativ zu dem mindestens einen ortsfesten Magnetpaar sind erfindungsgemäß zumindest einzelne der zu dem ortsfesten Magnetpaar benachbarten Magnete in Breitenrichtung des Bandes verlagerbar bzw. verfahrbar.According to a further exemplary embodiment, a magnet pair or a plurality of magnet pairs are arranged in a stationary manner symmetrically with respect to the center of the slot of the band stabilization device or the band - viewed in the width direction, the two magnets each facing one another on both broad sides of the band. In the event that only one stationary pair of magnets is provided, the term symmetrical means that the pair of magnets is arranged in the middle. The stationary magnet pair or the stationary magnet pairs form a reference position. Relative to the at least one stationary pair of magnets, according to the invention at least some of the magnets adjacent to the stationary pair of magnets can be displaced or moved in the width direction of the band.

So können insbesondere zwei weitere Magnete, welche ein Magnetpaar bilden, derart in den Bereich des linken oder des rechten Randes des Bandes verlagert werden, dass derjenige Magnet dieses Magnetpaares, welcher den größeren Abstand zu dem Rand des Bandes aufweist, mit seiner Mitte auf die Höhe des Randes verlagert wird und dass derjenige Magnet des Magnetpaares, welcher den kleineren Abstand zu dem Rand des Bandes aufweist, - gegenüber dem Magneten mit dem größeren Abstand zum Rand des Bandes - ein Stück weit zur Mitte des Metallbandes - in Breitenrichtung gesehen - hin versetzt angeordnet wird. Diese Vorgehensweise empfiehlt sich sowohl für den linken wie auch für den rechten Rand des Metallbandes. Auch bei dieser beschriebenen Vorgehensweise wird die Gegenüberstellung der beiden einzelnen Magnete des Magnetpaares aufgelöst, indem diese in Breitenrichtung relativ zueinander versetzt werden. Die beschriebene Vorgehensweise empfiehlt sich insbesondere, wie gesagt, für die Randbereiche des Metallbandes, denn die dort oftmals stark variierenden Bandkrümmungen können mit den traditionell gegenüberstehenden Magneten eines Magnetpaares bzw. mit der Kraftwirkung zwischen benachbarten Magnetpaaren oftmals nicht ausreichend ausgeglichen werden. Für diesen speziellen Anwendungsfall ist der erfindungsgemäße Versatz von einzelnen Magneten eines Magnetpaares in Breitenrichtung relativ zueinander wesentlich effektiver.In particular, two further magnets, which form a pair of magnets, can be shifted into the area of the left or right edge of the band in such a way that the magnet of this pair of magnets which is at a greater distance from the edge of the band is centered on the height of the edge and that the magnet of the magnet pair that the has a smaller distance to the edge of the band, - compared to the magnet with the greater distance to the edge of the band - a bit to the center of the metal band - seen in the width direction - is arranged offset. This procedure is recommended for both the left and the right edge of the metal band. In this described procedure, too, the juxtaposition of the two individual magnets of the magnet pair is resolved by displacing them relative to one another in the width direction. The procedure described is particularly recommended, as I said, for the edge areas of the metal band, because the band curvatures, which often vary greatly there, can often not be adequately compensated for with the traditionally opposed magnets of a magnet pair or with the force effect between adjacent magnet pairs. For this special application, the offset according to the invention of individual magnets of a pair of magnets in the width direction relative to one another is considerably more effective.

Allgemein gesprochen, werden zumindest einzelne der Magnete in Breitenrichtung des Bandes so verfahren, dass sie zumindest näherungsweise einem Wellental der Ist-Form des Bandes gegenüberstehen. Bei dieser Anordnung wirken entgegengesetzt gerichtete Zugkräfte beabstandet zueinander auf das Metallband und erzeugen so ein gewünschtes Biegemoment zum Abbau der Krümmungen bzw. Wellenform in dem Band.Generally speaking, at least some of the magnets are moved in the width direction of the belt so that they are at least approximately opposite a trough of the actual shape of the belt. In this arrangement, oppositely directed tensile forces act on the metal strip at a distance from one another and thus generate a desired bending moment for reducing the curvatures or waveform in the strip.

Der Begriff "Wellental" beschreibt die Situation, dass die Differenz zwischen dem Abstand eines Magneten zu dem Metallband in seiner Ist-Form und dem Abstand des Magneten zu dem Metallband in seiner Soll-Form - jeweils gleiche Lage des Metallbandes vorausgesetzt - größer Null, insbesondere maximal ist. Das heißt, der Abstand zwischen dem Magneten und dem Metallband ist im Falle eines Wellentales größer als wenn das Metallband seine Soll-Form aufweisen würde. Dann kann das Wellental durch eine von dem Magneten aufgebrachte Zugkraft oder durch ein von mindestens zwei Magneten aufgebrachtes Biegemoment auf das Metallband "ausgebeult" werden.The term "wave trough" describes the situation that the difference between the distance of a magnet to the metal strip in its actual shape and the distance of the magnet to the metal strip in its target shape - assuming the same position of the metal strip in each case - is greater than zero, in particular is maximum. This means that the distance between the magnet and the metal strip is larger in the case of a wave trough than if the metal strip were to have its desired shape. The trough can then be applied by a tensile force exerted by the magnet or "bulged" onto the metal strip by a bending moment applied by at least two magnets.

Zu beachten ist, dass mit den Magneten nur Zugkräfte, keine Druckkräfte auf das Metallband ausgeübt werden können.It should be noted that the magnets can only exert tensile forces, no compressive forces on the metal strip.

Bei symmetrischen wellenförmigen Ist-Formen des Bandes empfiehlt sich ein zur Mitte des Bandes symmetrisches Verfahren der Magnete in Breitenrichtung.In the case of symmetrical, wave-like actual shapes of the band, it is advisable to move the magnets symmetrically in the width direction to the center of the band.

Die Verlagerung der Magnete in Breitenrichtung kann in Abhängigkeit der verfügbaren Anzahl von Magneten erfolgen. Bei einer größeren verfügbaren Anzahl von Magneten ist eine feinere Auflösung der Krafteinwirkung auf das Band möglich, wodurch die Wellenform noch genauer ausgeglichen werden kann.The magnets can be moved in the width direction depending on the number of magnets available. With a larger number of magnets available, a finer resolution of the force acting on the tape is possible, whereby the waveform can be even more precisely balanced.

Die Verlagerung der Magnete in Breitenrichtung kann auch in Abhängigkeit der von den einzelnen Magneten generierbaren Kraft auf das Band erfolgen. Dies bietet sich an vor dem Hintergrund, dass das in dem Band erzeugte Moment das Produkt aus Kraft und Abstand ist. Vor diesem Hintergrund kann eine bestimmte gewünschte Größe des Momentes erzeugt werden durch eine wahlweise geeignete Einstellung von entweder der generierten Kraft, oder des Abstandes der Magnete zueinander oder von beidem.The magnets can also be shifted in the width direction depending on the force that can be generated by the individual magnets on the belt. This lends itself to the background that the moment generated in the tape is the product of strength and distance. Against this background, a certain desired magnitude of the moment can be generated by an optionally suitable setting of either the generated force or the distance of the magnets from one another or from both.

