EP3490273A1 - Steuerung der effektstärke eines binauralen direktionalen mikrofons - Google Patents

Steuerung der effektstärke eines binauralen direktionalen mikrofons Download PDF

Info

Publication number
EP3490273A1
EP3490273A1 EP18248116.8A EP18248116A EP3490273A1 EP 3490273 A1 EP3490273 A1 EP 3490273A1 EP 18248116 A EP18248116 A EP 18248116A EP 3490273 A1 EP3490273 A1 EP 3490273A1
Authority
EP
European Patent Office
Prior art keywords
signal
hearing aid
audio signals
processing device
signal processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18248116.8A
Other languages
English (en)
French (fr)
Inventor
Homayoun KAMKAR-PARSI
Eghart Fischer
Marc Aubreville
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos Pte Ltd
Original Assignee
Sivantos Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sivantos Pte Ltd filed Critical Sivantos Pte Ltd
Publication of EP3490273A1 publication Critical patent/EP3490273A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/55Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired
    • H04R25/552Binaural
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/405Arrangements for obtaining a desired directivity characteristic by combining a plurality of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/407Circuits for combining signals of a plurality of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/43Signal processing in hearing aids to enhance the speech intelligibility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic
    • H04R2430/21Direction finding using differential microphone array [DMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic
    • H04R2430/23Direction finding using a sum-delay beam-former

