EP3307448B1 - Method and device for controlling a parameter of a rolled stock - Google Patents

Method and device for controlling a parameter of a rolled stock Download PDF

Info

Publication number
EP3307448B1
EP3307448B1 EP16727716.9A EP16727716A EP3307448B1 EP 3307448 B1 EP3307448 B1 EP 3307448B1 EP 16727716 A EP16727716 A EP 16727716A EP 3307448 B1 EP3307448 B1 EP 3307448B1
Authority
EP
European Patent Office
Prior art keywords
roll
cooling shell
parameter
circumferential direction
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16727716.9A
Other languages
German (de)
French (fr)
Other versions
EP3307448A1 (en
Inventor
Matthias Kipping
Ralf Seidel
Johannes ALKEN
Torsten Müller
Magnus TREUDE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Publication of EP3307448A1 publication Critical patent/EP3307448A1/en
Application granted granted Critical
Publication of EP3307448B1 publication Critical patent/EP3307448B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/30Control of flatness or profile during rolling of strip, sheets or plates using roll camber control
    • B21B37/32Control of flatness or profile during rolling of strip, sheets or plates using roll camber control by cooling, heating or lubricating the rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/30Control of flatness or profile during rolling of strip, sheets or plates using roll camber control
    • B21B37/34Control of flatness or profile during rolling of strip, sheets or plates using roll camber control by hydraulic expansion of the rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/06Lubricating, cooling or heating rolls
    • B21B27/10Lubricating, cooling or heating rolls externally
    • B21B2027/103Lubricating, cooling or heating rolls externally cooling externally

Definitions

  • the invention relates to a method and an apparatus for controlling a parameter, for example the profile or the flatness of a strip-shaped rolling stock, in particular a metal strip, rolled by means of a roll stand.
  • a generic method and a generic device are from document DE 10 2012 202 340 A1 known.
  • FIG. 13 shows a known cascade control for regulating, for example, the profile or the flatness of a metal strip on the setting of the thermal roll bale contour. For the sake of simplicity, only parameters will be discussed below instead of distinguishing between profile and flatness.
  • the actual value ie the actual parameter of the rolling stock at the output of the controlled system, ie in particular measured at the output of a rolling stand after rolling.
  • the actual parameter P actual of the rolling stock is fed to a parameter comparison device 120 and compared there with a predetermined desired parameter P Soll .
  • the difference between the setpoint and the actual value is referred to as the parameter control deviation eP.
  • This parameter deviation eP is used by a desired current determining device 130 for determining a desired value Q abSoll for the current of the heat to be dissipated by the roller.
  • the desired current determining means 130 typically also takes into account other predetermined ones Requirements for the rolls from the rolling process for determining the target value Q abSoll or an equivalent value.
  • this previously determined setpoint value Q abSoll for the flow of heat removed from the roll is compared with the actual value Q abIst for the flow of heat to be dissipated by the roll, in order to calculate the difference in the form of a so-called Heat flow control deviation eQ to calculate.
  • the actual value Q abIst for the current of the heat to be dissipated by the roller is determined directly or indirectly with the aid of a corresponding actual current measuring device 170.
  • the rolling stand with the rollers 300 for rolling the rolling stock 200 represents the controlled system 180 in FIG FIG. 13 , Further shows FIG. 13 a controller 150, which is designed to generate a control signal s in response to the received heat flow control deviation e Q.
  • the control signal is used to control an actuator 160 so that the heat flow control deviation is as possible zero.
  • typically the volumetric flow or the pressure of the cooling medium for roll cooling in the roll stand is used as manipulated variable, wherein in particular the volume flow or the pressure of the cooling medium is adjusted by means of suitable actuators 165 as a function of the actuating signal s.
  • cooling shells are circular in cross section Trays whose curvature is adapted to the curvature or the diameter of the roll to be cooled.
  • cooling shells for roll cooling is known, for example, from the German patent applications DE 10 2012 216 570 A1 , of the DE 10 2012 202 340 , of the DE 10 2009 053 073 or the European patent specification EP 2 114 584 B1 ,
  • the change in the gap height h is structurally very complex.
  • the exact measurement of the gap height for an active integration into a control is difficult to realize and has therefore not been implemented in practice.
  • the change in the coolant temperature is as an actuator of a control technically conceivable but too slow, this is very costly.
  • the invention is based on the object, an alternative method and an alternative device for controlling a parameter of a rolled strip with the aid of a rolling mill.
  • the actuating signal is a cooling shell assigned to a roll of the roll stand, wherein the cooling shell is variable in its length of action in the circumferential direction of the roll, and in that the action length of the cooling shell in the circumferential direction of the roll is adjusted with the aid of the control signal Dependence of the parameter control deviation is suitably set. Suitable here means that the parameter control deviation becomes zero as far as possible.
  • the heat flow can not be measured directly. Therefore, as far as is spoken in the text or the figures of a measurement of the heat flow or a measuring device for the heat flow, thus a computational determination of the heat flow meant by evaluation of measured temperature differences, here between the inlet and the outlet of the coolant.
  • the claimed variation of the length of action of the cooling shell in the circumferential direction of the roll provides a simple, fast and cost-effective, because more energy-efficient way to vary the amount of heat to be dissipated by the roll.
  • the cooling shell typically has a cross section in the form of a portion of a circular arc for covering a surface area of the roll.
  • the determination of the actuating signal has the following sub-steps: determination of a desired value for the current of the heat to be dissipated by the roller from the previously determined parameter deviation and optionally taking into account further requirements from the rolling process to the cooling of the roller; Determining the actual current of the heat actually removed from the roll; Determining a heat flow control deviation as the difference between the target value and the actual value for the Current of heat to be dissipated by the roller; and determining the control signal for adjusting the length of action of the cooling shell in the circumferential direction in accordance with the heat flow control deviation, which in turn is dependent on the parameter control deviation.
  • the aim of the cascade control according to the invention is that in addition to the parameter deviation and the heat flow control deviation is zero.
  • the length of action of the cooling shell in the circumferential direction is increased when the desired value of the dissipated heat flow is greater than the actual value, and vice versa.
  • the length of action of the cooling shell in the circumferential direction can remain unchanged if the desired value of the heat flow is equal to the actual value.
  • the invention essentially proposes three different embodiments:
  • the cooling shell is divided into at least a first and a second cooling shell segment, each having a cross section in the form of a portion of a circular arc for covering a surface region of the roll.
  • the first and the second cooling shell segments are displaced relative to one another in the circumferential direction in accordance with the actuating signal. In particular, this results in an at least partial overlapping of the first and second cooling shell segments.
  • a second embodiment provides that the cooling shell is formed of flexible material which allows adjusting the length of action of the cooling shell in the circumferential direction of the roll by bending at least parts of the cooling shell away from the roll or towards the roll or by winding or unwinding the roll flexible material in accordance with the control signal.
  • the cooling shell on at least one rotatable flap, which allows the setting of the length of action of the cooling shell in the circumferential direction in that the flap is opened or closed in accordance with the control signal.
  • the parameters considered in the context of the present invention are typically physical quantities, which are considered in the width direction of the rolling stock.