Die Magnete sind vorteilhafterweise in Form von elektromagnetischen Spulen ausgebildet, weil die Spulen eine variable Einstellung der Kraft auf das Metallband gestatten in Abhängigkeit des eingespeisten Stromes. Ergänzend zu der erfindungsgemäß beanspruchten Beeinflussung der Lage und der Form des Bandes durch geeignete Verlagerung einzelner Magnete in Breitenrichtung des Bandes, kann die Lage und die Form der Magnete zusätzlich auch durch eine geeignete Beaufschlagung bzw. Speisung der Spulen mit geeigneten Strömen erfolgen. Konkret wird erfindungsgemäß zumindest eine der Spulen mit einem solchen Strom gespeist, dass das Band aufgrund der durch die stromdurchflossene Spule auf das Band einwirkenden Kraft in seine Soll-Lage in der Mitte der Abstreifdüseneinrichtung überführt und dort stabilisiert wird und/oder dass die Ist-Form des Bandes möglichst gut an die Soll-Form angepasst wird.The magnets are advantageously designed in the form of electromagnetic coils because the coils allow the force on the metal strip to be set in a variable manner as a function of the current fed in. In addition to influencing the position and shape of the tape as claimed by the invention by suitable displacement of individual magnets in the width direction of the tape, the position and shape of the magnets can also be carried out by suitably applying or supplying the coils with suitable currents. Specifically, according to the invention, at least one of the coils is fed with such a current that the tape is due to the current-carrying coil acting on the band force is transferred to its target position in the middle of the stripping nozzle device and is stabilized there and / or that the actual shape of the band is adapted as well as possible to the target shape.

Neben der erfindungsgemäßen Verschiebung einzelner Magnete in Breitenrichtung des Bandes und der besagten Möglichkeit zur Wahl geeigneter Ströme für die Spulen bietet auch die Positionierung und Anstellung der Korrekturrolle eine weitere Möglichkeit zur Einflussnahme auf die Form und die Lage des Metallbandes in der Abstreifdüseneinrichtung. Konkret wird erfindungsgemäß beansprucht, dass die Korrekturrolle stromaufwärts der Abstreifdüseneinrichtung derart positioniert und angestellt wird, dass sichergestellt ist, dass die Bandstabilisierungseinrichtung nur innerhalb ihrer Betriebsgrenzen betrieben wird. Anders ausgedrückt besteht durch eine geeignete Positionierung und Anstellung der Korrekturrolle die Möglichkeit, die Lage und/oder die Form des Metallbandes in dem Schlitz der Abstreifdüseneinrichtung bereits so voreinzustellen, dass nur noch so wenig Korrekturbedarf bezüglich der Form und / oder der Lage des Metallbandes besteht, dass die Magnete in der Bandstabilisierungseinrichtung zur Realisierung der Korrektur nicht mit Strömen außerhalb ihrer Betriebsgrenzen betrieben werden müssen. Auch der verbleibende Korrekturbedarf zur Anpassung der Ist-Lage an die Soll-Lage und/oder zur Anpassung der Ist-Form des Bandes an seine Soll-Form erfolgt dann erfindungsgemäß durch geeignete Verlagerung einzelner Magnete in Breitenrichtung sowie durch eine Speisung dieser Magnete mit einem jeweils geeigneten Strom.In addition to the displacement of individual magnets according to the invention in the width direction of the strip and the said possibility of selecting suitable currents for the coils, the positioning and adjustment of the correction roller also offer a further possibility of influencing the shape and the position of the metal strip in the stripping nozzle device. Specifically, it is claimed according to the invention that the correction roller is positioned and adjusted upstream of the scraper nozzle device in such a way that it is ensured that the belt stabilization device is only operated within its operating limits. In other words, by means of a suitable positioning and adjustment of the correction roller, it is possible to preset the position and / or the shape of the metal strip in the slot of the scraper nozzle device so that there is only so little need for correction with regard to the shape and / or position of the metal strip, that the magnets in the band stabilization device do not have to be operated with currents outside their operating limits in order to implement the correction. The remaining need for correction to adapt the actual position to the desired position and / or to adapt the actual shape of the strip to its desired shape is then carried out according to the invention by suitable displacement of individual magnets in the width direction and by feeding these magnets with one each suitable current.

Die Korrekturrolle kann nicht nur vor dem Verfahren der Magnete, sondern auch während eines laufenden Beschichtungsprozesses - wie im vorherigen Absatz beschrieben - geeignet verfahren werden. Auch kann die Korrekturrolle nicht nur zur Voreinstellung der Lage und Form des Bandes positioniert und angestellt werden. Vielmehr kann die Korrekturrolle auch automatisch so positioniert und angestellt werden, dass bei Überschreitung von vorgegebenen Kraftgrenzen auf das Band in der Bandstabilisierungseinrichtung die Kräfte wieder in einem Zielbereich liegen. Dies ist insbesondere bei Produktwechseln, d. h. beim Übergang auf Bänder mit unterschiedlichen Dicken oder unterschiedlichen Materialien mit unterschiedlichen Streckgrenzen erforderlich. Auch kann die Korrekturrolle automatisch so verfahren werden, dass es definierte Wirkrichtungen der Kräfte an den Magneten gibt, um eine einseitige bzw. monotone Krafteinleitung sicherzustellen.The correction roller can be moved appropriately not only before moving the magnets, but also during an ongoing coating process - as described in the previous paragraph. The correction roller can not only be positioned and adjusted to preset the position and shape of the belt. Rather, the correction roller can also be automatically positioned and adjusted so that when the predetermined force limits are exceeded the band in the band stabilization device the forces are again in a target area. This is particularly necessary when changing products, ie when changing to strips with different thicknesses or different materials with different yield strengths. The correction roller can also be automatically moved so that there are defined directions of action of the forces on the magnets to ensure unilateral or monotonous force application.

Schließlich ist vorgesehen, dass die Verfahrpositionen der Magnete in Breitenrichtung, die Ströme, mit denen die Spulen beaufschlagt werden und/oder die Position und die Anstellung der Korrekturrolle in einer Datenbank abgespeichert werden. Dabei erfolgt die Abspeicherung vorzugsweise klassifiziert nach der Stahlsorte des Bandes, der Streckgrenze des Bandes, der Dicke des Bandes, der Breite des Bandes, der Temperatur des Bandes beim Durchlaufen der Beschichtungseinrichtung und/oder nach der Temperatur des Beschichtungsmittels in dem Beschichtungsbehälter beim Durchlaufen des Bandes. Durch die Speicherung dieser Daten können bei zukünftigen Beschichtungsvorgängen bessere Startwerte insbesondere durch die Verfahrpositionen der Magnete in Breitenrichtung der dann zu beschichtenden neuen Bänder ermittelt werden.
Die oben genannte Aufgabe wird weiterhin durch eine Beschichtungsvorrichtung gemäß den Ansprüchen 19 bis 23 gelöst. Die Vorteile dieser Beschichtungseinrichtung entsprechen den oben mit Bezug auf das erfindungsgemäße Verfahren genannten Vorteilen.
Weitere vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens sind Gegenstand der abhängigen Ansprüche.
Der Beschreibung sind vier Figuren beigefügt, wobei

Figur 1
eine Beschichtungseinrichtung;
Figur 2
bekannte Ist-Formen und eine bekannte Soll-Form des Bandes;
Figur 3
bekannte Ist- und Soll-Lagen des Bandes; und
Figur 4
ein erfindungsgemäßes Verfahren von Magneten in Breitenrichtung des Bandes
veranschaulicht.Finally, it is provided that the travel positions of the magnets in the width direction, the currents with which the coils are acted upon and / or the position and the position of the correction roller are stored in a database. The storage is preferably classified according to the type of steel of the strip, the yield strength of the strip, the thickness of the strip, the width of the strip, the temperature of the strip as it passes through the coating device and / or according to the temperature of the coating agent in the coating container as it passes through the strip . By storing this data, better starting values can be determined in future coating processes, in particular by the travel positions of the magnets in the width direction of the new strips to be coated.
The above object is further achieved by a coating device according to claims 19 to 23. The advantages of this coating device correspond to the advantages mentioned above with reference to the method according to the invention.
Further advantageous embodiments of the method according to the invention are the subject of the dependent claims.
The description is accompanied by four figures
Figure 1
a coating device;
Figure 2
known actual shapes and a known target shape of the tape;
Figure 3
known actual and target positions of the tape; and
Figure 4
an inventive method of magnets in the width direction of the tape
illustrated.

