EP3490382A1 - Produit alimentaire expanse sec a base de proteine et son procede de fabrication - Google Patents

Produit alimentaire expanse sec a base de proteine et son procede de fabrication

Info

Publication number
EP3490382A1
EP3490382A1 EP17748710.5A EP17748710A EP3490382A1 EP 3490382 A1 EP3490382 A1 EP 3490382A1 EP 17748710 A EP17748710 A EP 17748710A EP 3490382 A1 EP3490382 A1 EP 3490382A1
Authority
EP
European Patent Office
Prior art keywords
food product
food
animal
cheese
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17748710.5A
Other languages
German (de)
English (en)
Inventor
Jean-Jacques Snappe
Pierre Olivier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proteifood SA
Original Assignee
Proteifood SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Proteifood SA filed Critical Proteifood SA
Publication of EP3490382A1 publication Critical patent/EP3490382A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/22Working-up of proteins for foodstuffs by texturising
    • A23J3/26Working-up of proteins for foodstuffs by texturising using extrusion or expansion
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D13/00Finished or partly finished bakery products
    • A21D13/06Products with modified nutritive value, e.g. with modified starch content
    • A21D13/064Products with modified nutritive value, e.g. with modified starch content with modified protein content
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D2/00Treatment of flour or dough by adding materials thereto before or during baking
    • A21D2/08Treatment of flour or dough by adding materials thereto before or during baking by adding organic substances
    • A21D2/24Organic nitrogen compounds
    • A21D2/26Proteins
    • A21D2/261Animal proteins
    • A21D2/262Animal proteins from eggs
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D2/00Treatment of flour or dough by adding materials thereto before or during baking
    • A21D2/08Treatment of flour or dough by adding materials thereto before or during baking by adding organic substances
    • A21D2/24Organic nitrogen compounds
    • A21D2/26Proteins
    • A21D2/261Animal proteins
    • A21D2/263Animal proteins from dairy products
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D2/00Treatment of flour or dough by adding materials thereto before or during baking
    • A21D2/08Treatment of flour or dough by adding materials thereto before or during baking by adding organic substances
    • A21D2/24Organic nitrogen compounds
    • A21D2/26Proteins
    • A21D2/264Vegetable proteins
    • A21D2/266Vegetable proteins from leguminous or other vegetable seeds; from press-cake or oil bearing seeds
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D2/00Treatment of flour or dough by adding materials thereto before or during baking
    • A21D2/08Treatment of flour or dough by adding materials thereto before or during baking by adding organic substances
    • A21D2/36Vegetable material
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C19/00Cheese; Cheese preparations; Making thereof
    • A23C19/06Treating cheese curd after whey separation; Products obtained thereby
    • A23C19/086Cheese powder; Dried cheese preparations
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C19/00Cheese; Cheese preparations; Making thereof
    • A23C19/06Treating cheese curd after whey separation; Products obtained thereby
    • A23C19/09Other cheese preparations; Mixtures of cheese with other foodstuffs
    • A23C19/0921Addition, to cheese or curd, of minerals, including organic salts thereof, trace elements, amino acids, peptides, protein hydrolysates, nucleic acids, yeast extracts or autolysate, vitamins or derivatives of these compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/04Animal proteins
    • A23J3/08Dairy proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/14Vegetable proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/22Working-up of proteins for foodstuffs by texturising
    • A23J3/225Texturised simulated foods with high protein content
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/142Amino acids; Derivatives thereof
    • A23K20/147Polymeric derivatives, e.g. peptides or proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K40/00Shaping or working-up of animal feeding-stuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K40/00Shaping or working-up of animal feeding-stuffs
    • A23K40/25Shaping or working-up of animal feeding-stuffs by extrusion
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/19Dairy proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/40Complete food formulations for specific consumer groups or specific purposes, e.g. infant formula
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P30/00Shaping or working of foodstuffs characterised by the process or apparatus
    • A23P30/30Puffing or expanding
    • A23P30/32Puffing or expanding by pressure release, e.g. explosion puffing; by vacuum treatment
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/30Working-up of proteins for foodstuffs by hydrolysis
    • A23J3/32Working-up of proteins for foodstuffs by hydrolysis using chemical agents
    • A23J3/34Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/12Replacer
    • A23V2200/126Flour replacer
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/20Ingredients acting on or related to the structure
    • A23V2200/228Gelling agent
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/332Promoters of weight control and weight loss
    • A23V2200/3324Low fat - reduced fat content
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/50Polysaccharides, gums
    • A23V2250/51Polysaccharide
    • A23V2250/5114Dextrins, maltodextrins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/50Polysaccharides, gums
    • A23V2250/51Polysaccharide
    • A23V2250/5118Starch
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/54Proteins
    • A23V2250/542Animal Protein
    • A23V2250/5424Dairy protein
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/54Proteins
    • A23V2250/548Vegetable protein
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/24Heat, thermal treatment

