EP2794136B1 - Method and device for cooling rolls - Google Patents

Method and device for cooling rolls Download PDF

Info

Publication number
EP2794136B1
EP2794136B1 EP12798664.4A EP12798664A EP2794136B1 EP 2794136 B1 EP2794136 B1 EP 2794136B1 EP 12798664 A EP12798664 A EP 12798664A EP 2794136 B1 EP2794136 B1 EP 2794136B1
Authority
EP
European Patent Office
Prior art keywords
roll
coolant
pressure
volume flow
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12798664.4A
Other languages
German (de)
French (fr)
Other versions
EP2794136A1 (en
Inventor
Matthias Kipping
Ralf Seidel
Johannes Alken
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Publication of EP2794136A1 publication Critical patent/EP2794136A1/en
Application granted granted Critical
Publication of EP2794136B1 publication Critical patent/EP2794136B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/06Lubricating, cooling or heating rolls
    • B21B27/10Lubricating, cooling or heating rolls externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/06Lubricating, cooling or heating rolls
    • B21B27/10Lubricating, cooling or heating rolls externally
    • B21B2027/103Lubricating, cooling or heating rolls externally cooling externally

Definitions

  • the present invention relates to the cooling of rolls, in particular of work rolls in a rolling mill with a cooling liquid.
  • a disadvantage of such a distance measurement is often that distance measurements in the flow between the cooling shell and the roll surface are difficult or inaccurate. If, however, the distances, for example, indirectly determined by measuring the travel of a piston for employment of the cooling shell to the roll surface, also measurement inaccuracies and thus employment errors can occur. In particular, in this case, the current position of the roller is not known, so that the control can not adequately react in the case of short-term occurring jumps of the roller.
  • Failure to place the cooling tray against the roller can result in damage from a collision of the roller with the cooling tray or overheating of the roller. Overheating the roller can damage the roller or reduce the quality of the rolled strip.
  • the object of the invention is therefore to provide an improved, in particular reliable and robust system for the employment of a cooling shell on a roll surface.
  • Another object of the invention is to overcome at least one of the above disadvantages.
  • the Japanese patent application JP 54082348 A discloses a method according to the preamble of independent claim 1 and an apparatus according to the preamble of independent claim 11.
  • the above object is solved by the features of claim 1, which is directed to a method for cooling a roll, in particular a work roll of a hot rolling plant.
  • the method includes feeding coolant through a nozzle into a gap between at least a portion of the roll surface and a cooling bowl engageable with the portion of the roll surface, and adjusting the gap height between the cooling shell and the roll surface.
  • the adjustment or regulation of the gap height takes place either on the basis of a measurement of the coolant pressure or a measurement of the volume flow of the supplied coolant.
  • the coolant pressure or the volume flow of the coolant is an indicator of the gap distance.
  • the method according to the invention is no longer dependent on an error-prone distance measurement between the cooling shell and the roll surface and permits an accurate determination of the gap spacing as a function of the measured coolant pressure or volume flow.
  • the method according to the invention automatically detects, in particular, a change in position of the roller.
  • the adjustment comprises an increase in the distance (the gap height) between the roller and the cooling shell when the measured coolant pressure or volume flow is above a predefinable upper limit value. This can be counteracted in particular a collision between the roller and the cooling shell. It is also possible to shut down the system if it falls below an upper limit to avoid damage and longer downtimes and production downtime.
  • the distance (the gap height) between the roller and the cooling shell is reduced when the measured coolant pressure or volume flow of the coolant is below a predefinable lower limit.
  • the adjustment of the distance or the gap height can be done by the expert known adjusting means, such as by (hydraulic or pneumatic) piston-cylinder units. But other electrical, mechanical or electro-mechanical AnstellĂȘt tillen are possible.
  • the coolant is supplied with a known or defined volume flow of the nozzle (and thus the gap).
  • the adjustment or regulation of the distance between the roller and the cooling shell takes place after measurement of the coolant pressure, preferably using a previously determined pressure-distance characteristic, which corresponds to the known volume flow of the coolant.
  • the volume flow of the supplied coolant is kept constant and the measured coolant pressure is compared by means of a constant-volume flow corresponding pressure-distance characteristic with a predetermined nominal height of the gap.
  • a control difference resulting from the comparison can be used as a proviso for adjusting or adapting the gap height.
  • the pressure of the supplied coolant is kept constant and the measured volume flow of the coolant is compared with a predeterminable desired height of the gap via a volume flow / distance characteristic corresponding to the pressure maintained constant.
  • a control difference resulting from this comparison can be used as a proviso for adjusting the gap height.
  • the actual coolant pressure is measured by a pressure sensor and associated with the aid of a pressure-distance characteristic of an actual gap height.
  • the coolant volume flow is kept constant in accordance with the pressure-distance characteristic used.
  • This actual gap height is compared with a predefinable target gap height. The difference from this comparison is preferably passed to a controller. In accordance with the difference, the gap distance is subsequently adjusted (by outputting an adjustment value).
  • the actual coolant pressure is measured by a pressure sensor.
  • the coolant volume flow is kept constant.
  • a predefinable setpoint height is assigned to a setpoint pressure with the aid of a pressure-distance characteristic line corresponding to the constant volume flow.
  • This target pressure is compared with the measured actual coolant pressure.
  • a resulting difference is preferably directed to a controller. In accordance with the difference, the gap distance is subsequently adjusted (by outputting an adjustment value).
  • the actual volume flow rate is measured by a volumetric flow meter and assigned to an actual slit height with the aid of a volumetric flow-distance characteristic curve.
  • the coolant pressure is kept constant in accordance with the pressure-distance characteristic used.
  • the actual gap height is compared with a predefinable target gap height. The difference from this comparison is preferably passed to a controller. This outputs a control value to a Anstell shark which adjusts the gap distance.
  • the actual volume flow is measured by a volumetric flow meter.
  • the coolant pressure is kept constant.
  • a predefinable desired height is held by means of a held constant Coolant pressure corresponding volume flow-distance characteristic associated with a desired volume flow.
  • This nominal volume flow is compared with the measured actual volume flow.
  • a resulting difference is preferably directed to a controller. This preferably outputs a control value to an adjusting device, which adjusts the gap distance. In other words, the difference serves as a proviso for the adjustment of the gap distance.
  • a characteristic curve can be determined, for example, experimentally or by means of a numerical simulation.
  • the characteristic curve in the case of the measurement of the pressure
  • the characteristic curve is determined for a multiplicity of different volume flows (at least two), in particular for at least one defined coolant pressure supplied for cooling the roller.
  • the characteristic for a plurality of different pressures (at least two), in particular for at least one defined for the cooling of the roll, defined volume flow of the coolant.
  • the characteristic is given by an allocation of coolant pressure against the gap height between the roll surface and the cooling shell. If, however, the volume flow of the coolant is measured, the characteristic is given by an allocation of volume flow against the gap height between the roll surface and the cooling shell.
  • the applied against the gap height coolant pressure or flow rate is determined or specified at the point at which the pressure or the flow rate is measured.
  • the measurement of the pressure or of the volume flow is generally carried out preferably in the region of the nozzle or in particular in the nozzle, for example in the nozzle inlet.
  • the present invention comprises a device for cooling a work roll, preferably for carrying out the method according to one of the preceding embodiments, wherein the device comprises an adjustable to the roller cooling shell, which has a, to a region of the roll surface substantially complementary shape and at least extends over a portion of the axial width of the roller and over at least a portion of the circumferential direction of the roller. Furthermore, the device comprises a nozzle for supplying a coolant into a gap between the cooling shell and the roll surface and a pressure sensor for measuring the coolant pressure, preferably in the region of the nozzle and a (regulating) device for regulating or adjusting the gap height between the cooling shell and the roller as a function of the measured by the pressure sensor coolant pressure.
  • the device comprises an adjustable to the roller cooling shell, which has a, to a region of the roll surface substantially complementary shape and at least extends over a portion of the axial width of the roller and over at least a portion of the circumferential direction of the roller.
  • the device comprises a nozzle for
  • the device may also include a volumetric flow meter (or sensor / sensor) for measuring the volume flow of the coolant, preferably in the region of the nozzle and a (control) device for regulating the gap height between the cooling shell and the roller depending on the volume flow measured by the volume flow meter.
  • a volumetric flow meter or sensor / sensor
  • control for regulating the gap height between the cooling shell and the roller depending on the volume flow measured by the volume flow meter.
  • the present invention also includes a coolable rolling apparatus, preferably for carrying out the above method, comprising a roll engageable to roll a metal strip and the above-mentioned apparatus for cooling the roll.
  • the nozzle guides the coolant substantially parallel to the circumferential direction of the roller or tangentially to the roller.
  • the clear dimension of the nozzle can generally taper towards the roll surface, that is to say tapering from a nozzle inlet to a nozzle outlet.
  • the nozzle can taper from the nozzle inlet to the nozzle outlet with simultaneous deflection of the coolant flow in a direction tangential to the roller surface direction.
  • the nozzle or the nozzle outlet can generally be formed by a slot lying parallel to the roller axis. Alternatively, a plurality of nozzles may be provided parallel to the roll axis for supplying coolant into the gap.
  • the flow direction of the cooling liquid in the gap is opposite to the direction of rotation of the roller.
  • the nozzle is arranged in relation to the flow direction of the cooling liquid in the gap in an upstream end region of the cooling shell.
  • the nozzle may generally be an integral part of the cooling shell or be formed in this or else be used separately through an opening in the cooling shell.
  • the nozzle could be arranged separately on an end of the cooling shell lying in the circumferential direction of the roll.
  • the nozzle may also be formed, for example, by a pipe or a hose.
  • a scraper for stripping coolant from the roll surface is arranged at the downstream end of the cooling shell, so that less coolant passes onto a metal strip to be rolled.
  • the employment of the cooling shell to the roll surface by tilting and / or a translational movement of the cooling shell takes place.
  • the cooling shell in the circumferential direction of the roller is formed at least in two parts, wherein both parts of the cooling shell are pivotally connected to each other about an axis parallel to the axial direction of the roller axis.
  • the cooling shell is constructed in several parts in the circumferential direction and the adjacent parts (each) are pivotally connected to each other, so that an even better adaptation to the circumference of the roller is possible.
  • FIG. 1 shows a device 10 according to an embodiment of the invention for cooling a work roll 1.
  • the device 10 comprises a cooling shell 9, 11, which has a substantially complementary shape to at least a portion of the roll circumference U.
  • the cooling shell 9, 11 can be adjusted to the roll by means of a setting device, not shown, and can also extend in the axial direction of the roll 1 over at least a portion of the axial roll width.
  • a gap 7 is formed, the height h is regulated by the device 10 or adjustable. In other words, the distance h between the cooling shell 9, 11 and the roller 1 is adjustable.
  • the gap height may be between 0.1 cm and 2.5 cm, and preferably between 0.2 cm and 1 cm.
  • the work roll 1 rotates as shown preferably in the direction of rotation D and thereby exerts a force on a to be rolled band 15. On the opposite side of the strip 15 of the work roll 1, this can be supported by at least one other role.
  • coolant 3 can be introduced into the gap 7 via a nozzle.
  • the gap 7 is almost completely traversed by coolant 3 for cooling the roller 1.
  • the nozzle 5 can be formed as shown in the body of the cooling shell 9, 11.
  • the nozzle 5 preferably introduces coolant 3 into the gap 7 in a direction opposite to the roller rotation direction D.
  • this introduction is substantially parallel or tangential to the circumferential direction U of the roller 1.
  • the term circumferential direction is not to be understood as limiting with respect to an orientation here, but rather to describing a direction which is defined by the surface curvature of the roller 1.
  • the nozzle 5 may have a downstream tapered shape.
  • the nozzle 5 may taper from a dimension corresponding to approximately 5 to 20 times the gap height to a dimension approximately equal to 0.5 to 3 times the gap height.
  • coolant 3 is introduced into the nozzle 5 with a defined volume flow V x .
  • the pressure p of the coolant 3 can preferably still be measured in the region of the nozzle 5, that is, for example, in the tapering region of the nozzle 5 between the nozzle inlet and the nozzle outlet.
  • the pressure measurement can take place with a pressure sensor 13 known and suitable to the person skilled in the art.
  • the coolant 3 it is likewise possible for the coolant 3 to be introduced into the nozzle 5 with a defined pressure p x .
  • the volume flow of the coolant 3 can preferably be measured in the region of the nozzle 5, that is, for example, in the tapering region of the nozzle 5 between the nozzle inlet and the nozzle outlet.
  • the volume flow measurement can be carried out with a volume flow meter 13 known and suitable to the person skilled in the art.
  • both sensor types are installed, so that either a measurement of the pressure at a known or fixed volume flow or a measurement of the volume flow at known or fixed pressure can take place.
  • the nozzle 5 is an integral part of the cooling shell 9 as shown.
  • the nozzle 5 could also be separated into one Be inserted opening of the cooling shell 5 or at an end in the circumferential direction U of the cooling shell 9, 11 end, adjacent to the cooling shell 9, 10.
  • the cooling shell 9, 11 can also be designed in several parts.
  • the cooling shell in the circumferential direction U may have a plurality of means for pivoting about an axis A parallel to the roll axis.
  • the employment of the cooling shell 9, 11 can be adapted to different roll diameter even better.
  • a scraper 17 (for example made of metal, wood or hard tissue) may also generally be arranged at the end of the gap 7 downstream of the coolant 3 or at the end of the gap 7 closest to the strip 15 to be rolled, be arranged.
  • the scraper 17 may for example be formed by a plate which along one of its edges on the circumference U of the roller 1 can be adjusted. It is possible that the scraper 17 is medium or directly movable with the cooling shell 7 and / or is designed to be pivotable with one of its parts 11. However, the scraper 17 can also be provided separately. From the scraper 17, the gap 7 leaving coolant 5 can be sucked. Further, the scraper 17 may be profiled according to the work roll.
  • the regulation or adjustment of the gap height h of the gap 7 between the roll surface and the cooling shell 9, 11 could be done by measuring or monitoring the pressure p in the region of the nozzle 3.
  • a measurement by means of a pressure sensor 13 arranged in the nozzle 3 enables a reliable determination of the gap distance h.
  • the measurement by the sensor 13 can also take place in the gap 7 itself, in the region of the nozzle 5 or also upstream of the nozzle 5 and is therefore not restricted to the region of the nozzle 5.
  • the pressure p is measured by means of the encoder 13 and assigned to an actual distance between the cooling shell 9, 11 and roll surface or assigned to an actual gap height h.
  • This assignment can be made for example on the basis of previously determined characteristic curves K x .
  • Such characteristic curves K x could either be measured or, preferably, mathematically determined by a numerical simulation.
  • the FIG. 2a exemplifies such a characteristic curve K x .
  • the characteristic K x (V x ) is shown for a given (predetermined or defined) volume flow V x and describes the relationship between the pressure p (at the point of pressure measurement) and the gap height h , By such a characteristic K x each pressure p can be assigned a gap height h at a known volume flow V x . If, for example, only one volume flow V x is to be used for cooling, a characteristic curve K x is sufficient. If it is intended to be possible to use other or several volume flows V y , corresponding characteristic curves K y are preferably provided. The in the FIG. 2a shown characteristic curve K x thus describes the course between pressure p and gap height h for a fixed volume flow V x .
  • the characteristic curve would shift in the illustrated diagram for other volume flows V which are greater or smaller than V x , as shown by the arrows.
  • a preferred working range is shown between the points A1 and A2. Such a working area does not necessarily have to be defined and depends on the conditions of an existing installation and on the existing rolls, the product to be rolled or the intended reduction in strip thickness.
  • the illustrated, preferred work area is through the Value pairs p max , h min (A1) and p min , h max (A2) limited.
  • the slope of the characteristic in the working range, ie between A 1 and A 2 is preferably of the order of 1 (eg between 0.1 and 10), which improves the controllability of the system with respect to larger or smaller values.
  • the maximum pressure p max can be limited both for design reasons and for cost reasons.
  • the maximum gap height h max may be limited insofar as h large amounts of coolant are required in the case of excessively large gap heights in order to ensure sufficient cooling (in particular due to a high flow velocity and / or constant contact of the roll surface with coolant).
  • the gap distance h can be set or regulated with the aid of a volumetric flow-distance characteristic K x (p x ).
  • a characteristic K x (p x ) is in FIG. 2b shown.
  • the determination can be analogous as in FIG. 2a
  • the characteristic K x (p x ) is now mapped for a known pressure p x . Plotted is the volume flow V against the gap height h. If the predeterminable pressure p is chosen to be greater or smaller than p x , the characteristic curve K X (p X ) would shift as shown.
  • the further interpretation of the characteristic curve is analogous to the characteristic curve FIG. 2a to look at, except that the pressure p for a characteristic K x (p x ) is held and the flow rate V varies.
  • the characteristic curve K x can also be present in the form of value tables, matrices, arrays or a function profile and / or stored in an evaluation device which is designed to be measured Press p Ist or measured volume flow V is gap height h is to be assigned. This is preferably automatic and possible during the rolling operation.
  • the characteristic curve K x is used such that it is used to assign a target height of the gap h set a target pressure p target, or a target volumetric flow V target. This is in terms of the FIGS. 3b and 4b described in more detail.
  • FIG. 3a exemplarily a possible control or adjustment of the gap height h, which is changed for example by a change in position of the roll surface (disturbance variable). Such positional change can be caused by a roll change or wear. It is also possible that unpredictable cracks of the roll 1 occur in the rolling operation.
  • An existing gap height leads to a present coolant pressure p actual (controlled variable), which can be detected by a pressure sensor 13 (measuring element).
  • This measured (actual) pressure p actual is determined by means of a pressure-distance characteristic according to FIG. 3a an (actual) height of the gap h is assigned. This height h ist is compared below with a desired value of the gap height h Soll .
  • a possibly existing difference e h between actual and desired height is preferably fed to a control device (controller).
  • the control device then preferably outputs an adjustment value S Stell to a setting device (actuator). This then adjusted according to the gap distance h, so that the desired distance h Soll (at least in the short term) is restored.
  • the control difference can also be fed directly to a setting device.
  • a pressure sensor 13 determines a coolant pressure p actual (controlled variable) and for this actual value to be fed to a differential element or differential former where it is compared with a nominal value of the coolant pressure p desired .
  • This setpoint pressure p setpoint may preferably result from a pressure-distance characteristic curve, wherein a setpoint distance of the gap h setpoint is predetermined and, with the aid of the pressure-distance characteristic, the setpoint distance of the Gap h If a setpoint pressure of the coolant p setpoint is to be assigned.
  • the control difference resulting from the comparison of the actual pressure p actual and the setpoint pressure p setpoint is preferably fed to the control device, which outputs a control value for the adjusting device, so that the gap distance h can be adjusted or adjusted on the basis of the determined pressure difference e p .
  • FIG. 4a it is like in FIG. 4a shown possible that the cooling process is monitored by a volume flow meter 13 (measuring element). If the gap height h changes, this results in a changed coolant volume flow V actual (controlled variable).
  • the measured (actual) volume flow V Ist can be converted into an actual gap height h Ist with the aid of a volume flow-distance characteristic K x (p x ) at a known, fixed pressure p x .
  • the value of the actual gap height h Ist determined using the characteristic curve K x can be compared with a desired target gap height h Soll . This comparison can lead to a control difference e h .
  • This can be passed to a control device (controller), which preferably outputs an adjustment value S Stell to an adjusting device (actuator). The adjuster then adjusts the gap distance h accordingly so that the desired distance h desired is restored.
  • the characteristic according to the FIG. 4b serve to assign a desired volume flow V setpoint to a desired distance h setpoint , the latter being able to be compared with an actual volume flow V actual determined by a volumetric flow meter 13.
  • a resulting from such a comparison control difference e V can be subsequently converted by a control device into a control value to set the desired desired distance h Soll according to the control deviation ev.