Die erfindungsgemäße Beschichtungseinrichtung und das erfindungsgemäße Verfahren werden nachfolgend unter Bezugnahme auf die genannten Figuren in Form von Ausführungsbeispielen detailliert beschrieben. In allen Figuren sind gleiche technische Elemente mit gleichen Bezugszeichen bezeichnet.The coating device according to the invention and the method according to the invention are described in detail below with reference to the figures mentioned in the form of exemplary embodiments. In all figures, the same technical elements are denoted by the same reference symbols.

Figur 1 zeigt eine Beschichtungseinrichtung 100 zum Beschichten eines Metallbandes 200. Die Beschichtungseinrichtung 100 besteht aus einem Beschichtungsbehälter 110, der mit flüssigem Beschichtungsmittel 112, z. B. Zink gefüllt ist. Das Metallband 200 taucht in den Beschichtungsbehälter ein und wird dort in dem flüssigen Beschichtungsmittel mit Hilfe einer Potrolle 150 umgelenkt. Das Metallband 200 wird dann vorbeigeführt an einer Korrekturrolle 140 und nachfolgend durch den Schlitz einer Abstreifdüseneinrichtung 120 und weiter nachfolgend durch den Schlitz einer Bandstabilisierungseinrichtung 130 geführt. Innerhalb der Abstreifdüseneinrichtung 120 wird das Band vorzugsweise beidseitig mit einem Luftstrom beaufschlagt, um überschüssiges flüssiges Beschichtungsmittel abzustreifen. Figure 1 shows a coating device 100 for coating a metal strip 200. The coating device 100 consists of a coating container 110 which is coated with liquid coating agent 112, e.g. B. zinc is filled. The metal strip 200 dips into the coating container and is deflected there in the liquid coating agent with the aid of a pot roller 150. The metal strip 200 is then guided past a correction roller 140 and subsequently through the slot of a wiping nozzle device 120 and further subsequently through the slot of a belt stabilization device 130. An air stream is preferably applied to the strip on both sides within the stripping nozzle device 120 in order to scrape off excess liquid coating agent.

Die Bandstabilisierungseinrichtung 130 besteht aus einer Mehrzahl von Magneten 132, die auf beiden Breitseiten des Bandes bzw. der Bandstabilisierungseinrichtung angeordnet sind. Diese Magnete 132 sind typischerweise in Form von elektromagnetischen Spulen ausgebildet. Die Beschichtungseinrichtung 100 umfasst weiterhin eine Steuereinrichtung 160 zum Ansteuern eines Aktuators 136 zum Verschieben bzw. Verfahren der Magnete 132 erfindungsgemäß in Breitenrichtung R des Bandes und zum Einstellen des Stromes I, der in die einzelnen Magnete eingespeist wird. Darüber hinaus kann die Steuereinrichtung einen Ausgang aufweisen zum Ansteuern eines Aktuators 146 zum Positionieren und Anstellen der Korrekturrolle 140. Die Ansteuerung der Aktuatoren 136, 146 sowie die Einstellung des Stromes für die Magnete erfolgt in Abhängigkeit von Messsignalen eines vorzugsweise in Breitenrichtung des Bandes traversierenden Abstandssensor. Der Abstandssensor erfasst die Verteilung des Abstandes des Metallbandes in Breitenrichtung in Bezug auf eine Referenzposition, z. B. den Spalt bzw. Schlitz der Bandstabilisierungseinrichtung. Auf diese Weise wird sowohl die Ist-Form und/oder auch die Ist-Lage des Metallbandes erfasst. Alternativ können auch ein separater Formsensor 170 zur Erfassung der Ist-Form des Bandes und ein separater Lagesonsor 180 zur Erfassung der Ist-Lage des Metallbandes vorgesehen sein.The band stabilization device 130 consists of a plurality of magnets 132 which are arranged on both broad sides of the band or the band stabilization device. These magnets are 132 typically in the form of electromagnetic coils. The coating device 100 further comprises a control device 160 for actuating an actuator 136 for displacing or moving the magnets 132 according to the invention in the width direction R of the strip and for setting the current I which is fed into the individual magnets. In addition, the control device can have an output for actuating an actuator 146 for positioning and adjusting the correction roller 140. The actuators 136, 146 are actuated and the current for the magnets is adjusted as a function of measurement signals from a distance sensor which traverses preferably in the width direction of the strip. The distance sensor detects the distribution of the distance of the metal strip in the width direction with respect to a reference position, e.g. B. the gap or slit of the band stabilization device. In this way, both the actual shape and / or the actual position of the metal strip is recorded. Alternatively, a separate shape sensor 170 for detecting the actual shape of the strip and a separate position sensor 180 for detecting the actual position of the metal strip can also be provided.

Das Ermitteln der Ist-Lage und/oder der Ist-Form des Metallbandes innerhalb der Abstreifdüseneinrichtung 120 erfolgt durch Messen der Lage und/oder der Form des Bandes entweder zwischen der Abstreifdüseneinrichtung 120 und der Bandstabilisierungseinrichtung 130 oder innerhalb der Bandstabilisierungseinrichtung 130 oder stromaufwärts der Bandstabilisierungseinrichtung 130 und durch anschließendes Rückschließen auf die Ist-Lage und/oder die Ist-Form des Bandes innerhalb der Abstreifdüseneinrichtung aus der jeweils gemessenen Lage und/oder Form des Bandes. Dabei erfolgt das Ermitteln der Ist-Lage und/oder der Ist-Form des Bandes innerhalb der Bandstabilisierungseinrichtung 130 durch Messen des Abstandes des Bandes zu den Magneten der Bandstabilisierungseinrichtung über der Breite des Bandes.The actual position and / or the actual shape of the metal strip within the stripping nozzle device 120 is determined by measuring the position and / or the shape of the strip either between the stripping nozzle device 120 and the strip stabilizing device 130 or within the strip stabilizing device 130 or upstream of the strip stabilizing device 130 and by subsequently concluding from the actual position and / or the actual shape of the band within the stripping nozzle device from the respectively measured position and / or form of the band. The actual position and / or the actual shape of the band within the band stabilization device 130 is determined by measuring the distance of the band from the magnets of the band stabilization device across the width of the band.