Definitions

  • the present invention relates to a protein-based dry food product for food or feed and to a process for its manufacture. More particularly, the invention relates to a dry expanded food product of the biscuit or flake or wafer type, in particular a low calorie and good organoleptic nutritional crisp product, which can be consumed as such in the dry state or mixed with an edible liquid such as milk or water.
  • the invention relates to a biscuit-type food product or flake or wafer or fermented dairy product with long shelf life, without cereal flour, but offering both protein intake (especially for nutritional products) and the supply of minerals, especially calcium, magnesium, phosphorus and iron, necessary for children, adults, athletes and the elderly.
  • the present invention also relates to an economical and efficient method for the manufacture of such a dry expanded food product.
  • High protein biscuits for example made from wheat flour, lupine flour, soy protein, wheat gluten and, where appropriate, acacia gum, leavening powder, etc.
  • thinning diets for human nutrition to enable fat burning and weight loss while preventing the melting of muscle mass.
  • various biscuits, cakes, crepes based on whey protein we also know various biscuits, cakes, crepes based on whey protein.
  • such biscuits most often have a manufacturing cost and, consequently, a price too high for a large part of the population.
  • the crispiness is often obtained at the expense of organoleptic properties.
  • Protein products are designed to compensate for pathological deficiencies, for example a protein deficiency linked to a high loss of muscle mass in certain cancers or associated with aging. These products are presented as a powder to dissolve in other foods, for example a dairy or a drink. They could strongly benefit from a more attractive presentation and be the subject of a food in its own right, such as a crispy biscuit.
  • milk proteins in the form of isolates or concentrates, still find there a small market for dietary products for human consumption, compared to the production fresh cheeses, yogurts, drinks, ice cream, sauces, infant milks, and for animal feed.
  • U.S. Patent No. 3,891,774 relates to extrusion production from a protein source such as animal meal, poultry meal, oilseed meal and preferably soy flour, from a dry food product. simulating meat and can be rehydrated in a matter of seconds without heating.
  • the protein source has an equilibrium water content of 4% to 12% by weight and a protein content of 30% to 75% by weight.
  • the crucial factor of the process is the addition, at a level between 10 and 50% by weight, of an organic solvent (glycerol, propylene glycol or a mixture thereof) capable of plasticizing the protein source in the extruder .
  • an organic solvent glycerol, propylene glycol or a mixture thereof
  • the process further comprises the steps of heating the mixture to a temperature above 100 ° C, applying high pressures for a time sufficient to convert the mixture into a flowable substance, forcing the material through a first orifice constrained, maintain it at elevated temperature and pressure as it emerges from said first restricted orifice, and then extrude the material through a second restricted orifice in a pressure environment substantially lower than said high pressures to cause expansion of the product with evaporation of at least a portion of the moisture and the formation of an expanded dry food product having a residual water content of 3% to 7% by weight as it leaves the extruder.
  • This document does not disclose the presence of food grade fat or texturizing additive.
  • United States Patent Application Publication No. 2005/089623 discloses a food product having a density of between 0.02 and 0.5 g / cc comprising a protein that can be at least partially hydrolysed in a proportion of 25% to 95% by weight, and water in a proportion of 1% to 7% by weight.
  • the product may comprise a filler, the majority of which may be starch, in a proportion of less than 50% by weight, and may comprise a grease-based surface coating.
  • the preferred starch is rice flour, potato starch and tapioca, or mixtures thereof. However, before extruding the product, it is preferred to maintain the proportion of fat added to the mixture of solid components and water at a level of less than 0.5% by weight.
  • a first aspect of the invention therefore relates to a dry expanded food product comprising at least the following ingredients:
  • a food grade texturing additive selected from the group consisting of plant hydrocolloids and gelling agents, preferably chemically modified starch, proteolytic additives and their hydrolysis products, acidifying agents and their salts, and maltodextrins, and
  • the food grade fat is an ingredient distinct from, i.e., distinctly added to the food grade protein concentrate, and not a non-protein impurity thereof;
  • the food grade fat is an ingredient in a mixture with the food grade protein concentrate, and not a surface coating of it.
  • the dry expanded food product according to the invention may comprise:
  • a food grade salt derived from an organic or mineral acidifying agent, but preferably other than a phosphate or citrate, and / or
  • the dry expanded food product according to the invention does not comprise any ingredients, other than those listed above, participating in its structural definition. However, it may include auxiliary flavoring additives such as flavors, dyes, and / or sweeteners.
  • "Protein concentrate of animal origin” means any origin other than human or plant origin. So it could be a concentrate from insects.
  • dry product within the meaning of the present invention is meant a product whose residual water content makes it possible to keep intact the original taste and organoleptic properties for a period of several months, preferably a duration of 2 to 30 months. , without the need to store the product under conditions of usual refrigeration food (temperature below about 5 ° C).
  • This preservation property of taste and organoleptic quality generally corresponds to a residual water content of less than about 10% by weight, for example not more than about 9% by weight, or about 8% by weight, but most often at least about 3% by weight, for example at least 4%, at least 5%, at least 6% or at least 7% by weight.
  • expanded product within the meaning of the present invention is meant a honeycomb product whose air-filled cells represent at least 50% of the volume of the product, where appropriate at least 65% of the volume, or at least 80% of the volume. , and even up to 85% of the volume.
  • This expanded structure gives the product according to the invention a crispness appreciated by the consumer which can be quantified, if necessary, in particular by measuring the breaking force (expressed in N).
  • the dry expanded product of the first aspect of the invention is not a traditional industrial bakery product, mostly made from cereal flour (70% by weight of wheat flour in the case of commercially available crackers) and therefore containing large amounts of starch inherent in such flour. Its composition comprises essential ingredients, all of food grade, as specified above and in each of the appended claims.
  • essential ingredients are meant ingredients all together representing at least about 96% by weight of the product, preferably at least 98% by weight of the product, and still more preferably at least 99% by weight of the product. These proportions are relative to the raw dry foamed product, that is to say before the application of any coating or topping food on its surface.
  • the complement to 100% by weight consists, if necessary, of optional ingredients such as sweeteners, colorants, and flavoring as detailed below.
  • Food quality means, for each ingredient, a quality that meets national and international standards in force for food or feed, particularly as regards the purity of the ingredients and their non-contamination by physical agents. chemical or biological hazards.
  • the dry expanded product according to the invention can, for commercial needs related to its visual appearance and to the taste of the consumer, be covered, coated or coated with one or more layers of coating food quality well known in the art, of such nature and quantity not to alter its main dietary, taste and organoleptic qualities.
  • protein concentrate that can be used for the dry expanded product and the manufacturing method according to the invention means a raw material that is predominantly or essentially composed of proteins of natural origin (animal or vegetable), and therefore free of constituents. the main non-nitrogen products usually found in cereal flours (about 70% by weight of starch in wheat flours) or animal meal.
  • the "protein concentrate” present in the dry expanded food product according to the invention is therefore a preparation extracted from a raw material of natural origin (animal or vegetable), and in which the non-protein components have been essentially removed using one or more of the well-known techniques of fractionation, precipitation, extraction, separation, isolation, purification, etc.
  • protein concentrate According to the weight content of protein relative to the dry matter of the protein concentrate, and therefore according to the process for obtaining the protein concentrate, the term "protein concentrate” is understood as also comprising the “protein isolates” having a protein concentration. weight content of protein (relative to the dry matter) of at least 85% by weight. To the extent of their commercial availability, protein concentrates or protein isolates that are substantially anhydrous or have a controlled and reduced water residual content are preferred.
  • protein concentrates of natural origin animal or vegetable
  • dairy protein concentrates such as those extracted from cow's milk, goat's milk, mare's milk, buffalo milk, sheep's milk, etc.
  • Their composition is detailed below with respect to a particular embodiment of the present invention.
  • the basic composition of the dry foamed food product according to the first aspect of the invention described above comprises essential ingredients, including a texturizing additive which may be native starch (of botanical origin) added, preferably modified starch added alone or in admixture with other texturing additives (as defined below).
  • a texturizing additive which may be native starch (of botanical origin) added, preferably modified starch added alone or in admixture with other texturing additives (as defined below).
  • starch is an ingredient distinct from, i.e., distinctly added to other essential ingredients (protein concentrate, fat), and not (starch native in particular) an impurity of these.
  • starches modified by physical modification for example precooking on a cylinder, extrusion, or atomization tower
  • physico-chemical for example high temperature and extreme pH dextrination
  • biological for example, hydrolysis controlled by an enzymatic system
  • chemical eg crosslinking or substitution
  • native starch of botanical origin by a variety of well-known techniques, in order to modify as desired the chemical structure of either of its two constituent homopolymers (amylose and amylopectin) and therefore one or more of its physical properties such as heat or shear stability, viscosity, visco-stability, gelatinization time, etc. All these forms of modified starch are within the scope of the present invention.
  • modified starches of food grade are taken up by the International Numbering System of Food Additives (INS) and in particular are those modified by dextrin, an alkaline hydroxide, sodium hypochlorite, maltodextrins and cyclodextrins, one or more phosphates, acetic anhydride, propylene oxide or ethylene oxide, succinates, monochloroacetic acid, and are commercially available.
  • INS International Numbering System of Food Additives
  • modified starch preferably modified
  • the starch (preferably modified) added is less than 10% by weight, e.g.
  • the basic composition of the expanded food product according to the invention may in particular comprise at least one animal (for example dairy or fish) or vegetable protein concentrate.
  • dairy protein concentrates are those containing caseins, serum or soluble proteins, and / or extracts thereof (for example beta-lactoglobulin, alpha-lactalbumin, immunoglobulins, lactoferrin, etc.).
  • caseins serum or soluble proteins
  • extracts thereof for example beta-lactoglobulin, alpha-lactalbumin, immunoglobulins, lactoferrin, etc.
  • concentrates extracted from fishmeal may also be mentioned concentrates extracted from fishmeal, of which there are many commercial examples, or earthworms (Eisenia foetida).
  • protein concentrate of vegetable origin mention may be made, but not limited to, vegetable protein concentrates such as proteins derived from leguminous plants (soya, peas, lupine, lentils, beans, beans), from cereals (wheat, oats, corn, millet, barley, rye, buckwheat, rice, spelled, sesame), oilseeds (squash, flax, peanut, pumpkin) or oleaginous fruits (almonds, peanuts, pistachios, hazelnuts, walnuts), or extracts of these.
  • leguminous plants soya, peas, lupine, lentils, beans, beans
  • cereals wheat, oats, corn, millet, barley, rye, buckwheat, rice, spelled, sesame
  • oilseeds squash, flax, peanut, pumpkin
  • oleaginous fruits almonds, peanuts, pistachios, hazelnut
  • protein concentrate derived from insects mention may be made of, but not limited to, protein concentrates extracted from commercial insect meal. such as, but not limited to, grasshopper flies, weevils, caterpillars, silkworms, locusts (Locusta migrator and Gryllus bimaculatus).
  • the protein content of the animal protein concentrate (for example milk or fish) or vegetable protein is very high, greater than 65% by weight, preferably greater than 75% by weight, preferably greater than 80% by weight, and even, in the case of protein isolates, greater than 85% by weight.
  • the complement at 100% by weight usually consists of water (preferably at most 5% by weight approximately) and of inert impurities which may have a nutritional utility (for example mineral salts such as calcium, carbohydrates, vitamins) in proportions not affecting the food quality or taste, dietary and / or organoleptic qualities of dry expanded food products according to the invention.
  • the physical form of the protein concentrate that can be used for the process and the dry foam product according to the invention is not a particularly limiting feature of the present invention; however, a form of powder with a controlled and regular particle size is obviously preferable, especially for miscibility with the other main ingredients.
  • the ranges of particle sizes that are desirable for the implementation of the invention depend on the protein source used and the commercial availability, but are generally between about 30 and 200 ⁇ , preferably between 50 and 150 ⁇ , depending on the origin, animal (eg dairy or fish) or vegetable, protein concentrate.
  • the basic composition for use in the dry expanded food product and the process according to the first aspect of the invention further comprises, as the essential starting ingredient, food grade fat.
  • a fat which can be readily emulsified with at least a portion, preferably most or all, of the animal (eg dairy or fish) or vegetable protein concentrate is preferred.
  • a fat it is therefore possible to use, but not limited to, anhydrous milk fat, butter, liquid cream or powder, or vegetable fat of food grade or, subject to miscibility, their mixture.
  • a fat is preferably used which makes it possible, in an appropriate quantity, to obtain an oil-in-water emulsion in the presence of protein concentrate of animal or vegetable origin.
  • anhydrous milk fat is understood to mean the product obtained by separation from cream or butter, followed by dehydration, without addition of additive.
  • Anhydrous milk fat which is usable therefore usually has a maximum moisture of 0.1% by weight, a maximum content of 0.5% by weight of fat-soluble compounds and a maximum oleic acidity of 0.3%. It can be made from butter or cream after mechanical and / or thermal action, centrifugation and vacuum drying. It is also possible to use a particular fraction of an anhydrous milk fat obtained for example by fractional crystallization.
  • a vegetable fat of food grade it is preferable to use a vegetable fat having a melting point of at least 25 ° C, such as, for example, a melting point of about 30 ° C to 40 ° C.
  • a melting point of at least 25 ° C such as, for example, a melting point of about 30 ° C to 40 ° C.
  • the physical form of the fat used is not particularly limited, however, characteristics ensuring good miscibility, in the presence of water, with the animal or vegetable protein concentrate are advantageous from the point of view of the production of the dry expanded food product. according to the invention, in particular from the point of view of the efficiency to achieve the initial stage of its manufacturing process.
  • an anhydrous milk fat or a food grade vegetable fat, or a mixture of both may be used.
  • the proportions of water, fat and animal protein concentrate (eg slag or fish) or vegetable in the basic composition (including the thermally expandable precursor described hereinafter) for the dry expanded food product of the invention and the initial step of the process according to the invention may vary within wide limits provided that it is capable of providing a substantially homogeneous mixture, but can be readily determined by those skilled in the art based on technical parameters such as the choice of fat and protein concentrate, the dietary and nutritional properties desired for the final food product, the ability to expand and the crispness desired, and economic parameters such as the duration of the manufacturing process (especially the ripening stage) and the cost price.
  • the weight ratio protein concentrate / water is between about 1/4 and 1/1, preferably between 1/3 and 1/2 about.
  • the weight ratio of the food grade fat to the water is an important factor of the invention, and it is generally preferable that this fat / water weight ratio be between about 1/5 and 1: 1. / 3, preferably between 1/4 and 1/5, in the precursor before expansion / dehydration.
  • the proportion of fat in the base composition usable for the dry expanded product and the initial step of the process according to the invention should be kept as low as possible.
  • the animal protein concentrate for example milk or fish
  • the skilled person knows to determine, empirically, and by means of a limited number of preliminary tests, the proportions of water, fat and protein concentrate best suited to carry out the initial stage of the process according to the invention without difficulty while guaranteeing the dietary and nutritional condition of the final dry foamed product.
  • composition that can be used for the dry expanded food product and the manufacturing method according to the invention comprises the addition, alternatively to the starch of modified preference described above, at least one texturing agent or additive such as a hydrocolloid, a thickener, an emulsifier, a gelling agent, a proteolytic additive or its hydrolysis product, a non-starch polysaccharide, an acidifying agent or one of its salts.
  • a hydrocolloid other than gelatin is chosen.
  • Nonlimiting examples of usable texturizers include, in particular, agents of plant origin such as alginic acid; alginates of sodium, potassium, ammonium, calcium and propylene glycol; carrageenans (kappa and iota); locust bean, oat, and guar gum; gum arabic, gum tragacanth, xanthan gum, karaya gum, tara gum, gellan gum, ghatti gum, mannitol, and sodium carboxymethylcellulose, or the mixture of several of them.
  • the type of texturizing agent for example hydrocolloid
  • added depends, in a manner known to those skilled in the art, on the increase in the desired viscosity and the type of texture desired for the final dry expanded food product.
  • the proportion of texturing agent eg hydrocolloid
  • composition usable for the dry expanded food product according to the first aspect of the invention may comprise at least one proteolytic agent, or a product of hydrolysis thereof, for cutting at least a portion, preferably a major portion or all of the proteins present in the protein concentrate into smaller protein fragments, this cut having the effect of modifying the texture.
  • a preferred proteolytic agent is therefore an enzyme of animal, plant or microbial origin of the category of proteases, in particular exo- and endopeptidases whose cleavage involves the use of a molecule of water, or else exopeptidases.
  • the choice of this proteolytic agent, and its effective amount depends, in a manner well known to those skilled in the art, proteins present in the protein concentrate used.
  • a suitable proteolytic additive is rennet or a natural protease (endopeptidase) extracted from the rennet, such as than chymosin.
  • rennet or a natural protease (endopeptidase) extracted from the rennet, such as than chymosin.
  • a natural protease endopeptidase
  • chymosin can also use pure synthetic chymosin obtained by fermentation of an organism (eg, a fungus such as Aspergillus niger) genetically modified.
  • Other suitable proteolytic additives include on the one hand pepsin and on the other hand active enzymes of plant origin such as cyprosine and cardosine.
  • the effective amount of proteolytic agent, or one of its hydrolysis products, is usually very low, of the order of 20 to 200 ppm, and this agent is therefore found in trace amounts in the food product dry foam according to the invention.
  • composition usable for the dry expanded food product according to the first aspect of the invention may also comprise at least one acidifying agent salt, or a precursor thereof, preferably other than a citrate or phosphate.
  • the acidifying agent in question may be a strong or weak acid (as defined by its pKa in a manner well known to those skilled in the art), mineral or organic. By way of non-limiting example, mention may be made of sulfuric acid, gluconic acid and the like.
  • the salt or precursor of acidifying agent must be of acceptable quality for food or feed.
  • a salt of acidifying agent that can be used, particularly when the food grade protein concentrate is a soy protein concentrate, is calcium sulfate.
  • a lactic ferment or other living organism capable of acidifying the medium is also usable.
  • An appropriate amount of acidifying agent salt, or precursor thereof, is an amount necessary and sufficient to proceed with the acidification of the medium during the cutting of at least a portion, preferably a major part or the all, proteins present in the protein concentrate in smaller protein fragments.
  • Each additive can thus participate in the coagulation of the mixture in an acidic medium, for example by destabilizing the proteins, in particular the caseins.
  • composition of the dry expanded food product according to the invention may further comprise one or more auxiliary manufacturing additives as defined below, in order to give the product desirable nutritional (fiber) or taste properties (flavors, colorings, sweeteners).
  • auxiliary manufacturing additives as defined below, in order to give the product desirable nutritional (fiber) or taste properties (flavors, colorings, sweeteners).
  • a dry foamed product according to the invention not comprising a food grade salt derived from an acidifying agent, and / or a proteolytic additive or a hydrolysis product thereof, also has a very good expansion capacity. but a crispness less pronounced.
  • thermoexpansible precursor capable of forming the product by simple expansion with heat reduction of the content in water, for example by treatment by means of microwaves, or any other appropriate treatment well known in the food industry.
  • a thermoexpansible precursor thus constitutes another aspect of the invention, and it comprises at least the following ingredients:
  • a food grade texturing additive selected from the group consisting of plant hydrocolloids and gelling agents, preferably modified starch, proteolytic additives and their hydrolysis products, non-starch polysaccharides, acidifying agents and their salts, and maltodextrins; provided that the preferably modified starch represents less than 5% by weight of the precursor, and
  • the heat-expandable precursor according to the invention may further comprise a food grade salt derived from an acidifying agent, preferably other than a citrate or phosphate, and / or a proteolytic additive or a hydrolytic product thereof.
  • a food grade salt derived from an acidifying agent preferably other than a citrate or phosphate, and / or a proteolytic additive or a hydrolytic product thereof.
  • Each of the ingredients of this precursor may be of a nature and in an amount as defined above with respect to the dry expanded food product. Since the thermal treatment of the heat-expandable precursor will have the effect, simultaneously with volume expansion, of reducing the water content to the level of a residual content compatible with long-term preservation requirements at ambient temperature. (approximately 15 ° C to 25 ° C), it goes without saying that the water content in the composition of the heat-expandable precursor according to the invention exceeds 10% by weight.
  • An appropriate water content in the composition of the heat-expandable precursor according to the invention depends on the number and the respective proportions of the others. essential ingredients and, where appropriate, the presence of optional ingredients such as food grade salt derived from an acidifying agent, and / or the proteolytic additive or its hydrolysis product. It also depends on the need to produce a substantially homogeneous mixture with the other essential ingredients and viscosity conditions to be achieved for easy handling of the mixture depending on the temperature conditions selected for the preparation process (see below).
  • the series of examples provided below demonstrate that a suitable water content in the composition of the heat-expandable precursor according to the invention is generally in a range of 50% to 85% by weight of all the ingredients taken together .
  • thermoexpansible precursor comprises the steps of:
  • the preparation process may comprise at least one additional step consisting of adding a food grade salt derived from an acidifying agent, preferably other than a citrate or phosphate, and / or an additive proteolytic or a product of hydrolysis thereof.
  • an acidifying agent preferably other than a citrate or phosphate
  • an additive proteolytic or a product of hydrolysis thereof preferably other than a citrate or phosphate
  • the preparation process may comprise at least one additional step consisting of adding a food grade salt derived from an acidifying agent, preferably other than a citrate or phosphate, and / or an additive proteolytic or a product of hydrolysis thereof.
  • the invention also relates to a method of manufacturing a dry foamed food product as defined first, comprising the steps of the method of preparing the heat-expandable precursor, and further comprising the step of subjecting the thermosorbent precursor heat expandable, for example by means of microwaves, until it expands to the desired degree of expansion, and the reduction of the water content to the desired residual content.
  • the above process definitions include only the steps essential to accomplishing the object of the invention. It will be understood by those skilled in the art that optional intermediate steps, such as ripening, molding, demolding, grinding, grating, partial dewatering, may be added to facilitate the process resulting in the final expanded product in the desired form, particularly by providing him with a desirable texture.
  • a particular embodiment of a method of manufacturing a dry expanded food product comprising such intermediate steps is set forth below, without limitation. This method comprises, by way of illustration only, at least the following steps:
  • a base composition comprising as essential ingredients water, food grade fat, at least one protein concentrate of animal or vegetable origin of food grade, and at least one texturizing additive of food grade selected from plant hydrocolloids and gelling agents and starch, and optionally as optional ingredients a food grade salt derived from an acidifying agent, other than a citrate or phosphate, and / or a proteolytic additive or a hydrolysis product thereof.
  • step (b) subjecting the homogeneous mixture obtained in step (a) to heat treatment by heating to a temperature of between 65 ° C and 140 ° C, followed by cooling to a temperature not exceeding 50 ° C maximum,
  • step (c) optionally adding, during or after the cooling of step (b), at least one proteolytic additive or a product of hydrolysis thereof and at least one acidifying agent or a precursor or a salt thereof here, and homogenize the resulting mixture,
  • step (d) pouring the homogeneous mixture obtained in step (c) into a mold
  • step (f) optionally grinding or grating, if necessary after partial dehydration to lower its water content to a value of between 25% and 40% by weight, the coagulated mixture obtained in step (e) in order to to adjust its particle size in a predetermined range, and (g) subjecting the optionally milled or shredded, and if necessary partially dewatered, mixture obtained in step (e) or step (f), to a microwave treatment to proceed with its expansion and dehydrating it until obtaining said dry expanded food product having the expansion ratio and the required residual water content.
  • Step (a) of the process according to the invention consists in homogenizing the components of the base composition. This is done, preferably in a solid-liquid emulsifier mixer well known in the food industry, at a sufficient temperature and providing sufficient agitation, so that homogenization is achieved in a minimum time.
  • a solid-liquid emulsifier mixer well known in the food industry
  • homogenization is achieved in a minimum time.
  • equipment usable for steps (a), (b) and (c) of the process according to the present invention mention may be made in particular of double-shelled cooker-mixers for heating and cooling, and with direct injection of steam such as UMSK universal machines marketed by the Stephan department of Sympak Process Engineering GmbH (Schwarzenbek, Germany).
  • the choice of the type of equipment (shape of the material flow deflector, rotor-stator type tool, etc.) and the operating parameters (direction of rotation and counter-rotation, stirring speed, etc.) of the solid-liquid emulsifier mixer is within the reach of those skilled in the art, by means of a limited number of preliminary tests, once known the respective proportions of water, fat and protein concentrate animal or plant in the basic composition. It is preferable that the stirring speed in the solid-liquid mixer is between about 500 and 2000 rpm, preferably between 800 and 1500 rpm.
  • the speed equivalences will be given in shear rates preferably between 5000 and 20000 s -1 , more preferably between 5000 and 10000 s -1 , for example 7500 s -1. It is also preferable that the contents of the solid-liquid mixer are maintained at a temperature between about 4 ° C and 60 ° C, preferably between about 45 ° C and 60 ° C.
  • the temperature can be controlled by means of of a probe, and can be kept constant during the whole of step (a), or can be programmed according to a variable cycle if necessary
  • the duration of step (a) is usually from about 5 to 30 minutes, preferably from 10 to about 20 minutes.
  • a homogeneous mass for example a paste or a viscous liquid
  • a homogeneous mass for example a paste or a viscous liquid
  • evacuation is avoided at the beginning of step (a) to avoid sucking up a portion of the powdered protein concentrate.
  • a vacuum of 0.1 to 0.9 bar is maintained.
  • step (b) the homogeneous and preferably deaerated mixture obtained in step (a) is subjected to a heat treatment.
  • a preferred temperature range for the heat treatment is from about 65 ° C to about 140 ° C, preferably from about 65 ° C to about 90 ° C.
  • the temperature of this homogeneous and, if appropriate, deaerated mixture is allowed to decrease to a maximum of about 60 ° C., for example 45 ° C. or even about 30 ° C., either in a natural way. by heat exchange with the surrounding medium, either by appropriate active cooling means, such as refrigerant circulation, ventilation, etc.
  • step (b) may be performed in the same equipment, of mixer-cooker type (for example equipment of Stephan manufacturer mentioned above) than that of step (a), by appropriately using the means heating and cooling thereof.
  • step (c) other optional ingredients of the food product according to the invention can be added, namely at least one proteolytic additive or its hydrolysis product and / or an acidifying agent salt or else a precursor of it.
  • the chemical nature and the added amount of these two additives have already been detailed above.
  • step (c) can also be added, if necessary, a complement of at least one of the essential ingredients of the food product according to the invention.
  • step (c) may be performed in the same mixer-cooker type equipment (eg equipment of the aforementioned Stephan constructor) as step (a).
  • one or more auxiliary manufacturing additives may also be added useful for improving a set of desirable properties of the final dry foamed product.
  • additives useful for this purpose fall into categories of additives well known to those skilled in the art. These additives are normally added in very small proportions, generally less than 1% by weight for each of them, with the exception of fibers for which the proportion can advantageously reach up to about 4% of the final product, depending the desired texture and nutritional quality.
  • one or more flavoring agents selected depending on the taste to be imparted can be added to the final dry foamed food product.
  • flavors, condiments or spices according to the use, for example paprika, pepper, clove, etc.
  • sweet dietary biscuits we can add natural or synthetic flavors such as vanilla, cinnamon, strawberry, raspberry, orange, pear, apple, etc.
  • the proportion by weight of the flavoring agent may be between 0.2% and 1% by weight.
  • soluble fibers are preferred.
  • these soluble dietary fiber are fructans such as inulin, fiber recommended in the diets of diabetics.
  • Insoluble dietary fiber is, for example, cellulose or lignin.
  • non-acidifying salt such as a halide, for example a sodium chloride and / or iodide, which can fulfill, according to the added quantity, various functions: improvement of the preservation, improvement of the swelling during the later stage, taste modification, etc.
  • a non-acidifying salt such as a halide, for example a sodium chloride and / or iodide
  • the same proportions by weight as above apply to the addition of non-acidifying salt.
  • the proportion of salt should be as low as possible, unless the dry expanded products are aperitif biscuits known for their salty character.
  • the auxiliary manufacturing additives are added in pulverized form so as to mix easily with the deaerated homogeneous mass of the base composition.
  • step (c) it is also possible to add, in the case where it is desired to obtain finished products with a sweet flavor, one or more natural sweeteners (such as sucrose or fructose) or synthetic sweeteners (such as aspartame or acesulfame). ) in sufficient quantity well known to those skilled in the art to provide the desired sweetener level.
  • natural sweeteners such as sucrose or fructose
  • synthetic sweeteners such as aspartame or acesulfame
  • step (d) of the process according to the present invention the mixture obtained from the mixing equipment (for example a mixer-cooker as described above) is poured into a mold, or any other support, if appropriate. solid, of variable shape and size, in which the ripening step (e) will take place.
  • the mixing equipment for example a mixer-cooker as described above