Description

Gebiet der ErfindungField of the invention

Die vorliegende Erfindung betrifft die KĂŒhlung von Walzen, insbesondere von Arbeitswalzen in einem Walzwerk mit einer KĂŒhlflĂŒssigkeit.The present invention relates to the cooling of rolls, in particular of work rolls in a rolling mill with a cooling liquid.

Stand der TechnikState of the art

Im Stand der Technik werden StrömungskĂŒhlungen beschrieben, bei denen Wasser bzw. ein KĂŒhlmittel zwischen einer KĂŒhlschale und einer Walze vorbeigefĂŒhrt wird. HĂ€ufig wird bei der Verwendung solcher Systeme eine Einstellbarkeit des Spalts zwischen der Arbeitswalze und der KĂŒhlschale ermöglicht. Insbesondere haben Arbeitswalzen in der Regel einen Abschliffbereich, sodass die KĂŒhlschalen an die KrĂŒmmung der Arbeitswalzen anpassbar sein sollen, um eine genĂŒgende KĂŒhlwirkung zu erreichen. Außerdem können die Arbeitswalzen unterschiedliche Positionen im WalzgerĂŒst einnehmen. Diese Positionen sind zum Beispiel von der Dicke des einlaufenden Walzgutes und der vorgesehenen Stichabnahme abhĂ€ngig.In the prior art, flow cooling is described in which water or a coolant is passed between a cooling shell and a roller. Often, with the use of such systems, adjustability of the gap between the work roll and the cooling shell is made possible. In particular, work rolls usually have a Abschliffbereich, so that the cooling shells should be adaptable to the curvature of the work rolls in order to achieve a sufficient cooling effect. In addition, the work rolls can take different positions in the rolling mill. These positions are dependent, for example, on the thickness of the incoming rolling stock and the intended stitch reduction.

In einem Walzwerk wird in AbhĂ€ngigkeit von der Temperatur des Walzgutes und der geleisteten Umformarbeit eine variierende Menge von WĂ€rmeenergie in die Walzen eingebracht. Um eine ausreichende KĂŒhlwirkung zu erreichen, muss der Spalt zwischen KĂŒhlschale und Walze geregelt werden. Es ist wĂŒnschenswert, dass KĂŒhlmedium mit einer hohen Geschwindigkeit an der WalzenoberflĂ€che vorbeiströmt, um die Walze effektiv zu kĂŒhlen. Um ein KĂŒhlmedium durch den Spalt zu pressen, ist ein entsprechender Druck nötig. Aus dem allgemeinen Stand der Technik ist bekannt, dass man mit Abstandssensoren die Höhe eines Spalts messen kann.In a rolling mill, a varying amount of heat energy is introduced into the rolls depending on the temperature of the rolling stock and the work done. In order to achieve a sufficient cooling effect, the gap between the cooling shell and the roller must be regulated. It is desirable that cooling medium flow past the roll surface at a high speed to effectively cool the roll. To press a cooling medium through the gap, a corresponding pressure is necessary. From the general state of the art it is known that distance sensors can be used to measure the height of a gap.

Nachteilig an einer solchen Abstandsmessung ist allerdings hĂ€ufig, dass Abstandsmessungen in der Strömung zwischen der KĂŒhlschale und der WalzenoberflĂ€che schwierig bzw. ungenau sind. Werden die AbstĂ€nde hingegen zum Beispiel indirekt ĂŒber eine Messung des Verfahrwegs eines Kolbens zur Anstellung der KĂŒhlschale an die WalzenoberflĂ€che bestimmt, können ebenfalls Messungenauigkeiten und somit Anstellungsfehler auftreten. Insbesondere ist in diesem Fall nicht die aktuelle Walzenposition bekannt, sodass die Regelung bei kurzfristig auftretenden SprĂŒngen der Walze nicht hinreichend reagieren kann.However, a disadvantage of such a distance measurement is often that distance measurements in the flow between the cooling shell and the roll surface are difficult or inaccurate. If, however, the distances, for example, indirectly determined by measuring the travel of a piston for employment of the cooling shell to the roll surface, also measurement inaccuracies and thus employment errors can occur. In particular, in this case, the current position of the roller is not known, so that the control can not adequately react in the case of short-term occurring jumps of the roller.

Fehler bei der Anstellung der KĂŒhlschale an die Walze können zu SchĂ€den durch eine Kollision der Walze mit der KĂŒhlschale oder zur Überhitzung der Walze fĂŒhren. Durch eine Überhitzung der Walze kann die Walze Schaden nehmen oder ebenso die QualitĂ€t des gewalzten Bandes gemindert werden.Failure to place the cooling tray against the roller can result in damage from a collision of the roller with the cooling tray or overheating of the roller. Overheating the roller can damage the roller or reduce the quality of the rolled strip.

Weiterhin weisen viele bekannte Positionsgeber den Nachteil auf, dass diese nicht unter Walzwerksbedingungen hinreichend zuverlĂ€ssig funktionieren. So können optische Sensoren zum Beispiel verschmutzen und somit fehlerhafte Informationen liefern oder sogar vollstĂ€ndig ausfallen. Gleiches gilt beispielsweise fĂŒr induktive Sensoren.Furthermore, many known position encoders have the disadvantage that they do not function sufficiently reliably under rolling mill conditions. For example, optical sensors can become dirty and therefore faulty Provide information or even fail completely. The same applies, for example, to inductive sensors.

Aufgabe der Erfindung ist es daher, ein verbessertes, insbesondere zuverlĂ€ssiges und robustes System zur Anstellung einer KĂŒhlschale an eine WalzenoberflĂ€che bereitzustellen.The object of the invention is therefore to provide an improved, in particular reliable and robust system for the employment of a cooling shell on a roll surface.

Eine weitere Aufgabe der Erfindung ist es, mindestens einen der oben genannten Nachteile zu ĂŒberwinden.Another object of the invention is to overcome at least one of the above disadvantages.