Figur 2 zeigt verschiedene Beispiele für mögliche unerwünschte Ist-Formen des Metallbandes 200, konkret ein U-, ein S- und ein W-förmig gewelltes Metallband. Im unteren Bereich zeigt Figur 2 dagegen die gewünschte Soll-Form des Metallbandes 200. Demnach ist das Metallband in seinem Soll-Zustand grade bzw. plan ausgebildet. Figure 2 shows various examples of possible undesirable actual shapes of the metal strip 200, specifically a U, an S and a W-shaped metal strip. In the lower area shows Figure 2 on the other hand, the desired target shape of the metal strip 200. Accordingly, the metal strip is straight or flat in its target state.

Figur 3 zeigt verschiedene unerwünschte Ist-Lagen des Metallbandes 200 in dem Schlitz 122 der Abstreifdüseneinrichtung 120. Die verschiedenen Ist-Lagen sind gestrichelt dargestellt während die Soll-Lage SL mit einem durchgezogenen Strich dargestellt ist. Konkret zeichnet sich die Soll-Lage dadurch aus, dass das Metallband 200 einen gleichmäßigen Abstand zu den Seiten des Schlitzes 122 aufweist. Demgegenüber kann das Metallband in einer ersten unerwünschten Ist-Lage I1 gegenüber der Soll-Lage SL um einen Winkel α verdreht bzw. verschwenkt sein. Eine zweite unerwünschte Ist-Lage des Metallbandes I2 des Metallbandes besteht darin, dass das Metallband gegenüber der Soll-Lage SL parallel verschoben ist, so dass das Metallband keine gleichen Abstände mehr zu den Breitseiten des Schlitzes aufweist. Schließlich besteht eine dritte typische unerwünschte Ist-Lage für das Metallband darin, dass das Metallband gemäß der Lage I3 gegenüber der Soll-Lage SL in Längsrichtung verschoben ist, so dass seine Abstände zu den Schmalseiten des Schlitzes 122 der Abstreifeinrichtung nicht mehr gleich sind. Figure 3 shows various undesired actual positions of the metal strip 200 in the slot 122 of the scraper nozzle device 120. The various actual positions are shown in broken lines, while the desired position SL is shown with a solid line. Specifically, the target position is characterized in that the metal strip 200 is evenly spaced from the sides of the slot 122. In contrast, the metal strip can be rotated or pivoted by an angle α in a first undesired actual position I1 relative to the target position SL. A second undesired actual position of the metal strip I2 of the metal strip is that the metal strip is displaced in parallel with respect to the desired position SL, so that the metal strip no longer has the same distances from the broad sides of the slot. Finally, a third typical undesirable actual position for the metal strip is that the metal strip is shifted in the longitudinal direction according to position I3 with respect to the desired position SL, so that its distances from the narrow sides of the slot 122 of the stripping device are no longer the same.

Figur 4 veranschaulicht das erfindungsgemäße Verfahren. Nach der Ermittlung der Ist-Form des Bandes 200 innerhalb der Abstreifdüseneinrichtung 120 über der Breite des Bandes z. B. in Form der in Figur 2 oben gezeigten Typen, wird die Ist-Form mit einer vorgegebenen Soll-Form des Bandes, typischerweise wie in Figur 2 unten gezeigt, verglichen. Die Abweichungen in der Form bilden eine Form-Regeldifferenz und die Magnete 132 der Bandstabilisierungseinrichtung 130 werden in Abhängigkeit der Form-Regeldifferenz so angesteuert, dass die Ist-Form des Bandes in die Soll-Form des Bandes überführt wird. Erfindungsgemäß werden dabei zumindest einzelne der Magnete 132 in Breitenrichtung R des Bandes 200 relativ zu den Magneten auf der jeweils gegenüberliegenden Breitseite des Bandes in eine Verfahrposition verlagert. Diese Verfahrpositionen sind in Figur 4 beispielhaft dargestellt. Figure 4 illustrates the method according to the invention. After determining the actual shape of the band 200 within the scraper nozzle device 120 across the width of the band z. B. in the form of in Figure 2 Types shown above, the actual shape with a predetermined target shape of the tape, typically as in Figure 2 shown below. The deviations in the shape form a shape-control difference and the magnets 132 of the strap stabilization device 130 are controlled depending on the shape-control difference in such a way that the actual shape of the strap is converted into the desired shape of the strap. According to the invention, at least some of the magnets 132 in the width direction R of the Band 200 shifted relative to the magnets on the opposite broad side of the band in a travel position. These travel positions are in Figure 4 shown as an example.

Zusätzlich zu der Ist-Form kann auch die Ist-Lage des Bandes 200 innerhalb der Abstreifdüseneinrichtung 120 ermittelt werden. Unerwünschte Ausprägungen dieser Ist-Lage wurden oben bereits unter Bezugnahme auf Figur 3 vorgestellt. Zusätzlich zu der Form-Regeldifferenz kann analog auch eine Lage-Regeldifferenz als Unterschied zwischen der Ist-Lage des Bandes und einer vorgegebenen Soll-Lage SL im Bereich der Abstreifdüseneinrichtung 120 ermittelt werden. Die Verlagerung des mindestens einen Magneten 132-A in Breitenrichtung R des Bandes 200 relativ zu den Magneten 132-B auf der gegenüberliegenden Breitseite des Bandes 200 kann demnach auch in Abhängigkeit der Lage-Regeldifferenz so erfolgen, dass das Band von seiner Ist-Lage in die vorgegebene Soll-Lage SL überführt wird.In addition to the actual shape, the actual position of the strip 200 within the stripping nozzle device 120 can also be determined. Undesirable manifestations of this actual situation have already been referred to above Figure 3 presented. In addition to the shape-control difference, a position-control difference can also be determined analogously as the difference between the actual position of the belt and a predetermined target position SL in the area of the wiper nozzle device 120. The displacement of the at least one magnet 132-A in the width direction R of the band 200 relative to the magnets 132-B on the opposite broad side of the band 200 can accordingly also take place as a function of the positional control difference so that the band is in its actual position in the specified target position SL is transferred.

Allgemein ist es sinnvoll, dass zumindest einzelne der stromdurchflossenen, d. h. der aktiven Magnete 132 in Breitenrichtung R des Bandes 200 so verfahren werden, dass sie in ihrer Verfahrposition, auch Endposition genannt, zumindest näherungsweise einem Wellental in der Ist-Form des Bandes 200 gegenüberstehen, wie dies in Figur 4 veranschaulicht ist. Der Vorteil dieser Verfahrweise ist, dass dann die in unterschiedliche Richtungen wirkenden Kräfte der einzelnen Spule beabstandet voneinander wirken und somit ein Drehmoment bzw. Biegemoment auf das Band 200 erzeugt werden kann zum Ausgleichen von insbesondere Querkrümmungen bzw. unerwünschten Wellenformen. Die durch die Kräfte F der Spulen generierten Biegemomente sind in Figur 4 mit dem Bezugszeichen M bezeichnet.In general, it makes sense that at least some of the current-carrying magnets, ie the active magnets 132, are moved in the width direction R of the belt 200 in such a way that their travel position, also called the end position, is at least approximately opposite a trough in the actual shape of the belt 200, like this in Figure 4 is illustrated. The advantage of this procedure is that the forces of the individual spool acting in different directions then act at a distance from one another and thus a torque or bending moment can be generated on the band 200 in order to compensate in particular for transverse curvatures or undesired waveforms. The bending moments generated by the forces F of the coils are in Figure 4 designated by the reference symbol M.