  • the parameter may be the profile of the rolling stock in the width direction or the distribution of the flatness of the rolling stock in the width direction.
  • the process can be carried out during the ongoing operation of a rolling stand, preferably / but also in rolling breaks. In both cases, the method advantageously makes it possible to remove a defined heat flow from the roll.
  • the present invention further provides that a plurality of cooling shells in the axial direction of the roller are arranged side by side and these individual cooling shells individually in their Impact length in the circumferential direction of the roller are adjustable.
  • FIG. 1 shows a cascade control for controlling a parameter of a metal strip, for example, to control its profile or its flatness.
  • a parameter of a metal strip for example, to control its profile or its flatness.
  • the actuator 160 is a cooling shell, which is circular in cross section.
  • the cooling shell is spaced, placed against the surface of a roll to be cooled in a rolling mill, so that to set a cooling gap for fürzu meetingsdes coolant between the cooling shell and the roll surface.
  • the cooling shell is formed in its cross section preferably complementary to the outer contour or to the cross section of the roller.
  • the cooling shell according to the invention is designed and adjustable in the circumferential direction of the roll with the aid of an actuator 165 in its action length.
  • the action length of the cooling shell 160 in the circumferential direction of the roll is suitably set as a function of the heat flow control deviation e Q.
  • suitable means that the heat flow control deviation e Q becomes zero as far as possible.
  • the heat flow control deviation e Q is in turn dependent on the parameter deviation eP, as discussed with reference to FIG FIG. 13 described.
  • the regulation according to the invention should, in addition to the heat flow control deviation and the parameter control deviation as possible to zero.
  • the action length of the cooling shell 160 in the circumferential direction of the roll is increased if the target value Q abSoll of the heat flow to be delivered by the roll is greater than the measured actual value Q ab Ist of the heat flow, and vice versa.
  • the length of action of the cooling shell in the circumferential direction can remain unchanged if the target value Q abSoll of the heat flow to be delivered by the roll is equal to the actual value Q abIst of the heat flow delivered.
  • FIG. 2 shows a first embodiment of the cooling shell according to the invention.
  • the cooling shell 160 at least a first and a second cooling shell segment 161 and 162, each having a cross-section in shape a portion of a circular arc for covering a surface area of the roller.
  • the actuator 165 which is in the in FIG. 2 shown first variant is designed as a hydraulic cylinder, the two cooling shell segments 161, 162 in the circumferential direction of the roller 300 in accordance with the control signal s relative to each other are shifted to adjust in this way the entire length of action b of the cooling shell 160 in accordance with the control signal s suitable.
  • the action length b is always in the present description by the in FIG. 2 and the following figures represented angle or the corresponding arc length represented.
  • the reference numeral A denotes the axis of rotation of the roller 300 and the reference numeral D whose direction of rotation during rolling of the rolling stock 200, which moves in the rolling direction WR.
  • FIG. 2 It can also be seen that the two cooling-plate segments 161, 162 are each arranged at a distance from the outer surface of the roller 300, so that a cooling gap is formed between the cooling-plate segments and the surface of the roller 300.
  • the cooling gap 180 is fed with cooling medium 400, which flows through the cooling gap in the direction of the arrow or in the opposite direction.
  • the cooling effect is essentially determined by the length of action b of the cooling shell 160 or of the cooling shell segments 161, 162.
  • the greater the effect length b the greater the cooling capacity, ie the more heat can be removed from the roll 300.
  • FIG. 2 shows the first embodiment of the cooling shell 160 with a relatively short effective length b, because the two cooling shell segments 161, 162 at the in FIG. 2 overlap position shown largely or strongly.
  • FIG. 3 shows the first embodiment with the first variant for the actuator 165 in a working position in which the two cooling-cup segments 161 and 162 with respect to the in FIG. 2 overlap less shown working position and in which therefore the effect length b is increased.
  • FIG. 4 shows the first embodiment of the cooling shell with a second variant for the actuator 165.
  • the actuator or the displacement device 165 according to FIG. 4 more complicated.
  • the displacement device comprises a rotatably mounted wheel 165-1 and an associated drive device 165-2 for rotationally driving the wheel.
  • the wheel 165-1 in turn is coupled to the second cooling shell segment 162, for example by coupling element 165-3, by frictional engagement or positive engagement such that a rotational movement of the wheel 165-1 the displacement of the second cooling shell segment 162 in the circumferential direction of the roller 300 and relative to the first cooling shell segment 161 causes.
  • FIG. 4 shows the cooling shell 160 with the two cooling-cup segments 161, 162 in a working position with a relatively short effective length b.
  • FIG. 5 shows the first embodiment of the cooling shell with the second variant of the displacement device 165 in a working position with increased effective length b.
  • the first cooling-cup segment 161 may be arranged stationarily with respect to the roller 300.
  • FIG. 6 shows a second embodiment of the cooling shell 160 according to the invention, wherein it is formed of a flexible material.
  • the actuator 165 is formed in this case as a bending device or as winding and unwinding for adjusting the length of action b of the cooling shell 160 in the circumferential direction of the roller 300.
  • the actuator 165 is used, for example, to roll-like winding the flexible cooling shell 160, in this way the length of action b of the cooling gap 180 to make relatively small.
  • FIG. 7 shows the cooling shell 160 with compared to FIG. 6 large impact length b, which was achieved by the fact that the actuator 165 has unwound the flexible material of the cooling shell and thus increased the cooling shell.
  • FIG. 8 shows a third embodiment of the cooling shell 160 according to the invention, wherein it has at least one, but typically a plurality of rotatable flaps 163.
  • An actuator 165 is then configured to adjust the length of action of the cooling shell 160 in the circumferential direction of the roll 300 by opening or closing at least one of the flaps 163 in accordance with the control signal s.
  • FIGS. 8 to 11 each show different variants for influencing the length of action b of the cooling shell 160 by individually opening individual flaps 163.
  • the flaps form part of the surface of the cooling shell 160 and therefore limit the cooling gap 180 at least in the closed state.
  • the one in here FIG. 12 Actuator 165 is configured to suitably individually adjust the effective length of each one of the n cooling cups 160-n in the circumferential direction of the roller 300 in accordance with the control deviation eQ represented by the actuating signal s.
  • the heat flow control deviation eQ generally represents - and so does the in FIG.
  • the widths of the individual partial cooling shells 160-n in the axial direction may be individually different; They are in FIG. 12 denoted by the reference symbols a, b, c and d.
  • the Operakühlschalen 160-n can also be a common have integral first cooling shell segment 161, so that only the second cooling shell segments 162-n in their length of action in the circumferential direction of the roller 300 are variably adjustable, as indicated by the vertical double arrows in FIG. 12 is indicated.
  • FIG. 12 is not limited to the embodiment of the cooling shells 160 according to the first embodiment. Rather, that is in FIG. 12 illustrated basic principle of the individual adjustability of the effective lengths b over the axial widths of the roller with all three described in the present description embodiments for the cooling shell 160 realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Metal Rolling (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Regeln eines Parameters, beispielsweise des Profils oder der Planheit eines mit Hilfe eines Walzgerüstes gewalzten bandförmigen Walzgutes, insbesondere eines Metallbandes. Ein gattungsgemässes Verfahren sowie eine gattungsgemässe Vorrichtung sind aus Dokument DE 10 2012 202 340 A1 bekannt.The invention relates to a method and an apparatus for controlling a parameter, for example the profile or the flatness of a strip-shaped rolling stock, in particular a metal strip, rolled by means of a roll stand. A generic method and a generic device are from document DE 10 2012 202 340 A1 known.