Definitions

  • the invention relates to a method for operating a hearing aid system and a hearing aid system with at least two hearing aid devices, between which a signal path is provided, and with at least one signal processing unit which is provided for processing audio signals.
  • hearing impairment affects both ears
  • the hearing impaired should be provided binaurally with hearing aids.
  • Modern hearing aids have signal processing algorithms which automatically vary the parameters of the hearing aids as a function of the hearing situation. In the case of binaural care, the hearing situation is assessed on both ears.
  • Noise and noise are omnipresent in everyday life and make speech communication more difficult, especially if there is an impairment of natural hearing. Therefore, techniques are desirable that suppress noise and noise, but change the desired sounds and tones, hereinafter also referred to as useful signals, as little as possible.
  • One possible way of suppressing unwanted noise is spatial filtering. If the noise and the useful noises come from different directions on the wearer of a hearing aid, it is possible to suppress unwanted noise by a different sensitivity of the hearing aid in different directions in relation to the hearing aid and its wearer. In the case of binaural hearing aid systems, it is particularly appropriate to combine the signals of the two hearing aid devices of the hearing aid system in order to achieve a directivity.
  • the carrier has been customary for the carrier to manually switch between different modes of operation having either a directional characteristic or an omnidirectional sensitivity.
  • the object of the present invention is therefore to provide a method for operating a hearing aid system and a hearing aid system, by means of which a spatial noise suppression is better and more effective.
  • the method according to the invention relates to a method for operating a hearing aid system with at least two hearing aid devices for the purpose of the arrangement on both sides of a head of a wearer.
  • the hearing aids have a transducer for receiving an acoustic signal and conversion into a respective first audio signal.
  • the hearing aid system has a signal processing device for processing audio signals and a signal connection for transmitting a first audio signal from each hearing aid device to the signal processing device.
  • the signal processing device evaluates a signal component from a preferred direction with respect to the head in the first audio signals, and generates with the first audio signals a first binaural directional microphone signal and adjusts its directional characteristic depending on the evaluation.
  • the hearing aid system evaluates signal components from the preferred direction, it can be determined with certainty whether a signal source is actually present in the preferred direction. It is thereby avoided in an advantageous manner to activate a directional characteristic when no signal source is present in the preferred direction.
  • the hearing aid system according to the invention for carrying out the method according to the invention shares its advantages.
  • the preferred direction is mapped into a plane of symmetry of the two hearing aid devices.
  • the preferred direction is aligned in the direction of the head of the wearer by this transformation.
  • the subsequent steps can be designed in the preferred direction in the viewing direction and do not have to be adapted to a respectively changing preferred direction.
  • the signal processing device determines a minimum of the level of the first audio signals or a minimum of the level of the first preprocessed audio signals. From the minimum and a second reference signal with a reduced sensitivity in the preferred direction the signal processing device then forms a quotient to evaluate the signal component.
  • the determination of the minimum of the levels and the quotient allows in a simple manner to determine a measure of noise from one direction unequal to the preferred direction and thus to adjust the directivity of the auditory situation in the sequence.
  • the signal processing device determines a quotient of a first reference signal with directional characteristic in the preferred direction and a second reference signal with a reduced sensitivity in the preferred direction for evaluating the signal component from a preferred direction.
  • the first reference signal is a weighted sum of the first audio signals of both hearing aid devices.
  • the formation of a weighted sum of the first audio signals of the two hearing aids makes it possible with little computational effort to provide a signal that, for example, has a directional characteristic with a maximum of sensitivity in the direction of viewing of the wearer of the hearing aid.
  • a weighting of the first audio signals takes place adaptively such that an energy of the weighted sum is minimized.
  • the adaptive adjustment of the coefficients already reduces the amount of noise by selecting a combination with the lowest energy of the noise.
  • the second reference signal is a weighted difference of the first audio signals of both hearing aid devices.
  • the formation of a weighted difference of the first audio signals of the two hearing aids makes it possible with little computational effort to provide a signal that, for example, has a directional characteristic with a minimum of sensitivity in the direction of viewing of the wearer of the hearing aid.
  • the second reference signal is a signal of a binaural eight which has a minimum in the direction of the preferred direction.
  • a binaural eight is a signal that is generated from the difference in the signals of two spaced omnidirectional or monaural directional microphones.
  • the binaural eight signal is particularly easy to generate and advantageously exhibits a pronounced minimum of sensitivity in a plane centered between the hearing aids and parallel to the line of sight. This is particularly advantageous if the preferred direction lies in this plane.
  • the signal processing device increases the directional characteristic of the binaural directional microphone with a rising value of the quotient.
  • An increasing value of the quotient indicates that there is a signal in the preferred direction which is lifted out of the ambient noise.
  • An increase in the directional characteristic then advantageously emphasizes this signal with respect to the ambient noise, which are simultaneously damped by the stronger directional characteristic.
  • the signal processing device determines a cross-correlation of the first audio signals of both hearing aid devices in order to evaluate the signal component.
  • the cross-correlation it can be determined to what extent the two signals are similar to each other and therefore originate from a common source. If the cross-correlation is particularly high, the two signals are almost identical and can therefore be assigned to a source with the same distance from both microphones, which advantageously lie in a preferred direction in the direction of the carrier in this preferred direction.
  • the signal processing device increases the directional characteristic of the binaural directional microphone with increasing cross-correlation.
  • An increasing value of the cross-correlation indicates that there is a signal source in the preferred direction.
  • An increase in the directional characteristic then advantageously emphasizes this signal source with respect to the ambient noise, which are simultaneously damped by the stronger directional characteristic.
  • the evaluation of the signal components from the preferred direction in the first audio signals for at least two different frequency ranges are made individually and the directional characteristic of the first binaural directional microphone signal for each frequency range is set individually depending on the rating.
  • a different evaluation and directional characteristic for different frequency ranges advantageously makes it possible to take account of different propagation conditions for different frequencies or to treat different signal sources differently in different frequency ranges.
  • Fig. 1 shows the basic structure of a hearing aid system 100 according to the invention.
  • the hearing aid system 100 has two hearing aids 110, 110 '.
  • a hearing aid housing 1, 1 'for carrying behind the ear are one or more microphones 2, 2' installed for recording the sound or acoustic signals from the environment.
  • the first acoustic signals are, for example, analog or digital electrical signals.
  • a signal processing unit 3, 3 ' which is also integrated in the hearing aid housing 1, 1', processes the first audio signals.
  • the output signal of the signal processing unit 3, 3 ' is transmitted to a loudspeaker or receiver 4, 4', which outputs an acoustic signal.
  • the sound is optionally transmitted via a sound tube, which is fixed with an earmold in the ear canal, to the eardrum of the device carrier.
  • the power supply of the hearing device and in particular of the signal processing unit 3, 3 ' takes place by means of a likewise integrated into the hearing aid housing 1, 1' battery 5, 5 '.
  • the hearing aid system 100 has a signal connection 6, which is designed to transmit a first acoustic signal from the signal processing device 3 to the signal processing device 3 '. It is provided in the preferred embodiment that also signal processing device 3 'transmits a first acoustic signal to the signal processing device 3 in the opposite direction. Furthermore, it is conceivable for the signals of several or all of the microphones 2, 2 'to be transmitted to the other hearing aid device 110, 110' in each case.
  • a signal connection 6 are wired, optical or wireless connections such. Bluetooth conceivable.
  • the method according to the invention can also be used in other hearing aid devices such as, for example, an IDO (in-the-ear) hearing aid.
  • Fig. 2 shows a schematic arrangement of a hearing aid system according to the invention, its carrier and the signal sources in a plan view from above.
  • the carrier 201 of the hearing aids 110, 110 ' is arranged in the center of a polar coordinate system 200.