  • Step (e) of the process according to the present invention during which it is optionally allowed to act on the homogeneous mixture (texturing or, as appropriate, coagulation and acidification) the optional constituent (s) added to the step (c), can be carried out for a short time (for example from 5 to 120 minutes) or relatively long for a few hours (for example from 2 to 24 hours approximately) and at a temperature avoiding the denaturation of proteins or protein fragments present.
  • This maximum temperature not to exceed depends, in a manner known to those skilled in the art, proteins (animal or plant) in question.
  • the optional step (c) is carried out at a minimum temperature of 5 ° C, preferably at least 15 ° C. The choice of the temperature of step (e) therefore results from a compromise between yield and the need to avoid inappropriate denaturation which would weaken the nutritional quality of the final food product.
  • step (f) of the process according to the present invention during which the average size of the solid particles resulting from the texturing / dewatering and, if appropriate, a partial dehydration of the homogeneous mass additivated.
  • the water content of the homogeneous additive mass can be reduced significantly to a level of between about 25% and 40% by weight, preferably between 28% and 35% by weight. Partial dehydration at this stage is optional, since it can also be done completely at the final stage, provided appropriate microwave processing equipment is available.
  • the average size of the solid particles is reduced by any appropriate mechanical means, such as grinding or grating, to an average size of between about 50 ⁇ and 2 mm, preferably between about 100 ⁇ and 1 mm.
  • the shape of the particles obtained at the end of step (f) does not constitute a critical parameter of the present invention.
  • the term "particle” does not imply a particular geometric form.
  • any spherical or non-spherical shape, elongated or not (for example strands), may be suitable provided that it can be expanded by a sufficient coefficient in the subsequent step (g).
  • the type of size reduction operated is also intended to reduce the dispersity of the particle sizes, that is to say to obtain a population of particle sizes as homogeneous as possible.
  • This step (f) may be important in that the behavior of the material in the subsequent microwave treatment step has been found to be largely dependent on parameters such as the residual water content, the average size of the solid particles, and the dispersion of their sizes.
  • the final step leading to obtaining the dry expanded food product consists in subjecting the pulp, whether dewatered or not, ground or not, obtained in step (f) to a heat treatment such as only by microwave.
  • This treatment generally has the effect of further lowering the water content in the final product to a value which may be between about 3% and 10% by weight, compatible with long term preservation requirements, all by expanding the pulp at an expansion ratio (in volume) of about 1.5 to 6.0, for example about 2.0 to about 3.5.
  • the parameters of this microwave treatment such as time, power, wavelength, etc., can be easily adjusted by those skilled in the art depending on the water content, the average size and the dispersion of the microwaves. particle sizes of proteinaceous material, as well as the shape and volume of finished products, etc. By way of non-limiting example, the following parameters may be mentioned:
  • a wave frequency varying in the usual range of commercial microwave equipment a power varying in a range between 200 W and about 1000 W, a duration varying in a range of between 10 and 120 seconds, preferably between 20 and 100 seconds approximately.
  • a dry and crispy food product is obtained at the end of this stage, ready to be conveyed by conveyor belt to a bulk packaging system or unit subsets. If necessary, at the end of step (g), it is possible to provide a statistical quality control system, for example a system comprising measuring the crispness such as, for example, measuring the breaking force (in N) , to avoid products that do not meet the standard.
  • a statistical quality control system for example a system comprising measuring the crispness such as, for example, measuring the breaking force (in N) , to avoid products that do not meet the standard.
  • the material used is a Thermomix brand Vorwerk with a capacity of 1.5 L.
  • 27.71 g of anhydrous milk fat (MGLA) standard (supplier: Corman SA, Belgium) are melted in 198 ml of water of source by heating at 50 ° C and with low stirring (Thermomix in position 1) for 5 minutes.
  • MGLA anhydrous milk fat
  • a powder-type mixture containing 75.02 g of Promilk SH20 proteins supplied by Ingredia, Arras, France
  • 10.52 g of a chemically modified starch (marketed under the trade name CH20 / 20 CLEARAM® by the company). Roquette Fromme, France) is added with low agitation (position 1 of the Thermomix).
  • the mixture is kept at 50 ° C for 10 minutes but stirring is increased (position 3).
  • the Thermomix is then set to 90 ° C and, once this temperature is reached, it is held for 30 seconds (Thermomix in position 1).
  • the mixture is then directly molded and placed in a refrigerated chamber at 4 ° C. After 4 hours of gelation, the product is demolded and then cut into cylindrical pellets of 18 mm in diameter and 12 mm in height which are directly inserted in an Ultra FD 1000 Dehydrator brand Ezi Dri (from the company BestBay Pty Ltd, Australia) whose temperature setpoint is set to 30 ° C, to adjust their humidity to 20% (drying time approximately 18 hours).
  • the dried pellets are placed in a microwave oven with a power of 750 W for 45 seconds.
  • the volume obtained after passage in the microwave oven is on average 200% relative to the initial volume [(volume after cooking) / (volume before cooking) * 100%)].
  • the resulting product is crunchy and crisp and has a relatively neutral taste.
  • the shape obtained after drying is similar to that after cooking.
  • Example 1 The methodology of Example 1 is repeated except that the modified starch-type texturizer is replaced with an iota-carrageenan powder to impart the properties of a gel to the base. firm and elastic.
  • the initial blend contains 17.89 g of standard anhydrous milk fat (Corman supplier) and 131 ml of spring water.
  • a mixture of 50.23 g of PROMILK SH20 proteins (supplier Ingredia) and 2.10 g of iota-carrageenans (Textura brand, supplier Albert y Ferran Adria, Barcelo e, Spain) is then added thereto.
  • the rest of the process is identical to Example 1, but the main difference lies in obtaining a firmer gel and therefore more easily converted into pellets of the desired dimensions.
  • the final average expansion is also higher and is equal to 250% [(volume after cooking) / (volume before cooking) * 100%)].
  • the product obtained is characterized by a preserved form, a fine honeycomb, and a crunchy texture.
  • Example 1 The methodology of Example 1 is repeated, but the milk proteins are replaced by soy proteins in the form of the protein isolate DENA SOYA PROTEINS 90 C LES (supplier: Solina Group).
  • the texturizer used is precipitated calcium sulfate (purity 99.9%).
  • 27.30 g of standard anhydrous milk fat supplier: Corman, Belgium
  • a mixture of 75.45 g of soy protein and 1.0 g of calcium sulfate is added with stirring, following the same procedure as for example 1.
  • the temperature of 90 ° C is maintained for 15 minutes to obtain a gel by thermal coagulation.
  • the base obtained is easily cut and does not spread thanks to its firmness.
  • the swelling resulting from the microwave treatment is greater than 300% [volume after cooking] / (volume before cooking) * 100%].
  • the product obtained is darker in color (due to soy protein), very honeycombed and crunchy at the tasting.
  • This mixture is homogenized and emulsified (emulsion of oily globules suspended in water, and suspension of colloidal caseins in the aqueous phase) at a temperature of 50 ° C. for a period of 10 minutes.
  • the device is evacuated (0.5 bar) in order to deaerate substantially the homogeneous mixture obtained.
  • the deaerated homogeneous mixture is then subjected, in the same equipment, to a heat treatment at a temperature of 80 ° C. for a period of 30 seconds, and then is cooled to a temperature of 45 ° C.
  • each mold is sliced into thin slices and then subjected to pre-drying in a ventilated oven at 35 ° C. for 10 hours until a water content of 30% by weight is reached in the mixture coagulated pre-dried.
  • the product is cooled to about 10 ° C. in order to increase its firmness and the pre-dried mixture is then grated in fine strands (longitudinal dimension 10 to 20 mm, transverse dimension 1 to 2 mm) by means of a Handmark machine. before subjecting the grated pre-dried mixture to atmospheric pressure expansion treatment in a microwave oven (750 W power, duration 90 seconds, at a frequency of 2.45 GHz), in silicone molds.
  • Example 4 The procedure of Example 4 is repeated, but in a mixer-cooker-emulsifier of volume 5 liters and from the following amounts of ingredients: 1102 g of water, 135 g of anhydrous milk fat, 225 g of isolate dairy protein (protein content 85.5% by weight relative to the dry matter) marketed by the company Ingredia (Arras, France) under the name Promilk 852A, 15 g of the food additive E575 (delta-gluconolactone marketed by the company Acros), 0.16 ml of chymosin produced by fermentation, sold by Chr.
  • a mixer-cooker-emulsifier of volume 5 liters and from the following amounts of ingredients: 1102 g of water, 135 g of anhydrous milk fat, 225 g of isolate dairy protein (protein content 85.5% by weight relative to the dry matter) marketed by the company Ingredia (Arras, France) under the name Promilk 852A, 15 g of the food additive E575 (
  • a vegetable hydrocolloid texturizing agent powder (instead of the starch of Example 1) sold under the name Sosa and comprising alginate, carrageenan, and carob and xanthan gums.
  • the product is stored in a cold room at 5 ° C for 4 hours until a pH of about 5.0 is reached.
  • the block obtained is then portioned into cylinders 18 mm in diameter and 12 mm in height, which are pre-dried until a moisture content of about 18% by weight is obtained, and then subjected to a treatment with microwaves ( power 850 W) for 30 seconds under atmospheric pressure.
  • composition by weight of this product is therefore approximately the following: 52.6% o milk protein, 31.9% milk fat, 3.27% hydrocolloid texturizer of food grade, 3.5% of gluconate, traces of rennet, and 6.9%> of water.
  • Example 4 The procedure of Example 4 is repeated by decreasing the amount of chymosin to 0.36 ml but retaining the amounts of the other ingredients. The slicing capacity of the product before pre-drying and grating is unaffected, and the expansion, crispness and flavor characteristics of the final product are identical to those of Example 1.
  • Example 4 The process of Example 4 is repeated, but the Promilk SH20 milk protein is replaced by an identical quantity of the Promilk 852A milk protein (that used in Example 2).
  • the slicing capacity of the product before pre-drying and grating is not affected.
  • the expansion characteristics and taste of the final product are identical to those of Example 1, but its crispness is slightly lower.
  • Example 4 The procedure of Example 4 is repeated, but replacing 2550 g of the Promilk SH20 milk protein isolate with a mixture of 2295 g of Promilk SH20 and 255 g of insoluble fibers marketed by Cosucra (Pecq, Belgium) under the Fibrulin name.
  • the slicing capacity of the product before pre-drying and grating is not affected, and the characteristics of expansion, crispness and taste of the final product are identical to those of Example 1, but because of its content about 3.5% fiber the expanded product obtained benefits from the nutrition claim "source of fiber".
  • Example 4 The process of Example 4 is repeated, but 225 g of modified maize starch are replaced with 60 g of alginate marketed by Cargill (Minneapolis, USA) under the reference S550, or with 60 g of carrageenan. marketed under the reference Carragel MCH 531 1 by the company Gelymar (Santiago, Chile), or by 22.5 g of locust bean gum Viscogum Be (marketed by the company Cargill (Minneapolis, United States), or else 22, 5 g of xanthan gum XGT FN sold by the company Jungbunzlauer (Pernhofen, Austria) The expansion, crispness and flavor characteristics of the final product are substantially identical to those of Example 1. This demonstrates that starch may advantageously be replaced in whole or in part by other hydrocolloid texturing agents.
  • a second aspect of the invention is a dry expanded food grade product comprising the following ingredients:
  • a protein concentrate of animal or vegetable origin, of food grade a food grade texturing additive selected from the group consisting of plant hydrocolloids and gelling agents, starch preferably chemically modified, proteolytic additives and their hydrolysis products , non-starch polysaccharides, acidifying agents and their salts, and maltodextrins, and
  • expanded food products consisting of ternary mixtures of carbohydrates, lipids and proteins are known. Their water content can be 10 to 35% before expansion, and up to 10% after expansion.
  • the expansion can be obtained by extrusion or by rapid heating by microwave of a gelatinized article, and can reach a coefficient of 3 to 5.
  • manufacture of dry and expanded cheese product consisting in subjecting a material of cheese origin having a water content of 25 to 65% by weight to a drying / expansion treatment by passage in a microwave oven under vacuum at a temperature of 400 ° C to a water content of less than 10% by weight, for 20 seconds to 10 minutes, achieving an expansion coefficient of 2.5 to 4.0.
  • a crisp, protein-rich, low-fat product obtained from a mixture of 18 - 38 wt% whey protein, soy, rice or pea, 5 - 30% starch and 40 - 65% by weight of water, with addition of a preservative, obtained by expansion of the mixture by heating in a microwave oven.
  • a microwave-expanded cheese product comprising 20 - 59% by weight of a milk protein, 10 - 50% by weight of starch, 2 - 24% by weight of a sugar alcohol ( sorbitol, xylitol, mannitol or glycerol), and 3-15% by weight of water, wherein the fat content does not exceed 10% by weight.
  • a heat-expandable precursor for forming a synthetic cheese comprising (by weight) 12 - 26% milk protein, 7 - 30% starch and 46 - 60% water, said precursor not comprising more than 10% fat.
  • this precursor forms a crispy synthetic cheese, comprising (by weight) 20 - 59% of milk protein, 12 - 68% of starch and 3 - 15% of water, said synthetic cheese comprising not more than 22% fat.
  • the material used is a Vorwerk brand Thermo mix with a capacity of 1.5 L.
  • 17.89 g of standard anhydrous milk fat supplier: Corman SA, Belgium
  • a powder-type mixture containing 50.23 g of Promilk SH20 proteins (supplier: Ingredia, Anus, France) and 2.10 g of iota-carrageenan powder (Textura brand, supplier Albert y Ferran Adria, Barcelona, Spain ) is added with gentle stirring (position 1 of the Thermomix).
  • the mixture is kept at 50 ° C for 10 minutes but stirring is increased (position 3).
  • the Thermomix is then set to 90 ° C and, once this temperature is reached, it is held for 30 seconds (Thermomix in position 1).
  • the mixture is then directly molded and placed in a refrigerated chamber at 4 ° C. After 4 hours of gelification, the product is demolded and then cut into cylindrical pellets of 18 mm in diameter and 12 mm in height which are directly inserted into an Ultra FD 1000 dehydration apparatus of the Ezi Dri brand (from the company BestBay Pty Ltd, Australia), the temperature set point is set to 30 ° C, in order to adjust their moisture to 20% (drying time about 18 hours).
  • the main characteristic advantageously obtained lies in obtaining a very firm and elastic gel and therefore easily convertible into pellets to the desired dimensions.
  • the dried pellets are placed in a microwave oven with a power of 750 W for 45 seconds.
  • the volume obtained after passage in the microwave oven is on average 250% relative to the initial volume [(volume after cooking) / (volume before cooking) * 100%)].
  • the product obtained is characterized by a preserved form (the shape obtained after drying is similar to that after cooking), a fine honeycomb, a crunchy and crunchy texture, and a relatively neutral taste.
  • Example 1 The methodology of Example 1 is repeated, but the milk proteins are replaced by soy proteins in the form of the protein isolate DENA SOYA PROTEINS 90 C LES (supplier: Solina Group).
  • the texturizer used is precipitated calcium sulfate (purity 99.9%).
  • 27.30 g of standard anhydrous milk fat supplier: Corman, Belgium
  • a mixture of 75.45 g of soy protein and 1 g of calcium sulfate is added with stirring, following the same method as for Example 1.
  • the temperature of 90 ° C is maintained for 15 minutes to obtain a gel by thermal coagulation.
  • the base obtained is easily cut and does not spread thanks to its firmness.
  • the swelling resulting from the microwave treatment is greater than 300% [volume after cooking] / (volume before cooking) * 100%].
  • the product obtained is darker in color (due to soy protein), very honeycombed and crunchy at the tasting.
  • This mixture is homogenized and emulsified (emulsion of oily globules suspended in water, and suspension of colloidal caseins in the aqueous phase) at a temperature of 50 ° C. for a period of 10 minutes.
  • the device is evacuated (0.5 bar) in order to deaerate substantially the homogeneous mixture obtained.
  • the deaerated homogeneous mixture is then subjected, in the same equipment, to a heat treatment at a temperature of 80 ° C. for a period of 30 seconds, and then is cooled to a temperature of 45 ° C.
  • each mold is sliced thinly then subjected to pre-drying in a ventilated oven at 35 ° C for 10 hours until a water content of 30% by weight in the pre-dried coagulated mixture was reached.
  • the product is cooled to about 10 ° C. in order to increase its firmness and the pre-dried mixture is then grated in fine strands (longitudinal dimension 10 to 20 mm, transverse dimension 1 to 2 mm) by means of a Handmark machine. before subjecting the grated pre-dried mixture to atmospheric pressure expansion treatment in a microwave oven (750 W power, duration 90 seconds, at a frequency of 2.45 GHz), in silicone molds.
  • composition by weight of this product is therefore approximately the following: 61% of milk proteins, 29.3% of milk fat, 3.38% of gluconate, traces of rennet, 1.13% of flavoring agent, and 5.17% water.
  • Example 3 The process of Example 3 is repeated, but in a mixer-cooker-emulsifier of volume 5 liters and from the following quantities of ingredients: 1102 g of water, 135 g of anhydrous milk fat, 225 g of isolate dairy protein (protein content 85.5% by weight relative to the dry matter) marketed by the company Ingredia (Arras, France) under the name Promilk 852A, 15 g of the food additive E575 (delta-gluconolactone marketed by the company Acros), 0.16 ml of chymosin produced by fermentation, sold by Chr.
  • a mixer-cooker-emulsifier of volume 5 liters and from the following quantities of ingredients: 1102 g of water, 135 g of anhydrous milk fat, 225 g of isolate dairy protein (protein content 85.5% by weight relative to the dry matter) marketed by the company Ingredia (Arras, France) under the name Promilk 852A, 15 g of the food additive E575 (
  • Example 3 The procedure of Example 3 is repeated by decreasing the amount of chymosin to 0.36 ml but retaining the amounts of the other ingredients. The slicing capacity of the product before pre-drying and grating is unaffected, and the expansion, crispness and flavor characteristics of the final product are identical to those of Example 1.
  • Example 3 The method of Example 3 is repeated, but the Promilk SH20 milk protein is replaced by an identical quantity of the Promilk 852A milk protein (supplier Ingrédia, Arras, France). The slicing capacity of the product before pre-drying and grating is not affected. The expansion characteristics and taste of the final product are identical to those of Example 1, but its crispness is slightly lower.
  • Example 3 The procedure of Example 3 is repeated but replacing 2550 g of the Promilk SH20 milk protein isolate with a mixture of 2295 g of Promilk SH20 and 255 g of insoluble fibers marketed by Cosucra (Pecq, Belgium) under the Fibrulin name.
  • the slicing capacity of the product before pre-drying and grating is not affected, and the characteristics of expansion, crispness and taste of the final product are identical to those of Example 1, but because of its content about 3.5% fiber the expanded product obtained benefits from the nutrition claim "source of fiber".
  • Example 3 The process of Example 3 is repeated, but 60 g of alginate marketed by Cargill (Minneapolis, USA) under the reference S550 or 60 g of carrageenan marketed under the reference Carragel MCH 5311 by the company are added. Gelymar (Santiago, Chile), or 22.5 g of locust bean gum Viscogum Be (marketed by the company Cargill (Minneapolis, United States), or 22.5 g of xanthan gum XGT FN marketed by the company Jungbunzlauer (Pernhofen, Austria) The expansion, crispness and flavor characteristics of the final product are substantially identical to those of Example 1. This demonstrates the advantageous role of a whole range of hydrocolloid texturing agents.
  • a mixture of powder type containing 300 g of dairy protein isolate (protein content 86% by weight relative to the dry matter) marketed by the company Ingredia (Arras, France) under the reference Promilk SH20 (identical to that used in Example 3) and 22.5 g of a powdered vegetable hydrocolloid texturing agent sold under the name Sosa and comprising carrageenan and locust bean gum (the same as that used in Example 4) is incorporated under a low stirring (300 rpm). The mixture is kept at 70 ° C. for 20 minutes under the same agitation. It is then cooled, still with stirring, to 45 ° C.
  • the product is demolded and then cut into 14 mm cubes which are directly inserted in an Ezidri Ultra FD 1000 dehydration machine (from BestBay Pty Ltd, Australia) with a temperature setpoint of 30 ° C, to adjust their humidity to 16% (drying time about 18 hours).
  • the dried pellets are put in a fridge at 4 ° C for 24 hours.
  • the pellets are then put in a microwave oven with a power of 1800 W for 28 seconds.
  • the volume obtained after passage in the microwave oven is on average 280% relative to the initial volume [(volume after cooking) / (volume before cooking) * 100%)].
  • the resulting product is crunchy and crisp and has a neutral taste with a measured water content of 10.2% by weight.
  • a third aspect of the invention relates to a dry expanded food product comprising at least the following structural ingredients:
  • the patent application WO2016 / 116426 relates to a dry expanded food product comprising as structural ingredients: a protein concentrate of animal or vegetable origin, of food grade, a fat of food grade, a texturizing additive of food grade, and the residual water.
  • the product of the present application is already distinguished from this application by the absence of texturing additive and fat.
  • a dry expanded product consists of certain structural ingredients, it should of course be understood that it may further contain other nonstructural ingredients, and in particular aromatic auxiliary additives, nutritional and / or aesthetic.
  • the limitation here concerns only the structural ingredients.
  • the structural ingredients are those involved, by their nature, in the structure of the product, that is to say in their ability to expand and their crunchy and crunchy texture. Fats, water, texturizing additives, proteins, starch, flour and yeast are examples of structural ingredients.
  • the structural ingredients represent at least 50% by weight of the final product and preferably at least 80% by weight of the final product and even more preferably at least 90% by weight of the final product.
  • the dry expanded product may include as a structural ingredient only a protein concentrate of animal or vegetable origin of food grade, fat of food grade and water.
  • the invention also relates to a method for manufacturing a dry expanded food product consisting of or comprising a protein concentrate of animal or vegetable origin, of food grade, and residual water, a manufacturing method in which
  • a heat-expandable precursor consisting of or comprising the following ingredients is prepared:
  • the thermally expandable precursor is the ingredient mixture obtained prior to the expansion step, a step generally consisting of microwave heating and during which the water content is reduced to the residual content.
  • Microwave heating can, in principle, be done at any microwave power available in domestic, professional or industrial equipment. Depending on the power, the cooking time must be adapted. Preferably, the power range usable in a home or professional microwave oven is 200 to 2000 W. The frequency generally used is 2.45 Ghz.
  • the microwave equipment used can be a "microwave tunnel", that is to say a microwave oven through which can circulate a carpet on which are deposited thermally expandable precursors to be subjected to heat.
  • a microwave tunnel that is to say a microwave oven through which can circulate a carpet on which are deposited thermally expandable precursors to be subjected to heat.
  • An example is a 75 kW AMTek furnace with an MW02448-75 furnace assembly and an AMT7510 reference transmitter assembly operating at a frequency of 915 Mhz.
  • the speed of the carpet is set to that the passage time of the thermoexpansible precursors in the tunnel corresponds to the cooking time,
  • a liquid protein concentrate is obtained before the final drying step during the manufacture of protein concentrates in powder form.
  • the temperature of the liquid protein concentrate should be maintained above 40 ° C so that it does not harden. It is conceivable that it is directly used, at its place of production, for the manufacture of dry expanded products of the invention.
  • the mixture obtained is allowed to cool to obtain the heat-expandable precursor in gel or paste form. It can optionally be placed at low temperature, for example in a refrigerator or a cold room whose temperature is set between 0 ° C and 10 ° C.
  • dry expanded food product contains other ingredients, structural or not, they can be combined with the protein concentrate at the same time as the water, or in any other sequence allowing the formation of a homogeneous mixture.
  • the heat-expandable precursor preferably contains between 15% and 50% by weight of protein, preferably between 20 and 40% by weight of protein.
  • the residual water content i.e., the final content of the dry foam product, is at least 3% by weight and at most 10% by weight of residual water.
  • the action of combining the ingredients may comprise mixing, beating, emulsifying or any other action that makes it possible to obtain a thermally-expandable precursor mixture that is preferably homogeneous.
  • the heat-expandable precursor obtained, in the form of a paste or a gel, is optionally detailed in pieces, depending on the shape and size of the desired expanded food product.
  • the dry expanded food grade product of the third invention may also include cheese as another structural ingredient.
  • Cheese contains, among others, protein and fat, it contributes directly to the structural definition of the product.
  • the dry expanded food product may also include as structural ingredients only the ingredients of the group consisting of a protein concentrate of animal or vegetable origin of food grade, cheese and residual water.
  • cheese it is necessary here to consider any product likely to be called cheese, that is to say a food substance resulting from the fermentation of curd under the action of rennet on milk, or by acidification of this one. In Europe, only products derived from animal milk are likely to be called cheese.
  • Cheeses are classified into different categories, for example whether they are refined or not, depending on the nature of their crust, or whether they are made from raw milk or pasteurized milk.
  • the cheese used here can be added as a powder or in its whole form, i.e., non-dehydrated and non-pulverized.
  • Dry expanded products containing cheese also have the advantage of being particularly rich in protein and calcium. Since a deficiency in these two elements is frequently observed during the aging of individuals, the expanded dry product of the invention is therefore particularly suitable for an aging population.
  • These products do not include gluten, they can also be consumed by people with celiac disease or intolerant to gluten.
  • This aspect of the invention also relates to a method of manufacturing a dry expanded food product consisting of or comprising as structural ingredients a protein concentrate of animal or vegetable origin, food grade, cheese and residual water, process of manufacture in which
  • a heat-expandable precursor consisting of or comprising the following ingredients is prepared:
  • the heat-expandable precursor is subjected to heat, in a microwave-type equipment, to cause its expansion and the reduction of the water content to a residual content.
  • the temperature allowing the cheese to melt can of course vary depending on the cheese, but is generally between 50 and 100 ° C.
  • the cheese and the water are first combined at a temperature allowing the cheese to melt, preferably at a temperature of between 50 ° C. and 100 ° C., until a homogeneous mixture is obtained, and then the mixture is added. in a second time the protein concentrate.
  • the combination of the protein concentrate with the mixture can be done at the same temperature as for the combination of cheese and water.
  • the combination of the protein concentrate to the mixture can be done during the cooling of the water-cheese mixture, for example in a conventional bakery mixer, that is to say non-thermostated.
  • a sterilization step of the heat-expandable precursor that is to say heating between 100 and 145 ° C., so as to reduce the presence of bacteria, viruses, yeasts or molds.
  • the thermally expandable precursor consisting of or comprising as essential ingredients a protein concentrate, water and cheese has the advantage of forming a malleable, elastic and non-sticky paste of the same type as pasta used in biscuit. It is therefore possible to manufacture these expanded products dry on a large scale with classic biscuit equipment. It is no longer necessary to have molds suitable for taking a gel, which allows for savings in production. In some cases, fat of food grade, such as an oil can be added.
  • the dry expanded product may include as an essential ingredient only the ingredients of the group consisting of a protein concentrate of animal or vegetable origin of food grade, fat of food grade, cheese and water .
  • Dry expanded products may, in addition to the structural ingredients, include auxiliary or non-essential ingredients or additives that do not participate in the structural definition of the product.
  • auxiliary additives mainly have an aromatic, nutritional and / or aesthetic function.
  • aromatic auxiliary additives are artificial or synthetic flavors, salt, flavor enhancers, spices, herbs or cooking spices.
  • Examples of aesthetic additives are dyes or toppings.
  • Nutritional auxiliary additives are, for example, dietary fiber, soluble or non-soluble, as defined above, minerals such as calcium or potassium, vitamins, or any substance that could be the subject of a food supplement that is beneficial to human health as part of a preventive or curative treatment or a particular diet.
  • the dry expanded product may for example contain up to 50% of dietary fiber without altering the crispness and crispness of the dry expanded product.
  • the dry foamed products of the invention comprise from 35% to 97% by weight of protein, regardless of the origin of the protein, i.e., it comes from the protein concentrate or cheese. It is also conceivable to add texturing additives of rennet type or a protein such as chymosin during protein reconstitution, that is to say of the mixture of protein concentrate and water, in order to induce coagulation. of the mixture to obtain a cheese-like texture.
  • a lactic ferment or other living organism capable of acidifying the medium is also usable, as mentioned above, for producing, for example, expanded yogurt chewable products.
  • the mixture is poured into a rectangular mold with a capacity of 2.6 liters.
  • the mixture distributed in circular silicone molds 4 cm in diameter, at a rate of 4 g per mold, then cooked for 55 seconds in a microwave oven with a power of 1000 W.
  • the product obtained is an expanded snack (about 200%), crunchy and crispy.
  • Example 1 is repeated replacing the milk protein isolate by a soy protein isolate Dena 90C marketed by Solina (Breal-sous-Monfort, France).
  • the recipe then contains 1600 g of water per 500 g of soy protein isolate.
  • the base is already gelled in the mixer-cooker.
  • the gel after transfer, is then cut into discs 25 mm in diameter and 4 mm in height. These discs are introduced by 8 into a microwave oven with a power of 1000 W and cooked for 60 seconds.
  • the pellets are heated in a microwave oven at a power of 1800 W for 65 seconds.
  • the volume obtained after passage in the microwave oven is on average 280% relative to the initial volume [(volume after cooking) / (volume before cooking) * 100%)].
  • the resulting product is crunchy and crisp and has a relatively neutral taste.
  • Vorwerk brand Thermomix 1.5 g of Vorwerk brand Thermomix are mixed with 35 g of olive oil (Carrefour, Belgium) with 340 ml of spring water and heated to 80 ° C. under low agitation (Thermomix in position 1) for 5 minutes.
  • a powder-type mixture containing 180 g of Promilk SH20 proteins (Ingredia, Arras, France), 90 g of camembert powder (Lactosan reference 160001) and 35 g of Fibrulin XL powder (Cosucra, Belgium) is then added with stirring. average (position 3 of the Thermomix). The mixture is maintained at 80 ° C for 12 minutes.
  • the mixture which has become a paste is then directly placed on a work surface and lowered to 8 mm in height with a rolling pin and then cut into cylindrical pellets 18 mm in diameter.
  • the pellets are heated in a microwave oven at a power of 1800 W for 65 seconds.
  • the volume obtained after passage in the microwave oven is on average 225% relative to the initial volume [(volume after cooking) / (volume before cooking) * 100%)].
  • the resulting product is crunchy and crisp and has a relatively neutral taste.
  • the liquid obtained is poured into a kneader (Kenwood) and 140 g of Promilk SH20 proteins (Ingredia, Arras, France) is added with gentle stirring (position 2 of Kenwood). The mixture is then kneaded for 12 minutes with medium stirring (position 3 of Kenwood). The paste obtained is then placed on a work surface and lowered to 8 mm in height with a pie roll. The product cut into cylindrical pellets 18 mm in diameter. The pellets are heated in a microwave oven with a power of 1800 W for 65 seconds. The volume obtained after passage in the microwave oven is on average 260% compared to the initial volume [(volume after cooking) / (volume before cooking) * 100%)]. The product obtained is crunchy and crispy and has a fairly typical cheese taste.
  • the pellets are heated in a microwave oven at a power of 1800 W for 65 seconds.
  • the volume obtained after passage in the microwave oven is on average 250% relative to the initial volume [(volume after cooking) / (volume before cooking) * 100%)].
  • the resulting product is crunchy and crisp and has a relatively neutral taste.
  • the volume obtained after passage in the microwave oven is on average 130% relative to the initial volume [(volume after cooking) / (volume before cooking) * 100%)].
  • the product obtained is crunchy and crispy.
  • composition of the dry expanded final product (% by weight)
  • Carbohydrates 1.30 11.60 21.30 30.30 0.90 9.60
  • Promilk SH20 Ingredients 20.67 23.1 26.1 24.35 23.15 20.2 35.71