Im Stand der Technik sind derartige Verfahren und Vorrichtungen grundsätzlich bekannt. Das Grundprinzip einer solchen Regelung wird nachfolgend unter Bezugnahme auf Figur 13 näher beschrieben.In the prior art, such methods and devices are known in principle. The basic principle of such a regulation is described below with reference to FIG. 13 described in more detail.

Figur 13 zeigt eine bekannte Kaskaden-Regelung zum Regeln beispielsweise des Profils oder der Planheit eines Metallbandes über die Einstellung der thermischen Walzenballenkontur. Der Einfachheit halber wird nachfolgend lediglich von Parameter gesprochen anstatt zwischen Profil und Planheit zu unterscheiden. FIG. 13 shows a known cascade control for regulating, for example, the profile or the flatness of a metal strip on the setting of the thermal roll bale contour. For the sake of simplicity, only parameters will be discussed below instead of distinguishing between profile and flatness.

Zum Zweck der Parameter-Regelung wird gemäß Figur 13 zunächst der Ist-Wert, d. h. der Ist-Parameter des Walzgutes am Ausgang der Regelstrecke, d. h. insbesondere am Ausgang eines Walzgerüstes nach dem Walzen gemessen. Nach dem Messen mit Hilfe der Parameter-Messeinrichtung 110 wird der Ist-Parameter PIst des Walzgutes einer Parameter-Vergleichseinrichtung 120 zugeführt und dort mit einem vorgegebenen Soll-Parameter PSoll verglichen. Die Differenz zwischen dem Soll- und dem Ist-Wert wird als Parameter-Regelabweichung eP bezeichnet. Diese Parameter-Regelabweichung eP dient einer Soll-Strom-Ermittlungseinrichtung 130 zum Ermitteln eines Soll-Wertes QabSoll für den Strom der von der Walze abzuführenden Wärme. Neben der Parameter-Regelabweichung eP berücksichtigt die Soll-Strom-Ermittlungseinrichtung 130 typischerweise auch andere vorgegebene Anforderungen an die Walzen aus dem Walzprozess zur Ermittlung des Soll-Wertes QabSoll oder eines äquivalenten Wertes. In einer Wärmestrom-Vergleichseinrichtung 140 wird dieser zuvor ermittelte Soll-Wert QabSoll für den Strom der von der Walze abgeführten Wärme mit dem Ist-Wert QabIst für den Strom der von der Walze abzuführenden Wärme verglichen, um daraus die Differenz in Form einer sogenannten Wärmestrom-Regelabweichung eQ zu berechnen. Der Ist-Wert QabIst für den Strom der von der Walze abzuführenden Wärme wird mit Hilfe einer entsprechenden Ist-Strom-Messeinrichtung 170 direkt oder indirekt ermittelt. Das Walzgerüst mit den Walzen 300 zum Walzen des Walzgutes 200 repräsentiert die Regelstrecke 180 in Figur 13. Weiterhin zeigt Figur 13 einen Regler 150, welcher ausgebildet ist, ein Stellsignal s in Abhängigkeit der empfangenen Wärmestrom-Regelabweichung eQ zu generieren. Das Stellsignal dient zum Ansteuern eines Stellglieds 160 so, dass die Wärmestrom-Regelabweichung möglichst zu Null wird. Im Stand der Technik wird als Stellgröße typischerweise der Volumenstrom oder der Druck des Kühlmediums für die Walzenkühlung im Walzgerüst verwendet, wobei insbesondere der Volumenstrom oder der Druck des Kühlmediums mit Hilfe geeigneter Stellglieder 165 in Abhängigkeit des Stellsignals s eingestellt wird.For the purpose of the parameter control is according to FIG. 13 First, the actual value, ie the actual parameter of the rolling stock at the output of the controlled system, ie in particular measured at the output of a rolling stand after rolling. After measuring with the aid of the parameter measuring device 110, the actual parameter P actual of the rolling stock is fed to a parameter comparison device 120 and compared there with a predetermined desired parameter P Soll . The difference between the setpoint and the actual value is referred to as the parameter control deviation eP. This parameter deviation eP is used by a desired current determining device 130 for determining a desired value Q abSoll for the current of the heat to be dissipated by the roller. In addition to the parameter deviation eP, the desired current determining means 130 typically also takes into account other predetermined ones Requirements for the rolls from the rolling process for determining the target value Q abSoll or an equivalent value. In a heat flow comparator 140, this previously determined setpoint value Q abSoll for the flow of heat removed from the roll is compared with the actual value Q abIst for the flow of heat to be dissipated by the roll, in order to calculate the difference in the form of a so-called Heat flow control deviation eQ to calculate. The actual value Q abIst for the current of the heat to be dissipated by the roller is determined directly or indirectly with the aid of a corresponding actual current measuring device 170. The rolling stand with the rollers 300 for rolling the rolling stock 200 represents the controlled system 180 in FIG FIG. 13 , Further shows FIG. 13 a controller 150, which is designed to generate a control signal s in response to the received heat flow control deviation e Q. The control signal is used to control an actuator 160 so that the heat flow control deviation is as possible zero. In the prior art, typically the volumetric flow or the pressure of the cooling medium for roll cooling in the roll stand is used as manipulated variable, wherein in particular the volume flow or the pressure of the cooling medium is adjusted by means of suitable actuators 165 as a function of the actuating signal s.

Bei der im Stand der Technik verwendeten, mit einer Regelung gekoppelten Kühlung handelt es sich in der Regel um eine Sprühkühlung. Deren Nachteil liegt in der geringen Wärmeübertragung zwischen Walze und Kühlmittel. Für ein optimales Kühlergebnis muss eine große Menge Kühlmittel im Umlauf gehalten werden.When used in the art, coupled with a control cooling is usually a spray cooling. Their disadvantage lies in the low heat transfer between the roller and the coolant. For optimal cooling results, a large amount of coolant must be circulated.

Eine im Stand der Technik bekannte Möglichkeit zur Abfuhr einer Wärmemenge von einer Walze eines Walzgerüstes liegt in der Verwendung von sogenannten Kühlschalen. Dabei handelt es sich um im Querschnitt kreisförmig gebogene Schalen, deren Krümmung an die Krümmung bzw. den Durchmesser der zu kühlenden Walze angepasst ist.A possibility known in the prior art for removing an amount of heat from a roll of a roll stand is the use of so-called cooling shells. These are circular in cross section Trays whose curvature is adapted to the curvature or the diameter of the roll to be cooled.

Die Verwendung von Kühlschalen zur Walzenkühlung ist beispielsweise bekannt aus den deutschen Patentanmeldungen DE 10 2012 216 570 A1 , der DE 10 2012 202 340 , der DE 10 2009 053 073 oder der europäischen Patentschrift EP 2 114 584 B1 .The use of cooling shells for roll cooling is known, for example, from the German patent applications DE 10 2012 216 570 A1 , of the DE 10 2012 202 340 , of the DE 10 2009 053 073 or the European patent specification EP 2 114 584 B1 ,

Zur Variation der abgeführten Wärmemenge sind aus dem Stand der Technik bekannt: die Veränderung der Spalthöhe h zwischen Kühlschale und Walze (technologisch verändert sich der Druck bzw. der Volumenstrom des Kühlmittels in dem Spalt), die direkte Veränderung von Druck bzw. Volumen-Strom des Kühlmittels und die Veränderung der Kühlmitteltemperatur.To vary the amount of heat dissipated known from the prior art: the change in the gap height h between the cooling shell and roller (technologically changes the pressure or the flow rate of the coolant in the gap), the direct change of pressure or volume flow of the Coolant and the change in the coolant temperature.

Die Veränderung der Spalthöhe h ist konstruktiv sehr aufwändig. Die genaue Messung der Spalthöhe für eine aktive Einbindung in eine Regelung lässt sich nur schwer realisieren und wurde deshalb bisher nicht in der Praxis umgesetzt.The change in the gap height h is structurally very complex. The exact measurement of the gap height for an active integration into a control is difficult to realize and has therefore not been implemented in practice.

Die Veränderung des Drucks/Volumenstroms hat sich im praktischen Betrieb, als ideal für eine Voreinstellung erwiesen, jedoch als flexibles Stellglied einer Regelung muss die Effizienz weiter steigen.The change in pressure / volumetric flow has proven to be ideal for presetting in practical operation, but as a flexible actuator of a control, efficiency must continue to increase.

Die Veränderung der Kühlmitteltemperatur ist als Stellglied einer Regelung technisch denkbar aber zu träge, dazu ist sie sehr kostenintensiv.The change in the coolant temperature is as an actuator of a control technically conceivable but too slow, this is very costly.

Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, ein alternatives Verfahren und eine alternative Vorrichtung zum Regeln eines Parameters eines mit Hilfe eines Walzgerüstes gewalzten bandförmigen Walzgutes.Based on this prior art, the invention is based on the object, an alternative method and an alternative device for controlling a parameter of a rolled strip with the aid of a rolling mill.

Diese Aufgabe wird verfahrenstechnisch durch das in Patentanspruch 1 beanspruchte Verfahren gelöst. Dieses ist dadurch gekennzeichnet, dass es sich bei dem Stellsignal um eine einer Walze des Walzgerüstes zugeordnete Kühlschale handelt, wobei die Kühlschale in ihrer Wirkungslänge in Umfangsrichtung der Walze variierbar ausgebildet ist, und dass mit Hilfe des Stellsignals die Wirkungslänge der Kühlschale in Umfangsrichtung der Walze in Abhängigkeit der Parameter-Regelabweichung geeignet eingestellt wird. Geeignet bedeutet dabei, dass die Parameter-Regelabweichung nach Möglichkeit Null wird.This object is procedurally achieved by the method claimed in claim 1. This is characterized in that the actuating signal is a cooling shell assigned to a roll of the roll stand, wherein the cooling shell is variable in its length of action in the circumferential direction of the roll, and in that the action length of the cooling shell in the circumferential direction of the roll is adjusted with the aid of the control signal Dependence of the parameter control deviation is suitably set. Suitable here means that the parameter control deviation becomes zero as far as possible.

Der Wärmestrom kann nicht direkt gemessen werden. Deshalb ist, soweit im Text oder den Figuren von einer Messung des Wärmestroms bzw. einer Messeinrichtung für den Wärmestrom gesprochen wird, damit eine rechnerische Ermittlung des Wärmestroms gemeint, durch Auswertung von gemessenen Temperaturdifferenzen, hier zwischen dem Zulauf und dem Ablauf des Kühlmittels.The heat flow can not be measured directly. Therefore, as far as is spoken in the text or the figures of a measurement of the heat flow or a measuring device for the heat flow, thus a computational determination of the heat flow meant by evaluation of measured temperature differences, here between the inlet and the outlet of the coolant.

Die beanspruchte Variation der Wirkungslänge der Kühlschale in Umfangsrichtung der Walze bietet eine einfache schnelle und kostengünstige, weil energiesparendere Möglichkeit zur Variation der von der Walze abzuführenden Wärmemenge.The claimed variation of the length of action of the cooling shell in the circumferential direction of the roll provides a simple, fast and cost-effective, because more energy-efficient way to vary the amount of heat to be dissipated by the roll.

Die Kühlschale hat typischerweise einen Querschnitt in Form eines Abschnitts eines Kreisbogens zum Abdecken eines Oberflächenbereichs der Walze.The cooling shell typically has a cross section in the form of a portion of a circular arc for covering a surface area of the roll.