  • the carrier 201 carries the hearing aid devices 110, 110 'according to the application, for example in the case of HDO hearing aid devices behind the respective ear or in the case of IDO hearing aid devices in the respective auditory canal.
  • the viewing direction of the carrier 201 is forward, which corresponds to 0 degrees in the polar diagram. In the following example, the preferred direction is assumed to be parallel to the viewing direction. However, it is also conceivable that the preferred direction is arranged at an angle to the viewing direction.
  • the preferred direction is determined in advance by an adaptive method and the first audio signals are preprocessed in such a way that the preferred direction is mapped or transformed to the direction 0 degrees.
  • a preprocessing could be done for example by adjusting the amplitude and phase of the first audio signals.
  • Subsequent processing steps may then process the preprocessed first audio signals as if their origin were in the 0 degree direction. In this case, for example, symmetry properties or head shadows of audio signals with this origin can be used.
  • a speaker 202 In the preferred direction is a speaker 202, which is assumed in the following as the source of a useful signal in the preferred direction.
  • the carrier 201 At other angles to the carrier 201 further persons 203, 204, 205 and 206 are arranged.
  • a binaural Eight 210 210 is shown, which indicates a directional characteristic of a difference signal of the first audio signals of the two transducers of the two hearing aids of the binaural hearing aid system.
  • a directional directional characteristic 220 is indicated which results, for example, from a weighted summation of the first audio signals of the two transducers of the two hearing aids of the binaural hearing aid system.
  • the directional characteristic 220 has a maximum of sensitivity in the preferred direction 0 degrees.
  • Fig. 3 shows a schematic flow diagram of a method according to the invention in the signal processing device 3, 3 '.
  • the signal processing device 3 forms a sum signal of the first audio signals of the transducers 2, 2 '.
  • the sum signal shows a maximum of the sensitivity in the preferred direction, in which speaker 202 is also arranged.
  • the directional characteristic can, for example, the directional characteristic 220 in Fig. 2 same.
  • the first audio signals are added immediately. But it is also conceivable that the first audio signals are first corrected in their amplitude and phase, for example, to select a different preferred direction or to compensate for tolerances between the transducers 2, 2 '. It is possible that the correction takes place in the sense of an adaptive filter. This could be, for example, a Wiener filter.
  • the coefficients can be chosen so that the energy content of the sum signal is minimal, so that not originating from the preferred direction acoustic signals are already attenuated. This would also make it possible to use head shadow effects specifically to achieve a signal with the greatest possible proportion of the preferred direction.
  • each hearing aid can have a monaural directional microphone that is combined from two omnidirectional microphones.
  • step S20 the signal processing device 3, 3 'forms a difference signal of the first audio signals of the transducers 2, 2'.
  • a possible directional characteristic 210 of the difference signal is in the form of a binaural eight in Fig. 2 shown.
  • the difference signal indicates a minimum of the sensitivity in the preferred direction of the speaker 202
  • Directional characteristic 210 in directions other than the preferred direction of increased sensitivity, so that acoustic signals of the speakers 203, 204 205 or 206 relative to acoustic signals of the speaker 202 lead to stronger first acoustic signals.
  • the difference signal can also be formed from a plurality of first audio signals in order to realize directional characteristics of a higher order.
  • step S30 the signal processing device 3, 3 'forms a quotient of the sum signal and the difference signal.
  • the transducers 2, 2 ' provide first level 1 audio signals to the speaker 202 and the factors in the summation and the difference are equal to 1, respectively. the signals are normalized.
  • the discussed values should be scaled accordingly, which, however, does not alter the inventive idea and these embodiments are covered by the protection of the invention.
  • the quotient assumes a value significantly greater than 1, because because of the minimum of the directional characteristic 210 in the preferred direction, the difference signal is small and even approaches zero in the theoretical extreme case. At the same time, the sum signal is maximal, for normalized sensitivity this would be a value 2. The quotient increases correspondingly to large positive values.
  • the signal value of the difference signal goes to a value equal to that of the sum signal, since the two directional characteristics 201, 220 intersect in the direction of the speaker 203.
  • the quotient itself goes against the value 1.
  • the signal value of the difference signal goes to a maximum while the sum signal goes to a value less than 1 and greater than 0 in the direction of 0.
  • the quotient itself also goes to a value less than 1 and greater than 0 in the direction 0. Comparable applies to speaker 206. Typical values for the quotient are then between 0.5 and 0.25.
  • the signal processing device 3, 3 ' increases the directivity of the binaural directional microphone signal when the quotient increases or exceeds a predetermined value.
  • This value may be, for example, 0, 5 or 1 relative to a normalized audio signal.
  • the binaural directional microphone signal has a greater signal level, while for example for signal sources such as speakers 203, 204, 205 or 206 in other directions at an angle to the preferred direction, the signal has lower signal level.
  • An increase in the directional characteristic can be done in one embodiment by the binaural directional microphone signal is obtained by a weighted superimposition of the sum signal and an omnidirectional microphone signal, to increase the directional characteristic of the sum signal over the omnidirectional signal is weighted more.
  • the binaural directional microphone signal is obtained by a weighted superimposition of the sum signal and an omnidirectional microphone signal, to increase the directional characteristic of the sum signal over the omnidirectional signal is weighted more.
  • other combinations of binaural directional microphones of higher order with an omnidirectional microphone signal are conceivable.
  • the signal processing device 3, 3 ' lowers the directional characteristic of the binaural directional microphone signal in step S40 when the quotient decreases.
  • this is the case for speaker 204, for example.
  • the sensitivity of the binaural directional microphone for directions increases at an angle to the preferential direction while decreasing in the preferential direction.
  • the binaural directional microphone no longer has a directional characteristic, so it has an omnidirectional directional characteristic.
  • the signal level of the binaural directional microphone is equal to that for signal sources such as speakers 203, 204, 205 or 206 in other directions at an angle to the preferred direction.
  • the minimum of the first audio signals or the first preprocessed audio signals is determined instead of the sum in step S10.
  • step S30 the quotient of the determined minimum and the difference of the first audio signals or of the first preprocessed audio signals is then formed correspondingly. Otherwise, the alternative method corresponds to the method already described.
  • the signal processing device 3, 3 ' determines a value for the cross-correlation of the first audio signals instead of the quotient in step S10'. If the origin of an audio signal is in the plane of symmetry between the two hearing aid devices 110, 110 ', the first audio signals are ideally identical and have a high value for the cross-correlation. For values outside, the cross-correlation decreases accordingly. The same applies if the first audio signals originate from a large number of independent spatially distributed sources.
  • the signal processing device 3, 3' corresponding to S40 increases the directional characteristic of the binaural directional microphone signal as the value of the cross-correlation increases or exceeds a value greater than zero and lowers the directional characteristic of the binaural directional microphone signal when the value for the cross-correlation decreases.
  • the preferred direction is not in the plane of symmetry between the hearing aid devices.
  • the preferred direction in a different direction outside the plane of symmetry of the two hearing aids 110, 110' are directed.
  • the minimum of the first preprocessed audio signal and the second preprocessed audio signal is included in the quotient as a counter.
  • the pre-processing of the first audio signals can be permanent or adaptive using a method that determines a spatial direction of a sound source and determines appropriate amplitude and phase corrections to map the spatial direction in the plane of symmetry between the hearing aids in the viewing direction of the wearer. Accordingly, in carrying out a method according to the invention, the speaker 202 in FIG Fig. 2 also be arranged in a direction other than the indicated preferred direction 0 degrees with respect to the carrier 201.
  • Fig. 4 schematically shows the function blocks for generating a quotient according to the inventive method.
  • the first acoustic signals of the transducers are summed in adder 301 and subtracted into adder 302 after the inverter 303 has inverted the first acoustic signal of the transducer 2.
  • the sum and difference signals are first converted into rectifiers 305, 306 in amounts and rectified and averaged in the low passes 307, 308 before the quotient is formed in the divider 309.
  • Fig. 4 can be inventively represented by analog modules, digital discrete or integrated units such as ASICS or FPGA or as software in a digital signal processor processor or a general processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Stereophonic System (AREA)
  • Stereophonic Arrangements (AREA)