Die japanische Patentanmeldung JP 54082348 A offenbart ein Verfahren gemĂ€ĂŸ dem Oberbegriff des unabhĂ€ngigen Anspruchs 1 bzw. eine Vorrichtung gemĂ€ĂŸ dem Oberbegriff des unabhĂ€ngigen Anspruchs 11.The Japanese patent application JP 54082348 A discloses a method according to the preamble of independent claim 1 and an apparatus according to the preamble of independent claim 11.

Offenbarung der ErfindungDisclosure of the invention

Die oben genannte Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst, welcher auf ein Verfahren zur KĂŒhlung einer Walze, insbesondere einer Arbeitswalze einer Warmwalzanlage, gerichtet ist. Das Verfahren umfasst das ZufĂŒhren von KĂŒhlmittel mittels einer DĂŒse in einen Spalt zwischen zumindest einem Teil der WalzenoberflĂ€che und einer an den Teil der WalzenoberflĂ€che anstellbaren KĂŒhlschale sowie das Einstellen bzw. Regeln der Spalthöhe zwischen der KĂŒhlschale und der WalzenoberflĂ€che. Dabei erfolgt die Einstelllung bzw. Regelung der Spalthöhe erfindungsgemĂ€ĂŸ entweder auf Basis einer Messung des KĂŒhlmitteldrucks oder einer Messung des Volumenstroms des zugefĂŒhrten KĂŒhlmittels. Mit anderen Worten stellt entweder der KĂŒhlmitteldruck oder der Volumenstrom des KĂŒhlmittels einen Indikator fĂŒr den Spaltabstand dar.The above object is solved by the features of claim 1, which is directed to a method for cooling a roll, in particular a work roll of a hot rolling plant. The method includes feeding coolant through a nozzle into a gap between at least a portion of the roll surface and a cooling bowl engageable with the portion of the roll surface, and adjusting the gap height between the cooling shell and the roll surface. According to the invention, the adjustment or regulation of the gap height takes place either on the basis of a measurement of the coolant pressure or a measurement of the volume flow of the supplied coolant. In other words, either the coolant pressure or the volume flow of the coolant is an indicator of the gap distance.

Das erfindungsgemĂ€ĂŸe Verfahren ist nicht mehr auf eine fehleranfĂ€llige Abstandsmessung zwischen KĂŒhlschale und WalzenoberflĂ€che angewiesen und erlaubt eine genaue Bestimmung des Spaltabstands in AbhĂ€ngigkeit des gemessenen KĂŒhlmitteldrucks oder -volumenstroms. Durch das erfindungsgemĂ€ĂŸe Verfahren wird insbesondere automatisch eine PositionsĂ€nderung der Walze mit erfasst.The method according to the invention is no longer dependent on an error-prone distance measurement between the cooling shell and the roll surface and permits an accurate determination of the gap spacing as a function of the measured coolant pressure or volume flow. The method according to the invention automatically detects, in particular, a change in position of the roller.

GemĂ€ĂŸ einer weiteren bevorzugten AusfĂŒhrungsform des Verfahrens umfasst die Einstellung bzw. Regelung eine VergrĂ¶ĂŸerung des Abstands (der Spalthöhe) zwischen der Walze und der KĂŒhlschale, wenn der gemessene KĂŒhlmitteldruck oder Volumenstrom ĂŒber einem vorgebbaren oberen Grenzwert liegt. Dadurch kann insbesondere einer Kollision zwischen Walze und KĂŒhlschale entgegengewirkt werden. Es ist ebenfalls möglich, bei der Unterschreitung eines oberen Grenzwerts eine Notabschaltung der Anlage vorzunehmen, um einen Schaden und lĂ€ngere Stillstandszeiten sowie ProduktionsausfĂ€lle zu vermeiden.According to a further preferred embodiment of the method, the adjustment comprises an increase in the distance (the gap height) between the roller and the cooling shell when the measured coolant pressure or volume flow is above a predefinable upper limit value. This can be counteracted in particular a collision between the roller and the cooling shell. It is also possible to shut down the system if it falls below an upper limit to avoid damage and longer downtimes and production downtime.

GemĂ€ĂŸ einer weiteren bevorzugten AusfĂŒhrungsform des Verfahrens wird der Abstand (die Spalthöhe) zwischen der Walze und der KĂŒhlschale verringert, wenn der gemessene KĂŒhlmitteldruck oder Volumenstrom des KĂŒhlmittels unter einem vorgebbaren unteren Grenzwert liegt.According to a further preferred embodiment of the method, the distance (the gap height) between the roller and the cooling shell is reduced when the measured coolant pressure or volume flow of the coolant is below a predefinable lower limit.

Der Einstellung des Abstands bzw. der Spalthöhe kann dabei durch dem Fachmann bekannte Anstelleinrichtungen erfolgen, wie zum Beispiel durch (hydraulische oder pneumatische) Kolben-Zylinder-Einheiten. Aber auch andere elektrische, mechanische bzw. elektromechanische Anstelleinrichtungen sind möglich.The adjustment of the distance or the gap height can be done by the expert known adjusting means, such as by (hydraulic or pneumatic) piston-cylinder units. But other electrical, mechanical or electro-mechanical Anstelleinrichtungen are possible.

GemĂ€ĂŸ einer weiteren bevorzugten AusfĂŒhrungsform des Verfahrens wird das KĂŒhlmittel mit einem bekannten bzw. definierten Volumenstrom der DĂŒse (und somit dem Spalt) zugefĂŒhrt. Die Einstellung bzw. Regelung des Abstands zwischen der Walze und der KĂŒhlschale erfolgt nach Messung des KĂŒhlmitteldrucks bevorzugt unter Verwendung einer zuvor ermittelten Druck-Abstand-Kennlinie, welche dem bekannten Volumenstrom des KĂŒhlmittels entspricht. Andernfalls ist es möglich, das KĂŒhlmittel mit einem bekannten bzw. definierten Druck der DĂŒse (und somit dem Spalt) zuzufĂŒhren, wobei die Einstellung bzw. Regelung des Abstands zwischen der Walze und der KĂŒhlschale nach Messung des Volumenstroms bevorzugt unter Verwendung einer zuvor fĂŒr den bekannten Druck des KĂŒhlmittels ermittelten Volumenstrom-Abstand-Kennlinie erfolgt.According to a further preferred embodiment of the method, the coolant is supplied with a known or defined volume flow of the nozzle (and thus the gap). The adjustment or regulation of the distance between the roller and the cooling shell takes place after measurement of the coolant pressure, preferably using a previously determined pressure-distance characteristic, which corresponds to the known volume flow of the coolant. Otherwise, it is possible to supply the coolant with a known or defined pressure of the nozzle (and thus the gap), wherein the adjustment or regulation of the distance between the roller and the cooling shell after measuring the volume flow preferably using a previously known for Pressure of the refrigerant determined volume flow-distance characteristic is carried out.

GemĂ€ĂŸ einer weiteren bevorzugten AusfĂŒhrungsform wird der Volumenstrom des zugefĂŒhrten KĂŒhlmittels konstant gehalten und der gemessene KĂŒhlmitteldruck mittels einer dem konstant gehaltenen Volumenstrom entsprechenden Druck-Abstand-Kennlinie mit einer vorgebbaren Sollhöhe des Spalts verglichen. Vorzugsweise kann eine aus dem Vergleich resultierende Regeldifferenz als Maßgabe zur Verstellung bzw. Anpassung der Spalthöhe verwendet werden.According to a further preferred embodiment, the volume flow of the supplied coolant is kept constant and the measured coolant pressure is compared by means of a constant-volume flow corresponding pressure-distance characteristic with a predetermined nominal height of the gap. Preferably, a control difference resulting from the comparison can be used as a proviso for adjusting or adapting the gap height.

GemĂ€ĂŸ einer weiteren bevorzugten AusfĂŒhrungsform wird der Druck des zugefĂŒhrten KĂŒhlmittels konstant gehalten und der gemessene Volumenstrom des KĂŒhlmittels ĂŒber eine dem konstant gehaltenen Druck entsprechende Volumenstrom-Abstand-Kennlinie mit einer vorgebbaren Sollhöhe des Spalts verglichen. Vorzugsweise kann eine aus diesem Vergleich resultierende Regeldifferenz als Maßgabe zur Verstellung der Spalthöhe verwendet werden.In accordance with a further preferred embodiment, the pressure of the supplied coolant is kept constant and the measured volume flow of the coolant is compared with a predeterminable desired height of the gap via a volume flow / distance characteristic corresponding to the pressure maintained constant. Preferably, a control difference resulting from this comparison can be used as a proviso for adjusting the gap height.

GemĂ€ĂŸ einer weiteren bevorzugten AusfĂŒhrungsform wird der Ist-KĂŒhlmitteldruck durch einen Drucksensor gemessen und mit Hilfe einer Druck-Abstand-Kennlinie einer Ist-Spalthöhe zugeordnet. Der KĂŒhlmittelvolumenstrom wird entsprechend der verwendeten Druck-Abstand-Kennlinie konstant gehalten. Diese Ist-Spalthöhe wird mit einer vorgebbaren Soll-Spalthöhe verglichen. Die Differenz aus diesem Vergleich wird bevorzugt an einen Regler geleitet. Nach Maßgabe der Differenz wird nachfolgend der Spaltabstand (durch Ausgabe eines Verstellwerts) verstellt.According to a further preferred embodiment, the actual coolant pressure is measured by a pressure sensor and associated with the aid of a pressure-distance characteristic of an actual gap height. The coolant volume flow is kept constant in accordance with the pressure-distance characteristic used. This actual gap height is compared with a predefinable target gap height. The difference from this comparison is preferably passed to a controller. In accordance with the difference, the gap distance is subsequently adjusted (by outputting an adjustment value).

GemĂ€ĂŸ einer weiteren bevorzugten AusfĂŒhrungsform wird der Ist-KĂŒhlmitteldruck durch einen Drucksensor gemessen. Der KĂŒhlmittelvolumenstrom wird konstant gehalten. Eine vorgebbare Sollhöhe wird mit Hilfe einer dem konstant gehaltenen Volumenstrom entsprechenden Druck-Abstand-Kennlinie einem Solldruck zugeordnet. Dieser Solldruck wird mit dem gemessenen Ist-KĂŒhlmitteldruck verglichen. Eine sich daraus ergebende Differenz wird bevorzugt an einen Regler geleitet. Nach Maßgabe der Differenz wird nachfolgend der Spaltabstand (durch Ausgabe eines Verstellwerts) verstellt.According to a further preferred embodiment, the actual coolant pressure is measured by a pressure sensor. The coolant volume flow is kept constant. A predefinable setpoint height is assigned to a setpoint pressure with the aid of a pressure-distance characteristic line corresponding to the constant volume flow. This target pressure is compared with the measured actual coolant pressure. A resulting difference is preferably directed to a controller. In accordance with the difference, the gap distance is subsequently adjusted (by outputting an adjustment value).

GemĂ€ĂŸ einer weiteren bevorzugten AusfĂŒhrungsform wird der Ist-Volumentstom durch einen Volumenstrommesser gemessen und mit Hilfe einer Volumenstrom-Abstand-Kennlinie einer Ist-Spalthöhe zugeordnet. Der KĂŒhlmitteldruck wird entsprechend der verwendeten Druck-Abstand-Kennlinie konstant gehalten. Die Ist-Spalthöhe wird mit einer vorgebbaren Soll-Spalthöhe verglichen. Die Differenz aus diesem Vergleich wird bevorzugt an einen Regler geleitet. Dieser gibt einen Stellwert an eine Anstelleinrichtung aus, welche den Spaltabstand verstellt.According to a further preferred embodiment, the actual volume flow rate is measured by a volumetric flow meter and assigned to an actual slit height with the aid of a volumetric flow-distance characteristic curve. The coolant pressure is kept constant in accordance with the pressure-distance characteristic used. The actual gap height is compared with a predefinable target gap height. The difference from this comparison is preferably passed to a controller. This outputs a control value to a Anstelleinrichtung which adjusts the gap distance.

GemĂ€ĂŸ einer weiteren bevorzugten AusfĂŒhrungsform wird der Ist-Volumenstrom durch einen Volumenstrommesser gemessen. Der KĂŒhlmitteldruck wird konstant gehalten. Eine vorgebbare Sollhöhe wird mit Hilfe einer dem konstant gehaltenen KĂŒhlmitteldruck entsprechenden Volumenstrom-Abstand-Kennlinie einem Soll-Volumenstrom zugeordnet. Dieser Sollvolumenstrom wird mit dem gemessenen Ist-Volumenstrom verglichen. Eine sich daraus ergebende Differenz wird bevorzugt an einen Regler geleitet. Dieser gibt vorzugsweise einen Stellwert an eine Anstelleinrichtung aus, welche den Spaltabstand verstellt. Mit anderen Worten dient die Differenz als Maßgabe fĂŒr die Verstellung des Spaltabstands.According to a further preferred embodiment, the actual volume flow is measured by a volumetric flow meter. The coolant pressure is kept constant. A predefinable desired height is held by means of a held constant Coolant pressure corresponding volume flow-distance characteristic associated with a desired volume flow. This nominal volume flow is compared with the measured actual volume flow. A resulting difference is preferably directed to a controller. This preferably outputs a control value to an adjusting device, which adjusts the gap distance. In other words, the difference serves as a proviso for the adjustment of the gap distance.