Gemäß einem ersten Ausführungsbespiel weist die Ermittlung des Stellsignals folgende Teilschritte auf: Ermitteln eines Sollwertes für den Strom der von der Walze abzuführenden Wärme aus der zuvor ermittelten Parameter-Regelabweichung sowie optional unter Berücksichtigung weiterer Anforderungen aus dem Walzprozess an die Kühlung der Walze; Ermitteln des Ist-Stromes der tatsächlich von der Walze abgeführten Wärme; Ermitteln einer Wärmestrom-Regelabweichung als Differenz zwischen dem Soll-Wert und dem Ist-Wert für den Strom der von der Walze abzuführende Wärme; und Ermitteln des Stellsignals zum Einstellen der Wirkungslänge der Kühlschale in Umfangsrichtung nach Maßgabe der Wärmestrom-Regelabweichung, welche ihrerseits von der Parameter-Regelabweichung abhängig ist. Ziel der erfindungsgemäßen Kaskaden-Regelung ist es, dass neben der Parameter-Regelabweichung auch die Wärmestrom-Regelabweichung zu Null wird.According to a first exemplary embodiment, the determination of the actuating signal has the following sub-steps: determination of a desired value for the current of the heat to be dissipated by the roller from the previously determined parameter deviation and optionally taking into account further requirements from the rolling process to the cooling of the roller; Determining the actual current of the heat actually removed from the roll; Determining a heat flow control deviation as the difference between the target value and the actual value for the Current of heat to be dissipated by the roller; and determining the control signal for adjusting the length of action of the cooling shell in the circumferential direction in accordance with the heat flow control deviation, which in turn is dependent on the parameter control deviation. The aim of the cascade control according to the invention is that in addition to the parameter deviation and the heat flow control deviation is zero.

Die Wirkungslänge der Kühlschale in Umfangsrichtung wird vergrößert, wenn der Sollwert des abzuführenden Wärmestroms größer als der Ist-Wert ist, und umgekehrt. Die Wirkungslänge der Kühlschale in Umfangsrichtung kann unverändert bleiben, wenn der Sollwerte des Wärmestroms gleich dem Ist-Wert ist.The length of action of the cooling shell in the circumferential direction is increased when the desired value of the dissipated heat flow is greater than the actual value, and vice versa. The length of action of the cooling shell in the circumferential direction can remain unchanged if the desired value of the heat flow is equal to the actual value.

Zur konkreten Realisierung der Veränderung der Wirkungslänge der Kühlschale in Umfangsrichtung der Walze schlägt die Erfindung im Wesentlichen drei unterschiedliche Ausführungsformen vor:
Gemäß einer ersten Ausführungsform ist die Kühlschale in mindestens ein erstes und ein zweites Kühlschalensegment unterteilt, welche jeweils einen Querschnitt in Form eines Abschnitts eines Kreisbogens zum Abdecken eines Oberflächenbereichs der Walze aufweisen. Zum Einstellen der Wirkungslänge der Kühlschale in Umfangsrichtung der Walze werden das erste und das zweite Kühlschalensegment nach Maßgabe des Stellsignals relativ zueinander in Umfangsrichtung verschoben. Insbesondere kommt es dabei zu einem zumindest teilweisen Überlappen des ersten und des zweiten Kühlschalensegmentes.
For concrete realization of the change in the length of action of the cooling shell in the circumferential direction of the roll, the invention essentially proposes three different embodiments:
According to a first embodiment, the cooling shell is divided into at least a first and a second cooling shell segment, each having a cross section in the form of a portion of a circular arc for covering a surface region of the roll. To set the length of action of the cooling shell in the circumferential direction of the roll, the first and the second cooling shell segments are displaced relative to one another in the circumferential direction in accordance with the actuating signal. In particular, this results in an at least partial overlapping of the first and second cooling shell segments.

Eine zweite Ausführungsform sieht vor, dass die Kühlschale aus flexiblem Material gebildet ist, welches das Einstellen der Wirkungslänge der Kühlschale in Umfangsrichtung der Walze ermöglicht durch Biegen von zumindest Teilen der Kühlschale von der Walze weg oder zu der Walze hin oder durch Auf- oder Abwickeln des flexiblen Materials nach Maßgabe des Stellsignals.A second embodiment provides that the cooling shell is formed of flexible material which allows adjusting the length of action of the cooling shell in the circumferential direction of the roll by bending at least parts of the cooling shell away from the roll or towards the roll or by winding or unwinding the roll flexible material in accordance with the control signal.

Gemäß einer dritten Ausführungsform weist die Kühlschale mindestens eine drehbare Klappe auf, welche das Einstellen der Wirkungslänge der Kühlschale in Umfangsrichtung dadurch ermöglicht, dass die Klappe nach Maßgabe des Stellsignals geöffnet oder geschlossen wird.According to a third embodiment, the cooling shell on at least one rotatable flap, which allows the setting of the length of action of the cooling shell in the circumferential direction in that the flap is opened or closed in accordance with the control signal.

Bei den im Rahmen der vorliegenden Erfindung betrachteten Parametern handelt es sich typischerweise um physikalische Größen, welche in Breitenrichtung des Walzgutes betrachtet werden. Konkret kann es sich bei dem Parameter um das Profil des Walzgutes in Breitenrichtung oder um die Verteilung der Planheit des Walzgutes in Breitenrichtung handeln.The parameters considered in the context of the present invention are typically physical quantities, which are considered in the width direction of the rolling stock. Specifically, the parameter may be the profile of the rolling stock in the width direction or the distribution of the flatness of the rolling stock in the width direction.

Die Durchführung des Verfahrens kann während des laufenden Betriebs eines Walzgerüstes, vorzugsweise/optional aber auch in Walzpausen erfolgen. In beiden Fällen ermöglicht es das Verfahren vorteilhafterweise, einen definierten Wärmestrom aus der Walze abzuführen.The process can be carried out during the ongoing operation of a rolling stand, preferably / but also in rolling breaks. In both cases, the method advantageously makes it possible to remove a defined heat flow from the roll.

Vorrichtungstechnisch wird die oben genannte Aufgabe durch den Gegenstand des Patentanspruchs 8 gelöst. Die Vorteile dieser Lösung entsprechen den oben mit Bezug auf das beanspruchte Verfahren genannten Vorteilen.Device technology, the above object is achieved by the subject matter of claim 8. The advantages of this solution correspond to the advantages mentioned above with respect to the claimed method.

Um eine optimale Einstellung der von der Walze abzuführenden Wärmemenge über ihre axiale Länge, d. h. über die Breitenrichtung des Walzgutes in Abhängigkeit der gewünschten Verteilung der von der Walze abzuführenden Wärmemenge in axialer Richtung erreichen zu können, sieht die vorliegende Erfindung weiterhin vor, dass eine Mehrzahl von Kühlschalen in axialer Richtung der Walze nebeneinander angeordnet sind und diese einzelnen Kühlschalen individuell in ihrer Wirkungslänge in Umfangsrichtung der Walze einstellbar sind.In order to optimize the amount of heat to be dissipated by the roller over its axial length, d. H. To be able to achieve in the axial direction over the width direction of the rolling stock in dependence on the desired distribution of the heat to be dissipated by the roller, the present invention further provides that a plurality of cooling shells in the axial direction of the roller are arranged side by side and these individual cooling shells individually in their Impact length in the circumferential direction of the roller are adjustable.

Weitere Ausführungsbeispiele des erfindungsgemäßen Verfahrens und der erfindungsgemäßen Vorrichtung sind Gegenstand der abhängigen Ansprüche.Further embodiments of the method and the device according to the invention are the subject of the dependent claims.

Der Beschreibung sind insgesamt 13 Figuren beigefügt, wobei

Figur 1
ein Regelschemata gemäß der vorliegenden Erfindung zum Regeln eines Parameters eines Walzgutes;
Figur 2
eine erste Ausführungsform für die erfindungsgemäße Kühlschale mit eingestellter kurzer Wirkungslänge und mit erster Variante für den Aktuator;
Figur 3
die erste Ausführungsform der Kühlschale gemäß Figur 2 mit eingestellter großer Wirkungslänge;
Figur 4
die erste Ausführungsform für die erfindungsgemäße Kühlschale mit eingestellter kurzer Wirkungslänge und mit zweiter Variante für den Aktuator;
Figur 5
die erste Ausführungsform gemäß Figur 4 mit eingestellter großer Wirkungslänge;
Figur 6
eine zweite Ausführungsform für die erfindungsgemäße Kühlschale mit eingestellter kurzer Wirkungslänge;
Figur 7
die zweite Ausführungsform gemäß Figur 6 mit eingestellter großer Wirkungslänge;
Figur 8
eine dritte Ausführungsform für die erfindungsgemäße Kühlschale mit einer ersten Einstellungsvariante;
Figur 9
die dritte Ausführungsform für die Kühlschale in einer zweiten Einstellungsvariante;
Figur 10
die dritte Ausführungsform für die Kühlschale in einer dritten Einstellungsvariante;
Figur 11
die dritte Ausführungsform der Kühlschale mit einer fünften Einstellungsvariante;
Figur 12
eine Draufsicht auf eine Walze mit einer Mehrzahl von in axialer Walzenrichtung nebeneinander angeordneten einzelnen Kühlschalen; und
Figur 13
ein Regelschemata zur Regelung eines Parameters eines Walzgutes gemäß dem Stand der Technik
zeigt.The description is a total of 13 figures attached, where
FIG. 1
a control schemes according to the present invention for controlling a parameter of a rolling stock;
FIG. 2
a first embodiment of the cooling shell according to the invention with adjusted short length of action and with the first variant for the actuator;
FIG. 3
the first embodiment of the cooling shell according to FIG. 2 with set large impact length;
FIG. 4
the first embodiment of the cooling shell according to the invention with adjusted short length of action and with a second variant for the actuator;
FIG. 5
the first embodiment according to FIG. 4 with set large impact length;
FIG. 6
a second embodiment of the cooling shell according to the invention with adjusted short length of action;
FIG. 7
the second embodiment according to FIG. 6 with set large impact length;
FIG. 8
a third embodiment of the cooling shell according to the invention with a first adjustment variant;
FIG. 9
the third embodiment for the cooling shell in a second setting variant;
FIG. 10
the third embodiment for the cooling shell in a third setting variant;
FIG. 11
the third embodiment of the cooling shell with a fifth setting variant;
FIG. 12
a plan view of a roller having a plurality of juxtaposed in the axial direction of the roll individual cooling shells; and
FIG. 13
a control schemes for controlling a parameter of a rolling stock according to the prior art
shows.