Abstract

Die Erfindung betrifft ein Hörhilfesystem mit mindestens zwei Hörhilfegeräten zur Anordnung an beiden Seiten eines Kopfes eines Trägers sowie ein Verfahren zum Betrieb desselben. Die Hörhilfegeräte weisen einen Wandler zur Aufnahme eines akustischen Signals und Wandlung in ein jeweils erstes Audiosignal auf. Das Hörhilfesystem weist weiterhin eine Signalverarbeitungsvorrichtung zur Verarbeitung von Audiosignalen und eine Signalverbindung zur Übertragung eines ersten Audiosignals von jedem Hörhilfegerät zu der Signalverarbeitungseinrichtung auf. Die Signalverarbeitungsvorrichtung bewertet einen Signalanteil aus einer Vorzugsrichtung in Bezug auf den Kopf des Trägers in den ersten Audiosignalen, wobei die Signalverarbeitungsvorrichtung mit den ersten Audiosignalen ein erstes binaurales direktionales Mikrofonsignal erzeugt, und stellt dessen Richtcharakteristik in Abhängigkeit von der Bewertung ein.

Description

  • Die Erfindung betrifft ein Verfahren zum Betrieb eines Hörhilfesystems sowie ein Hörhilfesystem mit wenigstens zwei Hörhilfegeräten, zwischen denen ein Signalpfad vorgesehen ist, und mit wenigstens einer Signalverarbeitungseinheit, die zur Verarbeitung von Audiosignalen vorgesehen ist.
  • In vielen Fällen betrifft eine Schwerhörigkeit beide Ohren, der Hörgeschädigte sollte beidohrig (binaural) mit Hörgeräten versorgt werden. Moderne Hörgeräte verfügen dabei über Signalverarbeitungsalgorithmen, die abhängig von der Hörsituation die Parameter der Hörgeräte automatisch variieren. Bei der binauralen Versorgung wird dabei die Hörsituation an beiden Ohren bewertet.
  • Lärm und Störgeräusche sind im täglichen Leben allgegenwärtig und erschweren die Sprachkommunikation, insbesondere wenn eine Beeinträchtigung des natürlichen Hörvermögens vorliegt. Daher sind Techniken wünschenswert, die zwar Lärm und Störgeräusche unterdrücken, aber die erwünschten Geräusche und Töne, im Folgenden auch als Nutzsignale bezeichnet, möglichst wenig verändern. Eine mögliche Art der Unterdrückung von unerwünschten Störgeräuschen ist die räumliche Filterung. Wenn die Störgeräusche und die Nutzgeräusche aus unterschiedlichen Richtungen auf den Träger eines Hörhilfesystems einfallen, ist es möglich, durch eine unterschiedliche Empfindlichkeit des Hörhilfesystems in verschiedene Richtung in Relation zu dem Hörhilfesystem und dessen Träger unerwünschte Geräusche zu unterdrücken. Bei binauralen Hörhilfesystemen bietet es sich insbesondere an, die Signale der beiden Hörhilfegeräte des Hörhilfesystems zu kombinieren, um eine Richtwirkung zu erzielen.
  • Ist jedoch keine Quelle eines Nutzsignals in einer bestimmten Vorzugsrichtung lokalisiert, sondern sind diese, wie beispielsweise in einer Gesprächsrunde, um den Träger verteilt, so kann die Richtwirkung auch unerwünschter Weise Nutzsignale unterdrücken.
  • In der Vergangenheit war es deshalb beispielsweise üblich, dass der Träger manuell zwischen verschiedenen Betriebsmodi umschaltet, die entweder eine Richtcharakteristik aufweisen oder eine omnidirektionale Empfindlichkeit.
  • Auch ist es bekannt, die Stärke der Richtcharakteristik anhand eines abgeschätzten Störgeräuschpegels zu steuern, was zu einem höheren Rechenaufwand führt und nicht unmittelbar mit dem Auftreten eines Nutzsignals in der Vorzugsrichtung korreliert. Ungünstige Einstellungen können daher in bestimmten Situationen auftreten.
  • Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren zum Betrieb eines Hörgerätesystems sowie ein Hörgerätesystem zu schaffen, durch welche eine räumliche Störgeräuschunterdrückung besser und effektiver erfolgt.
  • Diese Aufgabe wird gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 1. Der das Hörhilfesystem betreffende Teil der Aufgabe wird gelöst durch die Merkmale des Anspruchs 11.
  • Das erfindungsgemäße Verfahren betrifft ein Verfahren zum Betrieb eines Hörhilfesystems mit mindestens zwei Hörhilfegeräten zur anwendungsgemäßen Anordnung an beiden Seiten eines Kopfes eines Trägers. Die Hörhilfegeräte weisen einen Wandler zur Aufnahme eines akustischen Signals und Wandlung in ein jeweils erstes Audiosignal auf. Weiterhin weist das Hörhilfesystem eine Signalverarbeitungsvorrichtung zur Verarbeitung von Audiosignalen sowie eine Signalverbindung zur Übertragung eines ersten Audiosignals von jedem Hörhilfegerät zu der Signalverarbeitungseinrichtung auf. Die Signalverarbeitungsvorrichtung bewertet einen Signalanteil aus einer Vorzugsrichtung in Bezug auf den Kopf in den ersten Audiosignalen und erzeugt mit den ersten Audiosignalen ein erstes binaurales direktionales Mikrofonsignal und stellt dessen Richtcharakteristik in Abhängigkeit von der Bewertung ein.
  • Indem das Hörhilfesystem Signalanteile aus der Vorzugsrichtung bewertet, kann sicher festgestellt werden, ob in der Vorzugsrichtung auch wirklich eine Signalquelle vorhanden ist. Es wird dadurch auf vorteilhafte Weise vermieden, eine Richtcharakteristik zu aktivieren, wenn keine Signalquelle in der Vorzugsrichtung vorhanden ist.
  • Das erfindungsgemäße Hörhilfesystem zur Ausführung des erfindungsgemäßen Verfahrens teilt dessen Vorzüge.
  • Vorteilhafte Weiterbildungen des Verfahrens und des Hörgerätesystems sind in den Unteransprüchen angegeben.
  • So wird in einer Ausführungsform durch eine Vorverarbeitung der ersten Audiosignale die Vorzugsrichtung in eine Symmetrieebene der beiden Hörhilfegeräte abgebildet. Für die nachfolgenden Schritte ist durch diese Transformation die Vorzugsrichtung in Blickrichtung des Kopfes des Trägers ausgerichtet.
  • Auf vorteilhafte Weise können deshalb die nachfolgenden Schritte auf die Vorzugsrichtung in Blickrichtung ausgelegt werden und müssen nicht einer jeweils sich ändernden Vorzugsrichtung angepasst werden. Insbesondere ist es so auch möglich, Symmetrieeigenschaften dieser Vorzugsrichtung zu nutzen.
  • In einer möglichen Ausführungsform ermittelt die Signalverarbeitungseinrichtung ein Minimum des Pegels der ersten Audiosignale oder ein Minimum des Pegels der ersten vorverarbeiteten Audiosignale. Aus dem Minimum und einem zweiten Bezugssignal mit einer reduzierten Empfindlichkeit in der Vorzugsrichtung bildet die Signalverarbeitungseinrichtung zur Bewertung des Signalanteils dann einen Quotienten.
  • Die Bestimmung des Minimums der Pegel und des Quotienten erlaubt auf eine einfache Weise, ein Maß für Geräusche aus einer Richtung ungleich der Vorzugsrichtung zu ermitteln und so in der Folge die Richtwirkung der Hörsituation anzupassen.
  • In einer weiteren Ausführungsform der Erfindung ermittelt die Signalverarbeitungseinrichtung zur Bewertung des Signalanteils aus einer Vorzugsrichtung einen Quotienten aus einem ersten Bezugssignal mit Richtcharakteristik in die Vorzugsrichtung und einem zweiten Bezugssignal mit einer reduzierten Empfindlichkeit in der Vorzugsrichtung.
  • Die Bildung eines Quotienten aus einem ersten Bezugssignal mit Richtcharakteristik in Vorzugsrichtung und einem zweiten Bezugssignal mit einer reduzierten Empfindlichkeit in der Vorzugsrichtung ermöglicht es in vorteilhafter Weise auch den Fall zu berücksichtigen, dass ein hoher Geräuschpegel aus allen Richtungen, auch aus der Vorzugsrichtung, einfällt. Da sowohl der Nenner als auch der Zähler gleichermaßen zunimmt, kann anhand des Quotienten die Situation erkannt werden und eine Erhöhung der Richtcharakteristik vermieden werden, die die Verständlichkeit nicht verbessern würde.
  • In einer Ausführungsform des erfindungsgemäßen Verfahrens ist das erste Bezugssignal eine gewichtete Summe der ersten Audiosignale beider Hörhilfegeräte.
  • Die Bildung einer gewichteten Summe der ersten Audiosignale der beiden Hörhilfegeräte ermöglicht mit geringem rechnerischem Aufwand die Bereitstellung eines Signals, dass beispielsweise eine Richtcharakteristik mit einem Maximum an Empfindlichkeit in Blickrichtung des Trägers der Hörhilfegeräte aufweist.
  • In einer möglichen Ausführungsform des erfindungsgemäßen Verfahrens erfolgt eine Gewichtung der ersten Audiosignale adaptiv derart, dass eine Energie der gewichteten Summe minimiert wird.
  • Durch die adaptive Anpassung der Koeffizienten wird bereits der Anteil der Störgeräusche verringert, indem eine Kombination mit der geringsten Energie der Störgeräusche ausgewählt wird.
  • In einer Ausführungsform des erfindungsgemäßen Verfahrens ist das zweite Bezugssignal eine gewichtete Differenz der ersten Audiosignale beider Hörhilfegeräte.
  • Die Bildung einer gewichteten Differenz der ersten Audiosignale der beiden Hörhilfegeräte ermöglicht mit geringem rechnerischem Aufwand die Bereitstellung eines Signals, dass beispielsweise eine Richtcharakteristik mit einem Minimum an Empfindlichkeit in Blickrichtung des Trägers der Hörhilfegeräte aufweist.
  • In einer möglichen Ausführungsform des erfindungsgemäßen Verfahrens ist das zweite Bezugssignal ein Signal einer binauralen Acht, die ein Minimum in Richtung der Vorzugsrichtung aufweist. Eine binaurale Acht ist ein Signal, das aus der Differenz der Signale zweier beabstandeter omnidirektionaler oder monauraler Richtmikrofone erzeugt wird.