Eine Kennlinie kann zum Beispiel experimentell oder mittels einer numerischen Simulation ermittelt werden.A characteristic curve can be determined, for example, experimentally or by means of a numerical simulation.

GemĂ€ĂŸ einer weiteren bevorzugten AusfĂŒhrungsform des Verfahrens wird die Kennlinie (im Falle der Messung des Drucks) fĂŒr eine Vielzahl von verschiedenen Volumenströmen (mindestens zwei) ermittelt, insbesondere fĂŒr mindestens einen zur KĂŒhlung der Walze zugefĂŒhrten, definierten KĂŒhlmitteldruck. Im Falle der Messung des Volumenstroms des KĂŒhlmittels ist es jedoch ebenfalls möglich, die Kennlinie fĂŒr eine Vielzahl von verschiedenen DrĂŒcken zu ermitteln (mindestens zwei), insbesondere fĂŒr mindestens einen zur KĂŒhlung der Walze zugefĂŒhrten, definierten Volumenstrom des KĂŒhlmittels.According to a further preferred embodiment of the method, the characteristic curve (in the case of the measurement of the pressure) is determined for a multiplicity of different volume flows (at least two), in particular for at least one defined coolant pressure supplied for cooling the roller. In the case of the measurement of the volume flow of the coolant, however, it is also possible to determine the characteristic for a plurality of different pressures (at least two), in particular for at least one defined for the cooling of the roll, defined volume flow of the coolant.

GemĂ€ĂŸ einer weiteren bevorzugten AusfĂŒhrungsform des Verfahrens ist die Kennlinie durch eine Zuordnung von KĂŒhlmitteldruck gegen die Spalthöhe zwischen WalzenoberflĂ€che und KĂŒhlschale gegeben. Wird hingegen der Volumenstrom des KĂŒhlmittels gemessen, so ist die Kennlinie durch eine Zuordnung von Volumenstrom gegen die Spalthöhe zwischen WalzenoberflĂ€che und KĂŒhlschale gegeben.According to a further preferred embodiment of the method, the characteristic is given by an allocation of coolant pressure against the gap height between the roll surface and the cooling shell. If, however, the volume flow of the coolant is measured, the characteristic is given by an allocation of volume flow against the gap height between the roll surface and the cooling shell.

Der gegen die Spalthöhe aufgetragene KĂŒhlmitteldruck bzw. Volumenstrom wird an der Stelle bestimmt bzw. angegeben, an der auch der Druck bzw. der Volumenstrom gemessen wird. Die Messung des Drucks bzw. des Volumenstroms erfolgt im Allgemeinen bevorzugt im Bereich der DĂŒse oder insbesondere in der DĂŒse, wie zum Beispiel im DĂŒseneintritt.The applied against the gap height coolant pressure or flow rate is determined or specified at the point at which the pressure or the flow rate is measured. The measurement of the pressure or of the volume flow is generally carried out preferably in the region of the nozzle or in particular in the nozzle, for example in the nozzle inlet.

Weiterhin umfasst die vorliegende Erfindung eine Vorrichtung zum KĂŒhlen einer Arbeitswalze, vorzugsweise zur AusfĂŒhrung des Verfahrens gemĂ€ĂŸ einer der vorhergehenden AusfĂŒhrungsformen, wobei die Vorrichtung eine an die Walze anstellbare KĂŒhlschale umfasst, welche eine, zu einem Bereich der WalzenoberflĂ€che im Wesentlichen komplementĂ€re Form aufweist und sich zumindest ĂŒber einen Teilbereich der axialen Breite der Walze sowie ĂŒber zumindest einen Teil der Umfangsrichtung der Walze erstreckt. Ferner umfasst die Vorrichtung eine DĂŒse zum ZufĂŒhren eines KĂŒhlmittels in einen Spalt zwischen der KĂŒhlschale und der WalzenoberflĂ€che sowie einen Drucksensor zur Messung des KĂŒhlmitteldrucks, vorzugsweise im Bereich der DĂŒse und eine (Regel-) Einrichtung zur Regelung bzw. Einstellung der Spalthöhe zwischen der KĂŒhlschale und der Walze in AbhĂ€ngigkeit des durch den Drucksensor gemessenen KĂŒhlmitteldrucks. Alter-nativ kann die Vorrichtung ebenfalls einen Volumenstrommesser (bzw. -geber /-sensor) zur Messung des Volumenstroms des KĂŒhlmittels, vorzugsweise im Bereich der DĂŒse und eine (Regel-)Einrichtung zur Regelung bzw. Einstellung der Spalthöhe zwischen der KĂŒhlschale und der Walze in AbhĂ€ngigkeit des durch den Volumenstrommesser gemessenen Volumenstroms umfassen.Furthermore, the present invention comprises a device for cooling a work roll, preferably for carrying out the method according to one of the preceding embodiments, wherein the device comprises an adjustable to the roller cooling shell, which has a, to a region of the roll surface substantially complementary shape and at least extends over a portion of the axial width of the roller and over at least a portion of the circumferential direction of the roller. Furthermore, the device comprises a nozzle for supplying a coolant into a gap between the cooling shell and the roll surface and a pressure sensor for measuring the coolant pressure, preferably in the region of the nozzle and a (regulating) device for regulating or adjusting the gap height between the cooling shell and the roller as a function of the measured by the pressure sensor coolant pressure. Alternatively, the device may also include a volumetric flow meter (or sensor / sensor) for measuring the volume flow of the coolant, preferably in the region of the nozzle and a (control) device for regulating the gap height between the cooling shell and the roller depending on the volume flow measured by the volume flow meter.

Ferner umfasst die vorliegende Erfindung ebenso eine kĂŒhlbare Walzvorrichtung, vorzugsweise zur AusfĂŒhrung des obigen Verfahrens, umfassend eine zum Walzen eines Metallbandes anstellbare Walze sowie die obengenannte Vorrichtung zum KĂŒhlen der Walze.Further, the present invention also includes a coolable rolling apparatus, preferably for carrying out the above method, comprising a roll engageable to roll a metal strip and the above-mentioned apparatus for cooling the roll.

In einer weiteren bevorzugten AusfĂŒhrungsform der Erfindung fĂŒhrt die DĂŒse das KĂŒhlmittel im Wesentlichen parallel zur Umfangsrichtung der Walze oder tangential an die Walze heran. Das lichte Maß der DĂŒse kann sich im Allgemeinen zur WalzenoberflĂ€che hin verjĂŒngen, das heißt sich von einem DĂŒseneintritt zu einem DĂŒsenaustritt hin verjĂŒngen. Ferner kann die DĂŒse sich vom DĂŒseneintritt zum DĂŒsenaustritt hin bei gleichzeitiger Umlenkung des KĂŒhlmittelstroms in eine tangential zur WalzenoberflĂ€che stehende Richtung verjĂŒngen. Die DĂŒse bzw. der DĂŒsenaustritt kann im Allgemeinen durch einen sich parallel zur Walzenachse liegenden Schlitz gebildet sein. Alternativ kann eine Vielzahl von DĂŒsen parallel zur Walzenachse zum ZufĂŒhren von KĂŒhlmittel in den Spalt vorgesehen sein.In a further preferred embodiment of the invention, the nozzle guides the coolant substantially parallel to the circumferential direction of the roller or tangentially to the roller. The clear dimension of the nozzle can generally taper towards the roll surface, that is to say tapering from a nozzle inlet to a nozzle outlet. Furthermore, the nozzle can taper from the nozzle inlet to the nozzle outlet with simultaneous deflection of the coolant flow in a direction tangential to the roller surface direction. The nozzle or the nozzle outlet can generally be formed by a slot lying parallel to the roller axis. Alternatively, a plurality of nozzles may be provided parallel to the roll axis for supplying coolant into the gap.

In einer weiteren bevorzugten AusfĂŒhrungsform der Erfindung ist die Strömungsrichtung der KĂŒhlflĂŒssigkeit im Spalt der Drehrichtung der Walze entgegengesetzt. Dadurch kann die WĂ€rmeĂŒbertragung von der Walze auf das KĂŒhlmedium durch Erhöhung der relativen Geschwindigkeit zwischen Walze und KĂŒhlmedium weiter erhöht werden.In a further preferred embodiment of the invention, the flow direction of the cooling liquid in the gap is opposite to the direction of rotation of the roller. Thereby, the heat transfer from the roller to the cooling medium can be further increased by increasing the relative speed between the roller and the cooling medium.

In einer weiteren bevorzugten AusfĂŒhrungsform der Erfindung ist die DĂŒse in Bezug auf die Strömungsrichtung der KĂŒhlflĂŒssigkeit im Spalt in einem stromaufwĂ€rtsliegenden Endbereich der KĂŒhlschale angeordnet.In a further preferred embodiment of the invention, the nozzle is arranged in relation to the flow direction of the cooling liquid in the gap in an upstream end region of the cooling shell.

Die DĂŒse kann im Allgemeinen ein integraler Bestandteil der KĂŒhlschale bzw. in dieser geformt sein oder aber auch durch eine Öffnung in der KĂŒhlschale separat eingesetzt sein. Als eine weitere Alternative könnte die DĂŒse an einem in Umfangsrichtung der Walze liegendem Ende der KĂŒhlschale separat angeordnet sein. Die DĂŒse kann ebenfalls zum Beispiel durch ein Rohr oder einen Schlauch gebildet sein.The nozzle may generally be an integral part of the cooling shell or be formed in this or else be used separately through an opening in the cooling shell. As a further alternative, the nozzle could be arranged separately on an end of the cooling shell lying in the circumferential direction of the roll. The nozzle may also be formed, for example, by a pipe or a hose.

In einer weiteren bevorzugten AusfĂŒhrungsform der Erfindung ist ein Abstreifer zum Abstreifen von KĂŒhlmittel von der WalzenoberflĂ€che am stromabwĂ€rtsliegenden Ende der KĂŒhlschale angeordnet, sodass weniger KĂŒhlmittel auf ein zu walzendes Metallband gelangt.In a further preferred embodiment of the invention, a scraper for stripping coolant from the roll surface is arranged at the downstream end of the cooling shell, so that less coolant passes onto a metal strip to be rolled.

In einer weiteren bevorzugten AusfĂŒhrungsform der Erfindung erfolgt die Anstellung der KĂŒhlschale an die WalzenoberflĂ€che durch ein Verkippen und/oder eine translatorische Bewegung der KĂŒhlschale.In a further preferred embodiment of the invention, the employment of the cooling shell to the roll surface by tilting and / or a translational movement of the cooling shell takes place.

In einer weiteren bevorzugten AusfĂŒhrungsform der Erfindung ist die KĂŒhlschale in Umfangsrichtung der Walze zumindest zweiteilig ausgebildet, wobei beide Teile der KĂŒhlschale miteinander schwenkbar um eine parallel zur Achsrichtung der Walze liegende Achse verbunden sind.In a further preferred embodiment of the invention, the cooling shell in the circumferential direction of the roller is formed at least in two parts, wherein both parts of the cooling shell are pivotally connected to each other about an axis parallel to the axial direction of the roller axis.

Es ist ebenso möglich, dass die KĂŒhlschale in Umfangsrichtung mehrteilig aufgebaut ist und die benachbarten Teile (jeweils) schwenkbar miteinander verbunden sind, sodass eine noch bessere Anpassung an den Umfang der Walze möglich ist.It is also possible that the cooling shell is constructed in several parts in the circumferential direction and the adjacent parts (each) are pivotally connected to each other, so that an even better adaptation to the circumference of the roller is possible.

SĂ€mtliche Merkmale der oben beschriebenen AusfĂŒhrungsformen können miteinander kombiniert oder gegeneinander ausgetauscht werden.All features of the embodiments described above can be combined with each other or replaced.