Die Erfindung wird nachfolgend unter Bezugnahme auf die genannten Figuren 1 bis 12 in Form von Ausführungsbeispielen detailliert beschrieben. In allen Figuren sind gleiche technische Elemente mit gleichen Bezugszeichen bezeichnet.The invention will be described below with reference to the above FIGS. 1 to 12 described in detail in the form of embodiments. In all figures, the same technical elements are designated by the same reference numerals.

Figur 1 zeigt eine Kaskaden-Regelung zum Regeln eines Parameters eines Metallbandes, beispielsweise zum Regeln seines Profils oder seiner Planheit. Bezüglich der grundsätzlichen Funktionsweise der Kaskaden-Regelung wird auf die Beschreibung der Figur 13 in der Einleitung der vorliegenden Beschreibung verwiesen. FIG. 1 shows a cascade control for controlling a parameter of a metal strip, for example, to control its profile or its flatness. Regarding the basic mode of operation of the cascade control, reference is made to the description of the FIG. 13 in the introduction of the present description.

Im Unterschied zu der bekannten Kaskaden-Regelung gemäß Figur 13 sieht die erfindungsgemäße Kaskaden-Regelung gemäß Figur 1 ein besonderes Stellglied 160 vor. Bei dem Stellglied 160 handelt es sich um eine Kühlschale, die im Querschnitt kreisförmig ausgebildet ist. Die Kühlschale wird beabstandet, gegen die Oberfläche einer zu kühlenden Walze in einem Walzgerüst angestellt, so dass sich zwischen der Kühlschale und der Walzenoberfläche ein Kühlspalt für durchzuleitendes Kühlmittel einstellt. Die Kühlschale ist in ihrem Querschnitt vorzugsweise komplementär zur äußeren Kontur bzw. zum Querschnitt der Walze ausgebildet.In contrast to the known cascade control according to FIG. 13 sees the cascade control according to the invention according to FIG. 1 a special actuator 160 before. The actuator 160 is a cooling shell, which is circular in cross section. The cooling shell is spaced, placed against the surface of a roll to be cooled in a rolling mill, so that to set a cooling gap for durchzuleitendes coolant between the cooling shell and the roll surface. The cooling shell is formed in its cross section preferably complementary to the outer contour or to the cross section of the roller.

Die erfindungsgemäße Kühlschale ist mit Hilfe eines Aktuators 165 in ihrer Wirkungslänge in Umfangsrichtung der Walze variierbar ausgebildet und einstellbar. Mit Hilfe des von dem Regler 150 generierten Stellsignals s wird die Wirkungslänge der Kühlschale 160 in Umfangsrichtung der Walze in Abhängigkeit der Wärmestrom-Regelabweichung eQ geeignet eingestellt. Geeignet bedeutet in diesem Zusammenhang, dass die Wärmestrom-Regelabweichung eQ möglichst zu Null wird. Die Wärmestrom-Regelabweichung eQ ist ihrerseits wiederum abhängig von der Parameter-Regelabweichung eP, wie einleitend unter Bezugnahme auf Figur 13 beschrieben. Durch die erfindungsgemäße Regelung soll neben der Wärmestrom-Regelabweichung auch die Parameter-Regelabweichung möglichst zu Null werden.The cooling shell according to the invention is designed and adjustable in the circumferential direction of the roll with the aid of an actuator 165 in its action length. With the aid of the control signal s generated by the controller 150, the action length of the cooling shell 160 in the circumferential direction of the roll is suitably set as a function of the heat flow control deviation e Q. In this context, suitable means that the heat flow control deviation e Q becomes zero as far as possible. In turn, the heat flow control deviation e Q is in turn dependent on the parameter deviation eP, as discussed with reference to FIG FIG. 13 described. The regulation according to the invention should, in addition to the heat flow control deviation and the parameter control deviation as possible to zero.

Zu diesem Zweck wird die Wirkungslänge der Kühlschale 160 in Umfangsrichtung der Walze vergrößert, wenn der Soll-Wert Q abSoll des von der Walze abzugebenden Wärmestroms größer ist als der gemessene Ist-Wert Q abIst des Wärmestroms, und umgekehrt. Die Wirkungslänge der Kühlschale in Umfangsrichtung kann dagegen unverändert bleiben, wenn der Soll-Wert Q abSoll des von der Walze abzugebenden Wärmestroms gleich dem Ist-Wert Q abIst des abgegebenen Wärmestromes ist.For this purpose, the action length of the cooling shell 160 in the circumferential direction of the roll is increased if the target value Q abSoll of the heat flow to be delivered by the roll is greater than the measured actual value Q ab Ist of the heat flow, and vice versa. The length of action of the cooling shell in the circumferential direction, on the other hand, can remain unchanged if the target value Q abSoll of the heat flow to be delivered by the roll is equal to the actual value Q abIst of the heat flow delivered.

Figur 2 zeigt ein erstes Ausführungsbeispiel für die erfindungsgemäße Kühlschale. Demnach weist die Kühlschale 160 mindestens ein erstes und ein zweites Kühlschalensegment 161 und 162 auf, welche jeweils einen Querschnitt in Form eines Abschnitts eines Kreisbogens zum Abdecken eines Oberflächenbereichs der Walze aufweisen. Mit Hilfe des Aktuators 165, der in der in Figur 2 gezeigten ersten Variante als Hydraulikzylinder ausgebildet ist, können die beiden Kühlschalensegmente 161, 162 in Umfangsrichtung der Walze 300 nach Maßgabe des Stellsignals s relativ zueinander verschoben werden, um auf diese Weise die gesamte Wirkungslänge b der Kühlschale 160 nach Maßgabe des Stellsignals s geeignet einzustellen. Die Wirkungslänge b ist in der vorliegenden Beschreibung stets durch den in Figur 2 und den nachfolgenden Figuren angegebenen Winkel bzw. die entsprechende Bogenlänge repräsentiert. Das Bezugszeichen A bezeichnet die Drehachse der Walze 300 und das Bezugszeichens D deren Drehrichtung beim Walzen des Walzgutes 200, welches sich in Walzrichtung WR bewegt. FIG. 2 shows a first embodiment of the cooling shell according to the invention. Accordingly, the cooling shell 160 at least a first and a second cooling shell segment 161 and 162, each having a cross-section in shape a portion of a circular arc for covering a surface area of the roller. With the help of the actuator 165, which is in the in FIG. 2 shown first variant is designed as a hydraulic cylinder, the two cooling shell segments 161, 162 in the circumferential direction of the roller 300 in accordance with the control signal s relative to each other are shifted to adjust in this way the entire length of action b of the cooling shell 160 in accordance with the control signal s suitable. The action length b is always in the present description by the in FIG. 2 and the following figures represented angle or the corresponding arc length represented. The reference numeral A denotes the axis of rotation of the roller 300 and the reference numeral D whose direction of rotation during rolling of the rolling stock 200, which moves in the rolling direction WR.