  • Das Signal einer binauralen Acht ist besonders leicht zu erzeugen und zeigt auf vorteilhafte Weise ein ausgeprägtes Minimum der Empfindlichkeit in einer Ebene, die mittig zwischen den Hörhilfegeräten und parallel zur Blickrichtung ausgerichtet ist. Dies ist besonders von Vorteil, wenn die Vorzugsrichtung in dieser Ebene liegt.
  • In einer bevorzugten Ausführungsform des Verfahrens erhöht die Signalverarbeitungsvorrichtung die Richtcharakteristik des binauralen direktionalen Mikrofons mit einem steigenden Wert des Quotienten.
  • Ein steigender Wert des Quotienten zeigt an, dass in der Vorzugsrichtung ein Signal vorliegt, das gegenüber den Umgebungsgeräuschen herausgehoben ist. Eine Erhöhung der Richtcharakteristik betont dann auf vorteilhafte Weise dieses Signal gegenüber den Umgebungsgeräuschen, die gleichzeitig durch die stärkere Richtcharakteristik gedämpft werden.
  • In einer anderen Ausführungsform des erfindungsgemäßen Verfahrens bestimmt die Signalverarbeitungseinrichtung zur Bewertung des Signalanteils eine Kreuzkorrelation der ersten Audiosignale beider Hörhilfegeräte.
  • Mittels der Kreuzkorrelation kann ermittelt werden, in welchem Grade die beiden Signale ähnlich zueinander sind und daher aus einer gemeinsamen Quelle stammen. Ist die Kreuzkorrelation besonders hoch, so sind die beiden Signale fast identisch und können daher einer Quelle mit gleichem Abstand von beiden Mikrofonen zugordnet werden, welche bei einer Vorzugsrichtung in Blickrichtung des Trägers vorteilhafterweise in dieser Vorzugsrichtung liegen.
  • In einer möglichen Ausführungsform erhöht die Signalverarbeitungsvorrichtung die Richtcharakteristik des binauralen direktionalen Mikrofons mit zunehmender Kreuzkorrelation.
  • Ein steigender Wert der Kreuzkorrelation zeigt an, dass in der Vorzugsrichtung eine Signalquelle vorliegt. Eine Erhöhung der Richtcharakteristik betont dann auf vorteilhafte Weise diese Signalquelle gegenüber den Umgebungsgeräuschen, die gleichzeitig durch die stärkere Richtcharakteristik gedämpft werden.
  • In einer Ausführungsform des erfindungsgemäßen Verfahrens ist es auch denkbar, dass die Bewertung der Signalanteile aus der Vorzugsrichtung in den ersten Audiosignalen für mindestens zwei verschiedene Frequenzbereiche einzeln erfolgt und die Richtcharakteristik des ersten binauralen direktionalen Mikrofonsignals für jeden Frequenzbereich einzeln in Abhängigkeit von der Bewertung eingestellt wird.
  • Eine unterschiedliche Bewertung und Richtcharakteristik für unterschiedliche Frequenzbereiche ermöglicht es vorteilhafter Weise, unterschiedliche Ausbreitungsbedingungen für verschiedene Frequenzen zu berücksichtigen oder auch unterschiedliche Signalquellen in verschiedenen Frequenzbereichen unterschiedlich zu behandeln.
  • Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang mit der folgenden Beschreibung der Ausführungsbeispiele, die im Zusammenhang mit den Zeichnungen näher erläutert werden.
  • Es zeigen:
  • Fig. 1
    eine schematische Darstellung eines erfindungsgemäßen Hörhilfesystems;
    Fig. 2
    eine Anordnung von Hörhilfesystem und Signalquellen;
    Fig. 3
    ein Ablaufdiagramm eines erfindungsgemäßen Verfahrens und
    Fig. 4
    eine schematische Darstellung von Funktionsblöcken einer Quotientenbildung in einer Ausführungsform des binauralen Hörhilfesystems.
  • Fig. 1 zeigt den prinzipiellen Aufbau eines erfindungsgemäßen Hörhilfesystems 100. Das Hörhilfesystem 100 weist zwei Hörhilfegeräte 110, 110'auf. In ein Hörgerätegehäuse 1, 1' zum Tragen hinter dem Ohr sind ein oder mehrere Mikrofone 2, 2' zur Aufnahme des Schalls bzw. akustischer Signale aus der Umgebung eingebaut. Die Mikrofone 2, 2' sind Wandler 2, 2' zur Umwandlung des Schalls in erste Audiosignale. Die ersten akustischen Signale sind beispielsweise analoge oder digitale elektrische Signale. Eine Signalverarbeitungseinheit 3, 3', die ebenfalls in das Hörgerätegehäuse 1, 1' integriert ist, verarbeitet die ersten Audiosignale. Das Ausgangssignal der Signalverarbeitungseinheit 3, 3' wird an einen Lautsprecher bzw. Hörer 4, 4' übertragen, der ein akustisches Signal ausgibt. Der Schall wird gegebenenfalls über einen Schallschlauch, der mit einer Otoplastik im Gehörgang fixiert ist, zum Trommelfell des Geräteträgers übertragen. Die Energieversorgung des Hörgeräts und insbesondere die der Signalverarbeitungseinheit 3, 3' erfolgt durch eine ebenfalls ins Hörgerätegehäuse 1, 1' integrierte Batterie 5, 5'.
  • Weiterhin weist das Hörhilfesystem 100 eine Signalverbindung 6 auf, die ausgelegt ist, ein erstes akustisches Signal von der Signalverarbeitungseinrichtung 3 zu der Signalverarbeitungseinrichtung 3' zu übertragen. Dabei ist es in der bevorzugten Ausführungsform vorgesehen, dass auch Signalverarbeitungseinrichtung 3' ein erstes akustisches Signal zu der Signalverarbeitungseinrichtung 3 in Gegenrichtung überträgt. Weiterhin ist es denkbar, dass die Signale mehrerer oder aller Mikrofone 2, 2' jeweils zu dem anderen Hörhilfegerät 110, 110' zu übertragen.
  • Als Signalverbindung 6 sind drahtgebundene, optische oder auch drahtlose Verbindungen wie z.B. Bluetooth denkbar.
  • Neben den dargestellten HDO- (Hinter-dem-Ohr-) Hörhilfegeräten ist das erfindungsgemäße Verfahren auch in anderen Hörhilfegeräten wie zum Beispiel einem IDO- (In-dem-Ohr-) Hörhilfegerät anwendbar.
  • Fig. 2 zeigt eine schematische Anordnung von einem erfindungsgemäßen Hörhilfesystem, seinem Träger und den Signalquellen in einer Aufsicht von oben an.
  • Der Träger 201 der Hörhilfegeräte 110, 110' ist in der Mitte eines Polarkoordinatensystems 200 angeordnet. Der Träger 201 trägt die Hörhilfegeräte 110, 110'anwendungsgemäß, beispielsweise bei HDO-Hörhilfegeräte hinter dem jeweiligen Ohr oder bei IDO-Hörhilfegeräte in dem jeweiligen Gehörgang. Die Blickrichtung des Trägers 201 ist nach vorne, was im Polardiagramm in Richtung 0 Grad entspricht. In dem folgenden Beispiel ist die Vorzugsrichtung parallel zur Blickrichtung angenommen. Es ist aber auch denkbar, dass die Vorzugsrichtung in einem Winkel zur Blickrichtung angeordnet ist. Es wäre auch denkbar, dass die Vorzugsrichtung durch ein adaptives Verfahren jeweils vorab ermittelt wird und die ersten Audiosignale derart vorverarbeitet werden, dass die Vorzugsrichtung auf die Richtung 0 Grad abgebildet bzw. transformiert wird. Eine Vorverarbeitung könnte beispielsweise durch eine Anpassung der Amplitude und Phase der ersten Audiosignale erfolgen. Nachfolgende Verarbeitungsschritte können dann die vorverarbeiteten ersten Audiosignale so verarbeiten, als wäre deren Ursprung in der 0 Grad Richtung gelegen. Dabei können beispielsweise Symmetrieeigenschaften oder Kopfabschattungen von Audiosignalen mit diesem Ursprung genutzt werden.
  • In der Vorzugsrichtung befindet sich ein Sprecher 202, der im Folgenden als die Quelle eines Nutzsignals in Vorzugsrichtung angenommen wird. In anderen Winkeln zu dem Träger 201 sind weitere Personen 203, 204, 205 und 206 angeordnet. Es ist weiterhin eine binaurale Acht 210 eingezeichnet, die eine Richtcharakteristik eines Differenzsignals der ersten Audiosignale der beiden Wandler der beiden Hörhilfegeräte des binauralen Hörhilfesystems angibt. Weiterhin ist eine direktionale Richtcharakteristik 220 angegeben, die sich beispielsweise durch eine gewichtete Summenbildung der ersten Audiosignale der beiden Wandler der beiden Hörhilfegeräte des binauralen Hörhilfesystems ergibt. Die Richtcharakteristik 220 weist ein Maximum der Empfindlichkeit in der Vorzugsrichtung 0 Grad auf.
  • Fig. 3 zeigt ein schematisches Ablaufdiagramm eines erfindungsgemäßen Verfahrens in der Signalverarbeitungseinrichtung 3, 3'.
  • In Schritt S10 bildet die Signalverarbeitungseinrichtung 3 ein Summensignal der ersten Audiosignale der Wandler 2, 2'. Das Summensignal zeigt ein Maximum der Empfindlichkeit in der Vorzugsrichtung, in der auch Sprecher 202 angeordnet ist. Die Richtcharakteristik kann beispielsweise der Richtcharakteristik 220 in Fig. 2 gleichen. In der einfachsten Form werden die ersten Audiosignale unmittelbar addiert. Es ist aber auch denkbar, dass die ersten Audiosignale zunächst in ihrer Amplitude und Phase korrigiert werden, um beispielsweise eine andere Vorzugsrichtung zu wählen oder Toleranzen zwischen den Wandlern 2, 2'auszugleichen. Es ist dabei möglich, dass die Korrektur im Sinne eines adaptiven Filters erfolgt. Dies könnte beispielsweise ein Wiener Filter sein. Die Koeffizienten können so gewählt werden, dass der Energiegehalt des Summensignals minimal ist, sodass nicht aus der Vorzugsrichtung stammende akustische Signale bereits gedämpft werden. Hiermit wäre es auch möglich, Kopfschatteneffekte gezielt zu nutzen um ein Signal mit größtmöglichem Anteil aus der Vorzugsrichtung zu erreichen.