Figur 4 zeigt ein spezielles Ausführungsbeispiel für mögliche Verfahrpositionen. Konkret ist bei diesem Ausführungsbeispiel - in Breitenrichtung R gesehen - in der Mitte des Bandes 200 ein Magnetpaar 132-3-A; 132-3-B ortsfest angeordnet. Die beiden Magnete dieses Magnetpaares stehen sich auf beiden Breitseiten A, B des Bandes 200 gegenüber. Demgegenüber sind die übrigen Spulen bzw. Magnete nicht in Form von Magnetpaaren angeordnet, deren Einzelmagnete 132-1, -2, -4, -5 sich direkt gegenüberstehen. Diese übrigen Magnete werden in Breitenrichtung R des Bandes relativ zu Magneten auf der anderen Bandseite verlagert bzw. versetzt angeordnet. Figure 4 shows a special embodiment for possible travel positions. Specifically, in this embodiment - seen in the width direction R - in the middle of the band 200 a pair of magnets 132-3-A; 132-3-B stationary arranged. The two magnets of this pair of magnets face each other on both broad sides A, B of the band 200. In contrast, the other coils or magnets are not arranged in the form of magnet pairs, the individual magnets 132-1, -2, -4, -5 are directly opposite one another. These remaining magnets are displaced or offset in the width direction R of the band relative to magnets on the other side of the band.

Konkret bilden zwei weitere Magnete 132-1-A und 132-1-B ein linkes Magnetpaar, welches derart in den Bereich des linken Randes des Bandes 200 verlagert wird, dass derjenige Magnet 132-1-B des linken Magnetpaares, welcher den größeren Abstand dI1 zu dem Rand des Bandes aufweist mit seiner Mitte auf Höhe des linken Randes verlagert ist und dass derjenige Magnet 132-1-A des linken Magnetpaares, welcher den kleineren Abstand dI2 zu dem linken Rand des Bandes aufweist, - gegenüber dem Magneten 132-1-B mit dem größeren Abstand dI1 zum Rand des Bandes - ein Stück weit zu dem ortsfesten Magnetpaar 132-3-A, 132-3-B, d. h. zu Bandmitte hin versetzt angeordnet ist. Durch die versetzte Anordnung der beiden Teilspulen 132-1-A und 132-1-B des linken Spulenpaares wird das in Figur 4 gezeigte Drehmoment entgegen dem Uhrzeigersinn auf den linken Randbereich des Bandes 200 ausgeübt, wodurch dessen dortige Querkrümmung beseitigt werden kann.Specifically, two further magnets 132-1-A and 132-1-B form a left magnet pair, which is displaced into the area of the left edge of the band 200 in such a way that the magnet 132-1-B of the left magnet pair, which has the greater distance d I1 to the edge of the band has its center displaced at the level of the left edge and that that magnet 132-1-A of the left pair of magnets which has the smaller distance d I2 to the left edge of the band is opposite the magnet 132 -1-B with the greater distance d I1 to the edge of the band - a piece to the fixed magnet pair 132-3-A, 132-3-B, ie is offset to the middle of the band. Due to the staggered arrangement of the two partial coils 132-1-A and 132-1-B of the left pair of coils, this is in Figure 4 shown torque exerted counterclockwise on the left edge region of the band 200, whereby the transverse curvature there can be eliminated.

Alternativ oder zusätzlich kann ein rechtes Magnetpaar 132-5-A, 132-5-B vorgesehen sein, welches derart in den Bereich des rechten Randes des Bandes 200 verlagert wird, dass sein Teilmagnet 132-5-B, welcher den größeren Abstand dr1 zu dem rechten Rand des Bandes 200 aufweist mit seiner Mitte auf Höhe des rechten Randes verlagert wird. Weiterhin wird dann derjenige Teilmagnet 132-5-A des rechten Magnetpaares, welcher den kleineren Abstand dr2 zu dem rechten Rand des Bandes aufweist, - gegenüber dem Magneten mit dem größeren Abstand zum Rand des Bandes - ein Stück weit zur Mitte des Bandes 200 hin versetzt. In diesem Fall bewirken die in Figur 4 durch die Teilspulen generierten Zugkräfte F, die zueinander beabstandet an dem Band 200 angreifen, ein Biegemoment M im Uhrzeigersinn auf das Band 200. Dadurch kann die in Figur 4 noch gezeigte Wellenform am rechten Rand ausgeglichen werden.Alternatively or additionally, a right pair of magnets 132-5-A, 132-5-B can be provided, which is displaced into the area of the right edge of the band 200 in such a way that its partial magnet 132-5-B, which has the greater distance d r1 has shifted to the right edge of the band 200 with its center at the level of the right edge. Furthermore, the partial magnet 132-5-A of the right pair of magnets, which has the smaller distance d r2 from the right edge of the band, becomes a bit towards the center of the band 200 compared to the magnet with the greater distance from the edge of the band transferred. In this case, the in Figure 4 tensile forces F generated by the partial coils, which act on the band 200 at a spacing from one another Bending moment M clockwise on the band 200. This allows the in Figure 4 still shown waveform can be compensated on the right edge.

Die übrigen Magnete 132-2-A, 132-2-B, 132-4-A und 132-4-B, welche weder dem rechten noch dem linken, noch dem mittleren Magnetpaar angehören, werden in Breitenrichtung R des Bandes 200 vorzugsweise so verfahren, dass sie zumindest näherungsweise jeweils einem Wellental in der Ist-Form des Bandes gegenüberstehen, wie dies in Figur 4 dargestellt ist und wodurch die oben beschriebene vorteilhafte Wirkung durch die Generierung der Biegemomente erzielt wird.The remaining magnets 132-2-A, 132-2-B, 132-4-A and 132-4-B, which do not belong to either the right, left or middle pair of magnets, are preferably so in the width direction R of band 200 procedure that they are each at least approximately opposite a trough in the actual shape of the tape, as shown in Figure 4 is shown and by which the advantageous effect described above is achieved by generating the bending moments.

Wie ebenfalls in Figur 4 erkennbar ist, ergibt sich insbesondere bei symmetrischer unerwünschter Ist-Form des Bandes bei der besagten Verlagerung der Magnete in Breitenrichtung die in Figur 4 gezeigte symmetrische Anordnung der Magnete, insbesondere die symmetrische Anordnung in Bezug auf das ortsfeste Magnetpaar 132-3-A, 132-3-B.As also in Figure 4 is recognizable, results in particular in the case of a symmetrical undesired actual shape of the band when the magnets are displaced in the width direction Figure 4 shown symmetrical arrangement of the magnets, in particular the symmetrical arrangement with respect to the fixed magnet pair 132-3-A, 132-3-B.