Abstract

L'invention se rapporte à un produit alimentaire expansé sec comprenant les ingrédients essentiels suivants: un concentré protéique d'origine animale ou végétale, de qualité alimentaire, et de l'eau résiduelle. L'expansion peut être obtenue lors d'une étape de traitement dans un équipement de type microondes.

Description

PRODUIT ALIMENTAIRE EXPANSE SEC A BASE DE PROTEINE ET SON
PROCEDE DE FABRICATION
Domaine de l'invention
La présente invention se rapporte à un produit alimentaire expansé sec à base de protéine pour l'alimentation humaine ou animale et à un procédé pour sa fabrication. Plus particulièrement l'invention se rapporte à un produit alimentaire expansé sec de type biscuit ou flocon ou gaufrette, notamment un produit croustillant nutritionnel à basses calories et à bonnes propriétés organoleptiques, pouvant être consommé tel quel à l'état sec ou bien en mélange avec un liquide comestible tel que du lait ou de l'eau. En particulier, l'invention se rapporte à un produit alimentaire de type biscuit ou flocon ou gaufrette ou produit laitier fermenté à longue conservation, sans farine de céréale, mais offrant à la fois l'apport en protéines (en particulier pour les produits nutritionnels) et l'apport en sels minéraux, notamment en calcium, magnésium, phosphore et fer, nécessaire aux enfants, adultes, sportifs et personnes âgées. La présente invention se rapporte également à un procédé économique et efficace pour la fabrication d'un tel produit alimentaire expansé sec.
Arrière-plan de l'invention
Des biscuits hyperprotéinés, par exemple à base de farine de blé, farine de lupin, protéines de soja, gluten de blé, et le cas échéant gomme d'acacia, poudre levante, etc., sont bien connus dans les régimes d'amincissement pour alimentation humaine pour permettre la combustion des graisses et la perte de poids tout en prévenant la fonte de la masse musculaire. Dans ce contexte, on connaît aussi divers biscuits, gâteaux, crêpes à base de protéines de lactosérum. Toutefois, à défaut d'un procédé de fabrication efficace et flexible à grande échelle, de tels biscuits ont le plus souvent un cout de fabrication et, par conséquent, un prix de vente trop élevé pour une large part de la population. Par ailleurs, il est aussi largement reconnu que, dans ce type de produit alimentaire sec destiné à la consommation humaine et après un entraînement physique ou sportif, le caractère croustillant est souvent obtenu au détriment des propriétés organoleptiques. D'autres produits protéinés sont conçus pour suppléer à des carences pathologiques, par exemple une carence en protéines lié à une forte perte de masse musculaire dans certains cancers ou associée au vieillissement. Ces produits sont présentés sous forme de poudre à dissoudre dans d'autres aliments, par exemple un laitage ou une boisson. Ils pourraient fortement bénéficier d'une présentation plus attractive et faire l'objet d'un aliment à part entière, comme un biscuit croustillant.
Malgré leur intérêt potentiel pour le secteur des biscuits secs, les protéines de lait, sous forme d'isolats ou de concentrés, n'y trouvent encore qu'un faible débouché pour les produits diététiques pour l'alimentation humaine, par comparaison à la production de fromages frais, yaourts, boissons, glaces, sauces, laits infantiles, et pour l'alimentation animale.
Par ailleurs, des biscuits expansés secs sont déjà connus pour l'alimentation des animaux domestiques tels que chiens et chats, ainsi que des chevaux.
Le brevet américain n° 3.891.774 se rapporte à la production par extrusion, à partir d'une source de protéines telle que farine animale, farine de volaille, farine de graines oléagineuses et de préférence farine de soja, d'un produit alimentaire sec simulant la viande et qui peut être réhydraté en l'espace de quelques secondes sans chauffage. La source de protéines a une teneur en eau à l'équilibre de 4% à 12% en poids et une teneur en protéines de 30% à 75% en poids. Le facteur crucial du procédé est l'ajout, à un niveau entre 10 et 50% en poids, d'un solvant organique (glycérol, propylène glycol ou un mélange de ceux-ci) capable de plastifier la source de protéine dans l'extrudeuse. Globalement le procédé comprend en outre les étapes consistant à chauffer le mélange à une température supérieure à 100°C, appliquer des pressions élevées pendant un temps suffisant pour convertir le mélange en une substance capable d'écoulement, forcer le matériau à travers un premier orifice restreint, le maintenir à température et pression élevées tandis qu'il émerge dudit premier orifice restreint, puis extruder le matériau à travers un second orifice restreint dans un environnement de pression substantiellement inférieure aux dites pressions élevées pour causer l'expansion du produit avec évaporation d'au moins une partie de l'humidité et la formation d'un produit alimentaire sec expansé ayant une teneur en eau résiduelle de 3% à 7% en poids lorsqu'il sort de l'extrudeuse. Ce document ne divulgue la présence ni de matière grasse de qualité alimentaire ni d'additif texturant.
La demande de brevet américain publiée n° 2005/089623 divulgue un produit alimentaire de densité comprise entre 0,02 et 0,5 g/cc comprenant une protéine pouvant être au moins partiellement hydrolysée en proportion de 25% à 95% en poids, et de l'eau en proportion de 1% à 7% en poids. Le produit peut comprendre une charge, dont la majorité peut être de l'amidon, en proportion de moins de 50% en poids, et peut comprendre un revêtement de surface à base de graisse. L'amidon préféré est de la farine de riz, de l'amidon de pomme de terre et du tapioca, ou leurs mélanges. Cependant, avant extrusion du produit, on préfère maintenir la proportion de graisse ajoutée au mélange de composants solides et d'eau à un niveau inférieur à 0,5% en poids.
Malgré l'exposé précédent de la technique antérieure, il existe encore un besoin dans la technique alimentaire pour des produits expansés croustillants à caractère diététique à base de protéines, en particulier des produits alimentaires croustillants à très faibles teneurs en amidon et en graisse, offrant une grande variété de goûts possibles, salés ou sucrés, en fonction des préférences des consommateurs. Il existe aussi un besoin dans la technique alimentaire pour des produits expansés croustillants à base de protéines d'origines variées, animales et/ou végétales, permettant de s'adapter à la fois à la disponibilité des ressources agricoles locales et aux préférences diététiques des consommateurs, par exemple en matière de régimes végétariens. Il existe aussi un besoin pour des produits croustillants de type biscuits pour l'alimentation animale, notamment pour les animaux domestiques de compagnie. Il existe aussi un besoin dans la technique alimentaire pour un procédé de fabrication de tels produits expansés croustillants, qui soit économique et efficace et qui offre à faible coût une grande flexibilité en fonction des types de protéine utilisables comme matières de départ, en fonction des qualités organoleptiques des produits désirés et en fonction du type d'alimentation, humaine ou animale, visé. Résumé de l'invention
Il a été trouvé de manière surprenante que les besoins exprimés ci-avant dans la technique alimentaire humaine et animale, ainsi que les problèmes diététiques mentionnés ci-dessus pouvaient être avantageusement résolus au moyen de nouvelles compositions de matière améliorée de produits alimentaires expansés secs et de précurseurs alimentaires thermo-expansibles ainsi que leurs procédés de fabrication.
Description détaillée de l'invention
Un premier aspect de l'invention, décrit dans la demande WO 2016/116426, concerne donc un produit alimentaire expansé sec comprenant au moins les ingrédients suivants:
- un concentré protéique d'origine animale ou végétale, de qualité alimentaire,
- une matière grasse de qualité alimentaire,
- un additif texturant de qualité alimentaire choisi parmi le groupe constitué des hydrocolloïdes et gélifiants végétaux, l'amidon de préférence chimiquement modifié, les additifs protéolytiques et leurs produits d'hydrolyse, les agents acidifiants et leurs sels, et les maltodextrines, et
- de l'eau résiduelle.
Tel qu'exprimé ici, il faut comprendre que :
- la matière grasse de qualité alimentaire constitue un ingrédient distinct du, c'est-à-dire distinctement ajouté au, concentré protéique de qualité alimentaire, et non pas une impureté non-protéique de celui-ci ;
- la matière grasse de qualité alimentaire constitue un ingrédient en mélange avec le concentré protéique de qualité alimentaire, et non pas un revêtement de surface de celui-ci.
Facultativement, le produit alimentaire expansé sec selon l'invention peut comprendre:
- un sel de qualité alimentaire dérivé d'un agent acidifiant organique ou minéral, mais de préférence autre qu'un phosphate ou citrate, et/ou
- un additif protéolytique, ou son produit d'hydrolyse.
De préférence, le produit alimentaire expansé sec selon l'invention ne comprend pas d'ingrédients, autres que ceux énumérés ci-dessus, participant à sa définition structurelle. Toutefois il peut comprendre des additifs auxiliaires à caractère gustatif tels qu'arômes, colorants, et/ou édulcorants. Par "concentré protéique d'origine animale", on entend toute origine autre qu'humaine ou végétale. Ainsi il pourrait s'agir d'un concentré provenant d'insectes.
Par "produit sec" au sens de la présente invention, on entend un produit dont la teneur résiduelle en eau permet de conserver intactes les propriétés gustatives et organoleptiques d'origine pendant une durée de plusieurs mois, de préférence une durée de 2 à 30 mois, sans qu'il soit besoin de stocker le produit dans des conditions de réfrigération habituelle des aliments (température inférieure à 5°C environ). Cette propriété de conservation de la qualité gustative et organoleptique correspond en général à une teneur résiduelle en eau inférieure à 10% en poids environ, par exemple ne dépassant pas 9% environ en poids, ou 8% environ en poids, mais le plus souvent d'au moins 3% environ en poids, par exemple d'au moins 4%, d'au moins 5%, d'au moins 6% ou d'au moins 7% en poids. L'homme du métier sait qu'il n'est pas souhaitable, à la fois du point de vue du coût de fabrication croissant lié à l'élimination de l'eau, et du point de vue de la conservation du produit pendant une période de stockage prolongée, de diminuer la teneur résiduelle en eau dans le produit alimentaire en dessous de 3% environ en poids. A l'inverse, une teneur résiduelle en eau supérieure à 10%) en poids ne permet plus, en règle générale, de qualifier le produit alimentaire comme un produit sec. Il va de soi, quelle que soit la nature de l'emballage dans lequel il est conditionné, et malgré une teneur résiduelle en eau ainsi sélectionnée, que la bonne conservation du produit expansé sec selon l'invention dans le temps ne peut être assurée si le produit est maintenu durablement à une température supérieure à 25°C. Il est naturellement toujours conseillé de stocker le produit expansé sec, quel que soit l'emballage employé pour son conditionnement, dans un endroit frais et sec, c'est à dire dans un local à air conditionné maintenu entre 10°C et 20°C environ en moyenne et à un degré d'hygrométrie contrôlé.
Par "produit expansé" au sens de la présente invention on entend un produit alvéolé dont les alvéoles remplies d'air représentent au moins 50% du volume du produit, le cas échéant au moins 65% du volume, ou au moins 80% du volume, et même jusqu'à 85% du volume. Cette structure expansée confère au produit selon l'invention un caractère croustillant apprécié du consommateur qui peut être quantifié, si besoin est, notamment par la mesure de la force de rupture (exprimée en N). Le produit expansé sec du premier aspect de l'invention n'est pas un produit de boulangerie industrielle traditionnelle, en majorité à base de farine de céréale (70% en poids de farine de blé dans le cas des crackers disponibles sur le marché) et donc contenant de grandes quantités de l'amidon inhérent à une telle farine. Sa composition comprend des ingrédients essentiels, tous de qualité alimentaire, tels que précisés ci- dessus et dans chacune des revendications annexées. Par ingrédients essentiels on entend des ingrédients représentant tous ensemble au moins environ 96%> du poids du produit, de préférence au moins 98%> du poids du produit, et encore plus préférentiellement au moins 99% du poids du produit. Ces proportions s'entendent relativement au produit expansé sec brut, c'est-à-dire avant l'application de tout revêtement ou nappage alimentaire à sa surface. Le complément à 100% en poids est constitué, le cas échéant, d'ingrédients facultatifs tels qu'édulcorants, colorants, et aromatisants comme détaillé ci-après.
Par "qualité alimentaire", on entend, pour chaque ingrédient, une qualité satisfaisant aux normes nationales et internationales en vigueur en matière sanitaire pour l'alimentation humaine ou animale, concernant notamment la pureté des ingrédients et leur non-contamination par des agents physiques, chimiques ou biologiques potentiellement dangereux.
Comme pour les produits de biscuiterie industrielle traditionnelle, le produit expansé sec selon l'invention peut, pour des besoins commerciaux liés à son aspect visuel et au goût du consommateur, être recouvert, enrobé ou nappé au moyen d'une ou plusieurs couches de revêtement de qualité alimentaire bien connues dans la technique, de nature et en quantité propres à ne pas pour autant altérer ses qualités diététiques, gustatives et organoleptiques principales.
Par "concentré protéique" utilisable pour le produit expansé sec et le procédé de fabrication selon l'invention, on entend une matière première très majoritairement, ou essentiellement, constituée de protéines d'origine naturelle (animale ou végétale), et donc exempte des constituants principaux non-azotés habituellement rencontrés dans les farines de céréales (environ 70% en poids d'amidon dans les farines de blé) ou les farines animales. Le "concentré protéique" présent dans le produit alimentaire expansé sec selon l'invention est donc une préparation extraite d'une matière première d'origine naturelle (animale ou végétale), et dans laquelle les composants non protéiques ont été éliminés pour l'essentiel, en ayant recours à une ou plusieurs des techniques bien connues de fractionnement, précipitation, extraction, séparation, isolement, purification, etc. En fonction de la teneur pondérale en protéine par rapport à la matière sèche du concentré protéique, et donc en fonction du procédé d'obtention du concentré protéique, le terme "concentré protéique" s'entend comme comprenant aussi les "isolats protéiques" ayant une teneur pondérale en protéine (par rapport à la matière sèche) d'au moins 85% en poids. Dans la mesure de leur disponibilité commerciale, on préfère des concentrés protéiques ou isolats protéiques substantiellement anhydres ou à teneur résiduelle en eau contrôlée et réduite.
De nombreux concentrés protéiques d'origine naturelle (animale ou végétale) appropriés comme ingrédients pour le produit expansé sec et pour le procédé selon l'invention sont disponibles dans le commerce. Pour les concentrés protéiques d'origine animale, on peut citer des concentrés protéiques laitiers tels que ceux extraits de lait de vache, de chèvre, de jument, de bufflesse, de brebis, etc. Leur composition est détaillée ci-après concernant un mode de réalisation particulier de la présente invention.
La composition de base du produit alimentaire expansé sec selon le premier aspect de l'invention décrit ci-dessus comprend des ingrédients essentiels, dont un additif texturant qui peut être de l'amidon natif (d'origine botanique) ajouté, de préférence de l'amidon modifié ajouté, seul ou en mélange avec d'autres additifs texturants (tels que définis ci-après). Tel qu'exprimé ici, il faut comprendre que l'amidon constitue un ingrédient distinct des, c'est-à-dire distinctement ajouté aux, autres ingrédients essentiels (concentré protéique, matière grasse), et non pas (cas de l'amidon natif notamment) une impureté de ceux-ci. L'homme du métier connaît bien l'amidon modifié par modification physique (par exemple précuisson sur cylindre, en extrusion, ou en tour d'atomisation), physico-chimique (par exemple dextrination à haute température et à pH extrême), biologique (par exemple hydrolyse contrôlée par un système enzymatique) ou chimique (par exemple réticulation ou substitution) d'amidon natif d'origine botanique par une variété de techniques bien connues, afin de modifier à souhait la structure chimique de l'un ou l'autre de ses deux homopolymères constituants (amylose et amylopectine) et par conséquent une ou plusieurs de ses propriétés physiques telles que la stabilité à la chaleur ou au cisaillement, la viscosité, la visco-stabilité, le temps de gélatinisation, etc. Toutes ces formes d'amidon modifié entrent dans le cadre de la présente invention. Des exemples non limitatifs d'amidons modifiés de qualité alimentaire sont repris par le Système international de numérotation des additifs alimentaires (SIN) et en particulier sont ceux modifiés par la dextrine, un hydroxyde alcalin, l'hypochlorite de sodium, les maltodextrines et cyclodextrines, un ou des phosphates, l'anhydride acétique, l'oxyde de propylène ou d'éthylène, des succinates, l'acide monochloroacétique, et sont commercialement disponibles. Le choix du type et de la quantité d'amidon modifié seront dictés par l'effet texturant voulu pour le produit final. De préférence l'amidon (de préférence modifié) ajouté représente moins de 10% en poids, par ex. pas plus de 4,5% en poids, du produit alimentaire expansé sec (ou pas plus de 3,5% en poids des ingrédients combinés dans le procédé de fabrication du précurseur expansible décrit ci-après), afin de garantir une qualité diététique du produit expansé final qui se distingue de celle des produits commerciaux déjà connus à haute teneur en amidon.
La composition de base du produit alimentaire expansé selon l'invention peut en particulier comprendre au moins un concentré protéique animal (par exemple laitier ou de poisson) ou végétal. Comme concentrés protéiques laitiers on peut citer ceux contenant des caséines, des protéines sériques ou solubles, et/ou des extraits de celles-ci (par exemple bêta-lactoglobuline, alpha-lactalbumine, immunoglobulines, lactoferrine, etc). Pour plus de détails quant aux composants possibles d'un concentré protéique laitier, on se référera à l'article de J.J. Snappe et alia intitulé "Protéines laitières" paru dans Dossier Techniques de l'Ingénieur (juin 2010).
Comme concentré protéique d'origine animale on peut encore citer des concentrés extraits de farines de poisson, dont il existe de nombreux exemples commerciaux, ou de vers de terre {Eisenia foetida).
Comme concentré protéique d'origine végétale, on peut citer, mais de façon non limitative, des concentrés de protéines végétales telles que des protéines issues de plantes légumineuses (soja, pois, lupin, lentilles, fèves, haricots), de céréales (blé, avoine, maïs, millet, orge, seigle, sarrasin, riz, épeautre, sésame), de graines oléagineuses (courge, lin, arachide, citrouille) ou de fruits oléagineux (amandes, cacahuètes, pistaches, noisettes, noix), ou des extraits de ceux-ci.
Comme concentré protéique originaire d'insectes on peut citer, mais de façon non limitative, des concentrés de protéines extraits de farines d'insectes du commerce telles que, mais sans limitation à, des farines de sauterelles, de charançons, de chenilles, de vers à soie, de criquets (Locusta migrator et Gryllus bimaculatus).
Etant donné la variété de concentrés protéiques utilisables pour le procédé et le produit alimentaire expansé sec selon l'invention, il est facile d'adapter la production à la disponibilité locale tout en réalisant toute la gamme des produits alimentaires expansés secs désirés en fonction des caractéristiques du marché local.
La teneur en protéines du concentré protéique animal (par exemple laitier ou de poisson) ou végétal est très élevée, supérieure à 65% en poids, de préférence supérieure à 75%o en poids, de préférence supérieure à 80%> en poids, et même, dans le cas des isolais protéiques, supérieure à 85% en poids. Le complément à 100% en poids est habituellement constitué d'eau (de préférence au plus 5% en poids environ) et d'impuretés inertes pouvant avoir une utilité nutritionnelle (par exemple sels minéraux tels que calcium, carbohydrates, vitamines) dans des proportions ne nuisant pas à la qualité alimentaire ni aux qualités gustatives, diététiques et/ou organoleptiques des produits alimentaires expansés secs selon l'invention.
La forme physique du concentré protéique utilisable pour le procédé et le produit expansé sec selon l'invention n'est pas une caractéristique particulièrement limitative de la présente invention; toutefois une forme de poudre avec une granulométrie contrôlée et régulière est évidemment préférable, notamment pour la miscibilité avec les autres ingrédients principaux. Des gammes de granulométries souhaitables pour la mise en œuvre de l'invention dépendent de la source de protéines utilisée et de la disponibilité commerciale, mais sont en général comprises entre environ 30 et 200 μιη, de préférence entre 50 et 150 μιη, selon l'origine, animale (par ex. laitière ou de poisson) ou végétale, du concentré protéique.
La composition de base utilisable pour le produit alimentaire expansé sec et le procédé selon le premier aspect de l'invention comprend en outre, comme ingrédient essentiel de départ, de la matière grasse de qualité alimentaire. On préfère une matière grasse capable d'être émulsionnée sans difficulté avec au moins une partie, de préférence la majeure partie ou la totalité, du concentré protéique animal (par exemple laitier ou de poisson) ou végétal. Comme matière grasse, on peut donc utiliser, mais sans limitation, de la matière grasse laitière anhydre, du beurre, de la crème liquide ou en poudre, ou de la matière grasse végétale de qualité alimentaire ou, sous réserve de miscibilité, leur mélange. Selon un mode de réalisation particulier de la présente invention, on préfère une matière grasse permettant, en une quantité appropriée, d'obtenir une émulsion de type huile dans l'eau en présence du concentré protéique d'origine animale ou végétale.
De manière conventionnelle, on entend par matière grasse laitière anhydre le produit obtenu par séparation à partir de la crème ou du beurre, puis déshydratation, sans ajout d'additif. De la matière grasse laitière anhydre utilisable présente donc habituellement une humidité maximale de 0,1% en poids, une teneur maximale de 0,5% en poids en composés liposolubles et une acidité oléique maximale de 0,3%>. Elle peut être fabriquée à partir du beurre ou de crème après action mécanique et/ou thermique, centrifugation et séchage sous vide. On peut aussi utiliser une fraction particulière de matière grasse laitière anhydre obtenue par exemple par cristallisation fractionnée.
En tant que matière grasse végétale de qualité alimentaire, on peut utiliser de préférence une matière grasse végétale ayant un point de fusion au moins égal à 25°C, tel que par exemple un point de fusion de 30°C à 40°C environ. A titre d'exemples non limitatifs on peut citer des margarines, hydrogénées ou non hydrogénées, à base de coprah, palme, colza, soja, tournesol ou d'une autre espèce végétale courante.
La forme physique de la matière grasse utilisée n'est pas particulièrement limitée, toutefois des caractéristiques assurant une bonne miscibilité, en présence d'eau, avec le concentré protéique animal ou végétal sont avantageuses du point de vue de la production du produit alimentaire expansé sec selon l'invention, en particulier du point de vue de l'efficacité à réaliser l'étape initiale de son procédé de fabrication. Par exemple, mais de manière non limitative, dans un mode de réalisation avec un concentré protéique laitier on peut utiliser au choix une matière grasse laitière anhydre ou bien une matière grasse végétale de qualité alimentaire, ou bien un mélange des deux. Il est également possible d'utiliser du fromage, affiné ou non, sous forme de poudre de fromage, dans sa forme entière ou uniquement des rebuts issus de l'industrie fromagère, comme source de matière grasse. Le fromage contient en effet en un seul ingrédient à la fois de la matière grasse et des protéines laitières.
Les proportions de l'eau, de la matière grasse et du concentré protéique animal (par exemple laitier ou de poisson) ou végétal dans la composition de base (y compris le précurseur thermo-expansible décrit ci-après) pour le produit alimentaire expansé sec de l'invention et l'étape initiale du procédé selon l'invention peuvent varier dans de larges limites à la condition d'être capable fournir un mélange sensiblement homogène, mais peuvent être aisément déterminées par l'homme de métier en fonction de paramètres techniques tels que le choix de la matière grasse et du concentré protéique, les propriétés diététiques et nutritionnelles désirées pour le produit alimentaire final, la capacité d'expansion et le caractère croustillant désirés, et de paramètres économiques tels que la durée du processus de fabrication (en particulier l'étape de maturation) et le prix de revient. Ces proportions sont ajustées par l'homme du métier de manière à pouvoir réaliser aisément, dans l'étape initiale de production, l'émulsion de la matière grasse avec une partie, de préférence la totalité, des protéines, ainsi que l'hydratation du concentré protéique animal (par exemple laitier ou de poisson) ou végétal, tout en ajustant de manière appropriée la viscosité du mélange en vue des étapes suivantes. A cet effet, il est généralement préférable que le rapport en poids concentré protéique/eau soit compris entre environ 1/4 et 1/1, de préférence entre 1/3 et 1/2 environ. De même le rapport en poids de la matière grasse de qualité alimentaire à l'eau constitue un facteur important de l'invention, et il est en général préférable que ce rapport en poids matière grasse/eau soit compris entre environ 1/5 et 1/3, de préférence entre 1/4 et 1/5, dans le précurseur avant expansion/déshydratation. Ceci correspond en général à un rapport en poids de la matière grasse de qualité alimentaire à l'eau de 5/1 à 3/1 dans le produit expansé sec. Afin de respecter l'objectif d'un produit alimentaire croustillant diététique, la proportion de matière grasse dans la composition de base utilisable pour le produit expansé sec et l'étape initiale du procédé selon l'invention doit être maintenue aussi faible que possible. En fonction de la matière grasse choisie (origine, point de fusion, caractère hydrogéné ou non), et du concentré protéique animal (par exemple laitier ou de poisson) ou végétal choisi, l'homme du métier sait déterminer, de manière empirique, et au moyen d'un nombre limité d'essais préliminaires, les proportions d'eau, de matière grasse et du concentré protéique les mieux adaptées pour réaliser l'étape initiale du procédé selon l'invention sans difficulté tout en garantissant la condition diététique et nutritionnelle du produit expansé sec final.