  • Weiterhin ist es auch denkbar, dass nicht nur zwei, sondern die Signale mehrerer Mikrofone kombiniert werden. So kann beispielsweise jedes Hörhilfegerät ein monaurales direktionales Mikrofon aufweisen, dass aus je zwei omnidirektionalen Mikrofonen kombiniert ist. Die Signalverarbeitungseinrichtung 3, 3'kann dann diese ersten Audiosignale zu Audiosignalen mit Richtwirkung höherer Ordnung kombinieren.
  • In Schritt S20 bildet die Signalverarbeitungseinrichtung 3, 3' ein Differenzsignal der ersten Audiosignale der Wandler 2, 2'. Eine mögliche Richtcharakteristik 210 des Differenzsignals ist in Form einer binauralen Acht in Fig. 2 dargestellt. Das Differenzsignal zeigt ein Minimum der Empfindlichkeit in der Vorzugsrichtung des Sprechers 202. Andererseits weist die Richtcharakteristik 210 in Richtungen ungleich der Vorzugsrichtung eine erhöhte Empfindlichkeit auf, sodass akustische Signale der Sprecher 203, 204 205 oder 206 relativ zu akustischen Signalen des Sprechers 202 zu stärkeren ersten akustischen Signalen führen. Wie bereits zu S10 angegeben, kann das Differenzsignal auch aus einer Mehrzahl von ersten Audiosignalen gebildet werden, um Richtcharakteristiken höherer Ordnung zu realisieren.
  • In Schritt S30 bildet die Signalverarbeitungseinrichtung 3, 3' einen Quotienten aus dem Summensignal und dem Differenzsignal. In der folgenden Diskussion wird der Einfachheit halber davon ausgegangen, dass die Wandler 2, 2' erste Audiosignale mit Pegelwert 1 für den Sprecher 202 liefern und die Faktoren bei der Summation und der Differenzbildung jeweils gleich 1 sind, d.h. die Signale normiert sind. Für andere Voraussetzungen sind die diskutierten Werte entsprechend zu skalieren, wodurch jedoch der Erfindungsgedanke nicht verändert wird und diese Ausführungsformen unter den Schutz der Erfindung fallen.
  • Für einen Sprecher 202 als Signalquelle nimmt der Quotient einen Wert wesentlich größer als 1 an, denn wegen des Minimums der Richtcharakteristik 210 in der Vorzugsrichtung ist das Differenzsignal klein und geht im theoretischen Extremfall sogar gegen Null. Gleichzeitig ist das Summensignal maximal, für normierte Empfindlichkeit wäre dies ein Wert 2. Der Quotient steigt entsprechend zu großen positiven Werten an.
  • Für einen Sprecher 203 als Signalquelle geht der Signalwert des Differenzsignals gegen einen Wert, der dem des Summensignals gleicht, da sich die beiden Richtcharakteristiken 201, 220 in Richtung des Sprechers 203 schneiden. Der Quotient selbst geht gegen den Wert 1.
  • Für einen Sprecher 204 als Signalquelle geht der Signalwert des Differenzsignals gegen ein Maximum, während das Summensignal gegen einen Wert kleiner als 1 und größer als 0 in Richtung 0 geht. Der Quotient selbst geht ebenfalls gegen einen Wert kleiner als 1 und größer als 0 in Richtung 0. Vergleichbares gilt für Sprecher 206. Typische Werte für den Quotienten liegen dann zwischen 0,5 und 0,25.
  • In einem Schritt S40 erhöht die Signalverarbeitungseinrichtung 3, 3' erfindungsgemäß die Richtcharakteristik des binauralen direktionalen Mikrofonsignals, wenn der Quotient steigt bzw. einen vorbestimmten Wert überschreitet. Dieser Wert kann bezogen auf ein Normiertes Audiosignal beispielsweise 0, 5 oder 1 sein. Für Signalquellen in der Vorzugsrichtung, in der sich beispielsweise der Sprecher 202 befindet, weist das binaurale direktionale Mikrofonsignal dann einen größeren Signalpegel auf, während beispielsweise für Signalquellen wie Sprecher 203, 204, 205 oder 206 in anderen Richtungen in einem Winkel zur Vorzugsrichtung das Signal einen geringeren Signalpegel aufweist. Eine Anhebung der Richtcharakteristik kann in einer Ausführungsform erfolgen, indem das binaurale direktionale Mikrofonsignal durch eine gewichtete Überlagerung des Summensignals und eines omnidirektionalen Mikrofonsignals gewonnen wird, wobei zur Erhöhung der Richtcharakteristik das Summensignal gegenüber dem omnidirektionalen Signal stärker gewichtet wird. Es sind aber auch andere Kombinationen von binauralen direktionalen Mikrofonen höherer Ordnung mit einem omnidirektionalen Mikrofonsignal denkbar.
  • Umgekehrt senkt die erfindungsgemäße Signalverarbeitungseinrichtung 3, 3' in Schritt S40 die Richtcharakteristik des binauralen direktionalen Mikrofonsignals, wenn der Quotient sinkt. Dies ist, wie bereits dargestellt, beispielsweise für Sprecher 204 der Fall. Bei einem Senken der Richtcharakteristik steigt die Empfindlichkeit des binauralen direktionalen Mikrofons für Richtungen unter einem Winkel zur Vorzugsrichtung, während sie in der Vorzugsrichtung abnimmt. Für die beispielsweise in Bezug auf Sprecher 204 zu Schritt S30 diskutierten kleinen Werte des Quotienten hat das binaurale direktionale Mikrofon keine Richtcharakteristik mehr, weist also eine omnidirektionale Richtcharakteristik auf. Damit ist für Signalquellen in der Vorzugsrichtung, in der sich beispielsweise der Sprecher 202 befindet, der Signalpegel des binauralen direktionalen Mikrofons gleich dem für Signalquellen wie Sprecher 203, 204, 205 oder 206 in anderen Richtungen in einem Winkel zur Vorzugsrichtung.
  • In einer alternativen Ausführungsform des erfindungsgemäßen Verfahrens wird in Schritt S10 anstelle der Summe das Minimum aus den ersten Audiosignalen bzw. den ersten vorverarbeiteten Audiosignalen bestimmt. In Schritt S30 wird dann entsprechend der Quotient aus dem bestimmten Minimum und der Differenz der ersten Audiosignale bzw. der ersten vorverarbeiteten Audiosignale gebildet. Im Übrigen entspricht das alternative Verfahren dem bereits dargestellten Verfahren.
  • In einer weiteren alternativen Ausführungsform des erfindungsgemäßen Verfahrens ermittelt die Signalverarbeitungseinrichtung 3, 3' in Schritt S10' anstelle des Quotienten einen Wert für die Kreuzkorrelation der ersten Audiosignale. Ist der Ursprung eines Audiosignals in der Symmetrieebene zwischen den beiden Hörhilfegeräten 110, 110', so sind die ersten Audiosignale im Idealfall identisch und weisen einen hohen Wert für die Kreuzkorrelation auf. Für Werte außerhalb nimmt entsprechend die Kreuzkorrelation ab. Gleiches gilt, wenn die ersten Audiosignale aus einer Vielzahl von unabhängigen räumlich verteilten Quellen entstammen.
  • In einem Schritt S40' der weiteren alternativen Ausführungsform des Verfahrens erhöht die Signalverarbeitungseinrichtung 3, 3' entsprechend zu S40 die Richtcharakteristik des binauralen direktionalen Mikrofonsignals, wenn der Wert der Kreuzkorrelation steigt bzw. einen Wert größer null annimmt und senkt die die Richtcharakteristik des binauralen direktionalen Mikrofonsignals, wenn der Wert für die Kreuzkorrelation sinkt.
  • Die Schritte der Quotientenbildung S20 und S30 entfallen sinngemäß in der alternativen Ausführungsform des Verfahrens.
  • Es ist in den erfindungsgemäßen Verfahren auch denkbar, dass die Vorzugsrichtung nicht in der Symmetrieebene zwischen den Hörhilfegeräten liegt. So kann beispielsweise durch unterschiedliche Wandler 2, 2' oder durch unterschiedliche Vorverarbeitung der Signale ersten Audiosignale vor einer Summen- oder Differenzbildung die Vorzugsrichtung in eine andere Richtung außerhalb der Symmetrieebene der beiden Hörhilfegeräte 110, 110' gerichtet werden. Gleiches gilt, wenn erfindungsgemäß anstelle der Summe der ersten Audiosignale das Minimum von dem ersten vorverarbeiteten Audiosignal und dem zweiten vorverarbeiteten Audiosignal in den Quotienten als Zähler eingeht. Die Vorverarbeitung der ersten Audiosignale kann permanent oder auch adaptiv anhand eines Verfahrens erfolgen, dass eine Raumrichtung einer Schallquelle ermittelt und geeignete Amplituden- und Phasenkorrekturen bestimmt, um die Raumrichtung in die Symmetrieebene zwischen den Hörhilfegeräten in die Blickrichtung des Trägers abzubilden. Entsprechend kann bei der Ausführung eines erfindungsgemäßen Verfahrens der Sprecher 202 in Fig. 2 auch in einer anderen als der angezeigten Vorzugsrichtung 0 Grad in Bezug zu dem Träger 201 angeordnet sein.
  • Fig. 4 zeigt schematisch die Funktionsblöcke zur Erzeugung eines Quotienten gemäß dem erfindungsgemäßen Verfahren.
  • Die Wandler 2, 2' liefern ein Signal, dass dem am linken und rechten Hörhilfegerät 110, 110'eintreffenden Schall entspricht. Die ersten akustischen Signale der Wandler werden in Addierer 301 addiert bzw. in Addierer 302 subtrahiert, nachdem der Inverter 303 das erste akustische Signal des Wandlers 2 invertiert hat. Zur Bestimmung eines Pegels werden die Summen- und Differenzsignale zunächst in Gleichrichter 305, 306 in Beträge umgewandelt bzw. gleichgerichtet und in den Tiefpässen 307, 308 gemittelt, bevor in dem Dividierer 309 der Quotient gebildet wird.
  • Die in Fig. 4 dargestellten Funktionen lassen sich erfindungsgemäß durch analoge Bausteine, digitale diskrete oder integrierten Einheiten wie beispielsweise ASICS oder FPGA oder auch als Software in einem Digitalen Signalprozessor Prozessor oder einem allgemeinen Prozessor abbilden.
  • Obwohl die Erfindung im Detail durch das bevorzugte Ausführungsbeispiel näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.