BezugszeichenlisteReference symbol list

100100
BeschichtungseinrichtungCoating facility
110110
BeschichtungsbehälterCoating container
112112
BeschichtungsmittelCoating agent
120120
AbstreifdüseneinrichtungScraper nozzle device
122122
Schlitz der AbstreifdüseneinrichtungScraper nozzle slot
130130
BandstabilisierungseinrichtungBelt stabilization device
132132
MagneteMagnets
136136
AktuatorActuator
140140
KorrekturrolleCorrection role
150150
PotrollePot roll
160160
SteuereinrichtungControl device
170170
FormsensorShape sensor
180180
LagesensorPosition sensor
200200
MetallbandMetal strap
dl1 d l1
Abstanddistance
dl2 d l2
Abstanddistance
dr1 d r1
Abstanddistance
dr2 d r2
Abstanddistance
FF
Kraftforce
I1I1
SchrägstellungInclination
I2I2
ParallelverschiebungParallel shift
I3I3
VersatzOffset
MM
BiegemomentBending moment
RR
BreitenrichtungWidth direction
SLSL
Soll-LageTarget position
αα
Winkelangle

Claims (23)

  1. A method for coating a metal strip (200) with the help of a coating device (100), in which the strip (200) is guided through a coating container (110) with a liquid coating agent (112), subsequently through the slot of a stripping nozzle device (120) and then subsequently through the slot of a strip stabilizing device (130) with a plurality of magnets (132) on the two broad sides of the strip, including the following steps:
    determining the actual shape of the strip (200) within the stripping nozzle device (120) over the width of the strip;
    determining a shape control deviation as the difference between the actual shape of the strip (200) and a predetermined setpoint shape of the strip in the area of the stripping nozzle device (120); and
    controlling the magnets (132) of the strip stabilization device as actuators so that the actual shape of the strip (200) is transformed into the setpoint shape of the strip;
    characterized in that
    the controlling of the magnets of the strip stabilization device occurs by shifting at least one of the magnets (132-A) as a function of the shape control deviation in the width direction (R) of the strip (200) relative to at least one of the magnets (132-B) on the opposite broad side of the strip and moving the same into a processing position in which it is at least approximately opposite a trough in the actual shape of the strip.
  2. The method according to claim 1,
    characterized in that,
    in addition to the actual shape, the actual position of the strip (200) inside the stripping nozzle device (120) is also determined;
    in that, in addition to the shape control deviation, a position control deviation is also determined as the difference between the actual position of the strip and a predetermined setpoint position of the strip (200) in the area of the stripping nozzle device (120); and
    in that the movement of the at least one magnet (132-A) in the width direction (R) of the strip (200) relative to the magnets (132-B) on the opposite broad side of the strip (200) also occurs as a function of the position control deviation so that the strip is conveyed from its actual position to its predetermined setpoint position.
  3. The method according to one of the preceding claims,
    characterized in that,
    - viewed in the width direction - a magnet pair or a plurality of magnet pairs (132-3-A; 132-3-B) are arranged in a stationary manner symmetrically in relation to the centre of the slot of the strip stabilization device (130) or of the strip (200), wherein the two magnets of a magnet pair are respectively arranged on the two broad sides (A, B) of the strip opposite one another; and
    in that at least some of the magnets (132-1, -2, -4, - 5) adjacent to the at least one stationary magnet pair are moved in relation to the stationary magnet pair in the width direction (R) of the strip (200) so that, in their processing position, they are at least approximately opposite a trough in the actual shape of the strip.
  4. The method according to one of the preceding claims,
    characterized in that
    the movement of the at least one magnet in the width direction (R) occurs symmetrically in relation to the centre of the strip.
  5. The method according to one of the preceding claims,
    characterized in that
    two further magnets (132-1-A; 132-1-B) form a left magnet pair, which is moved into the area of the left edge of the strip so that the magnet (132-1-B) of the left magnet pair which is at a greater distance (dl1) from the edge of the strip is moved with its centre to the height of the left edge, and in that the magnet (132-1-A) of the left magnet pair which is at a smaller distance (dl2) from the left edge of the strip (200) - viewed in the width direction - is arranged so as to be offset in relation to the centre of the metal strip so that it is at least approximately opposite a trough in the actual shape of the strip;
    and/or
    in that still two further magnets (132-5-A; 132-5-B) form a right magnet pair, which is moved into the area of the right edge of the strip (200) so that the magnet (132-5-B) of the right magnet pair which is at a greater distance (dr1) from the edge of the strip (200) is moved with its centre to the height of the right edge, and in that the magnet (132-5-A) of the right magnet pair which is at a smaller distance (dr2) from the right edge of the strip - viewed in the width direction - is arranged so as to be offset in relation to the centre of the metal strip so that it is at least approximately opposite a trough in the actual shape of the strip.
  6. The method according to claim 5,
    characterized in that
    the remaining magnets (132-2-A, 132-2-B, 132-4-A, 132-4-B) which do not belong to the right, left or centre magnet pair are moved in the width direction (R) of the strip (200) so that they are at least approximately opposite a trough in the actual shape of the strip.
  7. The method according to one of the preceding claims,
    characterized in that
    the determination of the actual position and/or of the actual shape of the strip (200) occurs within the stripping nozzle device (120) by
    measuring the position and/or shape of the strip either between the stripping nozzle device (120) and the strip stabilization device (130), or within the strip stabilization device or downstream from the strip stabilization device; and by
    inferring the actual position and/or actual shape of the strip (200) within the stripping nozzle device (120) from the measured position and/or shape of the strip.
  8. The method according claim 7,
    characterized in that
    the determination of the actual position and/or of the actual shape of the strip occurs within the strip stabilization device (130) by measuring the distance of the strip from the magnets of the strip stabilization device over the width of the strip.
  9. The method according to one of the preceding claims,
    characterized in that
    the movement of the magnets in the width direction (R) additionally occurs as a function of the available number of magnets (132) on each of the broad sides of the strip.
  10. The method according to one of the preceding claims,
    characterized in that
    the movement of the magnets (132) in the width direction (R) occurs as a function of the force (F) acting on the strip (200) that can be generated by the individual magnets.
  11. The method according to one of the preceding claims,
    characterized in that
    the magnets (132) are configured in the shape of electromagnetic coils.
  12. The method according to claim 11,
    characterized in that
    at least one of the coils is fed with such a current that the strip is conveyed as a result of the force (F) acting on the strip through the active coil into its setpoint position in the centre of the stripping nozzle device (120) and is stabilized there and/or in that the actual shape of the strip is adapted as optimally as possible to the setpoint shape.
  13. The method according to one of the preceding claims,
    characterized in that
    a correcting roller (140) is positioned and engaged upstream from the stripping nozzle device so that the strip stabilization device and in particular its magnets can be operated within their operating limits.
  14. The method according to one of the preceding claims,
    characterized in that
    the actual shape of the strip (200) designates, for example, an S- or U- or W-shaped cross-section of the strip.
  15. The method according to one of the preceding claims,
    characterized in that
    the setpoint shape of the strip (200) designates a rectangular cross-section or the evenness of the strip.
  16. The method according to one of the preceding claims,
    characterized in that
    the actual position of the strip (200) designates, for example, an inclined position (11) or a translation (12) or an offset (13) of the strip (200) in relation to the setpoint position (SL) in the slot (122) of the stripping nozzle device (120).
  17. The method according to one of the preceding claims,
    characterized in that
    the setpoint position (SL) of the strip designates the centred position in the slot (122) of the stripping nozzle device (120).
  18. The method according to one of the preceding claims,
    characterized in that
    the processing positions of the magnets in the width direction (R), the currents applied to the coils and/or the position and engagement of the correcting roller (140) are saved in a database, preferably classified according to the steel grade of the strip (200), the yield strength of the strip, the thickness of the strip, the width of the strip, the temperature of the strip and/or according to the temperature of the coating agent (112) in the coating container (110) when the strip (200) is run through it.
  19. A coating device (100) for coating a metal strip with a coating agent (110), for example zinc, having:
    a coating container (110), which is filled with the liquid coating agent;
    a stripping nozzle device (120);
    a strip stabilization device (130) with a plurality of magnets (132) on the two broad sides of a slot of the strip stabilization device;
    at least one sensor (170, 180) for the capture of the actual shape and/or of the actual position of the metal strip in the slot of the stripping nozzle device (120); and
    a control device (160) for determining a shape control deviation as the difference between the actual shape of the strip (200) and a predetermined setpoint shape of the strip in the area of the stripping nozzle device (120) and for controlling the magnets (132) via a magnet actuator (136);
    characterized in that
    the control device and the magnet actuator (136) are further configured so as to shift as a function of the shape control deviation at least one of the magnets in the width direction of the strip relative to at least one of the magnets on the opposite broad side of the strip and move the same into a processing position in which it is approximately opposite a trough in the actual shape of the strip.
  20. The coating device (100) according to claim 19,
    characterized in that
    the control device (160) and the magnet actuator (136) are further configured to move also the at least one magnet (132) as a function of the position control deviation of the strip (200) in the width direction.
  21. The coating device (100) according to claim 19 or 20,
    characterized in that
    the control device (160) is further configured to also control the actuator (146) of the controlling roller (140) in such a manner that the strip stabilization device is operable within its operating limits.
  22. The coating device (100) according to one of claims 19 to 21,
    characterized in that
    the control device (160) is further configured to set the current (1) through the at least one magnet (132) as a function of the actual shape and/or of the actual position of the strip (200) so that the setpoint shape and/or the setpoint position are ideally realized.
  23. The coating device (100) according to one of claims 19 to 22,
    characterized in that
    the number of magnets (132) per broad side is uneven, for example 5 or 7.
EP17754711.4A 2016-08-26 2017-08-17 Method and apparatus for coating a metal sheet Active EP3504352B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL17754711T PL3504352T3 (en) 2016-08-26 2017-08-17 Method and apparatus for coating a metal sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016216131 2016-08-26
DE102016222230.9A DE102016222230A1 (en) 2016-08-26 2016-11-11 Method and coating device for coating a metal strip
PCT/EP2017/070872 WO2018036908A1 (en) 2016-08-26 2017-08-17 Method and coating device for coating a metal strip