Kurze Beschreibung der FigurenBrief description of the figures

Im Folgenden werden kurz die Figuren der AusfĂŒhrungsbeispiele beschrieben. Weitere Details sind der detaillierten Beschreibung der AusfĂŒhrungsbeispiele zu entnehmen. Es zeigen:

Figur 1
einen schematischen Querschnitt durch eine Vorrichtung zum KĂŒhlen einer Walze gemĂ€ĂŸ einem erfindungsgemĂ€ĂŸen AusfĂŒhrungsbeispiel;
Figur 2a
eine exemplarische Druck-Abstand-Kennlinie bei einem vorgegebenen Volumenstrom des KĂŒhlmittels;
Figur 2b
eine exemplarische Volumenstrom-Abstand-Kennlinie bei einem vorgegebenen Druck des KĂŒhlmittels;
Figur 3a
ein Regelschema zur Regelung der Spalthöhe bzw. des Abstands zwischen einer KĂŒhlschale und einer WalzenoberflĂ€che mittels einer Druck-Abstand-Kennlinie;
Figur 3b
ein weiteres mögliches Regelschema zur Regelung der Spalthöhe bzw. des Abstands zwischen einer KĂŒhlschale und einer WalzenoberflĂ€che mittels einer Druck-Abstand-Kennlinie;
Figur 4a
ein Regelschema zur Regelung der Spalthöhe bzw. des Abstands zwischen einer KĂŒhlschale und einer WalzenoberflĂ€che mittels einer Volumenstrom-Abstand-Kennlinie; und
Figur 4b
ein weiteres mögliches Regelschema zur Regelung der Spalthöhe bzw. des Abstands zwischen einer KĂŒhlschale und einer WalzenoberflĂ€che mittels einer Volumenstrom-Abstand-Kennlinie.
The figures of the embodiments will be briefly described below. Further details can be found in the detailed description of the embodiments. Show it:
FIG. 1
a schematic cross section through an apparatus for cooling a roller according to an embodiment of the invention;
FIG. 2a
an exemplary pressure-distance characteristic at a given volume flow of the coolant;
FIG. 2b
an exemplary volumetric flow-distance characteristic at a predetermined pressure of the coolant;
FIG. 3a
a control scheme for controlling the gap height and the distance between a cooling shell and a roll surface by means of a pressure-distance characteristic;
FIG. 3b
Another possible control scheme for controlling the gap height and the distance between a cooling shell and a roll surface by means of a pressure-distance characteristic;
FIG. 4a
a control scheme for controlling the gap height and the distance between a cooling shell and a roll surface by means of a volume flow-distance characteristic; and
FIG. 4b
Another possible control scheme for controlling the gap height and the distance between a cooling shell and a roll surface by means of a volume flow-distance characteristic.

Detaillierte Beschreibung der AusfĂŒhrungsbeispieleDetailed description of the embodiments

Figur 1 zeigt eine Vorrichtung 10 gemĂ€ĂŸ einem erfindungsgemĂ€ĂŸen AusfĂŒhrungsbeispiel zur KĂŒhlung einer Arbeitswalze 1. Die Vorrichtung 10 umfasst eine KĂŒhlschale 9, 11, welche eine im Wesentlichen komplementĂ€re Form zu zumindest einem Teil des Walzenumfangs U aufweist. Die KĂŒhlschale 9, 11 ist an die Walze mittels einer nicht dargestellten Anstelleinrichtung anstellbar und kann sich in axialer Richtung der Walze 1 ebenfalls ĂŒber zumindest einen Teilbereich der axialen Walzenbreite erstrecken. Zwischen der WalzenoberflĂ€che und der KĂŒhlschale 9, 11 ist ein Spalt 7 gebildet, dessen Höhe h durch die Vorrichtung 10 regel- bzw. einstellbar ist. Mit anderen Worten ist der Abstand h zwischen der KĂŒhlschale 9, 11 und der Walze 1 verstellbar ausgebildet. Im Betrieb der Vorrichtung kann die Spalthöhe zwischen 0,1 cm und 2,5 cm und bevorzugt zwischen 0,2 cm und 1 cm liegen. FIG. 1 shows a device 10 according to an embodiment of the invention for cooling a work roll 1. The device 10 comprises a cooling shell 9, 11, which has a substantially complementary shape to at least a portion of the roll circumference U. The cooling shell 9, 11 can be adjusted to the roll by means of a setting device, not shown, and can also extend in the axial direction of the roll 1 over at least a portion of the axial roll width. Between the roller surface and the cooling shell 9, 11, a gap 7 is formed, the height h is regulated by the device 10 or adjustable. In other words, the distance h between the cooling shell 9, 11 and the roller 1 is adjustable. During operation of the device, the gap height may be between 0.1 cm and 2.5 cm, and preferably between 0.2 cm and 1 cm.

Die Arbeitswalze 1 dreht sich wie dargestellt bevorzugt in die Drehrichtung D und ĂŒbt dabei eine Kraft auf ein zu walzendes Band 15 aus. Auf der dem Band 15 gegenĂŒberliegenden Seite der Arbeitswalze 1, kann diese durch mindestens eine weitere Rolle abgestĂŒtzt sein.The work roll 1 rotates as shown preferably in the direction of rotation D and thereby exerts a force on a to be rolled band 15. On the opposite side of the strip 15 of the work roll 1, this can be supported by at least one other role.

Zwischen Walze 1 und KĂŒhlschale 9, 11 kann ĂŒber eine DĂŒse 5 KĂŒhlmittel 3 in den Spalt 7 eingeleitet werden. Bevorzugt wird der Spalt 7 nahezu vollstĂ€ndig mit KĂŒhlmittel 3 zur KĂŒhlung der Walze 1 durchströmt. Die DĂŒse 5 kann dabei wie dargestellt in dem Körper der KĂŒhlschale 9, 11 geformt sein. Bevorzugt leitet die DĂŒse 5 KĂŒhlmittel 3 in den Spalt 7 in einer der Walzendrehrichtung D entgegengesetzten Richtung ein. Bevorzugt erfolgt diese Einleitung im Wesentlichen parallel bzw. tangential zur Umfangsrichtung U der Walze 1. Der Begriff Umfangsrichtung soll hier allerdings nicht einschrĂ€nkend in Bezug auf eine Orientierung verstanden werden, sondern vielmehr eine Richtung beschreiben, die durch die OberflĂ€chenkrĂŒmmung der Walze 1 definiert ist. Ferner kann die DĂŒse 5 eine sich stromabwĂ€rts verjĂŒngende Form besitzen. Zum Beispiel kann sich die DĂŒse 5 von einem Maß, welches ca. der 5 bis 20-fachen Spalthöhe entspricht, auf ein Maß, welches ungefĂ€hr der 0,5 bis 3-fachen Spalthöhe entspricht, verjĂŒngen.Between roller 1 and cooling shell 9, 11 5 coolant 3 can be introduced into the gap 7 via a nozzle. Preferably, the gap 7 is almost completely traversed by coolant 3 for cooling the roller 1. The nozzle 5 can be formed as shown in the body of the cooling shell 9, 11. The nozzle 5 preferably introduces coolant 3 into the gap 7 in a direction opposite to the roller rotation direction D. Preferably, this introduction is substantially parallel or tangential to the circumferential direction U of the roller 1. Der However, the term circumferential direction is not to be understood as limiting with respect to an orientation here, but rather to describing a direction which is defined by the surface curvature of the roller 1. Further, the nozzle 5 may have a downstream tapered shape. For example, the nozzle 5 may taper from a dimension corresponding to approximately 5 to 20 times the gap height to a dimension approximately equal to 0.5 to 3 times the gap height.

Bevorzugt wird KĂŒhlmittel 3 mit einem definierten Volumenstrom Vx in die DĂŒse 5 eingeleitet. Der Druck p des KĂŒhlmittels 3 kann bevorzugt noch im Bereich der DĂŒse 5, also zum Beispiel in dem sich verjĂŒngenden Bereich der DĂŒse 5 zwischen dem DĂŒseneintritt und dem DĂŒsenaustritt gemessen werden. Generell kann die Druckmessung mit einem dem Fachmann bekannten und geeigneten Drucksensor 13 erfolgen.Preferably, coolant 3 is introduced into the nozzle 5 with a defined volume flow V x . The pressure p of the coolant 3 can preferably still be measured in the region of the nozzle 5, that is, for example, in the tapering region of the nozzle 5 between the nozzle inlet and the nozzle outlet. In general, the pressure measurement can take place with a pressure sensor 13 known and suitable to the person skilled in the art.

Ebenso ist es jedoch möglich, dass das KĂŒhlmittel 3 mit einem definierten Druck px in die DĂŒse 5 eingeleitet wird. Der Volumenstrom des KĂŒhlmittels 3 kann bevorzugt noch im Bereich der DĂŒse 5, also zum Beispiel in dem sich verjĂŒngenden Bereich der DĂŒse 5 zwischen dem DĂŒseneintritt und dem DĂŒsenaustritt gemessen werden. Generell kann die Volumenstrommessung mit einem dem Fachmann bekannten und geeigneten Volumenstrommesser 13 erfolgen. Es ist natĂŒrlich auch möglich, dass beide Sensortypen installiert sind, sodass wahlweise eine Messung des Drucks bei bekanntem bzw. festem Volumenstrom oder eine Messung des Volumenstroms bei bekanntem bzw. festem Druck erfolgen kann.However, it is likewise possible for the coolant 3 to be introduced into the nozzle 5 with a defined pressure p x . The volume flow of the coolant 3 can preferably be measured in the region of the nozzle 5, that is, for example, in the tapering region of the nozzle 5 between the nozzle inlet and the nozzle outlet. In general, the volume flow measurement can be carried out with a volume flow meter 13 known and suitable to the person skilled in the art. Of course, it is also possible that both sensor types are installed, so that either a measurement of the pressure at a known or fixed volume flow or a measurement of the volume flow at known or fixed pressure can take place.

Es ist nicht zwingend notwendig, dass die DĂŒse 5 wie abgebildet ein integrierter Bestandteil der KĂŒhlschale 9 ist. Die DĂŒse 5 könnte ebenfalls separat in eine Öffnung der KĂŒhlschale 5 eingesetzt sein oder auch an einem in Umfangsrichtung U der KĂŒhlschale 9, 11 liegenden Ende, an die KĂŒhlschale 9, 10 angrenzen.It is not absolutely necessary that the nozzle 5 is an integral part of the cooling shell 9 as shown. The nozzle 5 could also be separated into one Be inserted opening of the cooling shell 5 or at an end in the circumferential direction U of the cooling shell 9, 11 end, adjacent to the cooling shell 9, 10.

Die KĂŒhlschale 9, 11 kann ferner mehrteilig ausgebildet sein. Insbesondere kann die KĂŒhlschale in Umfangsrichtung U mehrere Mittel zum Schwenken um eine zur Walzenachse parallele Achse A aufweisen. Durch eine oder mehrere solcher Schwenkachsen A entlang der Umfangsrichtung U, kann die Anstellung der KĂŒhlschale 9, 11 an verschiedene Walzendurchmesser noch besser angepasst werden.The cooling shell 9, 11 can also be designed in several parts. In particular, the cooling shell in the circumferential direction U may have a plurality of means for pivoting about an axis A parallel to the roll axis. By one or more such pivot axes A along the circumferential direction U, the employment of the cooling shell 9, 11 can be adapted to different roll diameter even better.

Bevorzugt kann im Allgemeinen ebenfalls ein Abstreifer 17 (zum Beispiel aus Metall, Holz oder Hartgewebe) am in Strömungsrichtung des KĂŒhlmittels 3 stromabwĂ€rtsliegenden Ende des Spalts 7 angeordnet sein bzw. an dem Ende des Spalts 7, welches dem zu walzenden Band 15 am nĂ€chsten liegt, angeordnet sein. Dadurch ist ein Auftreffen von KĂŒhlmittel 3 auf das Band 15 nahezu ausgeschlossen. Der Abstreifer 17 kann zum Beispiel durch eine Platte gebildet sein, welche entlang einer ihrer Kanten an den Umfang U der Walze 1 anstellbar ist. Es ist möglich, dass der Abstreifer 17 mittel- oder unmittelbar mit der KĂŒhlschale 7 verfahrbar ist und/oder mit einem ihrer Teile 11 schwenkbar ausgebildet ist. Der Abstreifer 17 kann jedoch ebenfalls separat bereitgestellt werden. Vom Abstreifer 17 kann das den Spalt 7 verlassende KĂŒhlmittel 5 abgesaugt werden. Ferner kann der Abstreifer 17 entsprechend der Arbeitswalze profiliert sein.In general, a scraper 17 (for example made of metal, wood or hard tissue) may also generally be arranged at the end of the gap 7 downstream of the coolant 3 or at the end of the gap 7 closest to the strip 15 to be rolled, be arranged. As a result, an impact of coolant 3 on the band 15 is almost impossible. The scraper 17 may for example be formed by a plate which along one of its edges on the circumference U of the roller 1 can be adjusted. It is possible that the scraper 17 is medium or directly movable with the cooling shell 7 and / or is designed to be pivotable with one of its parts 11. However, the scraper 17 can also be provided separately. From the scraper 17, the gap 7 leaving coolant 5 can be sucked. Further, the scraper 17 may be profiled according to the work roll.