La composition utilisable pour le produit alimentaire expansé sec et le procédé de fabrication selon l'invention comprend l'ajout, alternativement à l'amidon de préférence modifié décrit ci-dessus, d'au moins un agent ou additif texturant tel qu'un hydrocolloïde, un épaississant, un émulsifïant, un gélifiant, un additif protéolytique ou son produit d'hydrolyse, un polysaccharide non amidonné, un agent acidifiant ou l'un de ses sels. De préférence on choisit un hydrocolloïde autre que la gélatine. Comme exemples non limitatifs de texturants utilisables on peut citer notamment des agents d'origine végétale tels que l'acide alginique; les alginates de sodium, de potassium, d'ammonium, de calcium et de propylène glycol; des carraghénanes (kappa et iota); les gommes de caroube, d'avoine, de guar; la gomme arabique, la gomme adragante, la gomme xanthane, la gomme karaya, la gomme tara, la gomme gellane, la gomme ghatti, le mannitol, et la carboxyméthylcellulose sodique, ou le mélange de plusieurs d'entre eux. Le type d'agent texturant (par exemple hydrocolloïde) ajouté dépend, de façon connue de l'homme du métier, de l'augmentation de la viscosité désirée et du type de texture désirée pour le produit alimentaire expansé sec final. La proportion d'agent texturant (par exemple hydrocolloïde) ajouté est une quantité suffisante pour obtenir l'effet texturant désiré pour le produit expansé final, en fonction du type d'agent texturant choisi. Elle est habituellement comprise entre environ 0,3% et environ 10% en poids, de préférence entre 0,4%> et 4% en poids du produit alimentaire expansé sec selon l'invention.
La composition utilisable pour le produit alimentaire expansé sec selon le premier aspect de l'invention peut comprendre au moins un agent protéolytique, ou un produit d'hydrolyse de celui-ci, destiné à couper au moins une partie, de préférence une majeure partie ou la totalité, des protéines présentes dans le concentré protéique en fragments de protéines de plus petite taille, cette coupure ayant pour effet de modifier la texture. Un agent protéolytique préféré est donc une enzyme d'origine animale, végétale ou microbienne de la catégorie des protéases, en particulier des exo- et endopeptidases dont la coupure implique l'emploi d'une molécule d'eau, ou bien des exopeptidases. Le choix de cet agent protéolytique, et de sa quantité efficace, dépend, de manière bien connue de l'homme du métier, des protéines présentes dans le concentré protéique utilisé. Selon un mode de réalisation particulier de l'invention, lorsque le concentré de protéine de qualité alimentaire est un concentré de protéine de lait, un additif protéolytique approprié est constitué de présure ou d'une protéase (endopeptidase) naturelle extraite de la présure, telle que la chymosine. On peut aussi utiliser de la chymosine synthétique pure obtenue par fermentation d'un organisme (par ex. un champignon tel qu'Aspergillus niger) génétiquement modifié. Comme autres additifs protéolytiques appropriés on peut citer d'une part la pepsine et d'autre part des enzymes actives d'origine végétale telles que la cyprosine et la cardosine. La quantité efficace d'agent protéolytique, ou l'un de ses produits d'hydrolyse, est habituellement très faible, de l'ordre de 20 à 200 ppm, et cet agent se retrouve donc à l'état de traces dans le produit alimentaire expansé sec selon l'invention.
La composition utilisable pour le produit alimentaire expansé sec selon le premier aspect de l'invention peut aussi comprendre au moins un sel d'agent acidifiant, ou bien un précurseur de celui-ci, de préférence autre qu'un citrate ou phosphate. L'agent acidifiant en question peut être un acide fort ou faible (tel que défini par son pKa de manière bien connue de l'homme du métier), minéral ou organique. A titre d'exemple non limitatif on peut citer l'acide sulfurique, l'acide gluconique, etc. Le sel ou précurseur d'agent acidifiant doit être de qualité acceptable pour l'alimentation humaine ou animale. Un sel d'agent acidifiant utilisable, en particulier lorsque le concentré de protéine de qualité alimentaire est un concentré de protéine de soja, est le sulfate de calcium. Un sel d'agent acidifiant utilisable, en particulier lorsque le concentré de protéine de qualité alimentaire est un concentré de protéine de lait, est un gluconate ou bien un précurseur additif alimentaire tel que la delta-gluconolactone (additif E575). Un ferment lactique ou autre organisme vivant capable d'acidifier le milieu est également utilisable. Une quantité appropriée de sel d'agent acidifiant, ou bien de précurseur de celui-ci, est une quantité nécessaire et suffisante pour procéder à l'acidification du milieu pendant la coupure d'au moins une partie, de préférence une majeure partie ou la totalité, des protéines présentes dans le concentré protéique en fragments de protéines de plus petite taille. Chaque additif peut participer ainsi à la coagulation du mélange en milieu acide, par exemple en déstabilisant les protéines, en particulier les caséines.
La composition du produit alimentaire expansé sec selon l'invention peut comprendre en outre un ou plusieurs additifs auxiliaires de fabrication tels que définis ci-dessous, afin de conférer au produit des propriétés nutritionnelles (fibres) ou gustatives (arômes, colorants, édulcorants) désirables. Un produit expansé sec selon l'invention, ne comprenant pas de sel de qualité alimentaire dérivé d'un agent acidifiant, et/ou d'additif protéolytique ou produit d'hydrolyse de celui-ci, présente aussi une très bonne capacité d'expansion, mais un caractère croustillant moins prononcé.
Pour la fabrication d'un produit alimentaire expansé sec selon l'invention, il est en général utile, mais pas nécessairement, de disposer d'un précurseur thermo-expansible capable de former le produit par simple expansion à la chaleur avec réduction de la teneur en eau, par exemple par traitement au moyen de micro-ondes, ou tout autre traitement approprié bien connu dans l'industrie alimentaire. Un tel précurseur thermoexpansible constitue donc un autre aspect de l'invention, et il comprend au moins les ingrédients suivants:
- un concentré protéique d'origine animale ou végétale, de qualité alimentaire,
- une matière grasse de qualité alimentaire,
- un additif texturant de qualité alimentaire choisi parmi le groupe constitué des hydrocolloïdes et gélifiants végétaux, l'amidon de préférence modifié, les additifs protéolytiques et leurs produits d'hydrolyse, les polysaccharides non amidonnés,les agents acidifiants et leurs sels, et les maltodextrines, à la condition que l'amidon de préférence modifié représente moins de 5% en poids du précurseur, et
- de l'eau.
Le précurseur thermo-expansible selon l'invention peut comprendre en outre un sel de qualité alimentaire dérivé d'un agent acidifiant, de préférence autre qu'un citrate ou phosphate, et/ou un additif protéolytique ou un produit d'hydrolyse de celui-ci. Chacun des ingrédients de ce précurseur peuvent être de nature et en quantité telles que définies ci-dessus au sujet du produit alimentaire expansé sec. Etant donné que le traitement thermique du précurseur thermo-expansible aura pour effet, simultanément avec l'expansion en volume, de réduire la teneur en eau jusqu'au niveau d'une teneur résiduelle compatible avec des exigences de conservation de longue durée à température ambiante (environ 15°C à 25°C), il va de soi que la teneur en eau dans la composition du précurseur thermo-expansible selon l'invention dépasse 10% en poids. Une teneur appropriée en eau dans la composition du précurseur thermo-expansible selon l'invention dépend du nombre et des proportions respectives des autres ingrédients essentiels et, le cas échéant, de la présence d'ingrédients facultatifs tels que le sel de qualité alimentaire dérivé d'un agent acidifiant, et/ou l'additif protéolytique ou son produit d'hydrolyse. Elle dépend aussi de la nécessité de produire un mélange substantiellement homogène avec les autres ingrédients essentiels et des conditions de viscosité à réaliser pour une manipulation aisée du mélange en fonction des conditions de température choisies pour le procédé de préparation (voir ci-après). La série d'exemples fournie ci-après démontre qu'une teneur appropriée en eau dans la composition du précurseur thermo-expansible selon l'invention est en général comprise dans une gamme de 50% à 85% en poids de tous les ingrédients pris ensemble.
Un procédé illustratif mais non limitatif de préparation du précurseur thermoexpansible comprend les étapes consistant à:
combiner, à une température comprise entre 4°C et 60°C, le concentré protéique d'origine animale ou végétale, la matière grasse de qualité alimentaire, l'additif texturant de qualité alimentaire et l'eau, et
- soumettre le mélange obtenu à un traitement thermique dans une gamme de température comprise entre 65°C et 140°C.
Le cas échéant le procédé de préparation peut comprendre au moins une étape supplémentaire consistant en l'ajout d'un sel de qualité alimentaire dérivé d'un agent acidifiant, de préférence autre qu'un citrate ou phosphate, et/ou d'un additif protéolytique ou un produit d'hydrolyse de celui-ci. L'homme du métier sait déterminer, par des essais de simple routine, à la fois le type d'appareil dans lequel réaliser la combinaison initiale (y compris les moyens d'agitation éventuels) et, le cas échéant, le moment approprié pour l'ajout des ingrédients facultatifs, en fonction notamment de leur stabilité thermique et leur réactivité avec les ingrédients essentiels.
L'invention concerne également un procédé de fabrication d'un produit alimentaire expansé sec tel que défini en premier lieu, comprenant les étapes du procédé de préparation du précurseur thermo-expansible, et comprenant en outre l'étape consistant à soumettre le précurseur thermo-expansible à la chaleur, par exemple au moyen de micro-ondes, jusqu'à provoquer son expansion selon le degré d'expansion désiré, et la réduction de la teneur en eau jusqu'à la teneur résiduelle désirée. Les définitions de procédé ci-dessus ne comprennent que les étapes essentielles à l'accomplissement du but de l'invention. Il va de soi pour l'homme du métier que des étapes intermédiaires facultatives, telles que maturation, moulage, démoulage, broyage, râpage, déshydratation partielle, peuvent être ajoutées pour faciliter le processus aboutissant au produit expansé final sous la forme désirée, en particulier en lui procurant une texture souhaitable. On expose ci-après, à titre non- limitatif, un mode de réalisation particulier d'un procédé de fabrication d'un produit alimentaire expansé sec comprenant de telles étapes intermédiaires. Ce procédé comprend à titre seulement illustratif au moins les étapes suivantes:
(a) mélanger jusqu'à homogénéisation une composition de base comprenant comme ingrédients essentiels de l'eau, de la matière grasse de qualité alimentaire, au moins un concentré protéique d'origine animale ou végétale de qualité alimentaire, et au moins un additif texturant de qualité alimentaire choisi parmi les hydrocolloïdes et gélifiants végétaux et l'amidon, et le cas échéant comme ingrédients facultatifs un sel de qualité alimentaire dérivé d'un agent acidifiant, autre qu'un citrate ou phosphate, et/ou un additif protéolytique ou un produit d'hydrolyse de celui-ci.
(b) soumettre le mélange homogène obtenu à l'étape (a) à un traitement thermique par chauffage jusqu'à une température comprise entre 65°C et 140°C environ, suivi d'un refroidissement jusqu'à une température ne dépassant pas 50°C maximum,
(c) le cas échéant ajouter, pendant ou après le refroidissement de l'étape (b), au moins un additif protéolytique ou un produit d'hydrolyse de celui-ci et au moins un agent acidifiant ou un précurseur ou un sel de celui-ci, et homogénéiser le mélange résultant,
(d) verser le mélange homogène obtenu à l'étape (c) dans un moule,
(e) le cas échéant, laisser le mélange homogène prendre de la texture dans le moule à une température comprise entre 5°C et 65°C pendant une durée suffisante pour procéder à sa texturation,
(f) le cas échéant broyer ou râper, le cas échéant après une déshydratation partielle pour abaisser sa teneur en eau jusqu'à une valeur comprise entre 25% et 40% en poids, le mélange coagulé obtenu à l'étape (e) afin d'ajuster sa granulométrie dans une gamme prédéterminée, et (g) soumettre le mélange le cas échéant broyé ou râpé, et le cas échéant partiellement déshydraté, obtenu à l'étape (e) ou à l'étape (f), à un traitement par micro-ondes pour procéder à son expansion et sa déshydratation, jusqu'à obtenir ledit produit alimentaire expansé sec possédant le ratio d'expansion et la teneur résiduelle en eau requis.
L'étape (a) du procédé selon l'invention consiste à homogénéiser les composants de la composition de base. Ceci est effectué, de préférence dans un mélangeur émulsionneur solide- liquide bien connu dans l'industrie alimentaire, à une température suffisante et en procurant une agitation suffisante, pour que l'homogénéisation soit atteinte dans un temps minimum. A titre d'exemple non limitatif d'équipement utilisable pour les étapes (a), (b) et (c) du procédé selon la présente invention on peut citer notamment des mélangeurs-cuiseurs à double enveloppe pour le chauffage et le refroidissement, et à injection directe de vapeur tels que les machines universelles UMSK commercialisées par le département Stephan de la société Sympak Process Engineering GmbH (Schwarzenbek, Allemagne). Le choix du type d'équipement (forme du déflecteur de flux de matière, outil de type rotor-stator, etc.) et des paramètres de fonctionnement (sens de rotation et de contre-rotation, vitesse d'agitation, etc.) du mélangeur émulsionneur solide- liquide est à la portée de l'homme de métier, au moyen d'un nombre limité d'essais préliminaires, une fois connues les proportions respectives d'eau, de matière grasse et du concentré protéique animal ou végétal dans la composition de base. Il est préférable que la vitesse d'agitation dans le mélangeur solide- liquide soit comprise entre environ 500 et 2000 rpm, de préférence entre 800 et 1500 rpm. En cas d'utilisation d'appareils de type rotor/stator les équivalences de vitesse seront données en vitesses de cisaillement de préférence comprises entre 5000 et 20000 s"1, plus préférablement entre 5000 et 10000 s"1, par exemple 7500 s"1 environ. De même il est préférable que le contenu du mélangeur solide-liquide soit maintenu à une température comprise entre environ 4°C et 60°C, de préférence entre environ 45°C et 60°C. La température peut être contrôlée au moyen d'une sonde, et peut être maintenue constante durant toute l'étape (a), ou bien peut être programmée selon un cycle variable si besoin est. En fonction des paramètres (par exemple la température et la vitesse d'agitation) choisis pour le fonctionnement du mélangeur solide- liquide, et de la masse de composition à homogénéiser, la durée de l'étape (a) est habituellement comprise entre environ 5 et 30 minutes, de préférence entre 10 et 20 minutes environ.
A l'issue de l'étape (a) du procédé selon l'invention on obtient une masse (par exemple pâteuse ou liquide visqueuse) homogène dans laquelle sont susceptibles d'être occluses de nombreuses bulles d'air. Pour la poursuite du procédé selon l'invention, il est préférable de procéder à la désaération de cette masse. Celà est effectué par tout moyen approprié, de préférence au moyen d'une mise sous vide de l'équipement contenant la masse homogène vers la fin de l'étape (a). De préférence on évite d'effectuer la mise sous vide au début de l'étape (a) afin d'éviter d'aspirer une partie du concentré protéique en poudre. De préférence on maintient un vide de 0,1 à 0,9 bar. A l'issue de cette étape on obtient donc une masse lisse, homogène et désaérée.
Dans une seconde étape (b), le mélange homogène et de préférence désaéré obtenu à l'étape (a) est soumis à un traitement thermique. Une gamme de température préférée pour le traitement thermique va de 65°C à 140°C environ, de préférence de 65°C à 90°C environ. Vers la fin de l'étape (b) on laisse la température de ce mélange homogène et le cas échéant désaéré diminuer jusqu'à 60°C environ au maximum, par exemple 45°C ou même 30°C environ, soit de façon naturelle par échange thermique avec le milieu environnant, soit par des moyens actifs de refroidissement appropriés, tels que circulation de fluide réfrigérant, ventilation, etc. De façon avantageuse, l'étape (b) peut être accomplie dans le même équipement, de type mélangeur-cuiseur (par exemple un équipement du constructeur Stephan précité) que celui de l'étape (a), en utilisant de façon appropriée les moyens de chauffage et refroidissement de celui-ci.
Au cours de l'étape suivante (c) on peut ajouter d'autres ingrédients facultatifs du produit alimentaire selon l'invention, à savoir au moins un additif protéolytique ou son produit d'hydrolyse et/ou un sel d'agent acidifiant ou bien un précurseur de celui-ci. La nature chimique et la quantité ajoutée de ces deux additifs a déjà été détaillée ci- dessus. Dans cette même étape (c) on peut aussi ajouter, le cas échéant, un complément d'au moins un des ingrédients essentiels du produit alimentaire selon l'invention. De façon avantageuse l'étape (c) peut être accomplie dans le même équipement de type mélangeur-cuiseur (par ex. un équipement du constructeur Stephan précité) que l'étape (a). Au cours de l'étape (a) et/ou de l'étape (c), on peut aussi ajouter un ou plusieurs additifs auxiliaires de fabrication utiles pour améliorer un ensemble de propriétés désirables du produit expansé sec final. Parmi ces propriétés on peut citer notamment la durée de conservation, l'arôme, la couleur, le caractère croustillant, la richesse en fibres, etc. Les additifs auxiliaires de fabrication utiles à cet effet entrent dans des catégories d'additifs bien connus de l'homme du métier. Ces additifs sont normalement ajoutés en de très faibles proportions, en général inférieures à 1% en poids pour chacun d'eux, à l'exception des fibres pour lesquelles la proportion peut avantageusement atteindre jusqu'à environ 4% du produit final, en fonction de la texture et de la qualité nutritionnelle désirées.
Par exemple, on peut ajouter un ou plusieurs agents aromatisants choisis en fonction du goût à impartir au produit alimentaire expansé sec final. Pour des biscuits diététiques salés on peut ajouter des arômes, condiments ou épices en accord avec l'usage, par exemple paprika, poivre, girofle, etc. Pour des biscuits diététiques sucrés on peut ajouter des arômes naturels ou synthétiques tels que vanille, cannelle, fraise, framboise, orange, poire, pomme, etc. Selon leur nature, et selon l'intensité du goût désiré, la proportion en poids de l'agent aromatisant peut être comprise entre 0,2% et 1% en poids.
On peut également ajouter au moins une fibre, soluble ou insoluble, de qualité alimentaire. Afin de ne pas nuire au processus de fabrication ni aux autres qualités désirées du produit expansé sec final, on préfère des fibres solubles. Par exemple, ces fibres alimentaires solubles sont des fructanes comme l'inuline, fibre conseillée dans le régime alimentaire des personnes diabétiques Les fibres alimentaires insolubles sont par exemple la cellulose ou la lignine.
On peut également ajouter au moins un sel non acidifiant tel qu'un halogénure, par exemple un chlorure et/ou iodure, de sodium qui peut remplir, selon la quantité ajoutée, différentes fonctions: amélioration de la conservation, amélioration du gonflement au cours de l'étape ultérieure, modification du goût, etc. Les mêmes proportions en poids que ci-dessus s'appliquent à l'ajout de sel non acidifiant. Pour des raisons diététiques, la proportion de sel doit être aussi faible que possible, sauf si les produits expansés secs sont des biscuits apéritifs connus pour leur caractère salé. Pendant l'étape (c) on peut également ajouter un ou plusieurs colorants acceptables pour l'alimentation humaine ou animale. De préférence, les additifs auxiliaires de fabrication sont ajoutés sous forme pulvérisée de manière à se mélanger aisément à la masse homogène désaérée de la composition de base.
Pendant l'étape (c) on peut également ajouter, dans le cas où l'on souhaite obtenir des produits finis avec une saveur sucrée, un ou plusieurs édulcorants naturels (tels que saccharose ou fructose) ou synthétiques (tels qu'aspartame ou acésulfame) en quantité suffisante bien connue de l'homme de l'art pour procurer le niveau édulcorant désiré.
Pendant l'étape (d) du procédé selon la présente invention, on verse le cas échéant le mélange obtenu de l'équipement de mélange (par exemple un mélangeur- cuiseur tel que décrit ci-dessus) dans un moule, ou tout autre support solide, de forme et dimension variables dans lequel aura lieu l'étape de maturation (e).
L'étape (e) du procédé selon la présente invention, pendant laquelle on laisse le cas échéant agir sur le mélange homogène (texturation ou, selon le cas, coagulation et acidification) le(s) constituant(s) facultatifs ajoutés à l'étape (c), peut être effectuée pendant une durée courte (par exemple de 5 à 120 minutes) ou relativement longue de quelques heures (par exemple de 2 à 24 heures environ) et à une température évitant la dénaturation des protéines ou fragments de protéines présents. Cette température maximale à ne pas dépasser dépend, de manière connue de l'homme du métier, des protéines (animales ou végétales) en question. Pour un rendement efficace de production, et donc pour éviter une durée excessive de la maturation, l'étape optionnelle (c) est effectuée à une température minimale de 5°C, de préférence au moins 15°C. Le choix de la température de l'étape (e) résulte donc d'un compromis entre rendement et nécessité d'éviter une dénaturation inappropriée qui affaiblirait la qualité nutritionnelle du produit alimentaire final.
Suit l'étape optionnelle (f) du procédé selon la présente invention, pendant laquelle on procède à un ajustement, de préférence à une réduction, de la taille moyenne des particules solides résultant de la texturation/déshydratation et, le cas échéant, à une déshydratation partielle de la masse homogène additivée. Dans cette étape, la teneur en eau de la masse homogène additivée peut être réduite signifîcativement jusqu'à une teneur comprise entre environ 25% et 40% en poids, de préférence entre 28% et 35% en poids. La déshydratation partielle à ce stade est facultative, étant donnée qu'elle peut aussi être réalisée de manière complète à l'étape finale, sous réserve de disposer d'un équipement approprié de traitement par microondes. D'autre part la taille moyenne des particules solides est diminuée par tout moyen mécanique approprié, tel que broyage ou râpage, jusqu'à une taille moyenne comprise entre environ 50 μιη et 2 mm, de préférence entre environ 100 μιη et 1 mm. La forme des particules obtenues à l'issue de l'étape (f) ne constitue pas un paramètre critique de la présente invention. Le terme "particule" ne sous-entend pas une forme géométrique particulière. Dans le contexte du procédé selon l'invention, toute forme, sphérique ou non, allongée ou non (par exemple des brins), peut convenir à condition de pouvoir être expansée d'un coefficient suffisant dans l'étape ultérieure (g). Selon un mode particulier de réalisation de la présente invention, le type de réduction de taille opéré vise aussi à réduire la dispersité des tailles de particules, c'est-à-dire à obtenir une population de particules de tailles aussi homogènes que possible. Cette étape (f) peut être importante en ceci que le comportement de la matière dans l'étape ultérieure de traitement par micro-ondes a été trouvé largement dépendant des paramètres tels que la teneur résiduelle en eau, la taille moyenne des particules solides, et la dispersion de leurs tailles.
Enfin, l'étape finale conduisant à l'obtention du produit alimentaire expansé sec (de type biscuit ou flocon) consiste à soumettre la pâte, déshydratée ou non, broyée ou non, obtenue à l'étape (f) à un traitement thermique tel que par micro-ondes. Ce traitement a généralement pour effet d'abaisser encore la teneur en eau dans le produit final, jusqu'à une valeur qui peut être comprise entre environ 3% et 10%> en poids, compatible avec les impératifs de conservation de longue durée, tout en procédant à l'expansion de la pâte selon un rapport d'expansion (en volume) d'environ 1,5 à 6,0, par exemple de 2,0 à 3,5 environ. Les paramètres de ce traitement par micro-ondes, tels que durée, puissance, longueur d'ondes, etc, peuvent être aisément ajustés par l'homme du métier en fonction de la teneur en eau, de la taille moyenne et de la dispersion de tailles des particules de matière protéinée, ainsi que de la forme et du volume des produits finis, etc. A titre non limitatif, on peut citer les paramètres suivants:
une fréquence d'onde variant dans la gamme usuelle des équipements micro-ondes du commerce, une puissance variant dans une gamme comprise entre 200 W et 1000 W environ, une durée variant dans une gamme comprise entre 10 et 120 secondes environ, de préférence entre 20 et 100 secondes environ.
Un produit alimentaire sec et croustillant est obtenu à l'issue de cette étape, prêt à être convoyé par bande transporteuse vers un système de conditionnement en vrac ou en sous-ensembles unitaires. Si nécessaire, à l'issue de l'étape (g) on peut prévoir un système de contrôle statistique de qualité, par exemple un système comprenant la mesure du caractère croustillant tel que par exemple la mesure de la force de rupture (en N), afin d'écarter les produits ne répondant pas à la norme fixée.
Les exemples qui suivent sont fournis à titre purement explicatif et illustratif de la présente invention et ne doivent pas être interprétés comme en limitant la portée. Ces exemples peuvent être modifiés en ajustant un ou plusieurs des paramètres opérationnels (température, durée, dimensions) à l'intérieur des gammes chiffrées mentionnées à l'un ou l'autre des paragraphes précédents.
EXEMPLE 1
Pour cet exemple, le matériel utilisé est un Thermomix de la marque Vorwerk d'une contenance de 1,5 L. Pour réaliser la base, 27,71 g de matière grasse laitière anhydre (MGLA) standard (fournisseur: Corman S.A., Belgique) sont fondus dans 198 ml d'eau de source en chauffant à 50°C et sous agitation faible (Thermomix en position 1) pendant 5 minutes. Ensuite, un mélange de type poudre, contenant 75,02 g de protéines Promilk SH20 (fournisseur: Ingrédia, Arras, France) et 10,52 g d'un amidon modifié chimiquement (commercialisé sous la marque CH20/20 CLEARAM® par la société Roquette Frères, France) est ajouté sous agitation faible (position 1 du Thermomix). Le mélange est maintenu à 50°C pendant 10 minutes mais l'agitation est augmentée (position 3). Le Thermomix est ensuite réglé sur 90°C et, une fois cette température atteinte, on la maintient pendant 30 secondes (Thermomix en position 1). Le mélange est ensuite directement moulé et placé dans une chambre réfrigérée à 4°C. Après 4 heures de gélifîcation, le produit est démoulé puis découpé en pastilles cylindriques de 18 mm de diamètre et 12 mm de hauteur qui sont directement insérées dans un déshydrateur Ultra FD 1000 de marque Ezi Dri (de la société BestBay Pty Ltd, Australie) dont la consigne de température est réglée sur 30°C, afin d'ajuster leur humidité à 20% (temps de séchage d'environ 18 heures). Les pastilles séchées sont mises dans un four micro-ondes d'une puissance de 750 W pendant 45 secondes. Le volume obtenu après passage au four micro-ondes est en moyenne de 200% par rapport au volume initial [(volume après cuisson)/(volume avant cuisson)* 100%)]. Le produit obtenu est croquant et croustillant et possède un gout relativement neutre. La forme obtenue après séchage est semblable à celle après cuisson.
EXEMPLE 2
On répète la méthodologie de l'exemple 1, excepté que le texturant de type amidon modifié est remplacé par une poudre de iota-carraghénanes pour conférer à la base les propriétés d'un gel. ferme et élastique. Pour cette recette, le mélange initiai contient 17,89 g de matière grasse laitière anhydre standard (fournisseur Corman) et 131 ml d'eau de source. On y ajoute ensuite un mélange de 50,23 g de protéines PROMILK SH20 (fournisseur Ingrédia) et de 2,10 g de iota-carraghénanes (marque Textura, fournisseur Albert y Ferran Adria, Barcelo e, Espagne). Le reste du procédé est identique à l'exemple 1, mais la différence principale réside en l'obtention d'un gel plus ferme et donc plus facilement transformable en pastilles aux dimensions désirées. L'expansion moyenne finale est aussi plus élevée et est égale à 250% [(volume après cuisson)/(volume avant cuisson)* 100%)]. Le produit obtenu se caractérise par une forme préservée, un alvéolage fin, et une texture croquante.
EXEMPLE 3
On répète la méthodologie de l'exemple 1, mais les protéines laitières sont remplacées par des protéines de soja sous forme de l'isolât protéique DENA SOYA PROTEINS 90 C LES ( fournisseur: Solina Group). Le texturant utilisé est du sulfate de calcium précipité (pureté de 99.9%). Pour ce mélange, 27,30 g de matière grasse laitière anhydre standard (fournisseur: Corman, Belgique) sont fondus dans 450 ml d'eau de source. Ensuite un mélange de 75,45 g de protéines de soja et de 1,0 g de sulfate de calcium est ajouté sous agitation, suivant le même procédé que pour l'exemple 1 . Pour cet essai, la température de 90°C est maintenue pendant 1 5 minutes pour obtenir un gel par coagulation thermique. La base obtenue est facilement découpée et ne s'étale pas grâce à sa fermeté. Le gonflement résultant du traitement par micro-ondes est supérieur à 300% [volume après cuisson)/( volume avant cuisson)* 100%]. Le produit obtenu est de couleur plus foncée (due aux protéines de soja), très alvéolé et croquant à la dégustation.
EXEMPLE 4
Dans un mélangeur-cuiseur-émulsionneur, à double enveloppe pour le chauffage et le refroidissement, et à injection directe de vapeur, et de volume 24 litres commercialisé par le département Stephan de la société Sympak Process Engineering GmbH (Schwarzenbek, Allemagne) on introduit 1950g de matière grasse laitière anhydre, 8475 g d'eau, 2550 g d'isolat protéique laitier (teneur en protéines 86%> en poids par rapport à la matière sèche) commercialisé par la société Ingrédia (Arras, France) sous la référence Promilk SH20, 1500g de poudre de camembert (référence 10034 de Dairygold Food Ingrédients Ltd., Irlande), 225 g d'amidon modifié de maïs de qualité alimentaire (référence CH20, fournisseur: Roquette Frères, France) et 75 g d'arôme de Gouda (référence RD60A25204 de Dairygold Food Ingrédients Ltd., Irlande). Ce mélange est homogénéisé et émulsionné (émulsion de globules huileux en suspension dans l'eau, et suspension de caséines colloïdales dans la phase aqueuse) à la température de 50°C pendant une durée de 10 minutes. Pendant toute la durée du processus d'homogénéisation, le dispositif est mis sous vide (0,5 bar) afin de désaérer substantiellement le mélange homogène obtenu. Le mélange homogène désaéré est ensuite soumis, dans le même équipement, à un traitement thermique à la température de 80°C pendant une durée de 30 secondes, puis est refroidi jusqu'à la température de 45°C. A cette température et toujours dans le même équipement, on ajoute alors 225g de l'additif alimentaire E575 (delta-gluconolactone commercialisée par la société Acros), et 1,65 ml de chymosine produite par fermentation, commercialisée par Chr. Hansen (Arpajon, France) sous la dénomination Chy-Max. Après mélange à 600 tours/minute, le mélange (représentant un poids total de 15,0 kg) est soutiré du mélangeur Stephan et versé dans des moules rectangulaires de contenance 1 litre chacun. On laisse la coagulation-acidification se produire dans les moules pendant 24 heures à la température de 20°C. Le pH mesuré à la fin de cette étape est de 5,5. A l'issue de ce temps le contenu de chaque moule est tranché en fines tranches puis soumis à un pré-séchage dans une étuve ventilée à 35°C pendant 10 heures jusqu'à atteindre une teneur en eau de 30% en poids dans le mélange coagulé pré-séché. On refroidit le produit vers 10°C de façon à augmenter sa fermeté et on procède ensuite au râpage du mélange pré-séché en fins brins (dimension longitudinale 10 à 20 mm, dimension transversale 1 à 2 mm) au moyen d'une machine Handmark avant de soumettre le mélange pré-séché râpé à un traitement d'expansion sous pression atmosphérique dans un four à micro-ondes (puissance 750 W, durée 90 secondes, à la fréquence de 2,45 GHz), dans des moules en silicone. Après démoulage, on obtient alors 7,13 kg d'un produit alimentaire expansé sec croustillant de type fromager à goût de Gouda dont la teneur résiduelle en eau mesurée est de 5,0%> en poids. La composition en poids de ce produit est donc environ la suivante : 59% de protéines laitières, 28,4% de matière grasse laitière, 3,27% d'amidon de qualité alimentaire, 3,27%) de gluconate, traces de présure, 1,09% d'agent aromatisant, et 5,0%> d'eau.
Pour la conservation de ses propriétés gustatives et organoleptiques, il est recommandé de conditionner et stocker ce produit dans une zone sèche à hygrométrie contrôlée.
D'un point de vue nutritionnel, 100g du produit correspondant à un apport énergétique de 565 kcal. EXEMPLE 5
On répète le procédé de l'exemple 4 mais dans un mélangeur-cuiseur- émulsionneur de volume 5 litres et à partir des quantités suivantes d'ingrédients: 1102 g d'eau, 135 g de matière grasse laitière anhydre, 225 g d'isolat protéique laitier (teneur en protéines 85,5% en poids par rapport à la matière sèche) commercialisé par la société Ingrédia (Arras, France) sous l'appellation Promilk 852A, 15 g de l'additif alimentaire E575 (delta-gluconolactone commercialisée par la société Acros), 0,16 ml de chymosine produite par fermentation, commercialisée par Chr. Hansen (Arpajon, France) sous la dénomination Chy-Max, et 23 g d'un agent texturant hydrocolloïde végétal en poudre (au lieu de l'amidon de l'exemple 1) commercialisé sous le nom Sosa et comprenant alginate, carraghénane, et gommes de caroube et de xanthane. Après ajout de la chymosine et de E575, le produit est stocké en chambre frigorifique à 5°C pendant 4 heures jusqu'à obtenir un pH d'environ 5,0. Le bloc obtenu est alors portionné en cylindres de 18 mm de diamètre et 12 mm de hauteur, lesquels sont pré- séchés jusqu'à atteindre un taux d'humidité de 18% en poids environ, puis soumis à un traitement par micro-ondes (puissance 850 W) pendant 30 secondes sous pression atmosphérique. Après démoulage, on obtient alors 427 g d'un produit alimentaire expansé sec croustillant de type fromager dont la teneur résiduelle en eau mesurée est de 6,9% en poids. La composition en poids de ce produit est donc environ la suivante: 52,6%o de protéines laitières, 31,9% de matière grasse laitière, 3,27% de texturant hydrocolloïde de qualité alimentaire, 3,5% de gluconate, des traces de présure, et 6,9%> d'eau.
EXEMPLE 6
On répète le procédé de l'exemple 4 en diminuant la quantité de chymosine à 0,36 ml mais en conservant les quantités des autres ingrédients. La capacité de tranchage du produit avant pré-séchage et râpage n'est pas affectée, et les caractéristiques d'expansion, de croustillant et du goût du produit final sont identiques à celles de l'exemple 1.
EXEMPLE 7
On répète le procédé de l'exemple 4 mais en remplaçant la protéine laitière Promilk SH20 par une quantité identique de la protéine laitière Promilk 852A (celle utilisée à l'exemple 2). La capacité de tranchage du produit avant pré-séchage et râpage n'est pas affectée. Les caractéristiques d'expansion et du goût du produit final sont identiques à celles de l'exemple 1, mais son caractère croustillant est légèrement inférieur.
EXEMPLE 8
On répète le procédé de l'exemple 4 mais en remplaçant 2550 g de l'isolât protéique laitier Promilk SH20 par un mélange de 2295 g de Promilk SH20 et de 255 g de fibres insolubles commercialisées par la société Cosucra (Pecq, Belgique) sous la dénomination Fibruline. La capacité de tranchage du produit avant pré-séchage et râpage n'est pas affectée, et les caractéristiques d'expansion, de croustillant et du goût du produit final sont identiques à celles de l'exemple 1, mais en raison de sa teneur d'environ 3,5% en fibres le produit expansé obtenu bénéficie de l'allégation nutritionnelle "source de fibres".
EXEMPLE 9
On répète le procédé de l'exemple 4 mais en remplaçant 225 g d'amidon modifié de maïs par 60 g d'alginate commercialisé par la société Cargill (Minneapolis, Etats-Unis) sous la référence S550, ou bien par 60 g de carraghénane commercialisé sous la référence Carragel MCH 531 1 par la société Gelymar (Santiago, Chili), ou bien par 22,5 g de gomme de caroube Viscogum Be (commercialisée par la société Cargill (Minneapolis, Etats-Unis), ou bien par 22,5 g de gomme de xanthane XGT FN commercialisée par la société Jungbunzlauer (Pernhofen, Autriche). Les caractéristiques d'expansion, de croustillant et de goût du produit final sont sensiblement identiques à celles de l'exemple 1. Ceci démontre que l'amidon peut avantageusement être remplacé, en tout ou en partie, par d'autres agents texturants hydrocolloïdes.
Un second aspect de l'invention concerne un produit de qualité alimentaire expansé sec comprenant les ingrédients suivants :
- un concentré protéique d'origine animale ou végétale, de qualité alimentaire, - un additif texturant de qualité alimentaire choisi parmi le groupe constitué des hydrocolloïdes et gélifiants végétaux, l'amidon de préférence chimiquement modifié, les additifs protéolytiques et leurs produits d'hydrolyse, les polysaccharides non amidonnés, les agents acidifiants et leurs sels, et les maltodextrines, et
- de l'eau résiduelle.
Dans la littérature, sont connus des produits alimentaires expansés constitués par des mélanges ternaires de glucides, lipides et protides. Leur teneur en eau peut être de 10 à 35% avant expansion, et jusqu'à 10%> après expansion. L'expansion peut être obtenue par extrusion ou bien par chauffage rapide par micro-ondes d'un article gélatinisé, et peut atteindre un coefficient de 3 à 5. On connaît aussi la fabrication de produit fromager sec et expansé consistant à soumettre une matière d'origine fromagère ayant une teneur en eau de 25 à 65% en poids à un traitement de séchage/expansion par passage dans un four à micro-ondes sous vide à une température à 400° C jusqu'à une teneur en eau inférieure à 10%> en poids, pendant 20 secondes à 10 minutes, permettant d'atteindre un coefficient d'expansion de 2,5 à 4,0.
On connaît aussi un produit croustillant, riche en protéines et pauvre en graisses, obtenu à partir d'un mélange de 18 - 38% en poids de protéines de lactosérum, de soja, de riz ou de pois, de 5 - 30% d'amidon et de 40 - 65% en poids d'eau, avec addition d'un conservateur, obtenu par expansion du mélange par chauffage dans un four à micro-ondes. On connaît aussi un produit fromager expansé par la chaleur par microonde, comprenant 20 - 59% en poids d'une protéine de lait, 10 - 50% en poids d'amidon, 2 - 24% en poids d'un alcool de sucre (sorbitol, xylitol, mannitol ou glycérol), et 3 - 15% en poids d'eau, dans lequel la teneur en graisse ne dépasse pas 10%) en poids. Ces produits manquent toutefois de caractère nutritionnel en raison de la proportion d'amidon ajouté et de sucre.
On connaît aussi la préparation de produit laitier granuleux et expansé par traitement par micro-ondes d'un fromage dur en poudre ayant des particules de taille 0,2 - 5 mm et une teneur en humidité ne dépassant pas 45% jusqu'à obtenir une teneur en humidité inférieure à 15%. Le produit obtenu est toutefois limité par les qualités gustatives et la teneur en matière grasse du fromage de départ.
On connaît aussi un précurseur thermo-expansible pour former un fromage synthétique, comprenant (en poids) 12 - 26% de protéine de lait, 7 - 30% d'amidon et 46 - 60%) d'eau, ledit précurseur ne comprenant pas plus de 10% de graisse. Après expansion thermique, ce précurseur forme un fromage synthétique croustillant, comprenant (en poids) 20 - 59% de protéine de lait, 12 - 68% d'amidon et 3 - 15% d'eau, ledit fromage synthétique ne comprenant pas plus de 22% de graisse.
EXEMPLE 1
Pour cet exemple, le matériel utilisé est un Thermo mix de la marque Vorwerk d'une contenance de 1,5 L. Pour réaliser la base, 17,89 g de matière grasse laitière anhydre standard (fournisseur: Corman S.A., Belgique) sont fondus dans 131 ml d'eau de source en chauffant à 50°C et sous agitation faible (Thermomix en position 1) pendant 5 minutes. Ensuite, un mélange de type poudre, contenant 50,23 g de protéines Promilk SH20 (fournisseur: Ingrédia, Anus, France) et 2,10 g de poudre de iota- carraghénanes (marque Textura, fournisseur Albert y Ferran Adria, Barcelone, Espagne) est ajouté sous agitation faible (position 1 du Thermomix). Le mélange est maintenu à 50°C pendant 10 minutes mais l'agitation est augmentée (position 3). Le Thermomix est ensuite réglé sur 90°C et, une fois cette température atteinte, on la maintient pendant 30 secondes (Thermomix en position 1). Le mélange est ensuite directement moulé et placé dans une chambre réfrigérée à 4°C. Après 4 heures de gélifïcation, le produit est démoulé puis découpé en pastilles cylindriques de 18 mm de diamètre et 12 mm de hauteur qui sont directement insérées dans un appareil de déshydratation Ultra FD 1000 de la marque Ezi Dri (de la société BestBay Pty Ltd, Australie) dont la consigne de température est réglée sur 30°C, afin d'ajuster leur humidité à 20% (temps de séchage d'environ 18 heures). La caractéristique principale avantageusement obtenue réside en l'obtention d'un gel très ferme et élastique et donc facilement transformable en pastilles aux dimensions désirées. Les pastilles séchées sont mises dans un four micro-ondes d'une puissance de 750 W pendant 45 secondes. Le volume obtenu après passage au four micro-ondes est en moyenne de 250% par rapport au volume initial [(volume après cuisson)/(volume avant cuisson)* 100%)]. Le produit obtenu se caractérise par une forme préservée (la forme obtenue après séchage est semblable à celle après cuisson), un alvéolage fin, une texture croquante et croustillante, et un gout relativement neutre.
EXEMPLE 2
On répète la méthodologie de l'exemple 1 , mais les protéines laitières sont remplacées par des protéines de soja sous forme de l'isolât protéique DENA SOYA PROTEINS 90 C LES (fournisseur: Solina Group). Le texturant utilisé est du sulfate de calcium précipité (pureté de 99.9%). Pour ce mélange, 27,30 g de matière grasse laitière anhydre standard (fournisseur: Corman, Belgique) sont fondus dans 450 ml d'eau de source. Ensuite un mélange de 75.45 g de protéines de soja et de 1 g de sulfate de calcium est ajouté sous agitation, suivant le même procédé que pour l'exemple 1 . Pour cet essai, la température de 90°C est maintenue pendant 15 minutes pour obtenir un gel par coagulation thermique. La base obtenue est facilement découpée et ne s'étale pas grâce à sa fermeté. Le gonflement résultant du traitement par micro-ondes est supérieur à 300% [volume après cuisson)/( volume avant cuisson)* 100%]. Le produit obtenu est de couleur plus foncée (due aux protéines de soja), très alvéolé et croquant à la dégustation.
EXEMPLE 3
Dans un mélangeur-cuiseur-émulsionneur, à double enveloppe pour le chauffage et le refroidissement, et à injection directe de vapeur, et de volume 24 litres commercialisé par le département Stephan de la société Sympak Process Engineering GmbH (Schwarzenbek, Allemagne) on introduit 1950 g de matière grasse laitière anhydre, 8475 g d'eau, 2550 g d'isolat protéique laitier (teneur en protéines 86%> en poids par rapport à la matière sèche) commercialisé par la société Ingrédia (Arras, France) sous la référence Promilk SH20, 1500 g de poudre de camembert (référence 10034 de Dairygold Food Ingrédients Ltd., Irlande), et 75 g d'arôme de Gouda (référence RD60A25204 de Dairygold Food Ingrédients Ltd., Irlande). Ce mélange est homogénéisé et émulsionné (émulsion de globules huileux en suspension dans l'eau, et suspension de caséines colloïdales dans la phase aqueuse) à la température de 50°C pendant une durée de 10 minutes. Pendant toute la durée du processus d'homogénéisation, le dispositif est mis sous vide (0,5 bar) afin de désaérer substantiellement le mélange homogène obtenu. Le mélange homogène désaéré est ensuite soumis, dans le même équipement, à un traitement thermique à la température de 80°C pendant une durée de 30 secondes, puis est refroidi jusqu'à la température de 45°C. A cette température et toujours dans le même équipement, on ajoute alors 225g de l'additif alimentaire E575 (delta-gluconolactone commercialisée par la société Acros), et 1,65 ml de chymosine produite par fermentation, commercialisée par Chr. Hansen (Arpajon, France) sous la dénomination Chy-Max. Après mélange à 600 tours/minute, le mélange (représentant un poids total de 14,8 kg) est soutiré du mélangeur Stephan et versé dans des moules rectangulaires de contenance 1 litre chacun. On laisse la coagulation-acidification se produire dans les moules pendant 24 heures à la température de 20°C. Le pH mesuré à la fin de cette étape est de 5,5. A l'issue de ce temps le contenu de chaque moule est tranché en fines tranches puis soumis à un pré-séchage dans une étuve ventilée à 35°C pendant 10 heures jusqu'à atteindre une teneur en eau de 30% en poids dans le mélange coagulé pré-séché. On refroidit le produit vers 10°C de façon à augmenter sa fermeté et on procède ensuite au râpage du mélange pré-séché en fins brins (dimension longitudinale 10 à 20 mm, dimension transversale 1 à 2 mm) au moyen d'une machine Handmark avant de soumettre le mélange pré-séché râpé à un traitement d'expansion sous pression atmosphérique dans un four à micro-ondes (puissance 750 W, durée 90 secondes, à la fréquence de 2,45 GHz), dans des moules en silicone. Après démoulage, on obtient alors 7,13 kg d'un produit alimentaire expansé sec croustillant de type fromager à goût de Gouda dont la teneur résiduelle en eau mesurée est de 5,0%> en poids. La composition en poids de ce produit est donc environ la suivante : 61%> de protéines laitières, 29,3% de matière grasse laitière, 3,38% de gluconate, des traces de présure, 1,13% d'agent aromatisant, et 5,17% d'eau.
Pour la conservation de ses propriétés gustatives et organoleptiques, il est recommandé de conditionner et stocker ce produit dans une zone sèche à hygrométrie contrôlée.
D'un point de vue nutritionnel, 100 g du produit correspondant à un apport énergétique de 565 kcal. EXEMPLE 4
On répète le procédé de l'exemple 3 mais dans un mélangeur-cuiseur- émulsionneur de volume 5 litres et à partir des quantités suivantes d'ingrédients: 1102 g d'eau, 135 g de matière grasse laitière anhydre, 225 g d'isolat protéique laitier (teneur en protéines 85,5% en poids par rapport à la matière sèche) commercialisé par la société Ingrédia (Arras, France) sous l'appellation Promilk 852A, 15 g de l'additif alimentaire E575 (delta-gluconolactone commercialisée par la société Acros), 0,16 ml de chymosine produite par fermentation, commercialisée par Chr. Hansen (Arpajon, France) sous la dénomination Chy-Max, et 23 g d'un agent texturant hydrocolloïde végétal en poudre commercialisé sous le nom Sosa et comprenant alginate, carraghénane, et gommes de caroube et de xanthane. Après ajout de la chymosine et de E575, le produit est stocké en chambre frigorifique à 5°C pendant 4 heures jusqu'à obtenir un pH d'environ 5,0. Le bloc obtenu est alors partitionné en cylindres de 18 mm de diamètre et 12 mm de hauteur, lesquels sont pré-séchés jusqu'à atteindre un taux d'humidité de 18% en poids environ, puis soumis à un traitement par micro-ondes (puissance 850 W) pendant 30 secondes sous pression atmosphérique. Après démoulage, on obtient alors 427 g d'un produit alimentaire expansé sec croustillant de type fromager dont la teneur résiduelle en eau mesurée est de 6,9% en poids. La composition en poids de ce produit est donc environ la suivante: 52,6% de protéines laitières, 31,9% de matière grasse laitière, 3,27% de texturant hydrocolloïde de qualité alimentaire, 3,5% de gluconate, des traces de présure, et 6,9% d'eau. EXEMPLE 5
On répète le procédé de l'exemple 3 en diminuant la quantité de chymosine jusqu'à 0,36 ml mais en conservant les quantités des autres ingrédients. La capacité de tranchage du produit avant pré-séchage et râpage n'est pas affectée, et les caractéristiques d'expansion, de croustillant et du goût du produit final sont identiques à celles de l'exemple 1.
EXEMPLE 6
On répète le procédé de l'exemple 3 mais en remplaçant la protéine laitière Promilk SH20 par une quantité identique de la protéine laitière Promilk 852A (fournisseur Ingrédia, Arras, France). La capacité de tranchage du produit avant préséchage et râpage n'est pas affectée. Les caractéristiques d'expansion et du goût du produit final sont identiques à celles de l'exemple 1, mais son caractère croustillant est légèrement inférieur. EXEMPLE 7
On répète le procédé de l'exemple 3 mais en remplaçant 2550 g de l'isolât protéique laitier Promilk SH20 par un mélange de 2295 g de Promilk SH20 et de 255 g de fibres insolubles commercialisées par la société Cosucra (Pecq, Belgique) sous la dénomination Fibruline. La capacité de tranchage du produit avant pré-séchage et râpage n'est pas affectée, et les caractéristiques d'expansion, de croustillant et du goût du produit final sont identiques à celles de l'exemple 1, mais en raison de sa teneur d'environ 3,5% en fibres le produit expansé obtenu bénéficie de l'allégation nutritionnelle "source de fibres".
EXEMPLE 8
On répète le procédé de l'exemple 3 mais en ajoutant 60 g d'alginate commercialisé par la société Cargill (Minneapolis, Etats-Unis) sous la référence S550, ou bien 60 g de carraghénane commercialisé sous la référence Carragel MCH 5311 par la société Gelymar (Santiago, Chili), ou bien 22,5 g de gomme de caroube Viscogum Be (commercialisée par la société Cargill (Minneapolis, Etats-Unis), ou bien 22,5 g de gomme de xanthane XGT FN commercialisée par la société Jungbunzlauer (Pernhofen, Autriche). Les caractéristiques d'expansion, de croustillant et de goût du produit final sont sensiblement identiques à celles de l'exemple 1. Ceci démontre le rôle avantageux de toute une gamme d'agents texturants hydrocolloïdes.
EXEMPLE 9