In Figur 2 ist weiterhin zu erkennen, dass die beiden Kühlschalensegmente 161, 162 jeweils beabstandet zu der äußeren Oberfläche der Walze 300 angeordnet sind, so dass zwischen den Kühlschalensegmenten und der Oberfläche der Walze 300 ein Kühlspalt gebildet ist. Der Kühlspalt 180 wird mit Kühlmedium 400 gespeist, welches den Kühlspalt in Pfeilrichtung oder entgegengesetzt durchfließt. Die Kühlwirkung bestimmt sich im Wesentlichen nach der Wirkungslänge b der Kühlschale 160 bzw. der Kühlschalensegmente 161, 162. Je größer die Wirkungslänge b desto größer ist die Kühlleistung, d. h. desto mehr Wärme kann von der Walze 300 abgeführt werden. Figur 2 zeigt das erste Ausführungsbeispiel für die Kühlschale 160 mit relativ kurzer Wirkungslänge b, weil sich die beiden Kühlschalensegmente 161, 162 bei der in Figur 2 gezeigten Stellung weitgehend bzw. stark überlappen.In FIG. 2 It can also be seen that the two cooling-plate segments 161, 162 are each arranged at a distance from the outer surface of the roller 300, so that a cooling gap is formed between the cooling-plate segments and the surface of the roller 300. The cooling gap 180 is fed with cooling medium 400, which flows through the cooling gap in the direction of the arrow or in the opposite direction. The cooling effect is essentially determined by the length of action b of the cooling shell 160 or of the cooling shell segments 161, 162. The greater the effect length b, the greater the cooling capacity, ie the more heat can be removed from the roll 300. FIG. 2 shows the first embodiment of the cooling shell 160 with a relatively short effective length b, because the two cooling shell segments 161, 162 at the in FIG. 2 overlap position shown largely or strongly.

Figur 3 zeigt dagegen das erste Ausführungsbeispiel mit der ersten Variante für den Aktuator 165 in einer Arbeitsposition, in welcher sich die beiden Kühlschalensegmente 161 und 162 gegenüber der in Figur 2 gezeigten Arbeitsposition weniger stark überlappen und in welcher deshalb die Wirkungslänge b vergrößert ist. FIG. 3 on the other hand shows the first embodiment with the first variant for the actuator 165 in a working position in which the two cooling-cup segments 161 and 162 with respect to the in FIG. 2 overlap less shown working position and in which therefore the effect length b is increased.

Figur 4 zeigt das erste Ausführungsbeispiel für die Kühlschale mit einer zweiten Variante für den Aktuator 165. Anders als bei der ersten Variante ist der Aktuator bzw. die Verschiebeeinrichtung 165 gemäß Figur 4 komplizierter aufgebaut. Die Verschiebeeinrichtung umfasst ein drehbar gelagertes Rad 165-1 sowie eine zugeordnete Antriebseinrichtung 165-2 zum Drehantreiben des Rades. Das Rad 165-1 ist seinerseits mit dem zweiten Kühlschalensegment 162 beispielsweise per Koppelelement 165-3, per Reibschluss oder per Formschluss derart gekoppelt, dass eine Drehbewegung des Rades 165-1 die Verschiebung des zweiten Kühlschalensegmentes 162 in Umfangsrichtung der Walze 300 und relativ zu dem ersten Kühlschalensegment 161 bewirkt. Figur 4 zeigt die Kühlschale 160 mit den beiden Kühlschalensegmenten 161, 162 in einer Arbeitsposition mit relativ kurzer Wirkungslänge b. FIG. 4 shows the first embodiment of the cooling shell with a second variant for the actuator 165. Unlike the first variant, the actuator or the displacement device 165 according to FIG. 4 more complicated. The displacement device comprises a rotatably mounted wheel 165-1 and an associated drive device 165-2 for rotationally driving the wheel. The wheel 165-1 in turn is coupled to the second cooling shell segment 162, for example by coupling element 165-3, by frictional engagement or positive engagement such that a rotational movement of the wheel 165-1 the displacement of the second cooling shell segment 162 in the circumferential direction of the roller 300 and relative to the first cooling shell segment 161 causes. FIG. 4 shows the cooling shell 160 with the two cooling-cup segments 161, 162 in a working position with a relatively short effective length b.

Figur 5 zeigt dagegen das erste Ausführungsbeispiel für die Kühlschale mit der zweiten Variante der Verschiebeeinrichtung 165 in einer Arbeitsposition mit vergrößerter Wirkungslänge b. FIG. 5 on the other hand shows the first embodiment of the cooling shell with the second variant of the displacement device 165 in a working position with increased effective length b.

In allen Figuren 2 bis 5 betreffend das erste Ausführungsbeispiel kann das erste Kühlschalensegment 161 ortsfest in Bezug auf die Walze 300 angeordnet sein.In all FIGS. 2 to 5 concerning the first embodiment, the first cooling-cup segment 161 may be arranged stationarily with respect to the roller 300.

Figur 6 zeigt ein zweites Ausführungsbeispiel für die erfindungsgemäße Kühlschale 160, wobei diese aus einem flexiblen Material gebildet ist. Der Aktuator 165 ist in diesem Fall als Biegeeinrichtung oder als Auf- und Abwickeleinrichtung ausgebildet zum Einstellen der Wirkungslänge b der Kühlschale 160 in Umfangsrichtung der Walze 300. Konkret dient der Aktuator 165 beispielsweise zum rolloartigen Aufwickeln der flexiblen Kühlschale 160, um auf diese Weise die Wirkungslänge b des Kühlspaltes 180 relativ klein anzustellen. FIG. 6 shows a second embodiment of the cooling shell 160 according to the invention, wherein it is formed of a flexible material. The actuator 165 is formed in this case as a bending device or as winding and unwinding for adjusting the length of action b of the cooling shell 160 in the circumferential direction of the roller 300. Specifically, the actuator 165 is used, for example, to roll-like winding the flexible cooling shell 160, in this way the length of action b of the cooling gap 180 to make relatively small.

Figur 7 zeigt die Kühlschale 160 mit im Vergleich zu Figur 6 großer Wirkungslänge b, was dadurch erreicht wurde, dass der Aktuator 165 das flexible Material der Kühlschale abgewickelt und damit die Kühlschale vergrößert hat. FIG. 7 shows the cooling shell 160 with compared to FIG. 6 large impact length b, which was achieved by the fact that the actuator 165 has unwound the flexible material of the cooling shell and thus increased the cooling shell.

Figur 8 zeigt ein drittes Ausführungsbeispiel für die erfindungsgemäße Kühlschale 160, wobei diese mindestens eine, typischerweise jedoch eine Mehrzahl von drehbaren Klappen 163 aufweist. Ein hier nicht gezeigter Aktuator 165 ist dann ausgebildet zum Einstellen der Wirkungslänge der Kühlschale 160 in Umfangsrichtung der Walze 300 durch ein Öffnen oder Schließen von zumindest einzelnen der Klappen 163 nach Maßgabe des Stellsignals s. FIG. 8 shows a third embodiment of the cooling shell 160 according to the invention, wherein it has at least one, but typically a plurality of rotatable flaps 163. An actuator 165, not shown here, is then configured to adjust the length of action of the cooling shell 160 in the circumferential direction of the roll 300 by opening or closing at least one of the flaps 163 in accordance with the control signal s.

Die Figuren 8 bis 11 zeigen jeweils verschiedene Varianten zur Beeinflussung der Wirkungslänge b der Kühlschale 160 durch individuelles Öffnen einzelner Klappen 163. Die Klappen bilden einen Teil der Fläche der Kühlschale 160 und begrenzen deshalb zumindest in geschlossenem Zustand den Kühlspalt 180.The FIGS. 8 to 11 each show different variants for influencing the length of action b of the cooling shell 160 by individually opening individual flaps 163. The flaps form part of the surface of the cooling shell 160 and therefore limit the cooling gap 180 at least in the closed state.

Figur 12 zeigt eine Draufsicht auf die Walze 300 mit angestellter Kühlschale 160. Es ist zu erkennen, dass die Kühlschale 160 aus einer Mehrzahl N, hier N = 7, Teilkühlschalen 160-n mit n = 1 bis n = N besteht, welche in axialer Richtung der zu kühlenden Walze 300 nebeneinander angeordnet sind. Der hier in Figur 12 nicht gezeigte Aktuator 165 ist ausgebildet zum geeigneten individuellen Einstellen der Wirkungslänge jeder einzelnen der n Kühlschalen 160-n in Umfangsrichtung der Walze 300 nach Maßgabe der durch das Stellsignal s repräsentierten Regelabweichung eQ. Die Wärmestrom-Regelabweichung eQ repräsentiert im Allgemeinen - und so auch bei dem in Figur 12 gezeigten Ausführungsbeispiel - die Verteilung des von der Walze 300 abzugebenden Wärmestroms in axialer Richtung der Walze bzw. in Breitenrichtung B des Walzgutes 200. Die Breiten der einzelnen Teilkühlschalen 160-n in axialer Richtung können individuell unterschiedlich sein; sie sind in Figur 12 mit den Bezugszeichen a, b, c und d bezeichnet. Die Teilkühlschalen 160-n können auch ein gemeinsames einstückiges erstes Kühlschalensegment 161 aufweisen, so dass lediglich die zweiten Kühlschalensegmente 162-n in ihrer Wirkungslänge in Umfangsrichtung der Walze 300 variabel einstellbar sind, wie dies durch die senkrechten Doppelpfeile in Figur 12 angedeutet ist. FIG. 12 shows a top view of the roller 300 with employee cooling shell 160. It can be seen that the cooling shell 160 of a plurality N, here N = 7, Teilkühlschalen 160-n with n = 1 to n = N, which in the axial direction of to be cooled roller 300 are arranged side by side. The one in here FIG. 12 Actuator 165, not shown, is configured to suitably individually adjust the effective length of each one of the n cooling cups 160-n in the circumferential direction of the roller 300 in accordance with the control deviation eQ represented by the actuating signal s. The heat flow control deviation eQ generally represents - and so does the in FIG. 12 shown embodiment - the distribution of the heat to be delivered by the roller 300 in the axial direction of the roll or in the width direction B of the rolled material 200. The widths of the individual partial cooling shells 160-n in the axial direction may be individually different; They are in FIG. 12 denoted by the reference symbols a, b, c and d. The Teilkühlschalen 160-n can also be a common have integral first cooling shell segment 161, so that only the second cooling shell segments 162-n in their length of action in the circumferential direction of the roller 300 are variably adjustable, as indicated by the vertical double arrows in FIG. 12 is indicated.