Publications (2)

Publication Number Publication Date
EP3504352A1 EP3504352A1 (en) 2019-07-03
EP3504352B1 true EP3504352B1 (en) 2020-06-24

Family

ID=61166960

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17754711.4A Active EP3504352B1 (en) 2016-08-26 2017-08-17 Method and apparatus for coating a metal sheet

Country Status (18)

Country Link
US (2) US11255009B2 (en)
EP (1) EP3504352B1 (en)
JP (1) JP6733047B2 (en)
KR (1) KR102240149B1 (en)
CN (1) CN109790613B (en)
AU (1) AU2017317465B2 (en)
BR (1) BR112019003801B1 (en)
CA (1) CA3034334C (en)
DE (1) DE102016222230A1 (en)
ES (1) ES2812818T3 (en)
HU (1) HUE052043T2 (en)
MX (1) MX2019002188A (en)
MY (1) MY191187A (en)
PL (1) PL3504352T3 (en)
PT (1) PT3504352T (en)
RU (1) RU2713523C1 (en)
WO (1) WO2018036908A1 (en)
ZA (1) ZA201900688B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016222230A1 (en) 2016-08-26 2018-03-01 Sms Group Gmbh Method and coating device for coating a metal strip
WO2018189874A1 (en) * 2017-04-14 2018-10-18 Primetals Technologies Japan株式会社 Plating coating weight control mechanism and plating coating weight control method
DE102017109559B3 (en) 2017-05-04 2018-07-26 Fontaine Engineering Und Maschinen Gmbh Apparatus for treating a metal strip
IT202000016012A1 (en) * 2020-07-02 2022-01-02 Danieli Off Mecc EQUIPMENT FOR CORRECTING THE FLATNESS OF A METALLIC STRIP AND RELATED CORRECTION METHOD
DE102022100820B3 (en) * 2022-01-14 2023-02-09 Emg Automation Gmbh Stabilizing device and sensor structure for continuously moving metal strips

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3518109A (en) 1968-01-15 1970-06-30 Inland Steel Co Apparatus and method for controlling thickness of molten metal coating by a moving magnetic field
US3635748A (en) 1968-11-29 1972-01-18 Bethlehem Steel Corp Method for treating a flux coating
US3661116A (en) 1970-11-23 1972-05-09 Bethlehem Steel Corp Magnetic stabilizing means for strip
US3778122A (en) 1971-07-29 1973-12-11 R Doll System for contact-free, axially stabilized and radially centered positioning of a rotating shaft, particularly of an operating machine for low temperatures
US4135006A (en) 1974-07-29 1979-01-16 United States Steel Corporation Automatic coating weight controls for automatic coating processes
US4444814A (en) 1982-06-11 1984-04-24 Armco Inc. Finishing method and means for conventional hot-dip coating of a ferrous base metal strip with a molten coating metal using conventional finishing rolls
FR2544337B1 (en) 1983-04-13 1985-08-09 Ziegler Sa METHOD AND INSTALLATION FOR THE CONTINUOUS COATING OF A STRIP USING AN OXIDIZABLE COATING
CA2072210A1 (en) * 1991-06-25 1992-12-26 Toshio Sato Method for continuously moving a steel strip
JPH0530148U (en) * 1991-09-25 1993-04-20 三菱重工業株式会社 Non-contact strip straightening device
JP3574204B2 (en) 1995-01-24 2004-10-06 新日本製鐵株式会社 Apparatus and method for controlling coating weight of hot-dip coated steel sheet
CA2225537C (en) 1996-12-27 2001-05-15 Mitsubishi Heavy Industries, Ltd. Hot dip coating apparatus and method
JPH10298727A (en) * 1997-04-23 1998-11-10 Nkk Corp Vibration and shape controller for steel sheet
FR2797277A1 (en) 1999-08-05 2001-02-09 Lorraine Laminage METHOD AND DEVICE FOR THE CONTINUOUS PRODUCTION OF A METAL SURFACE COATING ON A SLIP
CA2409159C (en) 2001-03-15 2009-04-21 Nkk Corporation Method for manufacturing hot-dip plated metal strip and apparatus for manufacturing the same
JP3611308B2 (en) * 2001-03-28 2005-01-19 三菱重工業株式会社 Strip shape correction apparatus and method
US20040050323A1 (en) 2001-08-24 2004-03-18 Hong-Kook Chae Apparatus for controlling coating weight on strip in continuous galvanizing process
JP2004027315A (en) * 2002-06-27 2004-01-29 Jfe Steel Kk Method and apparatus for manufacturing hot dip metal-coated steel plate
SE527507C2 (en) * 2004-07-13 2006-03-28 Abb Ab An apparatus and method for stabilizing a metallic article as well as a use of the apparatus
DE102004060425B3 (en) 2004-08-24 2006-04-27 Betriebsforschungsinstitut VDEh - Institut für angewandte Forschung GmbH Process for coil coating
EP1871920B1 (en) 2005-03-24 2012-05-30 Abb Research Ltd. A device and a method for stabilizing a steel sheet
RU2436861C1 (en) 2007-08-22 2011-12-20 Смс Зимаг Аг Procedure and device for application of protective coating by immersion into melt for stabilisation of strip with applied coating passed between blowing off nozzles of installation for application of coating by immersion into melt
DE102007045202A1 (en) * 2007-09-21 2009-04-02 Sms Demag Ag Device for strip edge stabilization
SE0702163L (en) 2007-09-25 2008-12-23 Abb Research Ltd An apparatus and method for stabilizing and visual monitoring an elongated metallic band
JP2009179834A (en) 2008-01-30 2009-08-13 Mitsubishi-Hitachi Metals Machinery Inc Strip shape correction and strip vibration reduction method, and hot dip coated strip manufacturing method
WO2009138576A1 (en) 2008-05-15 2009-11-19 Siemens Vai Metals Technologies Sas System and method for guiding a galvanising product wiping device
RU2482213C2 (en) * 2008-09-23 2013-05-20 Сименс Фаи Металз Текнолоджиз Сас Method and device to squeeze liquid coating metal at outlet of tank for application of metal coating by submersion
DE102009051932A1 (en) * 2009-11-04 2011-05-05 Sms Siemag Ag Apparatus for coating a metallic strip and method therefor
JP5221732B2 (en) 2010-10-26 2013-06-26 日新製鋼株式会社 Gas wiping device
KR101322066B1 (en) * 2010-12-10 2013-10-28 주식회사 포스코 Strip Stabilizing Device for Minimizing Vibration of Strip
IT1405694B1 (en) 2011-02-22 2014-01-24 Danieli Off Mecc ELECTROMAGNETIC DEVICE FOR STABILIZING AND REDUCING THE DEFORMATION OF A FERROMAGNETIC TAPE AND ITS PROCESS
WO2012172648A1 (en) 2011-06-14 2012-12-20 三菱日立製鉄機械株式会社 Continuous hot-dip plating equipment
CN202401120U (en) * 2011-12-19 2012-08-29 天津市凤鸣冷板有限公司 Band steel stabilization structure used in continuous galvanizing production line
BR112014006754B1 (en) * 2012-05-10 2021-07-20 Nippon Steel Corporation METHOD OF CONTROLLING THE SHAPE OF A SHEET OF STEEL AND CONTROL EQUIPMENT OF THE SHAPE OF A SHEET OF STEEL
NO2786187T3 (en) 2014-11-21 2018-07-28
CN205046185U (en) * 2015-07-30 2016-02-24 武汉钢铁(集团)公司 Galvanized wire belted steel vibration damping device
DE202015104823U1 (en) 2015-09-01 2015-10-27 Fontaine Engineering Und Maschinen Gmbh Apparatus for treating a metal strip
DE102016222230A1 (en) 2016-08-26 2018-03-01 Sms Group Gmbh Method and coating device for coating a metal strip