Dans un mélangeur-cuiseur-émulsionneur avec couteau malaxeur d'un volume de 5 litres, à double enveloppe pour le chauffage et le refroidissement, commercialisé par le département Stephan de la société Sympak Process Engineering GmbH (Schwarzenbek, Allemagne), on introduit 1140 ml d'eau de source que l'on porte à 70°C sous agitation faible. Ensuite, un mélange de type poudre, contenant 300 g d'isolat protéique laitier (teneur en protéines 86% en poids par rapport à la matière sèche) commercialisé par la société Ingrédia (Arras, France) sous la référence Promilk SH20 (identique à celui utilisé dans l'exemple 3) et 22,5 g d'un agent texturant hydrocolloïde végétal en poudre commercialisé sous le nom Sosa et comprenant carraghénane et gomme de caroube (le même que celui utilisé dans l'exemple 4) est incorporé sous une faible agitation (300 rpm). Le mélange est maintenu à 70°C, pendant 20 minutes sous la même agitation II est ensuite refroidi, toujours sous agitation, jusqu'à 45°C pour y incorporer 15 g de l'additif alimentaire E575 (delta- gluconolactone commercialisée par la société Acros) puis après 30 secondes, 0,20 ml de chymosine produite par fermentation, commercialisée par Chr. Hansen (Arpajon, France) sous la dénomination Chy-Max. Le mélange est ensuite transféré directement dans un récipient et conservé à température ambiante (environ 20°C) pendant 4 heures, puis placé dans une chambre réfrigérée à 4°C. Après 24 heures, le produit est démoulé puis découpé en cubes de 14 mm qui sont directement insérés dans un appareil de déshydratation Ultra FD 1000 de la marque Ezidri (de la société BestBay Pty Ltd, Australie) dont la consigne de température est réglée sur 30°C, afin d'ajuster leur humidité à 16% (temps de séchage d'environ 18 heures). Les pastilles séchées sont mises dans un frigo à 4°C pendant 24 heures. Les pastilles sont alors mises dans un four micro-ondes d'une puissance de 1800 W pendant 28 secondes. Le volume obtenu après passage au four micro-ondes est en moyenne de 280% par rapport au volume initial [(volume après cuisson)/(volume avant cuisson)* 100%)]. Le produit obtenu est croquant et croustillant et possède un goût neutre avec une teneur en eau mesurée de 10,2% en poids.
Un troisième aspect de l'invention concerne un produit alimentaire expansé sec comprenant au moins les ingrédients structurels suivants :
- un concentré protéique d'origine animale ou végétale, de qualité alimentaire, et
- de l'eau.
Comme illustré dans les exemples 1 et 2 suivants, il a été démontré qu'il est possible de préparer un produit alimentaire expansé sec ne comprenant, comme ingrédients structurels, que les ingrédients du groupe constitué d'un concentré protéique d'origine animale ou végétale, de qualité alimentaire, et d'eau résiduelle.
La demande de brevet WO2016/ 116426 concerne un produit alimentaire expansé sec comprenant comme ingrédients structurels : un concentré protéique d'origine animale ou végétale, de qualité alimentaire, une matière grasse de qualité alimentaire, un additif texturant de qualité alimentaire, et de l'eau résiduelle. Le produit de la présente demande se distingue déjà de cette demande par l'absence d'additif texturant et de matière grasse. Lorsqu'il est précisé qu'un produit expansé sec est constitué de certains ingrédients structurels, il faut bien entendu comprendre qu'il peut en outre contenir d'autres ingrédients non-structurels, et en particulier des additifs auxiliaires aromatiques, nutritionnels et/ou esthétiques. La limitation porte ici uniquement sur les ingrédients structurels.
Les ingrédients structurels sont ceux participants, de par leur nature, à la structure du produit, c'est-à-dire à leur capacité d'expansion et à leur texture croquante et croustillante. La matière grasse, l'eau, les additifs texturants, les protéines, l'amidon, la farine et les levures sont des exemples d'ingrédients structurels. Les ingrédients structurels représentent au moins 50% en poids du produit final et de préférence au moins 80% en poids du produit final et encore plus préférentiellement au moins 90%> en poids du produit final.
Dans certains cas, il est intéressant d'ajouter comme ingrédient structurel, de la matière grasse de qualité alimentaire, comme définie plus haut. Ceci peut permettre d'obtenir des variantes structurelles du produit expansé sec de l'invention. Le produit expansé sec peut ne comprendre comme ingrédient structurel que un concentré protéique d'origine animale ou végétale de qualité alimentaire, de la matière grasse de qualité alimentaire et de l'eau.
L'invention concerne également un procédé de fabrication d'un produit alimentaire expansé sec constitué de ou comprenant un concentré protéique d'origine animale ou végétale, de qualité alimentaire, et de l'eau résiduelle, procédé de fabrication dans lequel
• on prépare un précurseur thermo-expansible constitué de ou comprenant des ingrédients suivants:
- un concentré protéique d'origine animale ou végétale, de qualité alimentaire, et
- de l'eau,
procédé de préparation comprenant l'étape consistant à:
- combiner, à une température comprise entre 4°C et 100°C, le concentré protéique d'origine animale ou végétale et de l'eau, et • on soumet le précurseur thermo-expansible à la chaleur, dans un équipement de type microondes, pour provoquer son expansion et la réduction de la teneur en eau jusqu'à une teneur résiduelle. Comme précisé plus haut, il est également entendu ici que le précurseur thermo expansible est le mélange d'ingrédients obtenu avant l'étape d'expansion, étape consistant généralement en un chauffage aux micro-ondes et durant laquelle la teneur en eau est réduite à la teneur résiduelle.
Le chauffage par micro-ondes peut a priori se faire à toutes les puissances de micro- ondes disponibles dans les équipements domestiques, professionnels ou industriels. En fonction de la puissance, le temps de cuisson doit être adapté. Préférablement, la plage de puissance utilisable dans un four micro-ondes domestique ou professionnel est de 200 à 2000 W. La fréquence généralement utilisée est de 2.45 Ghz.
Dans une optique d'industrialisation du procédé, l'équipement micro-ondes utilisé peut être un « tunnel micro-ondes », c'est-à-dire un four à micro-ondes au travers duquel peut circuler un tapis sur lequel sont déposés les précurseurs thermo-expansibles à soumettre à la chaleur. Un exemple est un four de de la marque AMTek, d'une puissance de 75 kW ayant un assemblage four de MW02448-75 et un assemblage transmetteur de référence AMT7510, fonctionnant à une fréquence de 915 Mhz.. La vitesse du tapis est réglée pour que le temps de passage des précurseurs thermoexpansibles dans le tunnel corresponde au temps de cuisson,
Il est également possible de s'affranchir de l'étape de combinaison du concentré protéique et de l'eau en utilisant directement un concentré protéique liquide. Un tel concentré liquide est obtenu avant l'étape finale de séchage lors de la fabrication de concentrés protéiques sous forme de poudre. Généralement, lorsque la concentration en protéine du concentré liquide est supérieure à 30%, la température du concentré protéique liquide doit être maintenue à plus de 40°C afin qu'il ne durcisse pas. Il est envisageable qu'il soit directement utilisé, sur son lieu de production, pour la fabrication de produits expansés secs de l'invention. Dans le cas où les ingrédients ont été combinés à une température supérieure à la température ambiante, on laisse refroidir le mélange obtenu pour obtenir le précurseur thermo-expansible sous forme de gel ou de pâte. Il peut éventuellement être placé à basse température, par exemple dans un réfrigérateur ou une chambre froide dont la température est réglée entre 0°C et 10 °C.
Si le produit alimentaire expansé sec contient d'autres ingrédients, structurels ou non, ils peuvent être combinés avec le concentré protéique en même temps que l'eau, ou suivant toute autre séquence permettant la formation d'un mélange homogène.
Le précurseur thermo-expansible contient de préférence entre 15% et 50% en poids de protéine, de préférence entre 20 et 40%> en poids de protéines.
De préférence, la teneur résiduelle en eau, c'est-à-dire la teneur finale du produit expansé sec, est d'au moins 3% en poids et au plus 10%> en poids d'eau résiduelle.
L'action de combiner les ingrédients peut comprendre mélanger, battre, émulsionner ou toute autre action permettant d'obtenir un mélange précurseur thermo-expansible de préférence homogène. Le précurseur thermo-expansible obtenu, sous forme de pâte ou de gel, est éventuellement détaillé en morceaux, selon la forme et la taille du produit alimentaire expansé désirées.
Le produit de qualité alimentaire expansé sec de la troisième invention peut également comprendre du fromage comme autre ingrédient structurel. Le fromage contenant, entre autres, des protéines et de la matière grasse, il contribue directement à la définition structurelle du produit.
Le produit alimentaire expansé sec peut également ne comprendre comme ingrédients structurels que les ingrédients du groupe constitué d'un concentré protéique d'origine animale ou végétale de qualité alimentaire, de fromage et d'eau résiduelle. Par fromage, il faut ici envisager tout produit susceptible d'avoir l'appellation fromage, c'est-à-dire une substance alimentaire résultant de la fermentation du lait caillé sous l'action de la présure sur le lait, ou par acidification de celui-ci. En Europe, seuls les produits issus de lait animal sont susceptibles d'être appelés fromage. Les fromages sont classés en différentes catégories, selon par exemple qu'ils sont affinés ou pas, selon la nature de leur croûte, ou qu'ils soient fabriqués à partir de lait cru ou de lait pasteurisé. Le fromage utilisé ici peut être ajouté sous forme de poudre ou sous sa forme entière, c'est-à-dire non-déshydratée et non-pulvérisée. Il s'agit par exemple de morceaux, de fromage râpé, de rebuts de fromage, affiné ou non ou de fromage fondu, c'est-à-dire de fromage refondu avec des sels de fonte puis reconditionné. Le produit expansé sec de l'invention permet ainsi l'utilisation de parties de fromage habituellement non valorisées par l'industrie fromagère.
Les produits expansés secs contenant du fromage ont également l'avantage d'être particulièrement riches en protéines et en calcium. Une carence en ces deux éléments étant fréquemment observée lors du vieillissement des individus, le produit sec expansé de l'invention est donc particulièrement adapté à une population vieillissante.
Ces produits ne comprenant pas de gluten, ils peuvent également être consommés par les personnes atteintes de la maladie cœliaque ou intolérantes au gluten.
Cet aspect de l'invention concerne également un procédé de fabrication d'un produit alimentaire expansé sec constitué de ou comprenant comme ingrédients structurels un concentré protéique d'origine animale ou végétale, de qualité alimentaire, du fromage et de l'eau résiduelle, procédé de fabrication dans lequel
· on prépare un précurseur thermo-expansible constitué de ou comprenant les ingrédients suivants:
- un concentré protéique d'origine animale ou végétale, de qualité alimentaire,
- du fromage et
- de l'eau,
procédé de préparation comprenant les étapes consistant à:
- combiner, à une température permettant au fromage de fondre, le fromage et de l'eau jusqu'à former un mélange homogène; - combiner au mélange précédent, à une température comprise entre 4°C et 60°C, le concentré protéique d'origine animale ou végétale, et
on soumet le précurseur thermo-expansible à la chaleur, dans un équipement de type microondes, pour provoquer son expansion et la réduction de la teneur en eau jusqu'à une teneur résiduelle.
La température permettant au fromage de fondre peut bien entendu varier selon les fromages, mais est généralement comprise entre 50 et 100°C. Avantageusement, on combine dans un premier temps le fromage et l'eau à une température permettant au fromage de fondre, préférablement à une température comprise entre 50°C et 100°C, jusqu'à obtention d'un mélange homogène, puis on ajoute dans un deuxième temps le concentré protéique. La combinaison du concentré protéique au mélange peut se faire à la même température que pour la combinaison du fromage et de l'eau. Alternativement, la combinaison du concentré protéique au mélange peut se faire lors du refroidissement du mélange eau-fromage, par exemple dans un pétrin boulanger classique, c'est-à-dire non-thermostaté.
Il est également envisageable de combiner le fromage, l'eau et le concentré protéique en une seule étape pour former un précurseur thermo-expansible, en particulier lorsque le fromage est introduit sous forme de poudre.
Dans les procédés décrits précédemment, il est envisageable de procéder, préalablement au traitement thermique aux micro-ondes, à une étape de stérilisation du précurseur thermo-expansible, c'est-à-dire chauffage entre 100 et 145°C, de façon à réduire la présence de bactéries, virus, levures ou moisissures.
Le précurseur thermo-expansible constitué de ou comprenant comme ingrédients essentiels un concentré protéique, de l'eau et du fromage présente l'avantage de former une pâte malléable, élastique et non-collante du même type que les pâtes utilisées en biscuiterie. Il est donc possible de fabriquer ces produits expansés secs à grande échelle avec un équipement classique de biscuiterie. Il n'est plus nécessaire d'avoir des moules adaptés à la prise d'un gel, ce qui permet de réaliser des économies de production. Dans certains cas, de la matière grasse de qualité alimentaire, comme par exemple une huile peut être ajoutée.
Dans certains cas, le produit expansé sec peut ne comprendre comme ingrédient essentiel que les ingrédients du groupe constitué d'un concentré protéique d'origine animale ou végétale de qualité alimentaire, de la matière grasse de qualité alimentaire, du fromage et de l'eau.
Les produits expansés secs peuvent, en plus des ingrédients structurels, comprendre des ingrédients ou additifs auxiliaires, c'est-à-dire non essentiels, ne participant pas à la définition structurelle du produit. Ces additifs auxiliaires ont principalement une fonction aromatique, nutritionnelle et/ou esthétique.
Des additifs auxiliaires aromatiques sont par exemple des arômes, synthétiques ou naturels, du sel, des exhausteurs de gout, des épices, des herbes ou des aromates de cuisine.
Des additifs esthétiques sont par exemple des colorants ou des nappages.
Des additifs auxiliaires nutritionnels sont par exemple des fibres alimentaires, solubles ou non solubles, telles que définies plus haut, des minéraux comme du calcium ou du potassium, des vitamines, ou toute substance qui pourrait faire l'objet d'un complément alimentaire profitable à la santé humaine dans le cadre d'un traitement préventif ou curatif ou d'un régime alimentaire particulier. Le produit expansé sec peut par exemple contenir jusqu'à 50% de fibres alimentaires sans altérer le croquant et le croustillant du produit expansé sec.
De façon générale, les produits expansés secs de l'invention comprennent de 35% à 97%) en poids de protéine, quelle que soit l'origine de la protéine, c'est-à-dire qu'elle provienne du concentré protéique ou du fromage. Il est également envisageable d'ajouter des additifs texturants de type présure ou une protéine telle que la chymosine lors de la reconstitution protéique, c'est-à-dire du mélange du concentré protéique et de l'eau, afin d'induire une coagulation du mélange pour obtenir une texture de type fromage.
Un ferment lactique ou autre organisme vivant capable d'acidifier le milieu est également utilisable, comme cité plus haut, pour fabriquer par exemple des produits expansés secs de type yaourt à croquer.
On a évoqué plus haut la possibilité de soumettre le précurseur thermo-expansible à la chaleur par micro-ondes. Il est intéressant de noter que si, de surcroit, ce traitement calorifique était effectué sous vide, on peut procéder à plus basse température, ce qui permet de préserver les constituants de la composition, surtout quand il s'agit de ferments lactiques vivants (Techniques de l'Ingénieur, F3070, Chauffage micro-ondes comme éco-procédé en industrie agroalimentaire, 10 mars 2015). Dans le cas d'un traitement à pression atmosphérique, il est préférable d'encapsuler les ferments lactiques avant le traitement micro-ondes ou, sinon, de les ajouter après cuisson, par exemple par pulvérisation.
EXEMPLE 1
Dans un mélangeur-cuiseur-émulsionneur, à double enveloppe pour le chauffage et le refroidissement, connecté à une bain marie chauffant et un autre refroidissant, et de volume 5 litres commercialisé par le département Stephan de la société Sympak Process Engineering GmbH (Schwarzenbek, Allemagne) on introduit 1080 g d'eau et 600 g d'isolat protéique laitier (teneur en protéines 86% en poids par rapport à la matière sèche) commercialisé par la société Ingrédia (Arras, France) sous la référence Promilk SH20. Ce mélange est homogénéisé et émulsionné (émulsion de globules huileux en suspension dans l'eau, et suspension de caséines colloïdales dans la phase aqueuse) à la température de 80°C pendant une durée de 20 minutes. Le mélange est versé dans un moule rectangulaire de contenance 2.6 litre. Le mélange réparti dans des moules en silicone circulaires de 4 cm de diamètre, à raison de 4g par moule, puis cuit pendant 55 secondes dans un four micro-ondes d'une puissance de 1000 W. Le produit obtenu est un snack expansé (environ 200%), croquant et croustillant.
EXEMPLE 2
On reprend l'exemple 1 en remplaçant l'isolât de protéines laitières par un isolât de protéines de soja Dena 90C commercialisée par Solina (Bréal-sous-Monfort, France). La recette contient alors 1600 g d'eau pour 500 g d'isolat de protéines de soja. Après le traitement thermique, la base est déjà gélifiée dans le mélangeur-cuiseur. Le gel, après transfert, est alors découpé en disques de 25 mm de diamètre et de 4 mm de hauteur. Ces disques sont introduits par 8 dans un four micro-ondes d'une puissance de 1000 W et cuits pendant 60 secondes.
EXEMPLE 3
Dans le bol d'un Thermomix de la marque Vorwerk d'une contenance de 1,5 L sont mélangés 70 g d'huile d'olive (Carrefour, Belgique) avec 340 ml d'eau de source en chauffant à 80°C et sous agitation faible (Thermomix en position 1) pendant 5 minutes. Un mélange de type poudre, contenant 180 g de protéines Promilk SH20 (Ingrédia, Arras, France) et 90 g de poudre de camembert (Lactosan référence 160001) est ensuite ajouté sous agitation moyenne (position 3 du Thermomix). Le mélange est maintenu à 80°C pendant 12 minutes. La pâte ainsi formée est ensuite placée sur un plan de travail et abaissée jusqu'à 8 mm de hauteur avec un rouleau à pâtisserie, puis découpée en pastilles cylindriques de 18 mm de diamètre. Les pastilles sont chauffées dans un four micro-ondes à une puissance de 1800 W pendant 65 secondes. Le volume obtenu après passage au four micro-ondes est en moyenne de 280% par rapport au volume initial [(volume après cuisson) /(volume avant cuisson)* 100%)]. Le produit obtenu est croquant et croustillant et possède un gout relativement neutre.
EXEMPLE 4
Dans le bol d' un Thermomix de la marque Vorwerk d'une contenance de 1,5 L sont mélangés 35 g d'huile d'olive (Carrefour, Belgique) avec 340 ml d'eau de source en chauffant à 80°C et sous agitation faible (Thermomix en position 1) pendant 5 minutes. Un mélange de type poudre, contenant 180 g de protéines Promilk SH20 (Ingrédia, Arras, France), 90 g de poudre de camembert (Lactosan référence 160001) et 35 g de poudre de Fibruline XL (Cosucra, Belgique) est ensuite ajouté sous agitation moyenne (position 3 du Thermomix). Le mélange est maintenu à 80°C pendant 12 minutes. Le mélange qui est devenu une pâte est ensuite directement placé sur un plan de travail et abaissé jusqu'à 8 mm de hauteur avec un rouleau à pâtisserie puis découpé en pastilles cylindriques de 18 mm de diamètre. Les pastilles sont chauffées dans un four microondes à une puissance de 1800 W pendant 65 secondes. Le volume obtenu après passage au four micro-ondes est en moyenne de 225% par rapport au volume initial [(volume après cuisson) /(volume avant cuisson)* 100%)]. Le produit obtenu est croquant et croustillant et possède un gout relativement neutre.
EXEMPLE 5
Il est possible d'augmenter la proportion de Fibruline XL à 20% sur matière sèche en modifiant la formulation de l'exemple 4 comme suit : 50 g d'huile d'olive au lieu de 35 g, 377 ml d'eau au lieu de 340 ml, 82 g de Fibruline au lieu de 35g. Le produit croustillant expansé sec est obtenu avec une expansion de 196%.
EXEMPLE 6
II est possible d'augmenter la proportion de Fibruline XL à 30% sur matière sèche en modifiant la formulation de l'exemple 4comme suite : 50 g d'huile d'olive au lieu de 35 g et 136 g de Fibruline au lieu de 35g. Le mélange donne une pâte plus coulante. Des moules en silicones d'environ 40 mm de diamètre et de 18 mm de hauteur sont remplis de 10 g de pâte et placés au four à micro-ondes pendant 80 secondes. Le volume obtenu après cuisson est en moyenne de 175% par rapport au volume initial.
EXEMPLE 7
Dans le bol d'un Thermomix de la marque Vorwerk d'une contenance de 1 ,5 L sont mélangés 260 g de fromage Comté Entremont et 280 ml d'eau de source en chauffant à 80°C et sous agitation faible (Thermomix en position 1) pendant 3 minutes.
Le liquide obtenu est déversé dans un pétrin (Kenwood) et 140 g de protéines Promilk SH20 (Ingrédia, Arras, France) est ajouté sous agitation faible (position 2 du Kenwood). Le mélange est ensuite pétri pendant 12 minutes sous agitation moyenne (position 3 du Kenwood). La pâte obtenue est ensuite placé sur un plan de travail et abaissé jusqu'à 8 mm de hauteur avec un rouleau à tarte. Le produit découpé en pastilles cylindriques de 18 mm de diamètre. Les pastilles sont chauffées dans un four micro-ondes d'une puissance de 1800 W pendant 65 secondes. Le volume obtenu après passage au four micro-ondes est en moyenne de 260% par rapport au volume initial [(volume après cuisson) /(volume avant cuisson)* 100%)]. Le produit obtenu est croquant et croustillant et possède un gout fromage assez typé. EXEMPLE 8
Dans le bol d'un Thermomix de la marque Vorwerk d'une contenance de 1,5 L sont mélangés 70 g d'huile d'olive (Carrefour, Belgique) et 340 ml d'eau de source en chauffant à 80°C et sous agitation faible (Thermomix en position 1) pendant 5 minutes. Un mélange de type poudre, contenant 180 g de protéines hybrides de lait et de pois (Ingredia Lab4884) et 90 g de poudre de camembert (Lactosan référence 160001) est ajouté sous agitation moyenne (position 3 du Thermomix). Le mélange agité à 80°C pendant 12 minutes. La pâte obtenue est ensuite placée sur un plan de travail et abaissée jusqu'à 8 mm de hauteur avec un rouleau à pâtisserie puis découpé en pastilles cylindriques de 18 mm de diamètre. Les pastilles sont chauffées dans un four micro- ondes à une puissance de 1800 W pendant 65 secondes. Le volume obtenu après passage au four micro-ondes est en moyenne de 250% par rapport au volume initial [(volume après cuisson) /(volume avant cuisson)* 100%)]. Le produit obtenu est croquant et croustillant et possède un gout relativement neutre. EXEMPLE 9
Dans le bol d'un Thermomix de la marque Vorwerk d'une contenance de 1,5 L sont mélangés 70 g d'huile d'olive (Carrefour, Belgique) et 340 ml d'eau de source en chauffant à 80°C et sous agitation faible (Thermomix en position 1) pendant 5 minutes. Un mélange de type poudre, contenant 180 g de protéines de soja (référence Pro-Fam 974 de la société ADM Food & Wellness) et 90 g de poudre de camembert (référence 160001 de la société Lactosan, Danemark) est ajouté sous agitation moyenne (position 3 du Thermomix). Le mélange est maintenu à 80°C pendant 12 minutes. La pâte obtenue est ensuite placée sur un plan de travail et abaissée jusqu'à 2 mm de hauteur avec un rouleau à tarte puis découpée en carrés de 30 mm de côtés. Les carrés chauffés dans un four micro-ondes à une puissance de 1800 W pendant 65 secondes. Le volume obtenu après passage au four micro-ondes est en moyenne de 130% par rapport au volume initial [(volume après cuisson)/(volume avant cuisson)* 100%)]. Le produit obtenu est croquant et croustillant.
Tableau récapitulatif des recettes des exemples 3 à 9 ci-dessus:
Ex. 3 Ex. 4 Ex 5 Ex6 Ex. 7 Ex. 8 Ex. 9 Ex.10
Ingrédients (g)
Eau 340 340 377 340 280 340 340 41
Huile d'olive 70 35 50 50 70 70
SH20 180 180 180 180 140 89
Hybrides 180
Dena Soya 180
Camembert
(Lactosan) 90 90 90 90 90 90
Comté 260
Fromage Fondu
(Vache) 275
Fibruline 35 82 136
Alginate
Techniques
Thermomix X X X X X X X X
Pétrin X X
Séchage
Gel X
Pâte X X X X X X X
Rouleau X X X X X X X
Expansion %
Expansion 280% 225% 196% 170% 260% 250% 130% 256%
Composition du produit final expansé sec (% en masse)
Eau 5,00 5,00 5,00 5,00 5,00 5,00 5,00 5,00
Protéines 55,20 55,20 46,30 40,60 58,80 51,50
MG 32,20 22,00 22,10 19,40 29,50 25,70
Glucides 1,30 11,60 21,30 30,30 0,90 9,60
Cendres 6,30 6,20 5,30 4,70 5,80 8,20 Tableau de recettes où le précurseur thermo-expansible est obtenu sous forme de gel:
Recette 1 2 3 4 5 6 7
Recette des éléments de base (%)
Eau de source Everyday 67.8 66.3 59.1 54.82 66.13 67.2 64.29
Promilk SH20 Ingrédia 20.67 23.1 26.1 24.35 23.15 20.2 35.71
MGLA Standard Corman 9.2 10.4 6.9 8.7 8.9 5 X
Autres (%)
Poudre de camembert Lactosan X X 6.9 12.15 X X X
Maltodextrine PiocalO Meurens 1.3 X X X X 6.3 X
Poudre de lait Nestlé X 0.1 X X X X X k-carraghénane 0.16 X X X X 0.16 X
Gomme de caroube 0.07 X X X X 0.07 X
Chlorure de calcium X X X X 0.8 X X
Glucono-delta-lactone 1 X 1 X 1 1 X
Auxiliaires (%)
Présure (CHY-MAX+) OUI OUI OUI X OUI OUI X
Ferments YFL 812 Hansen X 0,15g/ X X X X X
L
Total
100 100 100 100 100 100 100
Composition du produit fini (%)
Protéines 50.6 51.9 54.1 52.9 54.7 49 81.4
Lipides 28.6 28.3 22.4 31.4 26.6 15.9 2
Glucides 6.8 7 3.1 3.4 2.7 21.5 3.9
Eau 5 5 5 5 5 5 5
Composition minérale (mg/100g)
Calcium 1431 1465 1.373 1226 2016 1385 2282
Phosphore 798 816 770 688 862 772 1282
Sodium
pH
Base 5.6 5.65 5.7 6.33 5.5 5.6 6.3
Produit fini NA NA NA NA NA NA NA
Tableau des technologies utilisées dans les recettes du tableau précédent:
1 : Tupperware Curver de 2.6 L
2 : Peut être cuit directement en sortie Stephan ou après gélification au frigo
3 : Cube
4 : Disque