Figur 12 ist jedoch nicht allein auf die Ausführung der Kühlschalen 160 gemäß dem ersten Ausführungsbeispiel beschränkt. Vielmehr ist das in Figur 12 dargestellte Grundprinzip der individuellen Einstellbarkeit der Wirkungslängen b über der axialen Breiten der Walze mit allen drei in der vorliegenden Beschreibung beschriebenen Ausführungsbeispielen für die Kühlschale 160 realisierbar. FIG. 12 however, is not limited to the embodiment of the cooling shells 160 according to the first embodiment. Rather, that is in FIG. 12 illustrated basic principle of the individual adjustability of the effective lengths b over the axial widths of the roller with all three described in the present description embodiments for the cooling shell 160 realized.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

140140
Wärmestrom-VergleichseinrichtungHeat flux comparator
150150
Reglerregulator
160160
Stellgliedactuator
160-n160-n
Kühlschalencooling trays
161161
KühlschalensegmentCooling shell segment
162-n162-n
KühlschalensegmentCooling shell segment
163163
drehbare Klapperotatable flap
165165
Aktuatoractuator
165-1165-1
drehbar gelagertes Radrotatably mounted wheel
165-2165-2
Antriebseinrichtungdriving means
165-3165-3
Koppelelementcoupling element
170170
Ist-Strom-MesseinrichtungActual current-measuring device
180180
Kühlspaltcooling gap
200200
Walzgutrolling
300300
Walzeroller
bb
Wirkungslänge des KühlspaltsAction length of the cooling gap
ePeP
Parameter-RegelabweichungParameter deviation
ss
Stellsignalactuating signal
PP
Parameterparameter
PIst P is
Ist-ParameterIf parameters
PSoll P target
Soll-ParameterTarget parameters
(QabIst )( Q is off )
Ist-StromActual power
(QabSoll )( Q abSoll )
Soll-StromTarget current
(eQ)(e Q )
Wärmestrom-RegelabweichungHeat flow-control error
Q
Wärmestromheat flow
WRWR
Walzrichtung des WalzgutesRolling direction of the rolling stock
AA
Drehachse WalzeRotary axis roller
DD
Drehrichtung WalzeDirection of rotation roller
BB
Breite des WalzgutesWidth of the rolling stock

Claims (17)

  1. Method for regulating a parameter (P), for example of the profile or the planarity, of a strip-shaped rolling material (200) rolled with the help of a roll stand, comprising the following steps:
    measuring the actual parameter PIst of the rolling material (200) after a rolling process;
    comparing the actual parameter PIst with a predetermined target parameter (PSoll) for the rolling material and determining a difference (eP) between the actual parameter and the target parameter as a parameter regulating difference (eP);
    determining a setting signal (s) for activation of at least one setting element (160) in dependence on the parameter regulating difference (eP), wherein the setting element (160) is a cooling shell associated with a roll (300) of the roll stand;
    characterised in that
    the cooling shell (160) is constructed to be variable in the effective length (b) thereof in circumferential direction of the roll; and
    the effective length (b) of the cooling shell in circumferential direction (b) is suitably set in dependence on the parameter regulating difference (eP) with the help of the setting signal (s).
  2. Method according to claim 1, characterised in that the determination of the setting signal (s) comprises the following sub-steps:
    - determining a target value (Q̇abSoll) for the flow of the heat, which is to be dissipated from the roll (300), from the previously determined parameter regulating difference (eP) and optionally with consideration of further requirements from the rolling process of the cooling of the roll;
    - determining the actual flow (Q̇abIst) of the actual heat dissipated from the roll (300);
    - determining a heat-flow regulating difference (eQ̇) as a difference between the target value (Q̇abSoll) and the actual value (Q̇abIst) for the flow of the heat to be dissipated from the roll (300); and
    - determining the setting signal (s) for setting the effective length (b) of the cooling shell (160) in circumferential direction in accordance with the heat flow regulating difference (eQ̇), which in turn is dependent on the parameter regulating difference (eP).
  3. Method according to claim 1 or 2, characterised in that
    the effective length (b) of the cooling shell (160) in circumferential direction is increased when the target value (Q̇abSoll) of the heat flow is greater than the actual value (Q̇abIst) of the heat flow;
    the effective length (b) of the cooling shell in circumferential direction remains unchanged when the target value (Q̇abSoll) of the heat flow is equal to the actual value (Q̇abIst) of the heat flow; or
    the effective length (b) of the cooling shell in circumferential direction is reduced when the target value (Q̇abSoll) of the heat flow is less than the actual value (Q̇abIst) of the heat flow.
  4. Method according to any one of the preceding claims, characterised in that the cooling shell (160) comprises at least a first and second cooling shell segment (161, 162), which each have a cross-section in the form of a section of an arc for covering a surface region of the roll, and, for setting the effective length (b) of the cooling shell in circumferential direction of the roll (300), the first and second cooling shell segments are displaced relative to one another in circumferential direction in accordance with the setting signal (s), preferably are overlapped with one another at least partly.
  5. Method according to any one of claims 1 to 3, characterised in that the cooling shell (160) is formed from a flexible material which enables setting of the effective length (b) of the cooling shell in circumferential direction of the roll by bending of at least parts of the cooling shell away from the roll (300) or towards the roll (300) or by winding up or unwinding the flexible material in accordance with the setting signal.
  6. Method according to any one of claims 1 to 3, characterised in that the cooling shell (160) comprises at least one rotatable flap (163) which enables setting of the effective length (b) of the cooling shell in circumferential direction of the roll by opening or closing the flap in accordance with the setting signal.
  7. Method according to one of claims 2 and 3, characterised in that the heat flow (Q) is the distribution of the heat flow in width direction of the rolling material and the parameter is the profile or the distribution of the planarity in width direction of the rolling material.
  8. Method according to any one of the preceding claims, characterised in that the method is carried out in a pause in rolling.
  9. Device for regulating a parameter of a strip-shaped rolling material rolled with the help of a roll stand, comprising:
    a parameter measuring device (110) for determining the actual parameter (PIst) of the rolling material after a rolling process;
    a parameter comparison device (120) for determining a difference between the actual parameter (PIst) and a predetermined target parameter (Psoll) as parameter regulating difference (eP); and
    a regulator (150) for determining a setting signal (s) for activating at least one setting element (160) in dependence on the parameter regulating difference (eP), wherein the setting element (160) is a cooling shell associated with a roll of the roll stand;
    characterised in that
    the cooling shell is constructed with a variable effective length in circumferential direction of the roll; and
    an actuator (165) is provided for suitable setting of the effective length of the cooling shell (160) in circumferential direction of the roll in accordance with the parameter regulating difference (eP) represented by the setting signal (s).
  10. Device according to claim 9, further characterised in that
    - a target-flow determining device (130) is provided for determining a target value (Q̇abSoll) for the flow of the heat, which is to be dissipated from the roll, from the parameter regulating difference (eP) and optionally with consideration of further requirements from the rolling process of the cooling of the roll;
    - an actual-flow measuring device (170) is provided for determining the actual value (Q̇abIst) for the flow of the heat actually dissipated from the roll;
    - a heat-flow comparison device (140) is provided for determining a heat flow regulating difference (eQ̇) as a difference between the target value (Q̇abSoll) and the actual value (Q̇abIst) for the flow of heat to be dissipated from the roll; and
    the regulator (150) is configured to generate the setting signal (s) for setting the effective length (b) of the cooling shell (160) in circumferential direction of the roll in accordance with the heat-flow regulating difference (eQ̇), wherein the heat-flow regulating difference (eQ̇) is in turn dependent on the parameter regulating difference (eP).
  11. Device according to claim 9 or 10, characterised in that the cooling shell (160) comprises at least a first and second cooling shell segment (161, 162), which each have a cross-section in the form of a section of an arc for covering a surface region of the roll, and the actuator (165) is constructed in the form of a displacing device for displacing the first and second cooling shell segments in circumferential direction of the roll relative to one another, wherein the first and second cooling shell segments can overlap at least in part.
  12. Device according to claim 11, characterised in that the first cooling shell segment (161) is arranged to be stationary, but at a spacing from the surface of the roll (300); and the displacing device (165) is constructed for displacing the second cooling shell segment in circumferential direction of the roll relative to the first cooling shell segment.
  13. Device according to claim 11 or 12, characterised in that the displacing device (165) is constructed in the form of a hydraulic cylinder.
  14. Device according to any one of claims 11, 12 and 13, characterised in that the displacing device (165) comprises a rotatably mounted wheel (165-1) and a drive device (165-2) for rotational driving of the wheel, wherein the wheel is so disposed in engagement with the second cooling shell segment (162), for example by friction couple or by mechanically positive couple, that a rotational movement of the wheel (165-1) produces displacement of the second cooling segment (162) in circumferential direction.
  15. Device according to claim 9 or 10, characterised in that the cooling shell (160) is formed from a flexible material and the actuator (165) is constructed as a bending device or as a winding-up and unwinding device for setting the effective length (b) of the cooling shell in circumferential direction of the roll by bending at least parts of the cooling shell away from the roll or towards the roll or by winding up or unwinding the flexible material in accordance with the setting signal.
  16. Device according to claim 9 or 10, characterised in that the cooling shell (160) comprises at least one rotatable flap (163) and the actuator (165) is constructed for setting the effective length of the cooling shell in circumferential direction of the roll by opening or closing the flap in accordance with the setting signal.
  17. Device according to claim 10, characterised in that the heat flow (Q) is the distribution of the heat flow in width direction of the rolling material and the parameter is the profile or the distribution of the planarity in width direction of the rolling material; the cooling shells (160-n) in a plurality thereof are arranged adjacent to one another in axial direction of the roll (300) to be cooled; and the actuator (165) is constructed for suitable setting of the effective length of each individual one of the n cooling shells (160-n) in circumferential direction of the roll (300) in accordance with the regulating difference (eQ̇), which is represented by the setting signal (s), of the distribution of the heat flow in width direction of the rolling material.
EP16727716.9A 2015-06-11 2016-06-08 Method and device for controlling a parameter of a rolled stock Active EP3307448B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015210680.2A DE102015210680A1 (en) 2015-06-11 2015-06-11 Method and device for controlling a parameter of a rolling stock
PCT/EP2016/063045 WO2016198457A1 (en) 2015-06-11 2016-06-08 Method and device for controlling a parameter of a rolled stock