Die Regelung bzw. Einstellung der Spalthöhe h des Spalts 7 zwischen der WalzenoberflĂ€che und der KĂŒhlschale 9, 11 könnte durch Messung bzw. Überwachung des Drucks p im Bereich der DĂŒse 3 erfolgen. Eine Messung mittels eines in der DĂŒse 3 angeordneten Drucksensors 13 ermöglicht eine zuverlĂ€ssige Bestimmung des Spaltabstands h.The regulation or adjustment of the gap height h of the gap 7 between the roll surface and the cooling shell 9, 11 could be done by measuring or monitoring the pressure p in the region of the nozzle 3. A measurement by means of a pressure sensor 13 arranged in the nozzle 3 enables a reliable determination of the gap distance h.

Generell kann die Messung durch den Sensor 13 jedoch ebenfalls im Spalt 7 selbst, im Bereich der DĂŒse 5 oder auch stromaufwĂ€rts der DĂŒse 5 erfolgen und ist demnach nicht auf den Bereich der DĂŒse 5 eingeschrĂ€nkt.In general, however, the measurement by the sensor 13 can also take place in the gap 7 itself, in the region of the nozzle 5 or also upstream of the nozzle 5 and is therefore not restricted to the region of the nozzle 5.

Bevorzugt wird der Druck p mittels des Messgebers 13 gemessen und einem Ist-Abstand zwischen KĂŒhlschale 9, 11 und WalzenoberflĂ€che zugeordnet bzw. einer Ist-Spalthöhe h zugeordnet. Diese Zuordnung kann zum Beispiel anhand von zuvor ermittelten Kennlinien Kx erfolgen. Solche Kennlinien Kx könnten entweder gemessen oder aber bevorzugt durch eine numerische Simulation rechnerisch ermittelt werden. Die Figur 2a stellt beispielhaft eine solche Kennlinie Kx dar. Die Kennlinie Kx(Vx) ist fĂŒr einen bestimmten (vorgegebenen bzw. definierten) Volumenstrom Vx dargestellt und beschreibt das VerhĂ€ltnis zwischen dem Druck p (an der Stelle der Druckmessung) und der Spalthöhe h. Durch eine solche Kennlinie Kx kann jedem Druck p eine Spalthöhe h bei bekanntem Volumenstrom Vx zugeordnet werden. Soll zum Beispiel nur ein Volumenstrom Vx zur KĂŒhlung verwendet werden, genĂŒgt eine Kennlinie Kx. Sollen andere oder mehrere Volumenströme Vy einsetzbar sein, werden bevorzugt entsprechende Kennlinien Ky bereitgestellt. Die in der Figur 2a gezeigte Kennlinie Kx beschreibt demnach den Verlauf zwischen Druck p und Spalthöhe h fĂŒr einen festen Volumenstrom Vx. Die Kennlinie wĂŒrde sich im dargestellten Diagramm fĂŒr andere Volumenströme V, welche grĂ¶ĂŸer oder kleiner sind als Vx, wie durch die Pfeile dargestellt verschieben. Ferner ist ein bevorzugter Arbeitsbereich zwischen den Punkten A1 und A2 dargestellt. Solch ein Arbeitsbereich muss nicht zwingend definiert sein und richtet sich nach den Gegebenheiten einer bestehenden Anlage sowie nach den vorhandenen Walzen, dem zu walzenden Produkt oder der beabsichtigten Banddickenreduktion. Der dargestellte, bevorzugte Arbeitsbereich ist durch die Wertepaare pmax, hmin (A1) und pmin, hmax (A2) begrenzt. Insbesondere liegt die Steigung der Kennlinie im Arbeitsbereich, also zwischen A1 und A2, bevorzugt in der GrĂ¶ĂŸenordnung von 1 (z. B. zwischen 0,1 und 10), was die Regelbarkeit des Systems gegenĂŒber grĂ¶ĂŸeren oder kleineren Werten verbessert. Der maximale Druck pmax kann sowohl aus konstruktiven GrĂŒnden als auch aus KostengrĂŒnden eingeschrĂ€nkt sein. Die maximale Spalthöhe hmax kann insofern eingeschrĂ€nkt sein, als dass bei zu großen Spalthöhen h sehr große KĂŒhlmittelmengen benötigt werden, um eine hinreichende KĂŒhlung (insbesondere durch eine hohe Fließgeschwindigkeit und/oder den stĂ€ndigen Kontakt der WalzenoberflĂ€che mit KĂŒhlmittel) zu gewĂ€hrleisten.Preferably, the pressure p is measured by means of the encoder 13 and assigned to an actual distance between the cooling shell 9, 11 and roll surface or assigned to an actual gap height h. This assignment can be made for example on the basis of previously determined characteristic curves K x . Such characteristic curves K x could either be measured or, preferably, mathematically determined by a numerical simulation. The FIG. 2a exemplifies such a characteristic curve K x . The characteristic K x (V x ) is shown for a given (predetermined or defined) volume flow V x and describes the relationship between the pressure p (at the point of pressure measurement) and the gap height h , By such a characteristic K x each pressure p can be assigned a gap height h at a known volume flow V x . If, for example, only one volume flow V x is to be used for cooling, a characteristic curve K x is sufficient. If it is intended to be possible to use other or several volume flows V y , corresponding characteristic curves K y are preferably provided. The in the FIG. 2a shown characteristic curve K x thus describes the course between pressure p and gap height h for a fixed volume flow V x . The characteristic curve would shift in the illustrated diagram for other volume flows V which are greater or smaller than V x , as shown by the arrows. Furthermore, a preferred working range is shown between the points A1 and A2. Such a working area does not necessarily have to be defined and depends on the conditions of an existing installation and on the existing rolls, the product to be rolled or the intended reduction in strip thickness. The illustrated, preferred work area is through the Value pairs p max , h min (A1) and p min , h max (A2) limited. In particular, the slope of the characteristic in the working range, ie between A 1 and A 2 , is preferably of the order of 1 (eg between 0.1 and 10), which improves the controllability of the system with respect to larger or smaller values. The maximum pressure p max can be limited both for design reasons and for cost reasons. The maximum gap height h max may be limited insofar as h large amounts of coolant are required in the case of excessively large gap heights in order to ensure sufficient cooling (in particular due to a high flow velocity and / or constant contact of the roll surface with coolant).

Alternativ kann im Falle einer Messung des Volumenstroms V der Spaltabstand h mit Hilfe einer Volumenstrom-Abstand-Kennlinie Kx(px) eingestellt bzw. geregelt werden. Eine solche Kennlinie Kx(px) ist in Figur 2b dargestellt. Die Bestimmung kann hierbei analog wie in Figur 2a erfolgen, jedoch ist die Kennlinie Kx(px) nun fĂŒr einen bekannten Druck px abgebildet. Aufgetragen ist der Volumenstrom V gegen die Spalthöhe h. Wird der vorgebbare Druck p grĂ¶ĂŸer oder kleiner als px gewĂ€hlt, wĂŒrde sich die Kennlinie KX(pX) wie dargestellt verschieben. Die weitere Interpretation der Kennlinie ist analog zu der Kennlinie aus Figur 2a anzusehen, bis auf dass der Druck p fĂŒr eine Kennlinie Kx(px) festgehalten wird und der Volumenstrom V variiert.Alternatively, in the case of a measurement of the volumetric flow V, the gap distance h can be set or regulated with the aid of a volumetric flow-distance characteristic K x (p x ). Such a characteristic K x (p x ) is in FIG. 2b shown. The determination can be analogous as in FIG. 2a However, the characteristic K x (p x ) is now mapped for a known pressure p x . Plotted is the volume flow V against the gap height h. If the predeterminable pressure p is chosen to be greater or smaller than p x , the characteristic curve K X (p X ) would shift as shown. The further interpretation of the characteristic curve is analogous to the characteristic curve FIG. 2a to look at, except that the pressure p for a characteristic K x (p x ) is held and the flow rate V varies.

NatĂŒrlich ist es nicht notwendig, dass die Kennlinie Kx in grafischer Form vorliegt, vielmehr kann die Kennlinie Kx auch in Form von Wertetabellen, Matrizen, Arrays oder einem Funktionsverlauf vorliegen und/oder in einer Auswertungseinrichtung gespeichert sein, welche dazu ausgebildet ist, gemessenen DrĂŒcken pIst bzw. gemessenen Volumenströmen VIst Spalthöhen hIst zuzuordnen. Dies ist bevorzugt automatisch und wĂ€hrend des Walzbetriebs möglich.Of course, it is not necessary for the characteristic curve K x to be present in graphic form; rather, the characteristic curve K x can also be present in the form of value tables, matrices, arrays or a function profile and / or stored in an evaluation device which is designed to be measured Press p Ist or measured volume flow V is gap height h is to be assigned. This is preferably automatic and possible during the rolling operation.

Alternativ ist es möglich, dass die Kennlinie Kx derart verwendet wird, dass sie dazu dient einer Sollhöhe des Spalts hSoll einen Solldruck pSoll oder einen Sollvolumenstrom VSoll zuzuordnen. Dies ist in Bezug auf die Figuren 3b und 4b nÀher beschrieben.Alternatively, it is possible that the characteristic curve K x is used such that it is used to assign a target height of the gap h set a target pressure p target, or a target volumetric flow V target. This is in terms of the FIGS. 3b and 4b described in more detail.

ZunĂ€chst zeigt die Figur 3a exemplarisch eine mögliche Regelung bzw. Einstellung der Spalthöhe h, welche zum Beispiel durch eine PositionsĂ€nderung der WalzenoberflĂ€che verĂ€ndert wird (StörgrĂ¶ĂŸe). Solche PositionsverĂ€nderung können durch einen Walzenwechsel oder -verschleiß hervorgerufen werden. Es ist auch möglich, dass nichtvorhersehbare SprĂŒnge der Walze 1 im Walzbetrieb auftreten. Eine vorliegende Spalthöhe fĂŒhrt zu einem vorliegenden KĂŒhlmitteldruck pIst (RegelgrĂ¶ĂŸe), welcher durch einen Drucksensor 13 (Messglied) feststellbar ist. Diesem gemessenen (Ist-)Druck pIst wird mit Hilfe einer Druck-Abstand-Kennlinie gemĂ€ĂŸ Figur 3a eine (Ist-)Höhe des Spalts hIst zugeordnet. Diese Höhe hIst wird folgend mit einem Sollwert der Spalthöhe hSoll verglichen. Eine möglicherweise vorhandene Differenz eh zwischen Ist- und Sollhöhe (Regeldifferenz) wird bevorzugt einer Regeleinrichtung (Regler) zugefĂŒhrt. Die Regeleinrichtung gibt dann bevorzugt einen Verstellwert SStell an eine Anstellvorrichtung (Stellglied) aus. Diese verstellt dann entsprechend den Spaltabstand h, sodass der gewĂŒnschte Abstand hSoll (zumindest kurzfristig) wieder hergestellt wird. Je nach Auslegung des Systems kann die Regeldifferenz auch direkt einer Anstelleinrichtung zugefĂŒhrt werden.First, the shows FIG. 3a exemplarily a possible control or adjustment of the gap height h, which is changed for example by a change in position of the roll surface (disturbance variable). Such positional change can be caused by a roll change or wear. It is also possible that unpredictable cracks of the roll 1 occur in the rolling operation. An existing gap height leads to a present coolant pressure p actual (controlled variable), which can be detected by a pressure sensor 13 (measuring element). This measured (actual) pressure p actual is determined by means of a pressure-distance characteristic according to FIG. 3a an (actual) height of the gap h is assigned. This height h ist is compared below with a desired value of the gap height h Soll . A possibly existing difference e h between actual and desired height (control difference) is preferably fed to a control device (controller). The control device then preferably outputs an adjustment value S Stell to a setting device (actuator). This then adjusted according to the gap distance h, so that the desired distance h Soll (at least in the short term) is restored. Depending on the design of the system, the control difference can also be fed directly to a setting device.

Alternativ ist es gemĂ€ĂŸ Figur 3b möglich, dass ein Drucksensor 13 einen KĂŒhlmittedruck pIst (RegelgrĂ¶ĂŸe) bestimmt und dieser Ist-Wert einem Differenzglied bzw. Differenzbildner zugefĂŒhrt und dort mit einem Sollwert des KĂŒhlmitteldrucks pSoll verglichen wird. Dieser Solldruck pSoll kann bevorzugt aus einer Druck-Abstand-Kennlinie resultieren, wobei ein Sollabstand des Spalts hSoll vorgegeben wird und mit Hilfe der Druck-Abstand-Kennlinie dem Sollabstand des Spalts hSoll ein Solldruck des KĂŒhlmittels pSoll zugeordnet wird. Die sich aus dem Vergleich des Istdrucks pIst und des Solldrucks pSoll ergebende Regeldifferenz wird bevorzugt der Regeleinrichtung zugefĂŒhrt, welche einen Stellwert fĂŒr die Anstelleinrichtung ausgibt, sodass der Spaltabstand h auf Basis der ermittelten Druckdifferenz ep eingestellt bzw. verstellt werden kann.Alternatively, it is according to FIG. 3b It is possible for a pressure sensor 13 to determine a coolant pressure p actual (controlled variable) and for this actual value to be fed to a differential element or differential former where it is compared with a nominal value of the coolant pressure p desired . This setpoint pressure p setpoint may preferably result from a pressure-distance characteristic curve, wherein a setpoint distance of the gap h setpoint is predetermined and, with the aid of the pressure-distance characteristic, the setpoint distance of the Gap h If a setpoint pressure of the coolant p setpoint is to be assigned. The control difference resulting from the comparison of the actual pressure p actual and the setpoint pressure p setpoint is preferably fed to the control device, which outputs a control value for the adjusting device, so that the gap distance h can be adjusted or adjusted on the basis of the determined pressure difference e p .