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2018036908A1 (en) 2018-03-01
DE102016222230A1 (en) 2018-03-01
CA3034334A1 (en) 2018-03-01
MX2019002188A (en) 2019-06-06
US20220049339A1 (en) 2022-02-17
MY191187A (en) 2022-06-06
BR112019003801A2 (en) 2019-05-21
AU2017317465A1 (en) 2019-03-07
US11255009B2 (en) 2022-02-22
AU2017317465B2 (en) 2019-10-10
JP6733047B2 (en) 2020-07-29
RU2713523C1 (en) 2020-02-05
PL3504352T3 (en) 2020-11-30
JP2019525008A (en) 2019-09-05
CN109790613A (en) 2019-05-21
ES2812818T3 (en) 2021-03-18
KR20190039164A (en) 2019-04-10
PT3504352T (en) 2020-09-01
US20190194791A1 (en) 2019-06-27
CA3034334C (en) 2022-04-26
BR112019003801B1 (en) 2022-09-20
HUE052043T2 (en) 2021-04-28
ZA201900688B (en) 2019-10-30
KR102240149B1 (en) 2021-04-14
CN109790613B (en) 2021-08-31
EP3504352A1 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
EP3504352B1 (en) Method and apparatus for coating a metal sheet
DE3217381C2 (en) Device for loading traveling grids with green pellets
EP3049198B2 (en) Device for guiding metal strips with grinding bodies
DD248280A5 (en) APPARATUS AND METHOD FOR PRODUCING HARVEST
DE3927680A1 (en) APPLICATION DEVICE
EP3221487B1 (en) Method and device for coating a metal strip
DE102009012334B4 (en) Method for applying coolant to a cast metal strand in a continuous casting plant and continuous casting plant
EP3221486B1 (en) Method and device for coating a metal strip with a coating material which is at first still liquid
EP4210877A1 (en) Method and device for electrostatically coating metal strips
DE10037867A1 (en) Flexible rolling process, for metal strip, involves work roll bending line control during or immediately after each roll gap adjustment to obtain flat strip
DE19524729A1 (en) Method and device for rolling strips with a non-uniform thickness and / or length distribution across their width
DE19962754A1 (en) Process for flexibly rolling a metal strip comprises carrying out a compensation of the temperature influence effecting the metal strip during rolling to avoid deviations
EP3774099B1 (en) Cooling device and method for operating the same
EP3056097B1 (en) Device for producing articles for the tobacco processing industry
EP3823771B1 (en) Method for ascertaining control variables for active profile and flatness control elements for a rolling stand and profile and average flatness values for hot-rolled metal strip
DE2705197C3 (en) Process for the heat treatment of strips of ductile metal
DE3302333C2 (en)
EP3307448B1 (en) Method and device for controlling a parameter of a rolled stock
EP3129158B1 (en) Method and apparatus for coating a continuous moving metal strip and installation for continuous rolling of metal pieces
DE19939166B4 (en) Method for flexible rolling of a metal strip
DE102021125652A1 (en) DEVICE FOR FOLDING A PORTION OF CHEESE
DE10010053A1 (en) Leveling machine for steel sheets ha frame with front and central roller pairs with cylindrical surfaces, and rear roller pairs with conical surfaces to remove warping/ deformation
EP2098470A1 (en) Coiling device for coiling a tape-shaped piece of material
DE1815069A1 (en) Device for the controlled unwinding of a web of material

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200109

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017005895

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1283978

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3504352

Country of ref document: PT

Date of ref document: 20200901

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20200824

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E019633

Country of ref document: EE

Effective date: 20200720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200924

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200924

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 35446

Country of ref document: SK

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20200402611

Country of ref document: GR

Effective date: 20201116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201024

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2812818

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210318

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017005895

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E052043

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MK

Payment date: 20220725

Year of fee payment: 6

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230821

Year of fee payment: 7

Ref country code: LU

Payment date: 20230821

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230815

Year of fee payment: 7

Ref country code: IT

Payment date: 20230825

Year of fee payment: 7

Ref country code: GB

Payment date: 20230822

Year of fee payment: 7

Ref country code: FI

Payment date: 20230821

Year of fee payment: 7

Ref country code: EE

Payment date: 20230814

Year of fee payment: 7

Ref country code: CZ

Payment date: 20230807

Year of fee payment: 7

Ref country code: AT

Payment date: 20230822

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230803

Year of fee payment: 7

Ref country code: SE

Payment date: 20230821

Year of fee payment: 7

Ref country code: PT

Payment date: 20230803

Year of fee payment: 7

Ref country code: PL

Payment date: 20230804

Year of fee payment: 7

Ref country code: HU

Payment date: 20230823

Year of fee payment: 7

Ref country code: GR

Payment date: 20230822

Year of fee payment: 7

Ref country code: FR

Payment date: 20230828

Year of fee payment: 7

Ref country code: DE

Payment date: 20230821

Year of fee payment: 7

Ref country code: BE

Payment date: 20230821

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231027

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MK

Payment date: 20230721

Year of fee payment: 7