Claims (5)

  1. Verfahren zum Betrieb eines Hörhilfesystems (100) mit mindestens zwei Hörhilfegeräten (110, 110') zur Anordnung an beiden Seiten eines Kopfes eines Trägers (201), wobei die Hörhilfegeräte (110, 110') einen Wandler (2, 2') zur Aufnahme eines akustischen Signals und Wandlung in ein jeweils erstes Audiosignal aufweisen, wobei das Hörhilfesystem (100) eine Signalverarbeitungsvorrichtung (3, 3') zur Verarbeitung von Audiosignalen und eine Signalverbindung zur Übertragung eines ersten Audiosignals von jedem Hörhilfegerät zu der Signalverarbeitungseinrichtung (3, 3') aufweist,
    dadurch gekennzeichnet,
    dass die Signalverarbeitungsvorrichtung (3, 3') einen Signalanteil aus einer Vorzugsrichtung in Bezug auf den Kopf des Trägers (201) in den ersten Audiosignalen bewertet und die Signalverarbeitungsvorrichtung (3, 3') mit den ersten Audiosignalen ein erstes binaurales direktionales Mikrofonsignal erzeugt und dessen Richtcharakteristik (220) in Abhängigkeit von der Bewertung einstellt,
    wobei die Signalverarbeitungseinrichtung (3, 3') zur Bewertung des Signalanteils eine Kreuzkorrelation der ersten Audiosignale oder der durch eine Abbildung der Vorzugsrichtung in eine Symmetrieebene der beiden Hörhilfegeräte (110, 110') vorverarbeiteten ersten Audiosignale beider Hörhilfegeräte bestimmt.
  2. Verfahren nach Anspruch 1, wobei die Signalverarbeitungsvorrichtung (3, 3') die Richtcharakteristik (220) des binauralen direktionalen Mikrofons mit zunehmender Kreuzkorrelation erhöht.
  3. Verfahren nach einem der vorangehenden Schritte, wobei die Bewertung der Signalanteile aus der Vorzugsrichtung in den ersten Audiosignalen für mindestens zwei verschiedene Frequenzbereiche einzeln erfolgt und die Richtcharakteristik (220) des ersten binauralen direktionalen Mikrofonsignals für jeden Frequenzbereich einzeln in Abhängigkeit von der Bewertung eingestellt wird.
  4. Hörhilfesystems mit mindestens zwei Hörhilfegeräten (110, 110') zur anwendungsgemäßen Anordnung an beiden Seiten eines Kopfes eines Trägers (201), wobei die Hörhilfegeräte (110, 110') einen Wandler (2, 2') zur Aufnahme eines akustischen Signals und Wandlung in ein jeweils erstes Audiosignal aufweisen, wobei das Hörhilfesystem (100) eine Signalverarbeitungsvorrichtung (3, 3') zur Verarbeitung von Audiosignalen und eine Signalverbindung zur Übertragung eines ersten Audiosignals von jedem Hörhilfegerät (110, 110') zu der Signalverarbeitungseinrichtung (3, 3') aufweist,
    dadurch gekennzeichnet,
    dass die Signalverarbeitungsvorrichtung (3, 3') ausgelegt ist, einen Signalanteil aus einer Vorzugsrichtung in Bezug auf den Kopf in den ersten Audiosignalen zu bewerten und die Signalverarbeitungsvorrichtung (3, 3') ausgelegt ist, mit den ersten Audiosignalen ein erstes binaurales direktionales Mikrofonsignal zu erzeugen und dessen Richtcharakteristik (220) in Abhängigkeit von der Bewertung einzustellen,
    wobei die Signalverarbeitungseinrichtung (3, 3') dazu ausgelegt ist, zur Bewertung des Signalanteils eine Kreuzkorrelation der ersten Audiosignale oder der durch eine Abbildung der Vorzugsrichtung in eine Symmetrieebene der beiden Hörhilfegeräte (110, 110') vorverarbeiteten ersten Audiosignale beider Hörhilfegeräte zu bestimmen.
  5. Hörhilfesystem nach Anspruch 4, wobei das Hörhilfesystem (100) dazu ausgelegt ist, das Verfahren nach den Ansprüchen 1 bis 3 auszuführen.
EP18248116.8A 2013-04-19 2014-03-26 Steuerung der effektstärke eines binauralen direktionalen mikrofons Withdrawn EP3490273A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013207149.3A DE102013207149A1 (de) 2013-04-19 2013-04-19 Steuerung der Effektstärke eines binauralen direktionalen Mikrofons
EP14161630.0A EP2840809B1 (de) 2013-04-19 2014-03-26 Steuerung der effektstärke eines binauralen direktionalen mikrofons

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP14161630.0A Division EP2840809B1 (de) 2013-04-19 2014-03-26 Steuerung der effektstärke eines binauralen direktionalen mikrofons

Publications (1)

Publication Number Publication Date
EP3490273A1 true EP3490273A1 (de) 2019-05-29

Family

ID=50349501

Family Applications (3)

Application Number Title Priority Date Filing Date
EP18183297.3A Withdrawn EP3410745A1 (de) 2013-04-19 2014-03-26 Steuerung der effektstärke eines binauralen direktionalen mikrofons
EP14161630.0A Active EP2840809B1 (de) 2013-04-19 2014-03-26 Steuerung der effektstärke eines binauralen direktionalen mikrofons
EP18248116.8A Withdrawn EP3490273A1 (de) 2013-04-19 2014-03-26 Steuerung der effektstärke eines binauralen direktionalen mikrofons

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP18183297.3A Withdrawn EP3410745A1 (de) 2013-04-19 2014-03-26 Steuerung der effektstärke eines binauralen direktionalen mikrofons
EP14161630.0A Active EP2840809B1 (de) 2013-04-19 2014-03-26 Steuerung der effektstärke eines binauralen direktionalen mikrofons

Country Status (4)

Country Link
US (1) US9253581B2 (de)
EP (3) EP3410745A1 (de)
DE (1) DE102013207149A1 (de)
DK (1) DK2840809T3 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016146487A1 (en) 2015-03-13 2016-09-22 Sivantos Pte. Ltd. Binaural hearing aid system
DE102015211747B4 (de) 2015-06-24 2017-05-18 Sivantos Pte. Ltd. Verfahren zur Signalverarbeitung in einem binauralen Hörgerät
DE102017215823B3 (de) 2017-09-07 2018-09-20 Sivantos Pte. Ltd. Verfahren zum Betrieb eines Hörgerätes
TWI700004B (zh) * 2018-11-05 2020-07-21 塞席爾商元鼎音訊股份有限公司 減少干擾音影響之方法及聲音播放裝置
CN111163411B (zh) * 2018-11-08 2022-11-18 达发科技股份有限公司 减少干扰音影响的方法及声音播放装置
JP2021150959A (ja) * 2020-03-23 2021-09-27 ジーエヌ ヒアリング エー/エスGN Hearing A/S 聴覚装置および聴覚装置に関連する方法
US11153695B2 (en) 2020-03-23 2021-10-19 Gn Hearing A/S Hearing devices and related methods
US11617037B2 (en) 2021-04-29 2023-03-28 Gn Hearing A/S Hearing device with omnidirectional sensitivity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2036396A1 (de) * 2006-06-23 2009-03-18 GN ReSound A/S Hörinstrument mit adaptiver richtsignalverarbeitung
WO2009072040A1 (en) * 2007-12-07 2009-06-11 Koninklijke Philips Electronics N.V. Hearing aid controlled by binaural acoustic source localizer
WO2010051606A1 (en) * 2008-11-05 2010-05-14 Hear Ip Pty Ltd A system and method for producing a directional output signal
EP2360943A1 (de) * 2009-12-29 2011-08-24 GN Resound A/S Strahlformung in Hörgeräten