Claims

REVENDICATIONS
1. Produit alimentaire expansé sec ne comprenant comme ingrédients structurels que les ingrédients du groupe constitué d'un concentré protéique d'origine animale ou végétale, de qualité alimentaire et d'eau résiduelle.
2. Produit alimentaire expansé sec comprenant au moins les ingrédients essentiels suivants:
un concentré protéique d'origine animale ou végétale, de qualité alimentaire, et de l'eau résiduelle.
3. Produit alimentaire selon la revendication 2 comprenant également du fromage.
Produit alimentaire selon la revendication 3, qui comprend au moins un fromage du groupe comprenant du fromage affiné, du fromage non affiné, du fromage fondu et du fromage en poudre.
Produit alimentaire selon l'une des revendications 1 à 4, comprenant 35% à 97% en poids de protéine.
Produit alimentaire selon l'une des revendications 1 à 5, comprenant au moins un additif auxiliaire aromatique, nutritionnel et/ou esthétique.
Produit alimentaire selon la revendication 6, comprenant comme additif auxiliaire nutritionnel des fibres alimentaires.
Produit alimentaire expansé sec selon l'une des revendications 1 à 7, dans lequel le concentré de protéine animale de qualité alimentaire est un concentré de protéine de lait.
9. Produit alimentaire selon l'une des revendications 2 à 8, ne comprenant comme ingrédients structurels que les ingrédients du groupe constitué d'un concentré protéique d'origine animale ou végétale, de qualité alimentaire, de fromage, et d'eau résiduelle.
10. Produit alimentaire selon l'une des revendications 2 à 8, comprenant également comme ingrédient structurel de la matière grasse de qualité alimentaire ajoutée.
11. Produit alimentaire selon l'une des revendications 2 à 8 et 10, ne comprenant comme ingrédients structurels que les ingrédients du groupe constitué d'un concentré protéique d'origine animale ou végétale, de qualité alimentaire, de fromage, d'une matière grasse de qualité alimentaire et d'eau résiduelle.
12. Produit alimentaire selon l'une des revendications 2 à 11, comprenant également comme ingrédient structurel un additif texturant de qualité alimentaire choisi parmi le groupe constitué des hydrocolloïdes et gélifiants végétaux, l'amidon de préférence modifié, les additifs protéolytiques et leurs produits d'hydrolyse, les polysaccharides non amidonnés, les agents acidifiants et leurs sels, et les maltodextrines.
13. Produit alimentaire selon l'une des revendications 1 à 12 comprenant également des ferments lactiques vivants ou agents acidifiants biologiques vivants.
14. Un précurseur thermo-expansible capable de former un produit alimentaire expansé sec selon la revendication 1.
15. Précurseur thermo-expansible capable de former un produit alimentaire expansé sec selon la revendication 2.
16. Précurseur thermo-expansible capable de former un produit alimentaire expansé sec selon la revendication 3.
17. Précurseur thermo-expansible selon l'une des revendications 14 à 16 comprenant des additifs auxiliaires aromatiques et/ou nutritionnels.
18. Précurseur thermo-expansible selon l'une des revendications 14 à 17, sous forme d'un gel.
19. Précurseur thermo-expansible selon l'une des revendications 14 à 17, sous forme d'une pâte.
20. Procédé de fabrication d'un produit alimentaire expansé sec comprenant un concentré protéique d'origine animale ou végétale, de qualité alimentaire, et de l'eau résiduelle, procédé de fabrication dans lequel
• on prépare un précurseur thermo-expansible constitué des ingrédients suivants: un concentré protéique d'origine animale ou végétale, de qualité alimentaire, et - de l'eau,
procédé de préparation du précurseur comprenant l'étape consistant à:
- combiner, à une température comprise entre 4°C et 100°C, le concentré protéique d'origine animale ou végétale et de l'eau, et
• on soumet le précurseur thermo-expansible à la chaleur, dans un équipement de type microondes, pour provoquer son expansion et la réduction de la teneur en eau jusqu'à une teneur résiduelle.
21. Procédé de fabrication d'un produit alimentaire expansé sec selon l'une des revendications 1 à 13 comprenant un concentré protéique d'origine animale ou végétale, de qualité alimentaire, et de l'eau résiduelle, procédé de fabrication dans lequel on soumet un concentré protéique d'origine animale ou végétale liquide, de qualité alimentaire à la chaleur, dans un équipement de type microondes, pour provoquer son expansion et la réduction de la teneur en eau jusqu'à une teneur résiduelle.
22. Procédé de fabrication d'un produit alimentaire expansé sec selon l'une des revendications 2 à 13 comprenant un concentré protéique d'origine animale ou végétale, de qualité alimentaire, du fromage et de l'eau résiduelle, procédé de fabrication dans lequel
• on prépare un précurseur thermo-expansible comprenant les ingrédients suivants: un concentré protéique d'origine animale ou végétale, de qualité alimentaire, du fromage et
- de l'eau,
procédé de préparation comprenant les étapes consistant à:
- combiner, à une température permettant au fromage de fondre, le fromage et de l'eau jusqu'à former un mélange homogène;
- combiner au mélange précédent, à une température comprise entre 4°C et 100°C, le concentré protéique d'origine animale ou végétale, et
• on soumet le précurseur thermo-expansible à la chaleur, dans un équipement de type microondes, pour provoquer son expansion et la réduction de la teneur en eau jusqu'à une teneur résiduelle.
23. Procédé de fabrication selon l'une des revendications 20 à 22 selon lequel on soumet le précurseur thermo-expansé à la chaleur et sous vide.
24. Procédé de fabrication selon l'une des revendications 20 à 23, dans lequel le four à micro -ondes est un tunnel micro -ondes.
EP17748710.5A 2016-07-27 2017-07-27 Produit alimentaire expanse sec a base de proteine et son procede de fabrication Withdrawn EP3490382A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE2016/5616A BE1024122B1 (fr) 2016-07-27 2016-07-27 Produit alimentaire expanse sec a base de proteine et son procede de fabrication
PCT/EP2017/069067 WO2018019954A1 (fr) 2016-07-27 2017-07-27 Produit alimentaire expanse sec a base de proteine et son procede de fabrication

Publications (1)

Publication Number Publication Date
EP3490382A1 true EP3490382A1 (fr) 2019-06-05

Family

ID=56567319

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17748710.5A Withdrawn EP3490382A1 (fr) 2016-07-27 2017-07-27 Produit alimentaire expanse sec a base de proteine et son procede de fabrication

Country Status (13)

Country Link
US (1) US20190159477A1 (fr)
EP (1) EP3490382A1 (fr)
JP (1) JP2019523021A (fr)
KR (1) KR20190035741A (fr)
CN (1) CN109788765A (fr)
AU (1) AU2017302099A1 (fr)
BE (1) BE1024122B1 (fr)
BR (1) BR112019001618A2 (fr)
CA (1) CA3031035A1 (fr)
IL (1) IL264340A (fr)
PH (1) PH12019500157A1 (fr)
RU (1) RU2019105149A (fr)
WO (1) WO2018019954A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1042159B1 (nl) * 2016-11-22 2018-05-28 Tun Food Innovation B V Werkwijze voor het bereiden van koolhydraat - en eiwitproducten
EP3808183A1 (fr) * 2019-10-18 2021-04-21 Savencia Sa Biscuit de lait
CN112841507B (zh) * 2021-03-15 2022-12-02 新疆大唐西域农业生态科技有限公司 一种冻干米粉及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030064145A1 (en) * 2001-10-03 2003-04-03 Fannon John E. Puffed protein based snack food
US20050089623A1 (en) * 2001-10-03 2005-04-28 Fannon John E. Puffed protein based snack food
US7691430B2 (en) * 2001-11-07 2010-04-06 Medwell Foods, Inc. Food material technology with controllable functional characteristics and industrial process applications, and the resulting fabricated foods
JP4849066B2 (ja) * 2005-03-31 2011-12-28 不二製油株式会社 蛋白質高含有菓子生地
WO2009090189A1 (fr) * 2008-01-15 2009-07-23 Abbott Gmbh & Co.Kg Composition de protéine pulvérisée et procédés de fabrication de celle-ci
US20100221396A1 (en) * 2009-03-02 2010-09-02 Alex Rogers Protein crisps and method of manufacturing same
BE1023291B1 (fr) * 2015-01-23 2017-01-24 Proteifood Sa Produit alimentaire expanse sec a base de proteine et son procede de fabrication
PL230202B1 (pl) * 2015-07-21 2018-10-31 Firma Produkcyjno Handlowa Paula Spolka Z Ograniczona Odpowiedzialnoscia Spolka Komandytowa Sposób wytwarzania chipsów serowych

Also Published As

Publication number Publication date
US20190159477A1 (en) 2019-05-30
BE1024122B1 (fr) 2017-11-16
BR112019001618A2 (pt) 2019-07-09
WO2018019954A1 (fr) 2018-02-01
JP2019523021A (ja) 2019-08-22
IL264340A (en) 2019-02-28
PH12019500157A1 (en) 2019-07-29
AU2017302099A1 (en) 2019-01-31
RU2019105149A (ru) 2020-08-27
CN109788765A (zh) 2019-05-21
CA3031035A1 (fr) 2018-02-01
KR20190035741A (ko) 2019-04-03

Similar Documents

Publication Publication Date Title
CA3126588A1 (fr) Solide tranchable
CN109699755B (zh) 一种再制干酪零食及其制备方法
JP2007267737A (ja) タンパク質系およびそれを含む食品
EP3944766A2 (fr) Produit alimentaire végétal fermenté et son procédé de préparation
US20090269455A1 (en) Protein-based food product and associated production method
BE1024122B1 (fr) Produit alimentaire expanse sec a base de proteine et son procede de fabrication
EP3247220B1 (fr) Produit alimentaire expanse sec a base de proteine et son procede de fabrication
JP2009247329A (ja) 果実含有ハードキャンディ及びその製造方法
RU2375883C2 (ru) Способ получения сухого вспененного сыра и сухой вспененный сыр
BE1023038B1 (fr) Produit alimentaire expanse sec a base de proteine et son procede de fabrication
CA3050584A1 (fr) Procede de fabrication d'un produit fromager et produit fromager allege en matieres grasses
CN103781362B (zh) 干酪及其制造方法
JP5878824B2 (ja) ペースト状豆乳製品の製造方法、および当該製造方法で製造したペースト状豆乳製品
EP0402555B1 (fr) Procédé pour la préparation d'un produit alimentaire à base de protéines du lait, de matières grasses et d'eau
JPS61108333A (ja) 固型食品
JP4735714B2 (ja) 果実含有ハードキャンディ及びその製造方法
RU72817U1 (ru) Сухой вспененный сыр
WO2024100280A1 (fr) Formulations pour succédané de fromage non laitier à haute teneur en protéines
FR3124359A1 (fr) Proteines de legumineuses texturees ayant une fermete amelioree
JP6224131B2 (ja) 乾燥チーズ加工品
FR3134685A1 (fr) Proteines de legumineuses texturees ayant une fermete amelioree
KR20230133101A (ko) 연질 및 반경질 비건 치즈 및 이의 제조방법
CH528223A (fr) Procédé de préparation d'un produit riche en protéines et imitant le fromage
EP1707054A1 (fr) Procédé de préparation d'un produit de boulangerie dietetique, produit obtenu

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200529

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

PUAJ Public notification under rule 129 epc

Free format text: ORIGINAL CODE: 0009425

32PN Public notification

Free format text: CONSTATATION DE LA PERTE D'UN DROIT CONFORMEMENT A LA REGLE 112(1) CBE (OEB FORM 2524 EN DATE DU 27.03.2023)

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230201