In den gemĂ€ĂŸ den Figuren 3a und 3b beschriebenen FĂ€llen wird jeweils bevorzugt angenommen, dass der Volumenstrom V des KĂŒhlmittels konstant gehalten wird und ein gemessener KĂŒhlmitteldruck pIst mittels einer Druck-Abstand-Kennlinie Kx (entsprechend dem konstant gehaltenen Volumenstrom V) mit einer Sollhöhe hSoll verglichen wird. Eine ermittelte Regeldifferenz eh, ep kann nachfolgend zur Verstellung des Spaltabstands h verwendet werden.In accordance with the FIGS. 3a and 3b In each case, it is preferably assumed that the volume flow V of the coolant is kept constant and a measured coolant pressure p actual is compared with a nominal height h Soll by means of a pressure-distance characteristic K x (corresponding to the constant held volume flow V). A determined control difference e h , e p can subsequently be used to adjust the gap distance h.

Alternativ ist es wie in Figur 4a dargestellt möglich, dass der KĂŒhlprozess durch einen Volumenstrommesser 13 (Messglied) ĂŒberwacht wird. Ändert sich die Spalthöhe h fĂŒhrt dies zu einem geĂ€nderten KĂŒhlmittel-Volumenstrom VIst (RegelgrĂ¶ĂŸe). Der gemessene (Ist-)Volumenstrom VIst kann mit Hilfe einer Volumenstrom-Abstand-Kennlinie Kx(px) bei einem bekannten, festen Druck px in eine Ist-Spalthöhe hIst umgewandelt werden. Analog zur Figur 3a kann dann der mit Hilfe der Kennlinie Kx ermittelte Wert der Ist-Spalthöhe hIst mit einer gewĂŒnschten Soll-Spalthöhe hSoll verglichen werden. Dieser Vergleich kann zu einer Regeldifferenz eh fĂŒhren. Dies kann an eine Regeleinrichtung (Regler) geleitet werden, welche bevorzugt einen Verstellwert SStell an eine Anstelleinrichtung (Stellglied) ausgibt. Die Anstelleinrichtung stellt dann entsprechend den Spaltabstand h ein, sodass der gewĂŒnschte Abstand hSoll wieder hergestellt wird.Alternatively it is like in FIG. 4a shown possible that the cooling process is monitored by a volume flow meter 13 (measuring element). If the gap height h changes, this results in a changed coolant volume flow V actual (controlled variable). The measured (actual) volume flow V Ist can be converted into an actual gap height h Ist with the aid of a volume flow-distance characteristic K x (p x ) at a known, fixed pressure p x . Analogous to FIG. 3a then the value of the actual gap height h Ist determined using the characteristic curve K x can be compared with a desired target gap height h Soll . This comparison can lead to a control difference e h . This can be passed to a control device (controller), which preferably outputs an adjustment value S Stell to an adjusting device (actuator). The adjuster then adjusts the gap distance h accordingly so that the desired distance h desired is restored.

Ähnlich wie fĂŒr die Figur 3b und eine Messung des Drucks beschrieben, kann die Kennlinie gemĂ€ĂŸ der Figur 4b dazu dienen, einem Sollabstand hSoll einen Soll-Volumenstrom VSoll zuzuordnen, wobei letzterer mit einem durch einen Volumenstrommesser 13 ermittelten Ist-Volumenstrom VIst verglichen werden kann. Eine aus einem solchen Vergleich resultierende Regeldifferenz eV kann nachfolgend durch eine Regeleinrichtung in einen Stellwert umgerechnet werden, um den gewĂŒnschten Sollabstand hSoll nach Maßgabe der Regeldifferenz ev einzustellen.Similar to the FIG. 3b and a measurement of the pressure, the characteristic according to the FIG. 4b serve to assign a desired volume flow V setpoint to a desired distance h setpoint , the latter being able to be compared with an actual volume flow V actual determined by a volumetric flow meter 13. A resulting from such a comparison control difference e V can be subsequently converted by a control device into a control value to set the desired desired distance h Soll according to the control deviation ev.

In den gemĂ€ĂŸ den Figuren 4a und 4b beschriebenen FĂ€llen wird jeweils bevorzugt angenommen, dass der Druck p des KĂŒhlmittels konstant gehalten wird und ein gemessener Volumenstrom VIst mittels einer Volumenstrom-Abstand-Kennlinie Kx(px) (entsprechend dem konstant gehaltenen Druck p) mit einer Sollhöhe hSoll verglichen wird. Eine ermittelte Regeldifferenz eh, eV kann schließlich zur Verstellung des Spaltabstands h verwendet werden.In accordance with the FIGS. 4a and 4b In each case, it is preferably assumed that the pressure p of the coolant is kept constant and a measured volume flow V actual is compared by means of a volume flow-distance characteristic K x (p x ) (corresponding to the pressure p kept constant) with a desired height h Soll , A determined control difference e h , e V can finally be used to adjust the gap distance h.

Die oben beschriebenen AusfĂŒhrungsbeispiele dienen vor allem dem besseren VerstĂ€ndnis der Erfindung und sollten nicht einschrĂ€nkend verstanden werden. Der Schutzumfang der vorliegenden Patentanmeldung ergibt sich aus den PatentansprĂŒchen.Above all, the embodiments described above serve to better understand the invention and should not be understood as limiting. The scope of protection of the present patent application results from the patent claims.

Die Merkmale der beschriebenen AusfĂŒhrungsbeispiele können miteinander kombiniert oder gegeneinander ausgetauscht werden.The features of the described embodiments can be combined or replaced with each other.

Ferner können die beschriebenen Merkmale durch den Fachmann an vorhandene Gegebenheiten oder vorliegende Anforderungen angepasst werden.Furthermore, the features described can be adapted by the skilled person to existing circumstances or existing requirements.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Walzeroller
33
KĂŒhlmittel /-flĂŒssigkeitCoolant / liquid
55
DĂŒsejet
77
Spaltgap
99
KĂŒhlschale / erster Teil einer KĂŒhlschaleCooling shell / first part of a cooling shell
1010
Vorrichtung zum KĂŒhlen einer WalzeDevice for cooling a roller
1111
KĂŒhlschale / zweiter Teil einer KĂŒhlschaleCooling shell / second part of a cooling shell
1313
Drucksensor / VolumenstrommesserPressure sensor / volumetric flow meter
1515
Metallbandmetal band
1717
Abstreiferscraper
100100
Walzvorrichtungrolling device
AA
Schwenkachseswivel axis
A1 A 1
erster Arbeitspunktfirst working point
A2 A 2
zweiter Arbeitspunktsecond operating point
DD
Drehrichtung der WalzeDirection of rotation of the roller
eh e h
RegeldifferenzControl difference
ep e p
RegeldifferenzControl difference
eV e V
RegeldifferenzControl difference
hH
Spalthöhegap height
hIst h is
Ist-SpalthöheActual gap height
hSoll h soll
Soll-SpalthöheTarget gap height
UU
Umfangsrichtung der WalzeCircumferential direction of the roller
pp
KĂŒhlmitteldruckCoolant pressure
pIst p is
Ist-KĂŒhlmitteldruckActual coolant pressure
pSoll p target
Soll-KĂŒhlmitteldruckTarget coolant pressure
pmax p max
maximaler Arbeitsdruckmaximum working pressure
pmin p min
minimaler Arbeitsdruckminimal working pressure
px p x
Druck x (definierter Druck)Pressure x (defined pressure)
hmax h max
maximale Spalthöhemaximum gap height
hmin h min
minimale Spalthöheminimum gap height
VV
Volumenstromflow
VIst V is
Ist-VolumenstromActual flow
VSoll V target
Soll-VolumenstromSet volume flow
Vmax V max
maximaler Volumenstrommaximum flow rate
Vmin V min
minimaler Volumenstromminimum volume flow
Vx V x
Volumenstrom x (definierter Volumenstrom)Volume flow x (defined volume flow)
Kx K x
Kennliniecurve
SStell S Stell
Verstellwert fĂŒr die AnstelleinrichtungAdjustment value for the adjusting device

Claims (14)

  1. Method of cooling a roll (1), particularly a work roll (1), of a hot-rolling installation, which comprises the following steps:
    supplying coolant (3) by means of at least one nozzle (5) into a gap (7) between at least a part of the roll surface and a cooling shell (9, 11) adjustable relative to the part of the roll surface and
    setting the gap height (h) between the cooling shell (9, 11) and the roll surface,
    characterised in that
    the pressure (pIst) of the supplied coolant (3) is measured and the gap height (h) is set on the basis of the measured pressure (pIst) or
    the volume flow (VIst) of supplied coolant (3) is measured and the gap height (h) is set on the basis of the measured volume flow (VIst).
  2. The method according to claim 1,
    wherein the gap height (h) between the roll (1) and the cooling shell (9, 11) is increased when the measured coolant pressure (pIst) or the measured volume flow (vIst) lies above a predeterminable upper limit
    and/or
    wherein the gap height (h) between the roll (1) and the cooling shell (9, 11) is decreased when the measured coolant pressure (pIst) or the measured volume flow (vIst) lies below a predeterminable lower limit.
  3. The method according to one of the preceding claims,
    wherein in the case of measurement of the pressure the coolant (3) is supplied at a defined volume flow (Vx) to the gap (7) and the setting of the gap height (h) between the roll (1) and the cooling shell (9, 11) is carried out after measurement of the coolant pressure (pIst) on the basis of a previously determined pressure/spacing characteristic curve (Kx) with respect to the defined volume flow (Vx) of the coolant (3) or
    wherein in the case of measurement of the volume flow the coolant (3) is supplied at a defined pressure (px) to the gap (7) and the setting of the gap height (h) between the roll (1) and the cooling shell (9, 11) is carried out after measuring the volume flow (VIst) on the basis of a previously determined volume flow/spacing characteristic curve (Kx) with respect to the defined pressure (px) of the coolant (3).
  4. The method according to claim 3, wherein
    in the case of measurement of the pressure the measured coolant pressure (pIst) is compared with a predeterminable target height (hSoll) of the gap (7) with the help of the pressure/spacing characteristic curve (Kx) and an adjustment value (SStell) for setting the gap height (h) is issued in accordance with a difference resulting from this comparison and in the case of measurement of the volume flow the measured volume flow (VIst) is compared with a predeterminable target height (hSoll) of the gap (7) with the help of the volume-flow/spacing characteristic curve (Kx) and an adjustment value (SStell) for setting the gap height (h) is issued in accordance with a difference resulting from this comparison.
  5. The method according to claim 3 or 4, wherein the characteristic curve (Kx) is determined by means of a numerical simulation or experimentally.
  6. The method according to claim 4 or 5, wherein
    in the case of a defined supplied volume flow the characteristic curve (Kx) is determined for a plurality of different volume flows (V), particularly for at least one volume flow (Vx), which is used for cooling of the roll (1), of the coolant, or wherein
    in the case of a defined supplied pressure the characteristic curve (Kx) is determined for a plurality of different pressures (p), particularly for at least one pressure (px), which is used for cooling of the roll (1), of the coolant (3).
  7. The method according to any one of claims 3 to 6, wherein the characteristic curve (Kx)
    in the case of measurement of the pressure is given by an association of coolant pressure relative to the gap height (h) between roll surface and cooling shell (9, 11) or
    in the case of measurement of the volume flow is given by an association of volume flow relative to the gap height (h) between roll surface and cooling shell (9, 11).
  8. The method according to any one of the preceding claims, wherein the flow direction of the cooling liquid (3) in the gap (7) is opposite to the direction (D) of rotation of the roll (1).
  9. The method according to claim 8, wherein a stripper (17) for stripping coolant (3) from the roll surface is arranged in the gap (7) at the downstream end of the cooling shell (9, 11) with respect to the flow direction of the cooling liquid (3) so that less coolant (3) passes onto a metal strip (15) to be rolled.
  10. The method according to any one of the preceding claims, wherein the cooling shell (9, 11) is adjusted relative to the roll surface by tilting of the cooling shell (9, 11) and/or translational movement of the cooling shell (9, 11).
  11. A device (10) for cooling a work roll (1), preferably for carrying out the method according to any one of the preceding claims, wherein the device (10) comprises the following:
    a cooling shell (9, 11), which is adjustable relative to the roll (1) and which has a shape substantially complementary to a region of the roll surface and extends at least over a subregion of the axial width of the roll (1) as well as at least over a part of the circumference (U) of the roll (1);
    a nozzle (5) for supplying a coolant (3) to a gap (7) between the cooling shell (9, 11) and the roll (1); and
    a pressure sensor (13) for measuring the coolant pressure, preferably in the region of the nozzle (5), as well as a device for setting the gap height (h) between the cooling shell (9, 11) and the roll (1) in dependence on the coolant pressure (pIst) measured by the pressure sensor (13); or
    a volume flow meter (13) for measuring the coolant volume flow, preferably in the region of the nozzle (5), as well as a device for setting the gap height (h) between the cooling shell (9, 11) and the roll (1) in dependence on the volume flow (VIst) measured by the volume flow meter (13).
  12. The device (10) for cooling a work roll (1) according to claim 11, wherein the nozzle (5) conducts the coolant (3) substantially parallelly to the circumferential direction (U), tangentially to the roll (1).
  13. The device (10) for cooling a work roll (1) according to claim 11, wherein the cooling shell (9, 11) is of at least two-part construction as seen in circumferential direction (U) of the roll (1) and the two parts (9, 11) of the cooling shell (9, 11) are connected together to be pivotable about an axis (A) lying parallel to the axial direction of the roll (1).
  14. A coolable rolling device (100), preferably for carrying out the method according to any one of claims 1 to 10, comprising:
    a roll (1) adjustable for rolling a metal strip (15); and
    a device (10) for cooling the roll (1) in accordance with any one of claims 11 to 13.
EP12798664.4A 2011-12-23 2012-11-29 Method and device for cooling rolls Active EP2794136B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011089804 2011-12-23
DE201210202340 DE102012202340A1 (en) 2011-12-23 2012-02-16 Method and device for cooling rolls
PCT/EP2012/073900 WO2013092152A1 (en) 2011-12-23 2012-11-29 Method and device for cooling rolls