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5600326A (en) * 1991-12-16 1997-02-04 Martin Marietta Corp. Adaptive digital beamforming architecture and algorithm for nulling mainlobe and multiple sidelobe radar jammers while preserving monopulse ratio angle estimation accuracy
US5511128A (en) * 1994-01-21 1996-04-23 Lindemann; Eric Dynamic intensity beamforming system for noise reduction in a binaural hearing aid
JP3216704B2 (ja) * 1997-08-01 2001-10-09 日本電気株式会社 適応アレイ装置
US6549633B1 (en) * 1998-02-18 2003-04-15 Widex A/S Binaural digital hearing aid system
DE19810043A1 (de) * 1998-03-09 1999-09-23 Siemens Audiologische Technik Hörgerät mit einem Richtmikrofon-System
US6243322B1 (en) * 1999-11-05 2001-06-05 Wavemakers Research, Inc. Method for estimating the distance of an acoustic signal
US20010028718A1 (en) * 2000-02-17 2001-10-11 Audia Technology, Inc. Null adaptation in multi-microphone directional system
US8098844B2 (en) * 2002-02-05 2012-01-17 Mh Acoustics, Llc Dual-microphone spatial noise suppression
US7171008B2 (en) * 2002-02-05 2007-01-30 Mh Acoustics, Llc Reducing noise in audio systems
CA2773294C (en) * 2002-05-03 2013-03-12 Harman International Industries, Incorporated Sound detection and localization system
US7212642B2 (en) * 2002-12-20 2007-05-01 Oticon A/S Microphone system with directional response
US20040175008A1 (en) * 2003-03-07 2004-09-09 Hans-Ueli Roeck Method for producing control signals, method of controlling signal and a hearing device
US8027495B2 (en) * 2003-03-07 2011-09-27 Phonak Ag Binaural hearing device and method for controlling a hearing device system
DE10327890A1 (de) * 2003-06-20 2005-01-20 Siemens Audiologische Technik Gmbh Verfahren zum Betrieb eines Hörhilfegerätes sowie Hörhilfegerät mit einem Mikrofonsystem, bei dem unterschiedliche Richtcharakteristiken einstellbar sind
EP1658754B1 (de) * 2003-06-24 2011-10-05 GN ReSound A/S Binaurales hörhilfesystem mit koordinierter schallverarbeitung
DE60322447D1 (de) * 2003-09-19 2008-09-04 Widex As Verfahren zur steuerung der richtcharakteristik eiür ein hörgerät mit steuerbarer richtcharakteristik
EP1730992B1 (de) * 2004-03-23 2017-05-10 Oticon A/S Hörgerät mit anti-rückkopplungs-system
DE102004053790A1 (de) * 2004-11-08 2006-05-18 Siemens Audiologische Technik Gmbh Verfahren zur Erzeugung von Stereosignalen für getrennte Quellen und entsprechendes Akustiksystem
US20060227976A1 (en) * 2005-04-07 2006-10-12 Gennum Corporation Binaural hearing instrument systems and methods
CN101263740A (zh) * 2005-09-13 2008-09-10 皇家飞利浦电子股份有限公司 生成3d声音的方法和设备
US20070160242A1 (en) 2006-01-12 2007-07-12 Phonak Ag Method to adjust a hearing system, method to operate the hearing system and a hearing system
WO2007098768A1 (en) * 2006-03-03 2007-09-07 Gn Resound A/S Automatic switching between omnidirectional and directional microphone modes in a hearing aid
EP1994788B1 (de) * 2006-03-10 2014-05-07 MH Acoustics, LLC Rauschunterdrückendes direktionales mikrophon-array
US8249284B2 (en) * 2006-05-16 2012-08-21 Phonak Ag Hearing system and method for deriving information on an acoustic scene
US8755547B2 (en) * 2006-06-01 2014-06-17 HEAR IP Pty Ltd. Method and system for enhancing the intelligibility of sounds
US8503692B2 (en) * 2007-06-13 2013-08-06 Aliphcom Forming virtual microphone arrays using dual omnidirectional microphone array (DOMA)
DE102008015263B4 (de) 2008-03-20 2011-12-15 Siemens Medical Instruments Pte. Ltd. Hörsystem mit Teilbandsignalaustausch und entsprechendes Verfahren
US8744101B1 (en) * 2008-12-05 2014-06-03 Starkey Laboratories, Inc. System for controlling the primary lobe of a hearing instrument's directional sensitivity pattern
JP4548539B2 (ja) * 2008-12-26 2010-09-22 パナソニック株式会社 補聴器
JP5409656B2 (ja) * 2009-01-22 2014-02-05 パナソニック株式会社 補聴装置
KR101337806B1 (ko) * 2009-07-15 2013-12-06 비덱스 에이/에스 보청기 시스템에서의 적응적 바람 잡음 억제를 위한 방법 및 처리 장치와 보청기 시스템
US8947978B2 (en) * 2009-08-11 2015-02-03 HEAR IP Pty Ltd. System and method for estimating the direction of arrival of a sound
JP5519689B2 (ja) * 2009-10-21 2014-06-11 パナソニック株式会社 音響処理装置、音響処理方法及び補聴器
US8515109B2 (en) * 2009-11-19 2013-08-20 Gn Resound A/S Hearing aid with beamforming capability
US8565446B1 (en) * 2010-01-12 2013-10-22 Acoustic Technologies, Inc. Estimating direction of arrival from plural microphones
WO2011101045A1 (en) * 2010-02-19 2011-08-25 Siemens Medical Instruments Pte. Ltd. Device and method for direction dependent spatial noise reduction
AU2011331906B2 (en) * 2010-11-18 2013-05-02 Noopl, Inc Systems and methods for reducing unwanted sounds in signals received from an arrangement of microphones
US9635474B2 (en) * 2011-05-23 2017-04-25 Sonova Ag Method of processing a signal in a hearing instrument, and hearing instrument
EP2590436B1 (de) * 2011-11-01 2014-05-14 Phonak AG Binaurales Hörgerät und Verfahren zum Betreiben des Hörgeräts
EP2817979A1 (de) * 2012-02-22 2014-12-31 Phonak AG Verfahren zur bedienung eines binauralen hörsystems sowie binaurales hörsystem
DE102012204877B3 (de) * 2012-03-27 2013-04-18 Siemens Medical Instruments Pte. Ltd. Hörvorrichtung für eine binaurale Versorgung und Verfahren zum Bereitstellen einer binauralen Versorgung
US9398379B2 (en) * 2012-04-25 2016-07-19 Sivantos Pte. Ltd. Method of controlling a directional characteristic, and hearing system
US9357306B2 (en) * 2013-03-12 2016-05-31 Nokia Technologies Oy Multichannel audio calibration method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2036396A1 (de) * 2006-06-23 2009-03-18 GN ReSound A/S Hörinstrument mit adaptiver richtsignalverarbeitung
WO2009072040A1 (en) * 2007-12-07 2009-06-11 Koninklijke Philips Electronics N.V. Hearing aid controlled by binaural acoustic source localizer
WO2010051606A1 (en) * 2008-11-05 2010-05-14 Hear Ip Pty Ltd A system and method for producing a directional output signal
EP2360943A1 (de) * 2009-12-29 2011-08-24 GN Resound A/S Strahlformung in Hörgeräten

Also Published As

Publication number Publication date
US9253581B2 (en) 2016-02-02
EP2840809A3 (de) 2017-05-17
EP2840809A2 (de) 2015-02-25
EP2840809B1 (de) 2019-01-02
DK2840809T3 (da) 2019-04-08
US20140314260A1 (en) 2014-10-23
DE102013207149A1 (de) 2014-11-06
EP3410745A1 (de) 2018-12-05

Similar Documents

Publication Publication Date Title
EP2840809B1 (de) Steuerung der effektstärke eines binauralen direktionalen mikrofons
EP3451705B1 (de) Verfahren und vorrichtung zum schnellen erkennen der eigenen stimme
EP2180726B2 (de) Richtungshören bei binauraler Hörgeräteversorgung
EP2506603B1 (de) Hörhilfegerätesystem mit einem Richtmikrofonsystem sowie Verfahren zum Betrieb eines Hörhilfegerätesystems mit einem Richtmikrofonsystem
EP2164283B1 (de) Hörgerät und Betrieb eines Hörgeräts mit Frequenztransposition
EP2991379B1 (de) Verfahren und vorrichtung zur verbesserten wahrnehmung der eigenen stimme
EP3461147B1 (de) Verfahren zum betrieb eines hörgerätes
EP1771038A2 (de) Verfahren zum Betrieb eines Hörhilfegerätesystems zur binauralen Versorgung eines Benutzers
EP2811762B1 (de) Logik-basiertes binaurales Beam-Formungssystem
EP2226795B1 (de) Hörvorrichtung und Verfahren zum Reduzieren eines Störgeräuschs für eine Hörvorrichtung
DE102013215131A1 (de) Verfahren zur Verfolgung einer Schallquelle
DE60316474T2 (de) Mikrofonsystem mit richtansprechverhalten
DE102011006129B4 (de) Hörvorrichtung mit Rückkopplungsunterdrückungseinrichtung und Verfahren zum Betreiben der Hörvorrichtung
EP3926982A2 (de) Verfahren zur richtungsabhängigen rauschunterdrückung für ein hörsystem, welches eine hörvorrichtung umfasst
DE102015211747B4 (de) Verfahren zur Signalverarbeitung in einem binauralen Hörgerät
EP2595414B1 (de) Hörvorrichtung mit einer Einrichtung zum Verringern eines Mikrofonrauschens und Verfahren zum Verringern eines Mikrofonrauschens
EP2822300B1 (de) Erkennen von Hörsituationen mit unterschiedlichen Signalquellen
EP2658289B1 (de) Verfahren zum Steuern einer Richtcharakteristik und Hörsystem
WO2000041436A1 (de) Verfahren zur erzeugung eines elektrischen signals bzw. verfahren zur hervorhebung von akustischen signalen aus einer vorzugsrichtung, übertrager und vorrichtung
EP3048813A1 (de) Verfahren und vorrichtung zur rauschunterdrückung basierend auf inter-subband-korrelation
WO2011107545A2 (de) Verfahren zum einstellen einer hörvorrichtung mit richtwirkung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 2840809

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20191130