Publications (2)

Publication Number Publication Date
EP3307448A1 EP3307448A1 (en) 2018-04-18
EP3307448B1 true EP3307448B1 (en) 2019-09-25

Family

ID=56112977

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16727716.9A Active EP3307448B1 (en) 2015-06-11 2016-06-08 Method and device for controlling a parameter of a rolled stock

Country Status (8)

Country Link
US (1) US10807134B2 (en)
EP (1) EP3307448B1 (en)
JP (1) JP6527967B2 (en)
KR (1) KR102042039B1 (en)
CN (1) CN107848000B (en)
DE (1) DE102015210680A1 (en)
RU (1) RU2690556C1 (en)
WO (1) WO2016198457A1 (en)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930000465B1 (en) 1985-05-17 1993-01-21 가부시기가이샤 히다찌세이사꾸쇼 Method and apparatus for cooling rolling mill rolls
JPS6245409A (en) * 1985-08-26 1987-02-27 Nippon Kokan Kk <Nkk> Roll cooling mechanism
US5212975A (en) * 1991-05-13 1993-05-25 International Rolling Mill Consultants, Inc. Method and apparatus for cooling rolling mill rolls and flat rolled products
RU2115494C1 (en) * 1997-08-14 1998-07-20 Череповецкий государственный университет Method for control of temperature profile of mill rolls
DE19850738A1 (en) * 1998-11-04 2000-05-11 Schloemann Siemag Ag Operating method for a roll stand of a rolling mill
JP3300759B2 (en) * 1999-02-05 2002-07-08 三菱重工業株式会社 Induction heating device for roll crown heat crown shape control
JP2000237805A (en) * 1999-02-22 2000-09-05 Hitachi Ltd Method and device for online roll grinding
US6652273B2 (en) * 2002-01-14 2003-11-25 The Procter & Gamble Company Apparatus and method for controlling the temperature of manufacturing equipment
JP2005334910A (en) * 2004-05-25 2005-12-08 Toshiba Mitsubishi-Electric Industrial System Corp Coolant controller, plate profile controller and flatness controller for rolling mill
DE102005042020A1 (en) * 2005-09-02 2007-03-08 Sms Demag Ag Method for lubricating and cooling rolls and metal strip during rolling, in particular during cold rolling, of metal strips
BE1017462A3 (en) 2007-02-09 2008-10-07 Ct Rech Metallurgiques Asbl DEVICE AND METHOD FOR COOLING ROLLING CYLINDERS IN HIGHLY TURBULENT.
DE102009053074A1 (en) 2009-03-03 2010-09-09 Sms Siemag Ag Method and cooling device for cooling the rolls of a roll stand
CN201442012U (en) * 2009-07-22 2010-04-28 山东石横特钢集团有限公司 Five-slit roller cooling device
DE102012202340A1 (en) 2011-12-23 2013-06-27 Sms Siemag Ag Method and device for cooling rolls
DE102012216570A1 (en) 2012-05-11 2013-11-14 Sms Siemag Ag Device for cooling rolls
CN203196994U (en) * 2013-04-25 2013-09-18 浙江瑞浦机械有限公司 Roll caliber auxiliary cooling device of continuous mill

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2016198457A1 (en) 2016-12-15
JP2018520878A (en) 2018-08-02
US10807134B2 (en) 2020-10-20
US20180169724A1 (en) 2018-06-21
CN107848000A (en) 2018-03-27
JP6527967B2 (en) 2019-06-12
DE102015210680A1 (en) 2016-12-15
EP3307448A1 (en) 2018-04-18
RU2690556C1 (en) 2019-06-04
KR20180044853A (en) 2018-05-03
KR102042039B1 (en) 2019-12-02
CN107848000B (en) 2019-06-18

Similar Documents

Publication Publication Date Title
EP2539089B2 (en) Method for cooling sheet metal by means of a cooling section, cooling section and control device for a cooling section
EP3049198B2 (en) Device for guiding metal strips with grinding bodies
EP2794136B1 (en) Method and device for cooling rolls
EP2588257B1 (en) Operating method for a roller mill for rolling flat rolled goods having roller wear prediction
WO2006063559A1 (en) Method for braking a running metal strip and unit for carrying out the method
EP2170535A1 (en) Method for adjusting a state of a rolling stock, particularly a near-net strip
EP3504352B1 (en) Method and apparatus for coating a metal sheet
EP1456421B1 (en) Method and device for controlled straightening and cooling of a wide metal strip, especially a steel strip or sheet metal, running out of a hot rolled strip rolling mill
EP3544751B1 (en) Strip position control with force-limited placement of lateral guiding devices on the metal strip
WO2013020814A1 (en) Rolling system and rolling method
EP3307448B1 (en) Method and device for controlling a parameter of a rolled stock
DE19524729A1 (en) Method and device for rolling strips with a non-uniform thickness and / or length distribution across their width
EP0602492A1 (en) Cluster mill
DE3943093C2 (en) Method for controlling the flatness of a strip produced in a roll stand and device for carrying it out
WO2011076607A2 (en) Determination of the flatness of a metallic strip by measuring the profile
EP3810345A1 (en) Device and method for transporting strip material, in particular a hot strip
EP2531309A2 (en) Hot rolling train for rolling hot-rolled strip, method for operating a hot rolling train for rolling hot-rolled strip, and control device
DE10159608C5 (en) Rolling process and rolling train for a band with a weld
WO2012072603A1 (en) Concept for adjusting process parameters of a rolling process by means of a measured bearing slip
EP3873685B1 (en) Roll line
DE19939166B4 (en) Method for flexible rolling of a metal strip
DE19828575B4 (en) Metal strip forming method using hot strip mill
EP2830788B1 (en) Method for rolling a sheet of material
EP2653241A1 (en) Method for producing a belt
DE102021209261A1 (en) Method for controlling a rolling stock guide in a rolling train and intermediate stand guide

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190514

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016006805

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1183308

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016006805

Country of ref document: DE

Representative=s name: HEMMERICH & KOLLEGEN, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016006805

Country of ref document: DE

Representative=s name: HEMMERICH & KOLLEGEN PATENTANWAELTE, DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200127

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016006805

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200126

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200608

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200608

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200608

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240619

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240620

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240625

Year of fee payment: 9