Publications (2)

Publication Number Publication Date
EP2794136A1 EP2794136A1 (en) 2014-10-29
EP2794136B1 true EP2794136B1 (en) 2015-09-16

Family

ID=48575792

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12798664.4A Active EP2794136B1 (en) 2011-12-23 2012-11-29 Method and device for cooling rolls

Country Status (8)

Country Link
US (1) US9108235B2 (en)
EP (1) EP2794136B1 (en)
JP (1) JP5777129B2 (en)
KR (1) KR20140088620A (en)
CN (1) CN104169013B (en)
DE (1) DE102012202340A1 (en)
RU (1) RU2586375C2 (en)
WO (1) WO2013092152A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2881186A1 (en) * 2013-12-09 2015-06-10 Linde Aktiengesellschaft Method and apparatus to isolate the cold in cryogenic equipment
DE102014222530A1 (en) * 2014-05-05 2015-11-05 Sms Group Gmbh Band deflector and roller assembly
DE102014224318A1 (en) * 2014-11-27 2016-06-02 Sms Group Gmbh Apparatus and method for cooling a roll
DE102015210680A1 (en) 2015-06-11 2016-12-15 Sms Group Gmbh Method and device for controlling a parameter of a rolling stock
CN104923563B (en) * 2015-06-12 2016-08-24 ć±±è„żć€Șé’ąäžé”ˆé’ąè‚Ąä»œæœ‰é™ć…Źćž Hot continuous rolling finish rolling cooling water asymmetric tolerances control method
CN105302995B (en) * 2015-11-20 2018-10-09 æČˆé˜łé»Žæ˜ŽèˆȘç©ș揑抹æœș(集曱)æœ‰é™èŽŁä»»ć…Źćž A kind of method of numerical simulation of optimum blade roll milling mold and Blank Design
DE102016223131A1 (en) * 2016-09-06 2018-03-08 Sms Group Gmbh Apparatus and method for applying a liquid medium to a roll and / or to a rolling stock and / or for removing the liquid medium
EP3308868B1 (en) * 2016-10-17 2022-12-07 Primetals Technologies Austria GmbH Cooling of a roll of a roll stand
BE1025125B1 (en) * 2017-09-04 2018-10-31 Centre de Recherches MĂ©tallurgiques asbl-Centrum voor Research in de Metallurgie vzw CONTACTLESS TUMBLER AND INDUSTRIAL INSTALLATION COMPRISING SUCH A TUMBLER

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3357224A (en) * 1965-02-26 1967-12-12 Inland Steel Co Roll cooling
JPS6018489B2 (en) * 1977-12-14 1985-05-10 çŸłć·ćł¶æ’­çŁšé‡ć·„æ„­æ ȘćŒäŒšç€Ÿ rolling equipment
JPS59162107U (en) * 1983-04-11 1984-10-30 ć·ćŽŽèŁœé‰„æ ȘćŒäŒšç€Ÿ Roll cooling water circulation system
KR930000465B1 (en) 1985-05-17 1993-01-21 가부시Ʞ가읎샀 ížˆë‹€ì°Œì„žìŽì‚ŹêŸžì‡Œ Method and apparatus for cooling rolling mill rolls
JPS6268612A (en) * 1985-09-19 1987-03-28 Kawasaki Steel Corp Cooling method for rolling roll
JPH0679728B2 (en) * 1985-05-22 1994-10-12 æ ȘćŒäŒšç€Ÿæ—„ç«‹èŁœäœœæ‰€ Roll cooling device for rolling mill
JPS6245409A (en) * 1985-08-26 1987-02-27 Nippon Kokan Kk <Nkk> Roll cooling mechanism
JPH0225206A (en) 1988-07-11 1990-01-26 Kawasaki Steel Corp Cooling device for rolling roll
JP2710392B2 (en) 1989-03-14 1998-02-10 æ–°æ—„æœŹèŁœé”æ ȘćŒäŒšç€Ÿ Roller roll water jacket cooling system
JP2710391B2 (en) 1989-03-14 1998-02-10 æ–°æ—„æœŹèŁœé”æ ȘćŒäŒšç€Ÿ Roller roll water jacket cooling system
JP2710403B2 (en) * 1989-04-28 1998-02-10 æ–°æ—„æœŹèŁœé”æ ȘćŒäŒšç€Ÿ Water jacket type cooling method of rolling roll and control method thereof
JPH03161105A (en) 1989-11-20 1991-07-11 Kawasaki Steel Corp Cooling device for rolling roll
JPH05317927A (en) 1992-05-22 1993-12-03 Ishikawajima Harima Heavy Ind Co Ltd Sealing device for cooling fluid of rolling mill and cooling device for roll
JP3098615B2 (en) 1992-05-29 2000-10-16 è±Šç”Łăƒžă‚·ăƒŠăƒȘăƒŒæ ȘćŒäŒšç€Ÿ Sealing method of rolling roll cooling liquid and sealing structure
JP3096524B2 (en) 1992-06-30 2000-10-10 æ ȘćŒäŒšç€Ÿæ—„ç«‹èŁœäœœæ‰€ Local spray nozzle device of roll, local cooling device, and local cooling method
JPH0615315A (en) 1992-06-30 1994-01-25 Hitachi Ltd Heat crown controller for rolling rolls
DE4337288A1 (en) * 1992-11-25 1994-05-26 Schloemann Siemag Ag Method and device for controlling the thermal contour of work rolls
DE4422422A1 (en) 1994-01-08 1995-07-13 Schloemann Siemag Ag Appts. for contactless sealing of gap at the exit of a rolling stand,
JP3192320B2 (en) 1994-07-15 2001-07-23 æ ȘćŒäŒšç€Ÿæ—„ç«‹èŁœäœœæ‰€ Rolling roll cooling device and rolling mill
JP3582617B2 (en) * 1995-09-22 2004-10-27 çŸłć·ćł¶æ’­çŁšé‡ć·„æ„­æ ȘćŒäŒšç€Ÿ Rolling roll cooling device
JPH105827A (en) 1996-06-14 1998-01-13 Hitachi Ltd Device for cooling rolling roll and rolling mill
DE19737735A1 (en) 1997-08-29 1999-03-04 Schloemann Siemag Ag Device and method for cooling the work rolls of a roll stand on the outlet side
DE19752845A1 (en) 1997-11-30 1999-06-02 Schloemann Siemag Ag Cooling device for cooling a roller for rolling a strip, in particular a metal strip
JP2000071004A (en) * 1998-08-28 2000-03-07 Hitachi Ltd Roll cooling method and device for rolling mill
DE19850739A1 (en) 1998-11-04 2000-05-11 Schloemann Siemag Ag Method and device for cooling hot rolled material, in particular hot wide strip
DE102004025058A1 (en) * 2004-05-18 2005-12-08 Sms Demag Ag Method and device for cooling and / or lubrication of rolls and / or rolling stock
BE1017462A3 (en) * 2007-02-09 2008-10-07 Ct Rech Metallurgiques Asbl DEVICE AND METHOD FOR COOLING ROLLING CYLINDERS IN HIGHLY TURBULENT.
DE102009053074A1 (en) 2009-03-03 2010-09-09 Sms Siemag Ag Method and cooling device for cooling the rolls of a roll stand
EP2489446A1 (en) * 2011-02-17 2012-08-22 Linde Aktiengesellschaft Nozzle header
CN201959980U (en) * 2011-04-11 2011-09-07 ć±±è„żć€Șé’ąäžé”ˆé’ąè‚Ąä»œæœ‰é™ć…Źćž Roller cooling device

Also Published As

Publication number Publication date
CN104169013A (en) 2014-11-26
EP2794136A1 (en) 2014-10-29
US20150013405A1 (en) 2015-01-15
JP5777129B2 (en) 2015-09-09
US9108235B2 (en) 2015-08-18
JP2015502262A (en) 2015-01-22
RU2586375C2 (en) 2016-06-10
WO2013092152A1 (en) 2013-06-27
CN104169013B (en) 2016-03-16
KR20140088620A (en) 2014-07-10
DE102012202340A1 (en) 2013-06-27
RU2014130217A (en) 2016-02-20

Similar Documents

Publication Publication Date Title
EP2794136B1 (en) Method and device for cooling rolls
DE3117398C2 (en)
EP2519365B1 (en) Method of controlling side guides of a metal strip
EP3194655B1 (en) Sealing strip system for a suction roll
EP2170535B1 (en) Method for adjusting a state of a rolling stock, particularly a near-net strip
EP2846941B1 (en) Device for cooling rolls
EP2519364B1 (en) Method of controlling the side guides of a metal strip
EP2184156A2 (en) Process for cooling flat plastic products
EP3535069B1 (en) Method for operating a combined casting and rolling installation
EP3544751B1 (en) Strip position control with force-limited placement of lateral guiding devices on the metal strip
AT390900B (en) ARRANGEMENT FOR REGULATING THE POSITIONS OF THE WORK ROLLS IN A QUARTO ROLLING MILL FOR ROLLING METAL
EP2817110B1 (en) Straightening method with positioning system for the product to be straightened
DE2657986A1 (en) LEVELING MACHINE FOR LEVELING PLATES AND FLAT MATERIALS
DE2261176B2 (en) Device for detecting the tensile stress of strand-like material running between individual roll stands of a rolling mill and for changing the speed of the rolls of the individual roll stands
DE10159608C5 (en) Rolling process and rolling train for a band with a weld
EP3135402B1 (en) Mould and method for monitoring a mould
WO2012072603A1 (en) Concept for adjusting process parameters of a rolling process by means of a measured bearing slip
EP3307448B1 (en) Method and device for controlling a parameter of a rolled stock
DE3837101A1 (en) Method for controlling the running of the strip during rolling in a mill train
EP3877145B1 (en) Method and device for controlling the nozzle gap of the outlet nozzle of a flat film machine
DE102021205275A1 (en) Method for operating a roll stand
EP4100177A1 (en) Method for calibrating vertical rolls of a vertical roll stand, and calibrating assembly for carrying out the method
WO2008131929A1 (en) Method for the operation of a shaping device
DE102004061080A1 (en) Method and device for strip casting of metals
AT520033A1 (en) Extruder machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140723

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150417

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SMS GROUP GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 749356

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012004637

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151217

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160116

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160118

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012004637

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151129

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

26N No opposition filed

Effective date: 20160617

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151129

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121129

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150916

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20201119

Year of fee payment: 9

Ref country code: FR

Payment date: 20201120

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20201125

Year of fee payment: 9

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231120

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231127

Year of fee payment: 12

Ref country code: SE

Payment date: 20231120

Year of fee payment: 12

Ref country code: IT

Payment date: 20231124

Year of fee payment: 12

Ref country code: DE

Payment date: 20231121

Year of fee payment: 12

Ref country code: AT

Payment date: 20231121

Year of fee payment: 12